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Abstract

Understanding the mechanisms underlying tumor metastasis is critical for designing ef-
fective anti-tumor therapies. This article focuses on the modeling and numerical analysis of
cell migration by chemical signals and interstitial flow, two crucial factors in tumor metas-
tasis. We consider a nonlinear Keller-Segel model that includes an elliptic equation based
on Darcy’s law for fluid flow. We propose a fully discrete method that combines an implicit-
explicit method in time with a finite difference method in space. We establish the method’s
second-order superconvergence in space in a discrete H1-norm, optimal first-order conver-
gence in time in a discrete L2-norm, and local nonlinear stability. Numerical simulations
confirm the sharpness of the error analysis. We also look into the model’s ability to repro-
duce laboratory experiments on the effects of flow and chemotaxis on tumor cell migration.

Keywords: Tumour cell migration; Keller-Segel-Flow model; Numerical analysis; Optimal
error estimates; Numerical simulation.

1 Introduction

Let us consider Ω = (0, 1)2 and define in Ω× (0, T ] the nonlinear elliptic-parabolic system





∂cb
∂t

+∇ · (φ(∇cc, cc,∇p)cb) = ∇ · (Db(cb, cc)∇cb) + f(cb, cc),

∂cc
∂t

+∇ · (ψ(∇p)cc) = ∇ · (Dc(cb, cc)∇cc) + g(cb, cc),

−∇ · (Dp(cb, cc)∇p) = q(cb, cc, p),

(1)

(2)

(3)

with initial conditions

cb(x, y, 0) = cb,0(x, y), cc(x, y, 0) = cc,0(x, y), p(x, y, 0) = p0(x, y), (x, y) ∈ Ω, (4)

and the Dirichlet boundary conditions





cb(x, y, t) = cc(x, y, t) = 0, ∂Ω× (0, T ],

p(x, y, t) = p1(x, y, t), Γ1 × (0, T ],

p(x, y, t) = p2(x, y, t), Γ2 × (0, T ],

(5)
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with Γ1 ∪ Γ2 = ∂Ω and Γ1 ∩ Γ2 = ∅.
In (1)-(3), q : R3 → R, f, g : R2 → R, Db, Dc, and Dp are diagonal matrices depending on cb

and cc

Db(cb, cc) =

[
Db,11(cb, cc) 0

0 Db,22(cb, cc)

]
, Db,ii : R

2 → R, i = 1, 2, (6)

with analogous meaning for Dc and Dp, and

φ(∇cc, cc,∇p) =
[
φ1(

∂cc
∂x , cc,

∂p
∂x)

φ2(
∂cc
∂y , cc,

∂p
∂y )

]
, φi : R

3 → R, i = 1, 2, (7)

ψ(∇p) =
[
ψ1(

∂p
∂x)

ψ2(
∂p
∂y )

]
, ψi : R

2 → R, i = 1, 2. (8)

The seminal 1970s Keller-Segel model is a particular case of the generic equations (1)-(2).
This model describes how cell density cb evolves under the influence of chemical signal concen-
tration cc, a process called autologous chemotaxis. Over the years, researchers have adapted the
Keller-Segel model to describe various biological processes, and we refer to [1] for a comprehen-
sive overview of these variations.

Our focus is on biological processes where convective flow plays an important role. Specif-
ically, we investigate the migration of tumor cells under interstitial flow. The interstitial flow
is the fluid motion through the porous extracellular matrix (ECM) driven by the pressure gra-
dient between surrounding blood and lymphatic capillaries. In this context, Darcy’s equation
(3) governs the pressure field p, where Dp represents the ECM’s permeability and q describes
fluid exchanges between capillaries and the ECM. The function φ(∇cc, cc,∇p) in equation (1)
describes the cells’ sensitivity to interstitial flow and chemical concentration, while ψ(∇p) in
equation (2) governs the chemical sensitivity to interstitial flow. Moreover, in equation (1),
Db and f represent cells’ diffusivity and growth/death rates, respectively. In equation (2), Dc

governs the chemical signal’s diffusivity, and g describes its production/degradation rates.
Recent studies have investigated how interstitial flow affects tumor cell dynamics. In [27],

the authors use a multiphase cell migration model to study how ECM heterogeneities influence a
tumor’s metastatic propensity. In [22], the authors define a mechanobiological model to analyze
the mechanical factors that drive cell migration, and in [16], the focus is on how a growing tumor
responds to combination chemotherapy. In the experimental section of this article, we emphasize
the interaction between ECM, interstitial flow, and chemical signal. We train a particular version
of the model (1)-(5) to reproduce in vitro tumor cell migration results reported in [24].

We also focus on the convergence analysis of a fully discrete scheme for the Keller-Segel-
Flow system (1)-(5). While previous studies (e.g., [17, 6, 8, 25, 28, 9, 10, 4, 3]) have explored
the numerical discretization of Keller-Segel-Flow systems, many lack a theoretical numerical
analysis. Exceptions include [25, 9, 10], [28], and [4], which provide error estimates for implicit-
explicit (IMEX) time schemes combined with different spatial discretizations: finite element,
discontinuous Galerkin, and a mixed finite volume-finite element approach. Here, the proposed
fully discrete method for (1)-(5) combines finite difference in space with an IMEX scheme in
time that handles the nonlinear and coupled terms. We add to the literature by establishing a
sharp (with respect to solution regularity) second-order superconvergence estimate in space in
a discrete H1-norm. The proof is based on the Bramble-Hilbert lemma, avoiding the classical
truncation error bound. Additionally, we provide an optimal first-order convergence estimate in
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time in a discrete L2-norm. This work builds on the analysis of elliptic equations presented in
[13, 2] and followed, e.g., in [11, 12] for parabolic equations motivated by enhanced drug delivery.

We organize the paper as follows. In Section 2, we introduce the semidiscrete finite differ-
ence method (FDM) for (1)-(5) and establish its convergence and stability. Section 3 extends
the analysis to the fully discrete scheme, combining FDM with implicit-explicit (IMEX) time
integration. Section 4 focuses on numerical experiments. We present examples that confirm
the theoretical error analysis and use system (1)-(5) to model in vitro tumor cell migration
experiments. Section 5 concludes.

2 Semidiscrete FDM

Let Λ be a sequence of vectors H = (h, k), h = (h1, h2, . . . , hN ), k = (k1, k2, . . . , kM ), with hi >

0, i = 1, . . . , N, kj , j = 1, . . . ,M, such that

N∑

i=1

hi =

M∑

j=1

kj = 1, andHmax = max{hmax, kmax} →

0, where hmax = max
i=1,...,N

hi, being kmax defined analogously.

We define the nonuniform finite difference grid

ΩH = {(xi, yj) : xi
i=1,...,N

= xi−1 + hi, yj
j=1,...,M

= yj−1 + kj},

with x0 = y0 = 0, xN = yM = 1. We set ΩH = ΩH ∩Ω and ∂ΩH = ΩH ∩ ∂Ω. Let VH be the set
of grid functions defined in ΩH and let VH,0 be the subset of grid functions in VH that are null
on ∂ΩH .

