
A second order method for a drug release process defined by a

differential Maxwell-Wichert stress-strain relation

G. Campos(1), J.A. Ferreira(2), G. Pena(2), G. Romanazzi(1)

(1) IMECC, State University of Campinas, Campinas, Brazil
(2) University of Coimbra, CMUC, Department of Mathematics, Coimbra, Portugal

g159243@dac.unicamp.br, ferreira@mat.uc.pt, goncalo.pena@uc.pt. groman@unicamp.br

November 27, 2024

Abstract

Polymeric drug delivery platforms offer promising capabilities for controlled drug release
thanks to their ability to be custom-designed with specific properties. In this paper we
present a model to simulate the complex interplay between solvent absorption, polymer
swelling, drug release and stress development within these types of platforms. A system
of nonlinear partial differential equations coupled with an ordinary differential equations is
introduced to avoid drawbacks from other models found in the literature. These incorporated
a memory effect to account for polymer relaxation but from a numerical point of view,
required storing information from all previous time steps, making them computationally
expensive. This paper proposes a new numerical method to simulate such drug delivery
devices based on nonuniform grids and an implicit midpoint time discretization. Our main
results are the proof of second order convergence of the method for nonsmooth solutions and
the scheme’s stability under the assumption of quasiuniform grids and a sufficiently small
timestep. We also illustrate numerically the second order convergence result proven in the
main result using solutions based on biological information.

1 Introduction

In this paper we consider the differential problem

∂cℓ
∂t

(x, t) = ∇ ·
(
aℓ(cℓ(x, t))∇cℓ(x, t)

)
+∇ ·

(
aσ(cℓ(x, t))∇σ

(
x, t)) (1)

∂cd
∂t

(x, t) = ∇ ·
(
ad(cℓ(x, t))∇cd(x, t)

)
+ f(cs(x, t), cd(x, t), cℓ(x, t)), (2)

∂cs
∂t

(x, t) = −f(cs(x, t), cd(x, t), cℓ(x, t)) (3)

for x ∈ (0, R), t ∈ (0, T ]. In [13], the system of eqs. (1) to (3) was introduced with

σ(x, t) = −
∫ t

0
q(s, t, cℓ(x, s), cℓ(x, t))∇cℓ(x, s)ds, (4)

to describe the drug release from a viscoelastic spherical polymeric structure of radius R con-
taining a drug immersed in a spherical environment of fixed radius. This differential system is
complemented by the following initial and boundary conditions:

cℓ(x, 0) = 0, cd(x, 0) = 0, cs(x, 0) = cs,0(x), x ∈ (0, R), (5)

∇cℓ(0, t) = 0, ∇cd(0, t) = 0, cℓ(R, t) = cext, cd(R, t) = 0, t ∈ (0, T ]. (6)

The authors considered therein that the drug release is a consequence of the following set of
phenomena:
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1. the solvent molecules are absorbed by the polymeric structure due to the solvent gradient
concentration (solvent absorption);

2. the polymeric chains relax, the structure swells and a pressure gradient arises (swelling);

3. the dissolution process occurs due to the contact of the solid drug with the absorbed solvent
molecules (dissolution);

4. the molecules of the dissolved drug diffuse throughout the platform and continue to diffuse
in the external surrounding medium (diffusion).

In this case, cℓ, cs and cd represent fluid, solid and dissolved drug concentrations, respectively, f
denotes the dissolution function and σ represents the polymeric chains’ stress. This stress is op-
posite to the solvent uptake and represents the deformation induced by the solvent concentration.
In this context, the fluid flux is given by

Jℓ = −aℓ(cℓ)∇cℓ − aσ(cℓ)∇σ.

In [13] the authors considered that ϵ = g(cℓ) and

σ(x, t) = −
∫ t

0
E(t− s)

∂ϵ

∂s
(x, s)ds,

where E(·) is the kernel function associated with the Maxwell-Wiechert model,

E(t) = E0 +
m∑

j=1

Eje
− t

τj ,

Ej denotes the Young’s modulus, τj =
µj

Ej
(with µj representing the polymeric viscosity).

The initial boundary value problem (IBVP) defined by eqs. (1) to (6) was studied from a
numerical point of view in [5, 6] for smooth and nonsmooth solutions. In these papers the
authors propose second order approximations in space. The presence of the Neumann boundary
condition at x = 0 lead to several challenges that were solved in these papers for for both scenarios
of smoothness. Moreover, in [5], an Euler implicit-explicit numerical method combined with a
uniform grid for the memory term was studied. In order to prove convergence for the solid and
dissolved drug approximations it was sufficient to guarantee uniform bounds for the numerical
approximation for the fluid. Such property was concluded assuming a certain quasiuniformity for
the spatial grid and a stability condition similar to the well know stability relation for uniform
grids ∆t ≤ Csh

2. In [22] a numerical method similar to the one considered here for a diffusion
equation with a memory term defined with an exponential kernel function was also studied.

The presence of the memory term in eq. (4) leads to several challenges in the computation
of the numerical approximation for the solution of the initial boundary value problem (IBVP)
defined by eqs. (1) to (6), if our goal is to compute second order accurate approximations for cℓ,
cd and cs. In this case we should apply second order approximation quadrature rules to discretize
the integral term and we need to store information for all timesteps during the release process.
Moreover, the presence of the integral term replacing the stress σ makes it more difficult to
construct stress estimates depending on the data of the problem.

The goal of this paper is to replace eq. (4) by

∂σ

∂t
+ βσ = −αϵ− γ

∂ϵ

∂t
, (7)

where β = E0+E1

µ , α = E0E1

µ , γ = E0 and µ represents the viscosity of the polymer and E0 and
E1 are the Young’s modulus (see [8]). The minus signal in eqs. (4) and (7) arises to take into
account that the stress is developed by the polymeric chains as a response to the fluid entrance
generating an opposite convective flux to the standard Fickian diffusion process. To simplify,
we take ϵ = λcℓ, instead of the nonlinear relations considered in [13, 15]. We aim to present a
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numerical scheme that leads to second order approximations using an implicit midpoint approach
in time for the differential system defined by eqs. (1) to (3) and (7) and

∇σ(0, t) = 0, σ(R, t) = σext, t ∈ (0, T ], σ(x, 0) = σ0(x), x ∈ (0, R). (8)

We point out that in the nonlinear system of eqs. (1) to (3) and (7), the concentration cℓ is
defined by eqs. (1) and (7) and it is included in eqs. (2) and (3). Our goal is to propose a finite
difference method that can be seen as a fully discrete piecewise linear-constant finite element
method following a midpoint quadrature approach that is simultaneously locally stable and
unconditionally convergent with respect to a discrete version of the usual norm in H1(0, R). The
key ideas and challenges to prove stability and convergence followed throughout the paper are
summarized as follows:

1. Since we are dealing with nonlinear evolution problems, to conclude local stability in a
numerical approximations for fluid, solid and dissolved drug concentrations and stress,
respectively, cnℓ,h, σ

n
h , c

n
s,h and cnd,h, we follow the approach considered, for instance, in [28,

29, 31, 33]. To prove stability for these numerical approximations, we need to impose their
uniform boundness with respect a discrete version of the usual norms in W 1,∞(0, R).