The proposed finite difference method (FDM) for system (1)-(5) is given by: find cb,H(t),
cc,H(t) ∈ VH,0 and pH(t) ∈ VH , such that, for t ∈ (0, T ]





c′b,H(t) +∇c,H · (φH(t)cb,H(t)) = ∇∗
H · (Db,H(t)∇Hcb,H(t)) + fH(t),

c′c,H(t) +∇c,H · (ψH(t)cc,H(t)) = ∇∗
H · (Dc,H(t)∇Hcc,H(t)) + gH(t),

−∇∗
H · (Dp,H(t)∇HpH(t)) = qH(t),

(9)

(10)

(11)

with initial conditions (4) and boundary conditions (5).

Remark 1 In (9)-(11), we consider the operators ∇H = (D−x, D−y), ∇∗
H = (D∗

x, D
∗
y), and

∇c,H = (Dc,x, Dc,y) with

D-xuH(xi, yj) =
uH(xi, yj)− uH(xi−1, yj)

hi
, Dc,xuH(xi, yj) =

uH(xi+1, yj)− uH(xi−1, yj)

hi + hi+1
,

D∗
xuH(xi, yj) =

uH(xi+1, yj)− uH(xi, yj)

hi+1/2
,

where hi+1/2 = 1
2(hi+1 + hi) and with the y-direction operators D−y, Dc,y, and D

∗
y analogously

defined. We also define

Db,H(t) =

[
Db,11(Mhcb,H(t),Mhcc,H(t)) 0

0 Db,22(Mkcb,H(t),Mkcc,H(t))

]
, (12)
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where

MhuH(xi, yj) =
uH(xi, yj) + uH(xi−1, yj)

2
, (13)

and with the y-direction operator Mk analogously defined. The operators Dc,H(t) and Dp,H(t)
are equivalently defined.

We also have

φH(t) =

[
φ1(Dhcc,H(t), cc,H(t), DhpH(t))
φ2(Dkcc,H(t), cc,H(t), DkpH(t))

]T
, ψH(t) =

[
ψ1(DhpH(t))
ψ2(DkpH(t))

]T
. (14)

where

DhuH(xi, yj) =
hi

hi + hi+1
D−xuH(xi+1, yj) +

hi+1

hi + hi+1
D−xuH(xi, yj),

and with the y-direction operator Dk analogously defined. Set also fH(t) = f(cb,H(t), cc,H(t)),
and analogously for gH(t) and qH(t).

2.1 Auxiliary results

Let us define the inner product

(uH , wH)H =
∑

(xi,yj)∈ΩH

hi+1/2kj+1/2uH(xi, yj)wH(xi, yj), (15)

for uH , vH ∈ VH,0, with ‖.‖H the induced norm. Write

(uH , wH)x =

N∑

i=1

M−1∑

j=1

hikj+1/2uH(xi, yj)wH(xi, yj),

and set ‖uH‖2x = (uH , uH)x. Analogously define (uH , wH)y and ‖uH‖y, and consider

(uH , wH) = (uH,1, wH,1)x + (uH,2, wH,2)y, (16)

and ‖uH‖2, with obvious meaning. We have

‖∇HuH‖2 = ‖D−xuH‖2x + ‖D−yuH‖2y
= (D−xuH , D−xuH)x + (D−yuH , D−yuH)y,

and denote by ‖.‖1,H the discrete H1(Ω)-norm

‖uH‖21,H = ‖uH‖2H + ‖∇HuH‖2, uH ∈ VH,0. (17)

Proposition 1 (Discrete Poincaré inequality) It holds that

‖uH‖H ≤ 1

2
‖∇HuH‖, ∀uH ∈ VH,0. (18)

Proof: Note that uH(xi, yj) =
∑i

m=1 hmD−xuH(xm, yj).
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The next propositions follow by using summation by parts and some straightforward calcu-
lations.

Proposition 2 For the diagonal matrix Db,H(t) in (9) (or Dc,H(t) or Dp,H(t)), we have

(∇∗
H · (Db,H(t)∇HuH), wH)H = −(Db,H(t)∇HuH ,∇HwH), ∀wH(t) ∈ VH,0.

Proposition 3 Consider wH,1, wH,2 ∈ VH,0, define WH = (wH,1, wH,2), and recall the definition
of (·, ·) (16). We set

(MH(WH),WH) = (MhwH,1, wH,1)H + (MkwH,2, wH,2)H ,

with Mh,Mk as defined in (13). It holds

(∇c,H ·WH , wH)H = −(MH(WH),∇HwH), ∀wH ∈ VH,0.

Using Propositions 2 and 3, we rewrite the FDM (9)-(11) in a form suitable for the upcoming
convergence analysis. It reads: find cb,H(t), cc,H(t) ∈ VH,0 and pH(t) ∈ VH , such that, for
t ∈ (0, T ]





(c′b,H(t), wb,H)H − (MH(φH(t)cb,H(t)),∇Hwb,H) =

− (Db,H(t)∇Hcb,H(t),∇Hwb,H) + (fH(t), wb,H)H ,

(c′c,H(t), wc,H)H − (MH(ψH(t)cc,H(t)),∇Hwc,H) =

− (Dc,H(t)∇Hcc,H(t),∇Hwc,H) + (gH(t), wc,H)H ,

(Dp,H(t)∇HpH(t),∇Hwp,H) = (qH(t), wp,H)H ,

(19)

(20)

(21)

for wb,H , wc,H , wp,H ∈ VH,0.
In the next section, we present our main result (Theorem 1), which states the second-order

superconvergence of the FDM (9)-(11) in the discrete H1-norm (17).

2.2 Convergence analysis

Let (cb, cc, p) be a solution of the Keller-Segel-Flow system (1)-(5) and (cb,H , cc,H , pH) an ap-
proximation obtained by the FDM (9)-(11). We consider the numerical error

Eb,H(t) = cb(t)− cb,H(t), t ∈ [0, T ],

with analogous meaning for Ec,H(t) and Ep,H(t).

Remark 2 (Regularity assumptions) We make the following assumptions on the nonuni-
form finite difference grid ΩH and the coefficient functions of the Keller-Segel-Flow system
(1)-(5).
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(I) Let H be the family of finite difference grids, H = (h, k) ∈ Λ, with Hmax = max{hmax, kmax}
and Hmin = min{hmin, kmin} with hmin = min

i=1,...,N
hi being kmin defined analogously. There

exists Cg such that
Hmax

Hmin
≤ Cg;

(II) The functions {Db,ii}i=1,2 (6) are Lipschitz with constant LDb
, there exists Db,0 such that

Db,ii ≥ Db,0 > 0, and Db,ii ∈W 2,∞(Ω) (analogously for Dc and Dp);

(III) The functions {φi}i=1,2 (7) are Lipschitz with constant Lφ, there exists Cφ such that |φi| ≤
Cφ, and (φ1(t)cb(t), φ2(t)cb(t)) ∈ [H2(Ω)]2 (analogously for ψ (8));

(IV) The function f is Lipschitz with constant Lf and f(t) = f(cb(t), cc(t)) ∈ H2(Ω) (analo-
gously for g and q).

Similar assumptions regarding the mesh (quasi-uniformity) and the coefficient functions are
common in the literature, particularly in the analysis of coupled nonlinear systems (see, e.g.,
[10, 4, 25, 3]). Here and hereafter, C and L, with or without subscripts, denote positive constants
independent of mesh parameters. Without loss of generality, the value of the constants may differ
at different occurrences.

If c : Ω× [0, T ] → IR, then, for t ∈ [0, T ], we use the notation c(t) : Ω → IR, with c(t)(x, y) =

c(x, y, t). Analogously, for t ∈ [0, T ], c(j)(t) : Ω → IR, is given by c(j)(t)(x, y) =
∂jc

∂tj
(x, y, t),

j ∈ IN.

Proposition 4 (Estimate for Eb,H(t)) Assume that the assumptions of Remark 2 hold. If
cb(t), cc(t), p(t) ∈ H3(Ω) and c′b(t) ∈ H2(Ω), then

d

dt
‖Eb,H(t)‖2H + (Db,0 − ǫ2b)‖∇HEb,H(t)‖2

≤ 1

ǫ2b
CgLφ‖cb(t)‖2C0(Ω)

(‖Ec,H(t)‖21,H + ‖∇HEp,H(t)‖2)

+
1

ǫ2b
(Cφ‖Eb,H(t)‖2H + LDb

‖cb(t)‖2C1(Ω)
(‖Eb,H(t)‖2H + ‖Ec,H(t)‖2H))

+ Lf (‖Eb,H(t)‖H + ‖Ec,H(t)‖H)‖Eb,H(t)‖H + Tb,H(t), (22)

with ǫb 6= 0, and

Tb,H(t) = CH4
max(‖f(t)‖2H2(Ω) + ‖c′b(t)‖2H2(Ω) + ‖cb(t)‖2H3(Ω) + ‖cc(t)‖2H3(Ω) + ‖p(t)‖2H3(Ω)

+ ‖φ(t)cb(t)‖2[H2(Ω)]2 + ‖cc(t)cb(t)‖2H3(Ω) + ‖p(t)cb(t)‖2H2(Ω)). (23)

Proof: We split the proof into three steps. Step 1 involves the definition of a suitable
equation for Eb,H(t) using the FDM with formulation (19)-(21) and the Keller-Segel-Flow sys-
tem (1)-(5). In Steps 2 and 3, we bound the equation obtained in Step 1 using the regularity
assumptions on Remark 2 and Bramble-Hilbert lemma.
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Step 1. Taking in (19) wb,H = Eb,H(t), we get

(c′b,H(t), Eb,H(t))H − (MH(φH(t)cb,H(t)),∇HEb,H(t)) =

− (Db,H(t)∇Hcb,H(t),∇HEb,H(t)) + (fH(t), Eb,H(t))H . (24)

On the other hand, from the Keller-Segel-Flow equation (1), we get

((c′b(t))H , Eb,H(t))H + ((∇ · (φ(t)cb(t)))H , Eb,H(t))H =

((∇ · (Db(t)∇cb(t)))H , Eb,H(t))H + ((f(t))H , Eb,H(t))H , (25)

where, e.g.,

(c′b(t))H =
1

hi+1/2kj+1/2

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

c′b(x, y, t) dxdy,

Let us define D̃b,H(t) and φ̃H(t) like in (12) and (14), but replacing the numerical approxi-
mations cb,H(t), cc,H(t), pH(t) by cb(t), cc(t), p(t). Next, by adding and subtracting

(c′b(t), Eb,H(t))H , (MH(φ̃H(t)cb(t)),∇HEb,H(t)),

(D̃b,H(t)∇Hcb(t),∇HEb,H(t)), (f(t), Eb,H(t))H ,

to (25), one gets

(c′b(t), Eb,H(t))H − (MH(φ̃H(t)cb(t)),∇HEb,H(t)) =

− (D̃b,H(t)∇Hcb(t),∇HEb,H(t)) + (f(t), Eb,H(t))H +

4∑

ℓ=1

T
(ℓ)
b,H(t), (26)

where

T
(1)
b,H(t) = −((∇ · (φ(t)cb(t)))H , Eb,H(t))H − (MH(φ̃H(t)cb(t)),∇HEb,H(t)),

T
(2)
b,H(t) = ((∇ · (Db(t)∇cb(t)))H , Eb,H(t))H + (D̃b,H(t)∇Hcb(t),∇HEb,H(t)),

T
(3)
b,H(t) = ((f(t))H − f(t), Eb,H(t))H ,

T
(4)
b,H(t) = (c′b(t)− (c′b(t))H , Eb,H(t))H .

Equations (24) and (26), yield

1

2

d

dt
‖Eb,H(t)‖2H + (Db,H(t)∇HEb,H(t),∇HEb,H(t)) = (MH(φH(t)Eb,H(t)),∇HEb,H(t))

− (MH((φH(t)− φ̃H(t))cb(t)),∇HEb,H(t))

− ((Db,H(t)− D̃b,H(t))∇Hcb(t),∇HEb,H(t))

+ (fH(t)− f(t), Eb,H(t))H −
4∑

ℓ=1

T
(ℓ)
b,H(t). (27)
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Step 2. Here, we bound some terms in (27). From assumption Remark 2(II), we obtain

(Db,H(t)∇HEb,H(t),∇HEb,H(t)) ≥ Db,0‖∇HEb,H(t)‖2, (28)

and

−((Db,H(t)− D̃b,H(t))∇Hcb(t),∇HEb,H(t))

≤ LDb
‖cb(t)‖C1(Ω)

√
2(‖Eb,H(t)‖H + ‖Ec,H(t)‖H)‖∇HEb,H(t)‖. (29)

Assumptions Remark 2(I) and Remark 2(III), give

(MH(φH(t)Eb,H(t)),∇HEb,H(t)) ≤
√
2Cφ‖Eb,H(t)‖H‖∇HEb,H(t)‖, (30)

and

− (MH((φH(t)− φ̃H(t))cb(t)),∇HEb,H(t))

≤ Lφ‖cb(t)‖C0(Ω)(2Cg + 1)(‖∇HEc,H(t)‖+ ‖Ec,H(t)‖H + ‖∇HEp,H(t)‖)‖∇HEb,H(t)‖. (31)

Assumption Remark 2(IV), yields

(fH(t)− f(t), Eb,H(t))H ≤ Lf (‖Eb,H(t)‖H + ‖Ec,H(t)‖H)‖Eb,H(t)‖H . (32)

Step 3. Here, we estimate the terms T
(ℓ)
b,H(t), ℓ = 1, . . . , 4, in (27).