2. In what concerns unconditionally second convergence order of numerical methods for quasi-
linear parabolic equations, we refer the papers [27, 36] and the references therein where
the convergence analysis requires the uniform boundeness of the numerical approximation
with respect to a suitable norm. In our context, the problem involves nonlinear parabolic
equations for the fluid cℓ and dissolved drug cd concentrations coupled with ordinary differ-
ential equations for the stress σ and for the solid drug cs. For the fluid, solid and dissolved
drug concentrations and stress approximations we establish unconditionally second conver-
gence order with respect to a discrete H1-norm. No uniform bounds for the correspondent
numerical approximations are required following our approach.

3. The fluid concentration cℓ and stress σ are defined by eqs. (1) and (7) and the diffusion
coefficient in eq. (2), as well as the reaction terms in eqs. (2) and (3) depend on cℓ. These
facts increase the complexity of the system eqs. (1) to (3) and (7). Furthermore, σ is
defined by an ordinary differential equation and we would like to obtain for this variable a
second order approximation with respect to a discrete H1-norm. This goal is not easy to
fulfill.

4. Taking into account the convergence estimates with respect to a discrete H1-norm, we are
able to verify that the uniform boundness assumptions imposed to conclude local stability
hold provided that the initial approximations are in balls centered in the initial conditions
of the differential problem with mesh dependent radius.

The error analysis conducted in this paper is not based on the usual approach introduced in
[37] that was largely followed in the literature. For instance, recently, the results of [37] have
been considered in [26, 38, 39, 40]. Instead, our approach is based on the error analysis for the
error equations. Our results can bee seen in two different perspectives:

1. As mentioned before, our method can be seen as a fully discrete piecewise linear-constant
finite element method and the second order estimates with respect to the discrete H1-norm
are unexpected because piecewise linear finite element method lead to a first order error
estimate with respect to the usual H1-norm. The unexpected convergence orders obtained
for finite element approximations are known as superconvergent results and recently the
literature has been fruitful for this type of estimates. Without being exhaustive we mention
[34] where a mixed finite element method in space is combined with a second order backward
formula for a quasilinear parabolic equation is studied. The author establishes that a
postprocessing of the fully discrete solution allows to obtain second order in time and
space with respect to the usual H1-norm. In [11], superconvergence is shown for the
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gradient approximation of the second order elliptic equation discretized by weak Galerkin
finite element methods on nonuniform rectangular partitions. A mixed finite element is
used to approximate a compressible miscible flow problem in porous media. A recovery
technique is introduced to obtain second order approximation for Darcy’s velocity. In [32],
a quasilinear parabolic system coupled with an elliptic equations is numerically solved by
using a bilinear finite element approach. A post-processing procedure is introduced to
establish second-order error estimates with respect to the usual H1-norm.

2. Within finite difference methods, our convergence estimates allow us to conclude that the
order of the global error is greater than the order of the truncation error . In fact, the
truncation error is of first order only in space with respect to norm ∥ · ∥∞, while the global
error is of second order in space and time. This unexpected convergence behaviour is known
as supraconvergence phenomenon and it was widely studied in the 80’s of the last century
in [10, 23, 24, 25, 30]. The authors and their collaborators have recent contributions in
the convergence analysis of supraconvergence phenomenon of numerical methods for linear
and nonlinear partial differential equations, for instance, [9, 14, 17, 18, 19, 21]. We also
mention the following contributions [1, 12, 35].

The paper is organized as follows. In Section 2 we present some notations and basic results
related with the finite elements scheme proposed. In Section 3 we introduce a fully discrete (in
time and space) numerical method using an implicit midpoint time integrator and nonuniform
grids in space. The stability of the method is established in Section 3.1 provided some suitable
uniform bounds on the solution of the numerical problem. To establish such bounds, the conver-
gence properties of the method are studied in Section 3.2. The final proof of the stability of the
numerical scheme is a consequence of the convergence result. Finally, in Section 5, we present
some conclusions.

2 Definitions and basic results

In this section we present the basic definitions and tools needed to provide the mathematical
support for the proposed numerical method and the upcoming sections. By Λ we denote a
sequence of vectors h = (h1, . . . , hN ) such that hi > 0, i = 1, . . . , N,

∑N
i=1 hi = R and hmax =

maxi=1,...,N hi → 0. The sequence Λ is used to introduce in Ω = [0, R] a sequence of grids

Ωh = {xi, i = 0, · · · , N, xi = xi−1 + hi, i = 1, · · · , N, x0 = 0, xN = R}.

Let x−1 = −x1 and h0 = h1.
As we are dealing with Neumann boundary conditions at x0, to discretize the boundary

conditions, we introduce a fictitious point x−1 = −x1 and the correspondent set of grids

Ω
⋆
h = Ωh ∪ {x−1}.

The numerical approximations that we compute are defined in all grid points. They will naturally
belong to the space of grid functions

V ⋆
h = {vh : Ω

⋆
h −→ R}.

To study the behaviour of the error, as we are considering Dirichlet boundary conditions at
x = xN , we also introduce a new vector space

V ⋆
h,0 = {vh ∈ V ⋆

h : vh(xN ) = 0}.

The errors for the numerical approximation for the solvent, dissolved and solid drugs concentra-
tions will be measured on the grid points of [0, R] and these errors are null at xN . Consequently,
we need to introduce

Vh,0 = {vh ∈ Vh : vh(xN ) = 0},
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where
Vh = {wh : Ωh −→ R}.

The norm
∥∥ ·
∥∥
h

used in measuring the errors is induced by the inner product

(uh, vh)h =
h1
2
uh(x0)vh(x0) +

N−1∑

i=1

hi+1/2uh(xi)vh(xi), uh, vh ∈ Vh,0

where hi+1/2 = 1
2 (hi + hi+1). Another useful norm is the discrete counterpart of the L∞(0, R)

norm ∥∥vh
∥∥
h,∞

= max
i=0,...,N

|vh(xi)|, vh ∈ Vh.

We also use the notation

(uh, vh)+ =

N∑

i=1

hiuh(xi)vh(xi),
∥∥uh

∥∥
+
=
√

(uh, uh)+

and ∥∥vh
∥∥
+,∞

= max
i=1,...,N

|vh(xi)|

for grid functions defined in x1, . . . , xN .
For vh ∈ V ⋆

h we introduce the finite difference operators D−x and D⋆
x defined by

D−xvh(xi) =
vh(xi)− vh(xi−1)

hi
, i = 1, . . . , N,

D⋆
xvh(xi) =

vh(xi+1)− vh(xi)

hi+1/2
, i = 0, . . . , N − 1,

respectively. By Mh we denote the average operator

Mhvh(xi) =
vh(xi) + vh(xi−1)

2
, i = 0, . . . , N − 1,

for vh ∈ V ∗
h .

We introduce the following discrete version of the usual norm in H1(0, R) :

∥uh∥1,h =
(
∥uh∥2h + ∥D−xuh∥2+

)1/2
, uh ∈ Vh,0.

We now recall some useful result regarding these discrete operators.

Proposition 1 (Discrete Friedrichs-Poincaré inequality). For all vh ∈ Vh,0,

∥∥vh
∥∥
h
≤ R

∥∥D−xvh
∥∥
+

Proof. It is sufficient to note that, for all uh ∈ Vh,0, holds the following

uh(xi) = −
N∑

j=i

hjD−xuh(xj), i = 0, . . . , N − 1.

Proposition 2 (Discrete inverse inequality). For all vh ∈ Vh,0,

∥∥D−xvh
∥∥
+,∞

≤ 2

h
3/2
min

∥∥vh
∥∥
h
.
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Proof. Given the definition of
∥∥ ·
∥∥
+,∞

, there exists k ∈ {1, 2, . . . , N} such that

∥∥D−xvh
∥∥2
+,∞

= |D−xvh(xk)|2

≤ 2

h2min

(
vh(xk)

2 + vh(xk−1)
2
)

≤ 4

h3min

∥∥vh
∥∥2
h
.

Proposition 3. For all vh ∈ Vh,0,

∥∥vh
∥∥
h,∞

≤
√
R

hmin

∥∥vh
∥∥
h
.

Proof. The proof follows similar steps as the one for Proposition 2.

Proposition 4. Let A : R −→ R, uh ∈ V ∗
h and vh ∈ Vh,0. Then

(
D⋆

x(A(Mhuh)D−xuh), vh
)
h
= −

(
A(Mhuh)D−xuh, D−xvh

)
+
−DA,cuh(x0)vh(x0),

where

DA,cuh(x0) =
1

2

(
A(Mhuh(x0))D−xuh(x0) +A(Mhuh(x1))D−xuh(x1)

)
.

Remark 1. For the particular case, A is constant, we have DA,cuh(x0) = ADcuh(x0).

To simplify the presentation of the numerical methods that we study in what follows, we
consider the following notation: if vh : Ω

⋆
h × [0, T ] −→ R, by vh(t) we represent the following

grid function vh(t) : Ω
⋆
h −→ R, vh(t)(xi) = vh(xi, t), i = −1, . . . , N. By v′h(t) we represent

its time derivative. For grid functions vh defined in others grid sets the definition is similar.
Finally, we introduce the notation Cm(Hr) = Cm([0, T ];Hr(0, R)) for the space of functions
v : [0, T ] −→ Hr(0, R) such that v(i) : [0, T ] −→ Hr(0, R), i = 0, . . . ,m are continuous, imbued
with the norm

∥v∥Cm(Hr) = max
t∈[0,T ]

∥v(t)∥Hr(0,R) .

We also introduce the simplified notation H i(Hr) for the Bochner space H i(0, T ;Hr(0, R)),
i, k ≥ 0.

3 Fully discrete approximation

LetM ∈ N and ∆t = T
M . We consider in [0, T ] the uniform time grid {tm = m∆t, m = 0, . . . ,M}.

We introduce now a full discretization scheme for problem defined by eqs. (1) to (3) and (5) to (8)
based on an implicit midpoint integration approach in time

D−tc
m+1
ℓ,h = D⋆

x

(
aℓ

(
Mhc

m+1/2
ℓ,h

)
D−xc

m+1/2
ℓ,h

)

+D⋆
x

(
aσ

(
Mhc

m+1/2
ℓ,h

)
D−xσ

m+1/2
h

)
, (9)

D−tσ
m+1
h + βσ

m+1/2
h = −αcm+1/2

ℓ,h − γD−tc
m+1
ℓ,h , (10)

D−tc
m+1
d,h = D⋆

x

(
ad

(
Mhc

m+1/2
ℓ,h

)
D−xc

m+1/2
d,h

)
+ f

m+1/2
h (11)

D−tc
m+1
s,h = −fm+1/2

h , (12)
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in Ωh\{xN} and m = 0, 1, . . . ,M − 1. with

c0ℓ,h(xi) = cℓ,0(xi), (13)

c0d,h(xi) = 0, (14)

c0s,h(xi) = cs,0(xi), (15)

σ0h(xi) = σ0(xi), (16)

for i = 0, . . . , N − 1, and

Daℓ,cc
j+1/2
ℓ,h (x0) = Dad,cc

j+1/2
d,h (x0) = Daσ ,cσ

j+1/2
h (x0) = 0, j = 0, . . . ,M − 1, (17)

cjℓ,h(xN ) = cext, (18)

σjh(xN ) = σext, (19)

cjd,h(xN ) = 0, j = 0, . . . ,M. (20)

In eq. (9), D−t denotes the backward finite difference operator in time, c
m+1/2
p,h = 1

2(c
m
p,h + cm+1

p,h )

for p = ℓ, d, s, fmh = f(cms,h, c
m
d,h, c

m
ℓ,h) and f

m+1/2
h = 1

2(f
m
h + fm+1

h ). Following [6], throughout
this paper we always assume that:

(Hdiff ) for µ = ℓ, d, σ, aµ : R −→ R is differentiable, its derivative is bounded and there exist
positive constants a0,µ and Mµ such that

0 < a0,µ ≤ aµ(x) ≤Mµ, |a′µ(x)| ≤Mµ, for all x ∈ R;

(Hf ) there exists a positive constant Cf such that

|(f(x, y, z)− f(x̃, ỹ, z̃)| ≤ Cf (|z̃||y − ỹ|+ (1 + |y|) (|z − z̃|+ |z||x− x̃|)) ,
for all x, y, z, x̃, ỹ, z̃ ∈ R.

Remark 2. We remark that the last condition generalizes the condition that holds for the partic-
ular dissolution function f(cs, cd, cℓ) = Ĥ(cs)K(Csol−cd)cℓ, where Ĥ is a smooth approximation
of the Heaviside function H(cs), Csol is the solubility limit of the drug and K is the dissolution
rate.

Remark 3. We observe that the numerical scheme defined by eqs. (9), (12), (13), (16), (17)
and (20) can be seen as a fully discrete piecewise finite element method: piecewise linear for
cℓ, σ, cd and piecewise constant for cs. In fact, the weak problem that leads to the last finite
difference scheme can be write as follows: for t ∈ (0, T ], compute cℓ(t), σ(t),∈ H1(Ω), cs(t) ∈
L2(0, R), such that cℓ(R, t) = cℓ,ext, σ(R, t) = σext, cd(R, t) = 0 and

(c′ℓ(t), ωℓ) = −(aℓ(cℓ(t))∇cℓ(t),∇ωℓ)− (aσ(σ(t))∇σ(t),∇ωℓ), ∀ωℓ ∈ H1
R,0(0, R),

(σ′(t), ωσ) = −β(σ(t), ωσ)− α(cℓ(t), ωσ)− γ(c′ℓ(t), ωσ), ∀ωσ ∈ L2(0, R),

(c′d(t), ωd) = −(ad(cℓ(t))∇cd(t),∇ωd) + (f(t), ωd), ∀ωd ∈ H1
R,0(0, R),

(c′s(t), ωs) = −(f(t), ωs), ∀ωs ∈ L2(0, R),

(21)

with the initial conditions defined by eqs. (13) and (16)) imposed in the L2 sense. In (21)
the following notations were used: H1

R,0(0, R) = {ω ∈ H1(0, R) : ω(R) = 0} and f(t) =
f(cs(t), cd(t), cℓ(t)).