• For T
(3)
b,H(t) and T

(4)
b,H(t), lemma 5.7 in [13], gives

|T (3)
b,H(t)| ≤ CH2

max‖f(t)‖H2(Ω)‖∇HEb,H(t)‖, (33)

and
|T (4)
b,H(t)| ≤ CH2

max‖c′b(t)‖H2(Ω)‖∇HEb,H(t)‖. (34)

• For T
(1)
b,H(t), we have

T
(1)
b,H(t) = −((∇ · (φ(t)cb(t)))H , Eb,H(t))H − (MH(φ(t)cb(t)),∇HEb,H(t))

+ (MH(φ(t)cb(t))−MH(φ̃H(t)cb(t)),∇HEb,H(t))

:= T
(1)
b,1 (t) + T

(1)
b,2 (t),

and lemma 5.5 in [13], gives

|T (1)
b,1 (t)| ≤ CH2

max‖φ(t)cb(t)‖[H2(Ω)]2‖∇HEb,H(t)‖. (35)

Using Proposition 3 and definition (16) to expand T
(1)
b,2 (t), and applying afterward the Lip-

schitz assumption (Remark 2(III)) to φ(t), we find that estimating T
(1)
b,2 (t) is equivalent to

estimate

∑

(xi,yj)∈ΩH

hikj+1/2(
∂cc
∂x

(xi, yj , t)−Dhcc(xi, yj , t))cb(xi, yj , t)D−xEb,H(xi, yj , t), (36)
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∑

(xi,yj)∈ΩH

hikj+1/2(
∂p

∂x
(xi, yj , t)−Dhp(xi, yj , t))cb(xi, yj , t)D−xEb,H(xi, yj , t),

and two analogous expressions in the y-direction. Because all these terms can be estimated
identically, we focus only on (36). However, we make use of this similarity in obvious steps.
Setting

θ(xi, yj , t) := (
∂cc
∂x

(xi, yj , t)−Dhcc(xi, yj , t))cb(xi, yj , t),

one gets

∑

(xi,yj)∈ΩH

hikj+1/2|θ(xi, yj , t)||D−xEb,H(xi, yj , t)|

≤
∑

(xi,yj)∈ΩH

hi|kj+1/2θ(xi, yj , t)−
∫ yj+1/2

yj−1/2

θ(xi, y, t) dy||D−xEb,H(xi, yj , t)|

+
∑

(xi,yj)∈ΩH

hi

∫ yj+1/2

yj−1/2

|θ(xi, y, t)| dy|D−xEb,H(xi, yj , t)|. (37)

Following the proof of lemma 5.1 in [13], yields

∑

(xi,yj)∈ΩH

hi|kj+1/2θ(xi, yj , t)−
∫ yj+1/2

yj−1/2

θ(xi, y, t) dy||D−xEb,H(xi, yj , t)|

≤ CH2
max‖cc(t)cb(t)‖H3(Ω)‖∇HEb,H(t)‖. (38)

On the other hand, for the second term on the right-hand side of (37), we have

θ(xi, yj , t) :=
∂cc
∂x

(xi, yj , t)−Dhcc(xi, yj , t))cb(xi, yj , t)

= (
∂cc
∂x

(xi, yj , t)− ρ

∫ xi

xi−1

∂cc
∂x

(x, yj , t) dx− (1− ρ)

∫ xi+1

xi

∂cc
∂x

(x, yj , t) dx)cb(xi, yj , t),

with ρ = hi+1/(hi + hi+1), which gives
∫ yj+1/2

yj−1/2

|θ(xi, y, t)| dy =
1

hi + hi+1

∫ yj+1/2

yj−1/2

|∂cc
∂x

(xi, y, t)(hi + hi+1)

− ρ̂(cc(xi, y, t)− cc(xi−1, y, t))−
1

ρ̂
(cc(xi+1, y, t)− cc(xi, y, t))||cb(xi, y, t)| dy,

with ρ̂ = hi+1/hi. By applying the Bramble-Hilbert lemma to the functional λ :W 3,1(0, 1) → IR
given by

λ(v) := v′(
1

1 + ρ̂
)− ρ̂(v(

1

1 + ρ̂
)− v(0))− 1

ρ̂
(v(1)− v(

1

1 + ρ̂
)),

with v(ξ) = cc(xi−1 + ξ(hi + hi+1), y, t), one gets

∑

(xi,yj)∈ΩH

hi

∫ yj+1/2

yj−1/2

|θ(xi, y, t)| dy|D−xEb,H(xi, yj , t)|

≤ CH2
max‖cb(t)‖C0(Ω)‖cc(t)‖H3(Ω)‖∇HEb,H(t)‖. (39)
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Combining (38),(39) for T
(1)
b,2 (t) and (35) for T

(1)
b,1 (t), gives

|T (1)
b,H(t)| ≤ CH2

max(‖φ(t)cb(t)‖[H2(Ω)]2 + ‖cb(t)‖C0(Ω)(‖cc(t)‖H3(Ω) + ‖p(t)‖H3(Ω))

+ ‖cc(t)cb(t)‖H3(Ω) + ‖p(t)cb(t)‖H3(Ω))‖∇HEb,H(t)‖. (40)

• For T
(2)
b,H(t), let D̂b be like in (6), but with

D̂b,11(cb(xi, yj , t), cc(xi, yj , t)) = Db,11(cb(xi−1/2, yj , t), cc(xi−1/2, yj , t)),

and analogously for D̂b,22. Adding and subtracting

(D̂b(t)∇Hcb(t),∇HEb,H(t)),

to T
(2)
b,H(t), yields

T
(2)
b,H(t) = ((∇ · (Db(t)∇cb(t)))H , Eb,H(t)) + (D̂b(t)∇Hcb(t),∇HEb,H(t))

− ((D̂b(t)− D̃b,H(t))∇Hcb(t)),∇HEb,H(t)),

:= T
(2)
b,1 (t) + T

(2)
b,2 (t).

For T
(2)
b,1 (t), by lemma 5.1 in [13], we have

|T (2)
b,1 (t)| ≤ CH2

max‖cb(t)‖H3(Ω)‖∇HEb,H(t)‖. (41)

Using Proposition 3 and definition (16) to expand T
(2)
b,2 (t), and applying afterward the Lip-

schitz assumption (Remark 2(II)) to Db(t), we find that estimating T
(2)
b,2 (t) is equivalent to

estimate

∑

(xi,yj)∈ΩH

hikj+1/2(cb(xi−1/2, yj , t)−Mhcb(xi, yj , t))D−xcb(xi, yj , t)D−xEb,H(xi, yj , t), (42)

∑

(xi,yj)∈ΩH

hikj+1/2(cc(xi−1/2, yj , t)−Mhcc(xi, yj , t))D−xcb(xi, yj , t)D−xEb,H(xi, yj , t),

and two analogous expressions in the y-direction. Because all these terms can be estimated
identically, we focus only on (42). However, we make use of this similarity in obvious steps.
Recalling, that Mhcb(xi, yj , t) = (cb(xi−1, yj , t) + cb(xi, yj , t))/2, we bound

|cb(xi−1/2, yj , t)−Mhcb(xi, yj , t)|

by applying the Bramble-Hilbert lemma to the functional λ :W 2,1((0, 1)2) → IR defined by

λ(v) := v(
1

2
, 1)− 1

2
(v(0, 1) + v(1, 1)),
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with v(ξ, γ) = cb(xi−1 + ξhi, yj−1 + γkj , t), yielding

|T (2)
b,2 (t)| ≤ CH2

max(‖cb(t)‖H2(Ω) + ‖cc(t)‖H2(Ω))‖cb(t)‖C1(Ω)‖∇HEb,H(t)‖. (43)

Combining (43) for T
(2)
b,2 (t) and (41) for T

(2)
b,1 (t), gives

|T (2)
b,H(t)| ≤ CH2

max(‖cb(t)‖H3(Ω)

+ (‖cb(t)‖H2(Ω) + ‖cc(t)‖H2(Ω))‖cb(t)‖C1(Ω)‖)∇HEb,H(t)‖. (44)

To finish the proof of Proposition 4, we collect estimates (33),(34),(40),(44) related with
Tb,H(t), use (28)-(32) to bound (27), and multiple applications of Young’s inequality with ǫ lead
to (23) and (22). It should be pointed out that taking into account the embedding of H3(Ω) in
C1(Ω) then cb(t) ∈ C1(Ω).