The semi-discrete piecewise linear-constant finite element method reads as follows: for t ∈
(0, T ], compute Phcℓ,h(t), Phσh(t), Phcd,h(t) ∈ H1(0, R) such that cℓ,h(xN , t) = cℓ,ext, σh(xN , t) =
0 and Qhcs,h(t) ∈ L2(0, R), such that

(Phc
′
ℓ,h(t), Phωℓ,h) = −(aℓ(Phcℓ,h(t))∇Phcℓ,h(t),∇Phωℓ,h)

− (aσ(Phσh(t))∇Phσh(t),∇Phωℓ)

(Phσ
′
h(t), Qhωσ,h) = −β(Phσh(t), Qhωσ,h)− α(Phcℓ,h(t), Qhωσ,h)− γ(Phc

′
ℓ,h(t), Qhωσ,h),

(Phc
′
d,h(t), Phωd,h) = −(ad(Phcℓ,h(t))∇Phcd,h(t),∇Phωd,h) + (fP,h(t), Phωd,h),

(Qhc
′
s,h(t), Qhωs,h) = −(fh(t), Qhωs,h),

(22)
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for all ωℓ,h, ωd,h, ωs,h, ωσ,h ∈ Vh,0 with the initial conditions

cℓ,h(xi, 0) = cℓ,0(xi), (23)

cd,h(xi, 0) = 0, (24)

cs,h(xi, 0) = cs,0(xi), (25)

σh(xi, 0) = σ0(xi), (26)

for i = 0, . . . , N − 1. In (22) the following notations were used: for uh ∈ Vh,0, Phuh denotes
the usual piecewise linear polynomial interpolator of uh, Qhuh represents the piecewise constant
polynomial interpolator of uh, that is, for i = 0, . . . , N − 1, and for x ∈ [xi, xi+1), Qhuh(x) =
uh(xi) and fP,h(t) = f(Qhcs,h(t), Phcd,h(t), Phcℓ,h(t)).

This leads to the final fully discrete piecewise linear-constant finite element method: for t ∈
(0, T ], compute cℓ,h(t), Phσh(t), Phcd(t), cs,h(t) ∈ Vh,0 such that cℓ,h(xN , t) = cℓ,ext, σh(xN , t) = 0,
and

(c′ℓ,h(t), ωℓ,h)h = −(aℓ(Mhcℓ,h(t))D−xcℓ,h(t), D−xωℓ,h)+

− (aσ(Mhσh(t))D−xσh(t), D−xωℓ)+,

(σ′h(t)ωσ,h)h = −β(σh(t), ωσ,h)h − α(cℓ,h(t), ωσ,h)h − γ(c′ℓ,h(t), ωσ,h)h,

(c′d,h(t), ωd,h)h = −(ad(Mhcℓ,h(t))D−xcd,h(t), D−xωd,h) + (fh(t), ωd,h),

(c′s,h(t), ωs,h)h = −(fh(t), ωs,h)h,

(27)

for all ωℓ,h, ωd,h, ωs,h, ωσ,h ∈ Vh,0, subjected to the initial conditions defined by eqs. (23) and (26)).
In (27) we adopted the notation fh(t) = f(cs,h(t), cd,h(t), cℓ,h(t)).

Finally, a suitable time integration scheme for (27) leads to: for m = 0, . . . ,M − 1, compute
cmℓ,h, σ

m
h , c

m
d,h, c

m
s,h ∈ Vh,0 such that cmℓ,h(xN ) = cℓ,ext, σ

m
h (xN ) = 0, and

(D−tc
m+1
ℓ,h , ωℓ,h)h = −(aℓ(Mhc

m+1/2
ℓ,h )D−xc

m+1/2
ℓ,h , D−xωℓ,h)+

− (aσ(Mhσ
m+1/2
h )D−xσ

m+1/2
h , D−xωℓ)+,

(D−tσ
m+1
h ), ωσ,h)h = −β(σm+1/2

h , ωσ,h)h − α(c
m+1/2
ℓ,h , ωσ,h)h − γ(D−tc

m+1
ℓ,h , ωσ,h)h,

(D−tc
m+1
d,h , ωd,h)h = −(ad(Mhc

m+1/2
ℓ,h )D−xc

m+1/2
d,h , D−xωd,h) + (f

m+1/2
h , ωd,h),

(D−tc
m+1
s,h , ωs,h)h = −(f

m+1/2
h , ωs,h)h,

(28)

for all ωℓ,h, ωd,h, ωs,h, ωσ,h ∈ Vh,0, complemented the initial conditions defined by eqs. (13)
and (16), leading to (9)-(20).

3.1 Stability analysis

Let cmi,h, i = d, ℓ, s, and σmh , m = 1 . . . ,M denote fixed solutions of the discrete problem defined

by equations eqs. (9) to (20) with initial conditions c0i,h, i = d, ℓ, s, and σ0h and let ωm
i,h = cmi,h− c̃mi,h,

i = d, ℓ, s, ωm
σ,h = σmh − σ̃mh , where c̃mi,h, i = d, ℓ, s, σ̃mh is another set of solutions of the same

discrete problem with initial conditions c̃0i,h, i = d, ℓ, s, and σ̃0h. We start by stating a result that
will be used to bound specific terms in the upcoming analysis.

Proposition 5. Let uh, vh, ũh, ṽh ∈ V ⋆
h such that uh − ũh ∈ V ⋆

h,0 and wh ∈ Vh,0. If aµ : R −→ R

satisfies Hdiff then

|
(
aµ (Mhuh)D−xvh − aµ (Mhũh)D−xṽh, D−xwh

)
+
| ≤Mµ

∥∥D−x(vh − ṽh)
∥∥
+

∥∥D−xwh

∥∥
+

+Mµ

∥∥D−xvh
∥∥
+,∞

∥∥uh − ũh
∥∥
h

∥∥D−xwh

∥∥
+

Moreover, if wh = vh − ṽh then

(
aµ (Mhũh)D−xṽh − aµ (Mhuh)D−xvh, D−xwh

)
+

≤Mµ

∥∥D−xvh
∥∥
+,∞

∥∥uh − ũh
∥∥
h

∥∥D−xwh

∥∥
+
− a0,µ

∥∥D−xwh

∥∥2
+

8



We are now able to establish upper bounds for a perturbation of the numerical solution.
Indeed, considering Proposition 4, it can be shown that

(
D−tω

m+1
ℓ,h , ω

m+1/2
ℓ,h

)
h
= −

(
aℓ

(
Mhc

m+1/2
ℓ,h

)
D−xc

m+1/2
ℓ,h , D−xω

m+1/2
ℓ,h

)
+

+
(
aℓ

(
Mhc̃

m+1/2
ℓ,h

)
D−xc̃

m+1/2
ℓ,h , D−xω

m+1/2
ℓ,h

)
+

−
(
aσ

(
Mhc

m+1/2
ℓ,h

)
D−xσ

m+1/2
h , D−xω

m+1/2
ℓ,h

)
+

+
(
aσ

(
Mhc̃

m+1/2
ℓ,h

)
D−xσ̃

m+1/2
h , D−xω

m+1/2
ℓ,h

)
+

(
D−tω

m+1
d,h , ω

m+1/2
d,h

)
h
= −

(
ad

(
Mhc

m+1/2
ℓ,h

)
D−xc

m+1/2
d,h , D−xω

m+1/2
d,h

)
+

+
(
ad

(
Mhc̃

m+1/2
ℓ,h

)
D−xc̃

m+1/2
d,h , D−xω

m+1/2
d,h

)
+

+
((
f
m+1/2
h − f̃

m+1/2
h

)
, ω

m+1/2
d,h

)
h
,

and (
D−tω

m+1
s,h , ω

m+1/2
s,h

)
h
= −

((
f
m+1/2
h − f̃

m+1/2
h

)
, ω

m+1/2
s,h

)
h
.