By adapting the proof of Proposition 4, one can derive the following propositions for Ec,h(t)
and Ep,h(t).

Proposition 5 (Estimate for Ec,H(t)) Assume that the assumptions of Remark 2 hold. If
cc(t), p(t) ∈ H3(Ω) and cb(t), c

′
cF (t) ∈ H2(Ω), then

d

dt
‖Ec,H(t)‖2H + (Dc,0 − ǫ2c)‖∇HEc,H(t)‖2

≤ 1

ǫ2c
CgLψ‖cc(t)‖2C0(Ω)

‖∇HEp,H(t)‖2

+
1

ǫ2c
(Cψ‖Ec,H(t)‖2H + LDc‖cc(t)‖2C1(Ω)

(‖Eb,H(t)‖2H + ‖Ec,H(t)‖2H))

+ Lg(‖Eb,H(t)‖H + ‖Ec,H(t)‖H)‖Ec,H(t)‖H + Tc,H(t), (45)

with ǫc 6= 0, and

Tc,H(t) = CH4
max(‖g(t)‖2H2(Ω) + ‖c′c(t)‖2H2(Ω) + ‖cb(t)‖2H2(Ω) + ‖cc(t)‖2H3(Ω) + ‖p(t)‖2H3(Ω)

+ ‖ψ(t)cc(t)‖2[H2(Ω)]2 + ‖p(t)cc(t)‖2H3(Ω)). (46)

Proposition 6 (Estimate for Ep,H(t)) Assume that the assumptions of Remark 2 hold. If
p(t) ∈ H3(Ω) and cb(t), cc(t) ∈ H2(Ω), then

(Dp,0 − Lq − ǫ2p)‖∇HEp,H(t)‖2

≤ 1

ǫ2p
(LDp‖p(t)‖2C1(Ω)

+ Lq)(‖Eb,H(t)‖2H + ‖Ec,H(t)‖2H) + Tp,H(t), (47)

with ǫp 6= 0, and

Tp,H(t) = CH4
max(‖q(t)‖2H2(Ω) + ‖p(t)‖2H3(Ω) + ‖cb(t)‖2H2(Ω) + ‖cc(t)‖2H2(Ω)). (48)
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In Theorem 1, we establish our main result, the second-order convergence of the semi-discrete
FDM (9)-(11). Since (9)-(11) has a truncation error of order one in the ‖.‖∞-norm, this is a
superconvergence result.

Theorem 1 Assume that the assumptions of Remark 2 hold. If cb(t), cc(t), p(t) ∈ H3(Ω) and
c′b(t), c

′
c(t) ∈ H2(Ω), then, for t ∈ [0, T ],

‖Eb,H(t)‖2H + ‖Ec,H(t)‖2H

+

∫ t

0
‖∇HEb,H(s)‖2 + ‖∇HEc,H(s)‖2 + ‖∇HEp,H(s)‖2 ds ≤ CH4

max

∫ t

0
TH(s) ds (49)

with ǫb, ǫc, ǫp 6= 0, such that

Db,0 − ǫ2b > 0, (50)

Dc,0 − ǫ2c −
1

ǫ2b
CgLφ‖cb(t)‖2C0(Ω)

> 0, (51)

Dp,0 − ǫ2p − Cg(
1

ǫ2b
Lφ‖cb(t)‖2C0(Ω)

+
1

ǫ2c
Lψ‖cc(t)‖2C0(Ω)

)− Lq > 0, (52)

and where TH(s) is the sum of (23),(46),(48).

Proof: The proof follows collecting the estimates in Propositions 4, 5 and 6, and applying
Gronwall’s inequality (Lemma 2.1 in [7]).

Remark 3 Conditions (50)-(52) impose some compatibility conditions between the data of the
Keller-Segel-Flow system (1)-(5). For instance, fixing

ǫ2b =
1

2
Db,0

satisfying (50), we have from (51)

ǫ2c < Dc,0 −
2

Db,0
CgLφ‖cb(t)‖2C0(Ω)

,

meaning that

‖cb(t)‖2C0(Ω)
<
Db,0Dc,0

2CgLφ
. (53)

Type (53) restrictions, which establish compatibility conditions between coefficient functions,
numerical grid, and the theoretical solution, appear even in the analysis of simpler Keller-Segel-
Flow systems (see, e.g., Theorem 2.1 in [14]).

Remark 4 Following the steps of Theorem 1, and as a direct consequence of the Bramble-Hilbert
lemma, the FDM (9)-(11) has first-order convergence rate if cb(t), cc(t), p(t) ∈ H2(Ω).
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Remark 5 (Stability analysis) Let cb,0, cc,0, p0 and c̃b,0, c̃c,0, p̃0 be two initial conditions of
the FDM (9)-(11), denote by cb,H(t), cc,H(t), pH(t) and c̃b,H(t), c̃c,H(t), p̃H(t) the corresponding
numerical approximations, and define

wc,H(t) = cc,H(t)− c̃c,H(t),

with analogous meaning for wb,H(t) and wp,H(t). Following the notion of mesh-dependent stabil-
ity of López-Marcos and Sanz-Serna [18, 20], the FDM (9)-(11) is stable if, for all ǫ > 0, there
exists a mesh-dependent constant CH such that if

‖ωi,H(0)‖H ≤ CH then ‖ωi,H(t)‖H ≤ ǫ, i = c, b, p. (54)

In other words, in the sense of (54), stability means that small perturbations in the initial
conditions lead to small changes in the corresponding numerical solutions.

Note that under the assumptions of Theorem 1, it holds

‖cc,H(t)‖2∞ ≤ 2‖Ec,H(t)‖2∞ + 2‖cc(t)‖2∞
≤ 2

H2
min

‖Ec,H(t)‖2H + 2‖cc(t)‖2∞

≤ CH2
max + 2‖cc(t)‖2∞ (Remark 2(I))

≤ CH (55)

and ∫ t

0
‖∇Hcc,H(s)‖2∞ ds ≤ CH , (56)

with analogous estimates for cb,H(t) and pH(t). Then, following the steps of Theorem 1 (replacing
Ei,H(t) with wi,H(t), i = c, b, p), one can show that the FDM (9)-(11) is stable in the sense
of (54).