We now focus on equation (3.1). Using Proposition 5, it is straightforward to show that

1

2
D−t

∥∥ωm+1
ℓ,h

∥∥2
h
≤Mℓ

∥∥D−xc
m+1/2
ℓ,h

∥∥
+,∞

∥∥ωm+1/2
ℓ,h

∥∥
h

∥∥D−xω
m+1/2
ℓ,h

∥∥
+
− a0,ℓ

∥∥D−xω
m+1/2
ℓ,h

∥∥2
+

+Mσ

∥∥D−xσ
m+1/2
h

∥∥
+,∞

∥∥ωm+1/2
ℓ,h

∥∥
h

∥∥D−xω
m+1/2
ℓ,h

∥∥
+

+Mσ

∥∥D−xω
m+1/2
σ,h

∥∥
+

∥∥D−xω
m+1/2
ℓ,h

∥∥
+
.

(29)

Remark 4. From the expressions in the previous inequality, in order to obtain an upper bound

for
∥∥ωm+1

ℓ,h

∥∥
h
, we need to determine an upper bound for

∥∥D−xω
m+1/2
σ,h

∥∥
+
.

With this in mind, we start by proving the following result.

Proposition 6. Under the previous assumptions, ωm+1
σ,h and ωm+1

ℓ,h satisfy

1

2
D−t

[∥∥D−x

(
ωm+1
σ,h + γωm+1

ℓ,h

)∥∥2
+

]
+ β

∥∥D−xω
m+1/2
σ,h

∥∥2
+
+ αγ

∥∥D−xω
m+1/2
ℓ,h

∥∥2
+

= −(α+ βγ)
(
D−xω

m+1/2
ℓ,h , D−xω

m+1/2
σ,h

)
+
.

Proof. Taking each member of eq. (10) and applying the operator D−x, we derive

D−xD−tω
m+1
σ,h + βD−xω

m+1/2
σ,h = −αD−xω

m+1/2
ℓ,h − γD−xD−tω

m+1
ℓ,h .

We now apply the discrete inner product (·, ·)+ to each member of the previous equation con-

sidereing two different elements: D−xω
m+1/2
σ,h and D−xω

m+1/2
ℓ,h . From the former, we obtain

1

2
D−t

∥∥D−xω
m+1
σ,h

∥∥2
+
+ β

∥∥D−xω
m+1/2
σ,h

∥∥2
+
= −α

(
D−xω

m+1/2
ℓ,h , D−xω

m+1/2
σ,h

)
+

− γ
(
D−xD−tω

m+1
ℓ,h , D−xω

m+1/2
σ,h

)
+

and from the latter we get

γ
(
D−xD−tω

m+1
σ,h , D−xω

m+1/2
ℓ,h

)
+
+ βγ

(
D−xω

m+1/2
σ,h , D−xω

m+1/2
ℓ,h

)
+

= −αγ
∥∥D−xω

m+1/2
ℓ,h

∥∥2
+
− γ2

2
D−t

∥∥D−xω
m+1/2
ℓ,h

∥∥2
+
.

(30)
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Now, using the identity

D−t

(
D−xω

m+1
σ,h , D−xω

m+1
ℓ,h

)
+
=
(
D−xD−tω

m+1
σ,h , D−xω

m+1/2
ℓ,h

)
+

+
(
D−xD−tω

m+1
ℓ,h , D−xω

m+1/2
σ,h

)
+

in eq. (30) and replacing the common term, γ
(
D−xD−tω

m+1
ℓ,h , D−xω

m+1/2
σ,h

)
+

, we conclude the

proof.

We are now able to establish an upper bound for the perturbations on cℓ,h and σh.

Proposition 7. Let cmℓ,h and σmh , m = 0, . . . ,M denote fixed solutions of the discrete problem

defined by eqs. (9), (10), (13) and (16) to (19) and let ωm
ℓ,h = cmℓ,h − c̃mℓ,h, ω

m
σ,h = σmh − σ̃mh , where

c̃mℓ,h, σ̃
m
h is another solution of the same discrete problem with initial conditions c̃0ℓ,h, and σ̃0h. If

the assumption Hdiff holds, the coefficients satisfy

Mσ + α+ βγ < 2min (β, αγ + a0,ℓ) (31)

and there exists ∆t0 > 0 such that, for all ∆t ∈ (0,∆t0), the corresponding solution satisfies

max
m

(∥∥D−xc
m+1/2
ℓ,h

∥∥2
+,∞

,
∥∥D−xσ

m+1/2
h

∥∥2
+,∞

)
≤ C (32)

for some positive C, independent of h and ∆t, then, for all ∆t < min
{
∆t0,

1
2C

}
, the following

inequality holds

∥∥ωm
ℓ,h

∥∥2
h
+
∥∥D−xω

m
σ,h + γD−xω

m
ℓ,h

∥∥2
+
+∆t

m−1∑

i=0

[∥∥D−xω
i+1/2
σ,h

∥∥2
+
+
∥∥D−xω

i+1/2
ℓ,h

∥∥2
+

]

≤ Cℓ

(∥∥ω0
ℓ,h

∥∥2
h
+
∥∥D−xω

0
σ,h

∥∥2
+
+
∥∥D−xω

0
ℓ,h

∥∥2
+

)
.

for m = 1, 2, . . . ,M − 1, where Cℓ is a positive constant independent of h and ∆t.

Proof. Let ∆t < min
{
∆t0,

1
2C

}
. Combining eq. (29) with Proposition 6, it follows that for all

ϵ ̸= 0,

D−t

[∥∥ωm+1
ℓ,h

∥∥2
h
+
∥∥D−xω

m+1
σ,h + γD−xω

m+1
ℓ,h

∥∥2
+

]

+A0

∥∥D−xω
m+1/2
σ,h

∥∥2
+
+B0(ϵ)

∥∥D−xω
m+1/2
ℓ,h

∥∥2
+

≤
(
M2

ℓ

ϵ2
∥∥D−xc

m+1/2
ℓ,h

∥∥2
+,∞

+
M2

σ

ϵ2
∥∥D−xσ

m+1/2
h

∥∥2
+,∞

)∥∥ωm+1/2
ℓ,h

∥∥2
h

(33)

where

A0 = 2

(
β − Mσ

2
− α+ βγ

2

)

and

B0(ϵ) = 2

(
αγ + a0,ℓ − ϵ2 − Mσ

2
− α+ βγ

2

)
.

From eq. (31), it follows that A0 > 0 and we can fix ϵ such that B0(ϵ) > 0. Let

θℓ(cℓ,h, σh) =
1

ϵ2
max
µ=ℓ,σ

M2
µ · max

j=0,...,N−1

{∥∥D−xc
j+1/2
ℓ,h

∥∥2
+,∞

,
∥∥D−xσ

j+1/2
h

∥∥2
+,∞

}
.

With this notation, eq. (33) leads to

(1− θℓ(cℓ,h, σh)∆t)
(∥∥ωm+1

ℓ,h

∥∥2
h
+
∥∥D−xω

m+1
σ,h + γD−xω

m+1
ℓ,h

∥∥2
+

)

+∆t
(
A0

∥∥D−xω
m+1/2
σ,h

∥∥2
+
+B0(ϵ)

∥∥D−xω
m+1/2
ℓ,h

∥∥2
+

)

≤ (1 + θℓ(cℓ,h, σh)∆t)
(∥∥ωm

ℓ,h

∥∥2
h
+
∥∥D−xω

m
σ,h + γD−xω

m
ℓ,h

∥∥2
+

)
.

(34)
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From the uniform bound defined by eq. (32) and the inequality from eq. (34), applying
Lemma 1 from [19] allows to obtain

∥∥ωm
ℓ,h

∥∥2
h
+
∥∥D−xω

m
σ,h + γD−xω

m
ℓ,h

∥∥2
+
+∆t

m−1∑

i=0

[∥∥D−xω
i+1/2
σ,h

∥∥2
+
+
∥∥D−xω

i+1/2
ℓ,h

∥∥2
+

]

≤ Cℓ(1 + C∆t)
(∥∥ω0

ℓ,h

∥∥2
h
+
∥∥D−xω

0
σ,h

∥∥2
+
+
∥∥D−xω

0
ℓ,h

∥∥2
+

)
.

(35)

where

Cℓ = 2max{1, γ2} exp
(
C T max

{
1

A0
,

1

B0(ϵ)
,

1

1− Cmin
{
∆t0,

1
2C

}
})

.

We have already dealt with calculating upper bounds for suitable norms involving the pertur-
bations of cℓ,h and σh. We now turn our attention to the perturbations of the dissolved and solid
approximations, i.e., ωd,h and ωs,h. Employing a similar technique, we can prove the following
result.

Proposition 8. Let cmi,h, i = d, s, ℓ and σmh , m = 0, . . . ,M denote fixed solutions of the discrete

problem defined by eqs. (9) to (20) and let ωm
i,h = cmi,h− c̃mi,h, i = d, s, ℓ and ωm

σ,h = σmh − σ̃mh , where

c̃mi,h, i = d, s, ℓ and σ̃mh is another solution of the same discrete problem. If the assumptions Hdiff

and Hf hold and there exists ∆t0 > 0 such that, for all ∆t ∈ (0,∆t0), the corresponding solution

satisfies

max
i=0,...,M

{∥∥cid,h
∥∥
h,∞

,
∥∥D−xc

i
d,h

∥∥
h,∞

,
∥∥ciℓ,h

∥∥
h,∞

,
∥∥c̃iℓ,h

∥∥
h,∞

}
≤ C (36)

for some positive C, independent of h and ∆t, then, for all ∆t < min
{
∆t0,

1
8C

}
, the following

inequality holds

∥∥ωm
d,h

∥∥2
h
+
∥∥ωm

s,h

∥∥2
h
+∆t

m−1∑

i=0

∥∥D−xω
j+1/2
d,h

∥∥2
+
≤ Cd,s


∥ω0

d,h∥2h + ∥ω0
s,h∥2h +∆t

m∑

j=0

∥ωi
ℓ,h∥2h


 , (37)

for m = 1, 2, . . . ,M − 1, where Cd,s is a positive constant independent of h and ∆t.

Proof. We start by noting that using eqs. (11) and (12) and taking into account summation by
parts and the boundary conditions for ωm+1

d,h we have

(
D−tω

m+1
d,h , ω

m+1/2
d,h

)
h
+
(
D−tω

m+1
s,h , ω

m+1/2
s,h

)
h

= −
((
ad

(
Mhc

m+1/2
ℓ,h

)
− ad

(
Mhc̃

m+1/2
ℓ,h

))
D−xc

m+1/2
d,h , D−xω

m+1/2
d,h

)
+

−
(
ad(Mhc̃

m+1/2
ℓ,h )D−xω

m+1/2
d,h , D−xω

m+1
d,h

)
+

+
(
f
m+1/2
h − f̃

m+1/2
h , ω

m+1/2
d,h − ω

m+1/2
s,h

)
h
.

(38)

Considering the assumptions on the coefficient functions, using Proposition 5, for all ϵ ̸= 0,
we have

−
((
ad

(
Mhc

m+1/2
ℓ,h

)
− ad

(
Mhc̃

m+1/2
ℓ,h

))
D−xc

m+1/2
d,h , D−xω

m+1/2
d,h

)
+

≤ ϵ2

2

∥∥D−xω
m+1/2
d,h

∥∥2
+
+ Cd

M2
d

4ϵ2
max

j=0,...,N−1

∥∥D−xc
j+1/2
d,h

∥∥2
+,∞

·
(∥∥ωm+1

ℓ,h

∥∥2
h
+
∥∥ωm

ℓ,h

∥∥2
h

)

and
−
(
ad

(
Mhc̃

m+1/2
ℓ,h

)
D−xω

m+1/2
d,h , D−xω

m+1
d,h

)
+
≤ −a0,d

∥∥D−xω
m+1/2
d,h

∥∥2
+
,
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where Cd is a suitable positive constant. Through a straightforward application of assumption
Hf , it can be shown that the following holds

(
f
m+1/2
h − f̃

m+1/2
h , ω

m+1/2
d,h − ω

m+1/2
s,h

)
h

≤ Cf max
i=0,...,N

{∥∥cid,h
∥∥
h,∞

,
∥∥ciℓ,h

∥∥
h,∞

,
∥∥c̃iℓ,h

∥∥
h,∞

}(
Em+1

s,d + Em
s,d

)

+ C̃f max
i=0,...,N

(
1 +

∥∥cid,h
∥∥
h,∞

)2 (∥∥ωm+1
ℓ,h

∥∥
h
+
∥∥ωm

ℓ,h

∥∥2
h

)
,

where C̃f is a convenient positive constants and

Em
s,d =

∥∥ωm
d,h

∥∥2
h
+
∥∥ωm

s,h

∥∥2
h
.

Considering the last estimates in eq. (38) and eq. (36), we obtain

(1− α∆t)Em+1
s,d + 2(a0,d − ϵ2)

∥∥D−xω
m+1/2
d,h

∥∥2
+
≤ (1 + α∆t)Em

s,d +∆tzm. (39)

where α = 4CfC, β = 2C̃f (1+C)
2+Cd,1

M2
d

4ϵ2
and zm = β

(
∥ωm+1

ℓ,h ∥2h + ∥ωm
ℓ,h∥2h

)
. Choosing ϵ ̸= 0

such that D0(ϵ) = 2(a0,d − ϵ2) > 0, Lemma 1 from [19] implies

∥∥ωm
d,h

∥∥2
h
+
∥∥ωm

s,h

∥∥2
h
+∆t

m−1∑

i=0

∥∥D−xω
i+1/2
d,h

∥∥2
+

≤
(
(1 + α∆t)

(∥∥ω0
d,h

∥∥2
h
+
∥∥ω0

s,h

∥∥2
h

)
+ 2β∆t

m∑

i=0

∥∥ωi
ℓ,h

∥∥
h

)
·

· exp
(
2Tαmax

{
1

D0(ϵ)
,

1

1− α∆t

})
.