3 Fully Discrete IMEX-FDM

This section presents an IMEX time integration for the FDM (9)-(11), thus yielding a fully
discrete IMEX-FDM for system (1)-(5). In the time domain [0, T ], we define the uniform grid
tn = tn−1 +∆t, for n = 1, . . . ,N , with ∆t > 0 the time-step and t0 = 0, tN = T . The proposed
IMEX-FDM is given by: find cnb,H , c

n
c,H ∈ VH,0 and pnH ∈ VH , such that, for n = 1, . . . ,N − 1,





−∇∗
H · (Dn

p,H∇Hp
n+1
H ) = qnH ,

D−tc
n+1
c,H +∇c,H · (ψn+1

H cn+1
c,H ) = ∇∗

H · (Dn
c,H∇Hc

n+1
c,H ) + gnH ,

D−tc
n+1
b,H +∇c,H · (φn+1

H cn+1
b,H ) = ∇∗

H · (Dn
b,H∇Hc

n+1
b,H ) + fnH ,

(57)

(58)

(59)

with initial conditions (4) and boundary conditions (5).

Remark 6 Most of the notation used in (57)-(59) is given in Remark 1 on page 3. Here, we
introduce the operator D−tu

n+1
H = (un+1

H −unH)/∆t, and define Dn
p,H , D

n
c,H , and D

n
b,H as in (12)

but replacing cb,H(t) and cc,H(t) with cnb,H and cnc,H , except for Dn
b,H where we replace cc,H(t)

with cn+1
c,H . We also have φn+1

H and ψn+1
H as in (14) but replacing pH(t) and cc,H(t) with p

n+1
H and
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cn+1
c,H . We also set qnH = q(cnb,H , c

n
c,H , p

n
H), g

n
H = g(cnb,H , c

n
c,H) and f

n
H = f(cnb,H , c

n+1
c,H ). This IMEX

discretization, a combination of the explicit and implicit Euler scheme, avoids the solution of
nonlinear systems.

Theorem 2 establishes the first-order convergence rate of the IMEX-FDM (57)-(59).

Theorem 2 Assume that the assumptions of Theorem 1 hold. If cb, cc, p ∈ C([0, T ];H3(Ω))
and cb, cc ∈ C1([0, T ];H2(Ω)) ∩ H2(0, T ;C(Ω)), f(cb, cc), g(cb, cc) ∈ H1(0, T ;C(Ω)), then, for
n = 0, . . . ,N − 1,

‖En+1
b,H ‖21,H + ‖En+1

c,H ‖21,H + ‖∇HE
n+1
p,H ‖2 ≤ C(H4

max +∆t2) (60)

with the mesh-independent time-step restriction ∆t < 1/C∆t, where

C∆t =
1

ǫ2p
LDp‖p‖2C1,0(Ω×[0,T ])

+ Lq +
1

ǫ2c

(
Cψ + LDc‖cc‖2C1,0(Ω×[0,T ])

+ Lg
)

+
1

ǫ2b

(
Cφ + CgLφ‖cb‖2C0(Ω×[0,T ])

+ LDb
‖cb‖2C1,0(Ω×[0,T ])

+ Lf
)

and ǫb, ǫc, ǫp 6= 0 are fixed by (50)-(52).
Proof: Let Enb,H = cb(tn)− cnb,H , n = 0, . . . ,N , with analogous meaning for Enc,H and Enp,H .

The proof follows by establishing results equivalent to Propositions 4, 5, and 6 but now for the
fully discrete IMEX-FDM (57)-(59). For example, analogously to Proposition 4, En+1

b,H satisfies

‖En+1
b,H ‖2H +∆t(Db,0 − ǫ2b)‖∇HE

n+1
b,H ‖2

≤ ‖Enb,H‖2H +∆t
1

ǫ2b
CgLφ‖cb(tn+1)‖2C0(Ω)

(‖En+1
c,H ‖21,H + ‖∇HE

n+1
p,H ‖2)

+ ∆t
1

ǫ2b
(Cφ‖En+1

b,H ‖2H + LDb
‖cb(tn+1)‖2C1(Ω)

(‖Enb,H‖2H + ‖En+1
c,H ‖2H))

+ ∆tLf (‖Enb,H‖H + ‖En+1
c,H ‖H)‖En+1

b,H ‖H + Tn+1
b,∆t , (61)

with ǫb 6= 0, and

Tn+1
b,∆t = Tb,H(tn+1)+C∆t

2

∫ tn+1

tn

‖cb(tn+1)‖2C1(Ω)

(
‖c′b(s)‖2H+‖c′c(s)‖2H

)
+‖c′′b (s)‖2H+‖f ′(s)‖2H ds,

(62)
where Tb,H(tn+1) is the term of order H4

max defined by (23).
To derive (61) we follow the steps of Proposition 4. We obtain

(D−tc
n+1
b,H , En+1

b,H )H − (MH(φ
n+1
H cn+1

b,H ),∇HE
n+1
b,H ) =

− (Dn
b,H∇Hc

n+1
b,H ,∇HE

n+1
b,H ) + (fnH , E

n+1
b,H )H (63)

and

(D−tcb(tn+1), E
n+1
b,H )H − (MH(φ̃H(tn+1)cb(tn+1)),∇HE

n+1
b,H ) =

− (D̃b,H(tn)∇Hcb(tn+1),∇HE
n+1
b,H ) + (f(tn), E

n+1
b,H )H +

4∑

ℓ=1

T
(ℓ)
b,∆t, (64)
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where

T
(1)
b,∆t = −((∇ · (φ(tn+1)cb(tn+1)))H , E

n+1
b,H )H − (MH(φ̃H(tn+1)cb(tn+1)),∇HE

n+1
b,H ),

T
(2)
b,∆t = ((∇ · (Db(tn+1)∇cb(tn+1)))H , E

n+1
b,H )H + (D̃b,H(tn)∇Hcb(tn+1),∇HE

n+1
b,H ),

T
(3)
b,∆t = ((f(tn+1))H − f(tn), E

n+1
b,H )H ,

T
(4)
b,∆t = (D−tcb(tn+1)− (c′b(tn+1))H , E

n+1
b,H )H .

Equations (63) and (64), yield

(D−tE
n+1
b,H , En+1

b,H )H + (Dn
b,H∇HE

n+1
b,H ,∇HE

n+1
b,H ) = (MH(φ

n+1
H En+1

b,H ),∇HE
n+1
b,H )

− (MH((φ
n+1
H − φ̃H(tn+1))cb(tn+1)),∇HE

n+1
b,H )

− ((Dn
b,H − D̃b,H(tn))∇Hcb(tn+1),∇HE

n+1
b,H )

+ (fnH − f(tn), E
n+1
b,H )H −

4∑

ℓ=1

T
(ℓ)
b,∆t. (65)

It can be shown that

|T (1)
b,∆t| ≤ |T (1)

b,H(tn+1)|, (66)

|T (2)
b,∆t| ≤ |T (2)

b,H(tn+1)|+ C∆t2
∫ tn+1

tn

‖cb(tn+1)‖2C1(Ω)

(
‖c′b(s)‖2H + ‖c′c(s)‖2H

)
ds, (67)

|T (3)
b,∆t| ≤ |T (3)

b,H(tn+1)|+ C∆t2
∫ tn+1

tn

‖f ′(s)‖2H ds, (68)

|T (4)
b,∆t| ≤ |T (4)

b,H(tn+1)|+ C∆t2
∫ tn+1

tn

‖c′′b (s)‖2H ds, (69)

where |T (ℓ)
b,H(tn+1)|, ℓ = 1, . . . , 4, are bounded by terms of order H4

max defined by (40), (44), (33),
and (34). Collecting estimates (66)-(69), using inequalities analogous to (28)-(32) to bound
(65), and resorting to Young’s inequality with ǫ leads to (61) and (62).