The combination of Propositions 7 and 8 leads to our first main result. Let

E
m
ℓ,σ,d,s =

∥∥ωm
ℓ,h

∥∥2
h
+
∥∥ωm

d,h

∥∥2
h
+
∥∥ωm

s,h

∥∥2
h
+
∥∥D−xω

m
σ,h + γD−xω

m
ℓ,h

∥∥2
+

+∆t

m−1∑

i=0

[∥∥D−xω
i+1/2
σ,h

∥∥2
+
+
∥∥D−xω

i+1/2
ℓ,h

∥∥2
+
+
∥∥D−xω

i+1/2
d,h

∥∥2
+

]

for m = 1, . . . ,M .

Theorem 1. Let cmi,h, i = d, s, ℓ and σmh , m = 0, . . . ,M denote fixed solutions of the discrete

problem defined by eqs. (9) to (20) and let ωm
i,h = cmi,h − c̃mi,h, i = d, s, ℓ and ωm

σ,h = σmh − σ̃mh ,
where c̃mi,h, i = d, s, ℓ and σ̃mh is another solution of the same discrete problem. If the assumptions

Hdiff and Hf hold, the coefficients satisfy eq. (31) and there exist positive constants Cstab and

∆t0 such that, for all ∆t ∈ (0,∆t0), the corresponding solution satisfies

max
m=0,...,M

{∥∥D−xc
m
ℓ,h

∥∥
+,∞

,
∥∥D−xσ

m
h

∥∥
+,∞

,
∥∥D−xc

m
d,h

∥∥
+,∞

,
∥∥cmd,h

∥∥
h,∞

,
∥∥cmℓ,h

∥∥
h,∞

,
∥∥c̃mℓ,h

∥∥
h,∞

}
≤ Cstab

(40)
independently of h, then there exists a positive constant C, independent of h and ∆t, such that,

for ∆t sufficiently small, the following inequality holds

E
m
ℓ,σ,d,s ≤ C

(∥∥ω0
ℓ,h

∥∥2
h
+
∥∥D−xω

0
σ,h

∥∥2
+
+
∥∥D−xω

0
ℓ,h

∥∥2
+
+ ∥ω0

d,h∥2h + ∥ω0
s,h∥2h

)
(41)

for m = 1, 2, . . . ,M − 1.
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Remark 5. We conclude this section remarking that the stability of eqs. (9) to (20) in cji,h, i =

d, s, ℓ, σjh, j = 0, . . . ,M, is concluded from Theorem 1 provided that there exists a positive con-
stant Cstab, h and ∆t independent, such that, for ∆t small enough,

∥∥D−xc
j+1/2
ℓ,h

∥∥2
+,∞

≤ Cstab,
∥∥D−xσ

j+1/2
h

∥∥2
+,∞

≤ Cstab,
∥∥D−xc

j+1/2
d,h

∥∥
+,∞

≤ Cstab,

j = 0, . . . ,M − 1, h ∈ Λ, and

∥∥cjd,h
∥∥
h,∞

≤ Cstab,
∥∥cjℓ,h

∥∥
h,∞

≤ Cstab,
∥∥c̃jℓ,h

∥∥
h,∞

≤ Cstab,

for j = 0, . . . , N, h ∈ Λ.

3.2 Convergence analysis

Let cmi,h, i = d, ℓ, s, and σmh , m = 1, . . . ,M denote fixed solutions of the discrete problem defined

by eqs. (9) to (20) . Let Ej
i,h = Rhci(tj)− cji,h, i = d, ℓ, s, Ej

σ,h = Rhσ(tj)− σjh, for j = 0, . . . , N,
be the discretization errors, where ci, i = d, ℓ, s, σ represent the solution of the initial boundary
value problem defined by eqs. (1) to (3) and (7)) with ϵ = λcℓ, eqs. (5), (6) and (8), and
Rh : C([0, R]) −→ Vh denotes the standard restriction operator to the grid functions defined on
Ωh.

To establish error estimates we use the approach introduced in [3] for elliptic problems and
largely followed by the authors and their collaborators in, for instance, [4, 20, 22, 2] for non-
Fickian diffusion problems and [18, 14, 17, 21, 16] for coupled problems.

Let g ∈ C([0, R]). We introduce (g)h ∈ Vh defined by

(g)h(x0) =
2

h1

∫ x1/2

x0

g(x)dx,

(g)h(xi) =
1

hi+1/2

∫ xi+1/2

xi−1/2

g(x)dx, i = 1, . . . , N − 1,

(g)h(xN ) =
2

hN

∫ xN

xN−1/2

g(x)dx

and ĝ : Vh\{x0} −→ R defined by ĝ(xi) = Rhg(xi−1/2), i = 1, . . . , N. We also define the space

V = H3(0, T ;H2(0, R)) ∩ C0(0, T ;H3(0, R)) (42)

Ej
ℓ,σ :=

∥∥Ej
ℓ,h

∥∥2
h
+
∥∥D−x

(
Ej

σ,h + γEj
ℓ,h

)∥∥2
+
, j = 0, . . . ,M.

The first result on convergence, estimating the error for approximations cℓ,h and σh, is as
follows.

Proposition 9. Let cℓ, σ ∈ V denote solutions of the problem defined by eqs. (1) and (5) to (8)
and cℓ,h, σh ∈ Vh denote the solution of the problem defined by eqs. (9), (10), (13) and (16)
to (19). If the assumption Hdiff holds and the coefficients satisfy eq. (31) then, there exists a

positive constant Cℓ such that for ∆t small enough,

Em
ℓ,σ +∆t

m−1∑

j=0

∑

p=ℓ,σ

∥∥D−xE
j+1/2
p,h

∥∥2
+
≤ Cℓ

(
∥E0

ℓ,h∥2h + ∥D−xE
0
σ,h∥2+ + ∥D−xE

0
ℓ,h∥2+ + Ter,ℓ

)
,

for m = 1, 2, . . . ,M − 1, where

Ter,ℓ ≤ h4max

( ∑

p=cℓ,σ

(
∥p∥C0(H2) ∥cℓ∥C0(H2) + ∥p∥C0(H3) + ∥p∥C1(H2)

)2
)

+∆t4

( ∑

p=cℓ,σ

(
∥p∥C0(H2) ∥cℓ∥H2(H1) + ∥p∥H2(H2)

)2
+ ∥p∥H3(H2)

)
.
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Proof. This proof follows the reasoning behind the one of Proposition 7.