Proceeding similarly, one can derive estimates analogous to (61) and (62) for En+1
c,h and En+1

p,h .
Collecting all the estimates, summing over n, and applying a discrete Gronwall’s inequality
(Lemma 4.3 in [7]), one can get (60).

Remark 7 (Stability analysis) Assuming the restrictions ∆t/H2
max ≤ C and H2

max/∆t ≤ C,
we can get estimates like (55),(56) for cnc,H , and one can show that the IMEX-FDM (57)-(59)
is stable in a sense analogous to (54), i.e., with wnc,H = cnc,H − c̃nc,H .

4 Numerical Simulation

This section numerically illustrates the convergence results for the FDM in Theorem 1 and
Remark 4, and for the IMEX-FDM in Theorem 2. We also model and simulate tumor cell
migration using a system of PDEs of the form (1)-(5).
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4.1 Accuracy of numerical solution

Example 1 Let us consider system (1)-(5), for t ∈ [0, 1], with coefficients functions

Db =

[
1 + cccb 0

0 2 + c2b

]
, Dc =

[
1 + cc + cb 0

0 2 + c2c

]
, Dp =

[
1 + cc + cb 0

0 1 + cbcc

]
,

φ =



∂p

∂x
+
∂cc
∂x

+ cc
∂p

∂y
+
∂cc
∂y

+ cc


 , ψ =



∂p

∂x
∂p

∂y


 ,

and f(cb, cc) = cbc
2
c , g(cb, cc) = cbcc, and q(cb, cc) = cb+ cc. We add suitable source functions to

the system (1)-(5) such that, for α ∈ R, the exact solution of the problem is

cb(x, y, t) = e5txy(x− 1)(y − 1)|y − 0.5|α,
cc(x, y, t) = e5txy(x− 1)(y − 1)|y − 0.3|α,
p(x, y, t) = 50xy(x− 1)(y − 1)|y − 0.7|α.

The solution (cb, cc, p) satisfies the regularity assumptions of Theorems 1 and 2 with α = 3.1
and those of Remark 4 with α = 2.1.

First, we analyze the rate of convergence in space. Starting with a random non-uniform
spatial mesh, H1, we successively solve Example 1 using in the iteration k+1 the mesh obtained
by halving the previous mesh Hk, i.e., Hk+1 = Hk/2. To ensure that the time error is negligible,
we fix the time step of the order of H2

max. Following the estimates in Theorem 1, we measure
the numerical error by

Error2H = max
n=0,...,N−1

‖En+1
b,H ‖21,H + ‖En+1

c,H ‖21,H + ‖∇HE
n+1
p,H ‖2,

and estimate the rate of convergence by

Rate = log2(
ErrorHk

ErrorHk+1

).

The numerical convergence rates in Table 1 agree with the theoretical convergence rates obtained
in Theorem 1 and Remark 4.

Next, we analyze the rate of convergence in time. The procedure is similar, but here we fix a
random space mesh with a small enough Hmax, namely, Hmax = 3.1914e-03, and we successively
solve Example 1 (with α = 3.1) using in the iteration k + 1 the time step size ∆tk+1 = ∆tk/2.
The numerical convergence rate in Table 2 agrees with the theoretical first-order convergence
rate obtained in Theorem 2.

4.2 Tumor cell migration: modeling and simulation

Understanding how tumor cells metastasize is crucial for developing effective cancer therapies.
The lymphatic system’s role as the primary vector for cancer metastasis is known; however, the
phenomena underlying tumor cell migration toward the lymphatic capillaries remain unclear.
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α = 3.1 α = 2.1

Hmax ErrorH Rate Hmax ErrorH Rate

2.0388e-01 6.2677e-01 - 1.8880e-01 9.5757e-01 -
1.0194e-01 1.5296e-01 2.0348 9.4399e-02 4.5462e-01 1.0747
5.0970e-02 4.0053e-02 1.9331 4.7199e-02 2.1322e-01 1.0923
2.5485e-02 9.8902e-03 2.0178 2.3600e-02 9.9101e-02 1.1054
1.2742e-02 2.4649e-03 2.0045 1.1800e-02 4.7725e-02 1.0542
6.3712e-03 6.1643e-04 1.9995 5.8999e-03 2.1776e-02 1.1320

Table 1: Rates of convergence in space for Example 1.

∆t ErrorH Rate

2.0000e-01 1.5444e-01 0
1.0000e-01 9.0670e-02 7.6832e-01
5.0000e-02 4.9121e-02 8.8428e-01
2.5000e-02 2.5517e-02 9.4486e-01
1.2500e-02 1.2972e-02 9.7605e-01
6.2500e-03 6.5278e-03 9.9077e-01

Table 2: Rate of convergence in time for Example 1.

It’s believed that this migration involves a complex interaction between tumor cells, chemokines,
extracellular matrix (ECM), lymphatic endothelial cells (LECs), and interstitial flow (IF).

CCL21, a chemokine predominantly secreted by LECs and, to a lesser extent, by cancer
cells, is emerging as a vital player in this dynamic. CCL21, essential for regulating immune
responses, strongly binds to the sulfated proteoglycans in the ECM. Laboratory experiments
suggest that tumor cells exploit the ECM-bound CCL21 to migrate. The reasoning is that tumor
cell-secreted proteases interact with the ECM, releasing CCL21 and creating an extracellular
chemokine gradient. Through the expression of the CCL21 receptor CCR7, tumor cells exploit
this chemokine gradient to migrate toward the lymphatic capillaries. This movement of cells,
known as autologous chemotaxis, is believed to be a dominant force behind tumor cell migration.
Interstitial fluid (IF) flow from blood to lymphatic capillaries is another potentially relevant
mechanism behind autologous chemotaxis. This flow, important for nutrient delivery and waste
removal, can carry released CCL21, enhancing its gradient towards the lymphatics. The tumor’s
extra stress on the surrounding ECM may increase the IF, enhancing its impact [23, 19, 27, 26,
21, 24, 29, 15].

The laboratory work [23] investigates tumor cell migration under three scenarios: chemotaxis
alone, chemotaxis with physiological flow, and static (without flow or chemokines). The study
utilized a modified Boyden chamber assay:

• Top chamber: basal medium;

• Middle chamber: MDA-MB-435S tumor cells seeded in Matrigel;

• Bottom chamber: basal medium alone (static conditions) or with CCL21 (chemotaxis
conditions).
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The authors added CCL21 to the bottom chamber by culturing CCL21-secreting LECs to conflu-
ence for three days. To replicate the effect of interstitial flow, they established a water flow from
the top to the bottom chamber. All experiments lasted 15 hours in a 37◦C/5% CO2 incubator.
After this period, Matrigel was removed and the percentage of migrated cells was quantified.

Next, we present numerical simulations of tumor cell migration using a Keller-Segel-Flow
model of type (1)-(5). We base our simulation setup on the laboratory experiment described in
[23] and train our model using the reported experimental data. The model is given by





∂cb
∂t

+∇ · (χcb∇cc) = Db∆cb

∂cc
∂t

+∇ · (vcc) = Dc∆cc + αcbcc,B

−∇ · (K∇p) = q

(70)

(71)

(72)

where cb denotes cell density, cc free CCL21 concentration, and p pressure. In (72), q denotes
a source term and K is the hydraulic conductivity. In (70), Db denotes the cells’ diffusion
coefficient and χcb represents the sensitivity to the gradient of the chemoattractant CCL21. To
govern the evolution of the bound CCL21 (cc,B), we define the ode c′c,B(t) = −αcbcc,B with α
the rate of bound-to-free CCL21 conversion. Note that a symmetric source term αcbcc,B appears
in the free CCL21 equation (71). Given the relatively short duration of the experiments (15 h),
we ignore the degradation/consumption of free CCL21. Still in (71), Dc represents the CCL21
diffusion coefficient, while the convection term ∇ · (vcc) governs CCL21 transport under flow
conditions, where v = −K∇p denotes Darcy’s velocity.

0

300

0

0.35

Figure 1: Schematic representation of the three-chambers computational domain and initial con-
ditions. On the left: initial cell density in the middle chamber (delimited by the two horizontal
dashed lines). On the right: initial bound CCL21 concentration on the bottom chamber. The
dot indicates the location of the flow source in the top chamber. This setup replicates tumor
cell migration toward LECs, i.e., from the top to the bottom chamber.

Figure 1 shows the computational domain and the initial conditions. We consider a three-
chambers domain with tumor cells in the middle chamber and bound CCL21 in the bottom
chamber. We assume an initial cell density of 300 cells/mm3 and a bound CCL21 concentration
of 0.35 ng/mm3. Initially, all CCL21 is in the bound state. Since we are interested in measuring
the percentage of cells migrated, the exact initial conditions, which are unknown, are less rele-
vant. We assume homogeneous Dirichlet boundary conditions for Darcy’s equation and simulate
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flow conditions by a source term localized in the top chamber

q =




q0 if (x− 0.9)2 + (y − 0.5)2) < r2 (r = 0.3mm)

0 otherwise
(73)

with q0 a source parameter and r the source radius fixed at 0.3 mm. We set homogeneous
Dirichlet boundary conditions for CCL21 at the bottom boundary, simulating CCL21 washout.
Due to the short experiment duration (15 h), we also set homogeneous Dirichlet boundary
conditions for cell density and CCL21 at other boundaries, as they don’t significantly affect the
simulations. The model (70)-(73) parameter values are given in Table 3.

Par. Unit Value Description Typical Range

Db mm2/h 5.3e-5 Cell diffusion coefficient 3.6e-6 mm2/h - 3.6e-4 mm2/h [5]
Dc mm2/h 4.2e-2 CCL21 diffusion coefficient 3.6e-1 mm2/h - 3.6e-4 mm2/h [5]
χ mm2/h 0.15 Chemotaxis coefficient 0.001-1 [5]
α mm5/ng-h 0.1 Rate of CCL21 conversion -
K mm2/Pa-h 1 Hydraulic conductivity Fixed
q0 1/h 22 Flow source parameter -

Table 3: Parameters used in the Keller-Segel-Flow system (70)-(73). Without loss of generality
due to the linearity of equation (72), we fixed the medium hydraulic conductivity at K = 1. We
optimized the remaining parameters to fit the experimental data in [23]. When available, we
take typical values as a reference for the optimization. Using q0 = 22 1/h in Darcy’s equation
(72),(73), the mean absolute velocity |v| in the tumor cell chamber is 0.74 mm/h, within the
typical range of values for interstitial velocity, 0.36 mm/h - 7.2 mm/h [26].

Following the experimental setup in [23], we performed cell migration simulations under
three conditions:

• Static: without chemokine CCL21 or flow, i.e., cc,B(0) = 0 ng/mm3 and v = 0 m/h;

• Chemotaxis: with chemokine CCL21, i.e., cc,B(0) = 0.35 ng/mm3 and v = 0 m/h;

• Chemotaxis and flow: with chemokine CCL21 and flow, i.e., cc,B(0) = 0.35 ng/mm3 and
v obtained by (72),(73).

We ran the simulations for 15 h and measured the percentage of cells migrated from the middle
chamber. Figure 2 shows the comparison between numerical simulation and experimental data.
We observe excellent agreement between simulated and experimental data under static and
chemotaxis conditions. The numerical percentage of migrated cells at time t = 15 h falls within
the laboratory experiments’ error bars (mean ± SD). Under chemotaxis and flow conditions,
the numerical result of 3.0% falls outside the experimental error bar (3.3%-3.4%). According
to [23], flow alone has a small additional effect on cell migration due to ECM degradation by
proteolysis. Our model does not replicate this phenomenon, which may explain the discrepancy
between numerical and experimental results.

Under static conditions, the percentage of migrated cells (0.4%) is three times lower than
under chemotaxis conditions (1.2%). By adding flow contribution, this value rises above 3.0%.
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Figure 2: Comparison of experimental and simulated tumor cell migration results. Error bars
indicate the mean ± standard deviation of experimental results for MDA-MB-435S tumor cells
at t = 15 h, as reported in [23]. Experimental data for static and chemotaxis conditions are from
Figure 4 in [23], while chemotaxis plus flow data are from Figure 7 in [23]. In the numerical
simulations, we used a uniform mesh h = k = 0.005 mm and a uniform time step ∆t = 1 h.
Mesh sensitivity analysis revealed that the simulations are mesh-independent.

The release of bound CCL21 creates a chemoattractant gradient toward the bottom chamber
(Figure 3, top row on the left). The cells sense and react to this gradient, migrating to the bottom
chamber (Figure 3, middle row on the left). Adding flow towards the bottom chamber raises the
chemoattractant gradient near the bottom chamber (Figure 3, top row on the right), enhancing
tumor cell chemotaxis (Figure 3, middle row on the right). The increased bound CCL21 release
under flow conditions (Figure 3, bottom row) also reflects the improved cell migration. These
results show how chemotaxis and interstitial flow combine for tumor cell migration toward the
CCL21-secreting lymphatics. For completeness, we show in Figure 4 the velocity field associated
with flow conditions.

5 Conclusions

This paper focuses on a general nonlinear Keller-Segel-Darcy model that combines the classi-
cal parabolic Keller-Segel system with the elliptic Darcy equation. We proposed a fully discrete
scheme of type IMEX-FDM and established sharp convergence error estimates. Numerical exper-
iments validate these results. The Keller-Segel-Darcy model extends the traditional Keller-Segel
by allowing the simulation of relevant chemotaxis phenomena in fluid environments. One such
example is tumor cell migration toward the lymphatics. From a simulation perspective, we
investigate the roles of interstitial flow and chemotaxis in this cell migration process. A compar-
ison between numerical and experimental results highlights the model’s efficacy but identifies
potential areas for improvement, such as incorporating the role of the extracellular matrix. We
leave more detailed modeling and simulation work for future research.
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Figure 3: Simulation results of tumor cell migration under chemotaxis (on the left) and chemo-
taxis plus flow (on the right). From top to bottom: free CCL21 concentration, cell density, and
bound CCL21 concentration at time t = 15 h.
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