1. Estimates for D−t

∥∥Eℓ,h

∥∥2
h

and
∥∥D−xE

m+1/2
ℓ,h

∥∥2
+
:

A straightforward, although tedious, calculation allows to show the following equalities
(
D−tE

m+1
ℓ,h , E

m+1/2
ℓ,h

)
h
=
((
c′ℓ(tm+1/2)

)
h
, E

m+1/2
ℓ,h

)
h
−
(
D−tc

m+1
ℓ,h , E

m+1/2
ℓ,h

)
h

+
(
Tm+1
1 , E

m+1/2
ℓ,h

)
h

=
∑

p=cℓ,σ

(
ap

(
Mhc

m+1/2
ℓ,h

)
D−xp

m+1/2
h , D−xE

m+1/2
ℓ,h

)
+

−
∑

p=cℓ,σ

(
ap

(
MhRhc

m+1/2
ℓ

)
D−xRhp

m+1/2, D−xE
m+1/2
ℓ,h

)
+

+
∑

p=cℓ,σ

(
T
m+1/2
1,p , D−xE

m+1/2
ℓ,h

)
+
+
(
Tm+1
1 , E

m+1/2
ℓ,h

)
h
+

(43)

where

Tm+1
1 =

(
Rhc

′
ℓ(tm+1/2)−

(
c′ℓ(tm+1/2)

)
h

)
+
(
D−tRhcℓ(tm+1)−Rhc

′
ℓ(tm+1/2)

)

and

T
m+1/2
1,p = −

((
ap
(
ĉℓ(tm+1/2)

)
− ap

(
MhRhc

m+1/2
ℓ

)) ∂̂p
∂x

(tm+1/2)

−
(
ap

(
MhRhc

m+1/2
ℓ

))( ∂̂p
∂x

(tm+1/2)−D−xRhp
m+1/2

)
,

for p = cℓ, σ. Following the proof of eq. (29), it can be shown that, from eq. (43), for all
ϵ ̸= 0, we have

D−t

∥∥Em+1
ℓ,h

∥∥2
h
+ (2a0,ℓ − 2ϵ2 −Mσ)

∥∥D−xE
m+1/2
ℓ,h

∥∥2
+

≤ 1

ϵ2

∑

p=cℓ,σ

(
M2

p

∥∥D−xRhp
m+1/2

∥∥2
+,∞

)∥∥Em+1/2
ℓ,h

∥∥2
h

+Mσ

∥∥D−xE
m+1/2
σ,h

∥∥2
+
+
(
Tm+1
1 , E

m+1/2
ℓ,h

)
h
+
∑

p=ℓ,σ

(
T
m+1/2
1,p , D−xE

m+1/2
ℓ,h

)
+
,

(44)

where ϵ ̸= 0. Using the Bramble-Hilbert Lemma, see [7], and the proof of Theorem 1 of [3],
it can be shown that there exist positive constants C1, C2, independent of h and ∆t, such
that the following inequalities hold

(
Tm+1
1 , E

m+1/2
ℓ,h

)
h
≤ C1

(
h2max

∥∥c′ℓ(tm+1/2)
∥∥
H2(0,R)

∥∥D−xE
m+1/2
ℓ,h

∥∥
+

+∆t3/2
∥∥c′′′ℓ

∥∥
L2(tm,tm+1;H1(0,R))

∥∥Em+1/2
ℓ,h

∥∥
h

)
,

(45)

(
T
m+1/2
1,p , D−xE

m+1/2
ℓ,h

)
+
≤ C2h

2
max

(∥∥∥∥
∂p

∂x
(tm+1/2)

∥∥∥∥
L∞(0,R)

∥∥cℓ(tm+1/2)
∥∥
H2(0,R)

+
∥∥p(tm+1/2)

∥∥
H3(0,R)

+ ∥p(tm)∥H2(0,R)

+ ∥p(tm+1)∥H2(0,R)

)∥∥D−xE
m+1/2
ℓ,h

∥∥
+

+ C2∆t
3/2

(∥∥∥∥
∂p

∂x
(tm+1/2)

∥∥∥∥
L∞(0,R)

∥∥c′′ℓ
∥∥
L2(tm,tm+1;H1(0,R))

+

∥∥∥∥
(
∂p

∂x

)′′∥∥∥∥
L2(tm,tm+1;H1(0,R))

)
∥∥D−xE

m+1/2
ℓ,h

∥∥
+

(46)
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for p = cℓ, σ. Inserting eqs. (45) and (46) into eq. (44) we obtain

D−t

∥∥Em+1
ℓ,h

∥∥2
h
+ (2a0,ℓ − 3ϵ2 −Mσ)

∥∥D−xE
m+1/2
ℓ,h

∥∥2
+

≤ 1

ϵ2

∑

p=cℓ,σ

(
M2

p

∥∥D−xRhp
m+1/2

∥∥2
h,∞

+
1

2

)∥∥Em+1/2
ℓ,h

∥∥2
h
+Mσ

∥∥D−xE
m+1/2
σ,h

∥∥2
+
+ T

m+1/2
ℓ,σ ,

(47)

where, for i = 1, . . . , N − 1,

|Tm+1/2
ℓ,σ (xi)| ≤ Ch4max

(
ϵ2
∥∥c′ℓ(tm+1/2)

∥∥2
H2(0,R)

+
∑

p=cℓ,σ

(
∥p∥C0(H2)

∥∥cℓ(tm+1/2)
∥∥
H2(0,R)

+
∥∥p(tm+1/2)

∥∥
H3(0,R)

+ ∥p(tm)∥H2(0,R) + ∥p(tm+1)∥H2(0,R)

)2)

+ C∆t3
(∥∥c′′′ℓ

∥∥2
L2(tm,tm+1;H1(0,R)

+
∑

p=cℓ,σ

(
∥p∥C0(H2)

∥∥c′′ℓ
∥∥
L2(tm,tm+1;H1(0,R))

+

∥∥∥∥
(
∂p

∂x

)′′∥∥∥∥
L2(tm,tm+1;H1(0,R))

)2



for some ϵ ̸= 0, and C > 0, independent of ∆t and h.

2. Estimates for
∥∥D−x

(
Em+1

σ,h + γEm+1
ℓ,h

)∥∥2
+
,
∥∥D−xE

m+1/2
ℓ,h

∥∥2
+

and
∥∥D−xE

m+1
σ,h

∥∥2
+
:

We now focus to the error equation associated with eq. (10). A simple calculation reveals
that, for Ej

σ,h and Ej
ℓ,h, it holds

D−tE
m+1
σ,h + βE

m+1/2
σ,h = −αEm+1/2

ℓ,h − γD−xE
m+1
ℓ,h + Tm+1

σ,ℓ ,

where

Tm+1
σ,ℓ =

(
D−tRhσ(tm+1)−Rhσ

′(tm+1/2)
)
− γ

(
Rhc

′
ℓ(tm+1/2)−D−tRhcℓ(tm+1)

)

− α
(
Rhcℓ(tm+1/2)− c

m+1/2
ℓ

)
− β

(
Rhσ(tm+1/2)− σm+1/2

)
.

Following the proof of Proposition 6, it can be shown that

1

2
D−t

∥∥D−x

(
Em+1

σ,h + γEm+1
ℓ,h

)∥∥2
+
+ β

∥∥D−xE
m+1
σ,h

∥∥2
+
+ αγ

∥∥D−xE
m+1/2
ℓ,h

∥∥2
+

= −(α+ βγ)
(
D−xE

m+1/2
ℓ,h , D−xE

m+1/2
σ,h

)
+

+
(
D−xT

m+1
ℓ,σ , D−x

(
E

m+1/2
σ,h + γE

m+1/2
ℓ,h

))
+

(48)

Using again the Bramble-Hilbert Lemma ([7]), it can be established for i = 1, . . . , N ,
m = 0, . . . ,M − 1 that

|D−xT
m+1
σ,ℓ (xi)| ≤ C∆t3/2

∑

p=cℓ,σ

(
3∑

k=2

∥∥∥p(k)
∥∥∥
L2(tm,tm+1;H2(0,R))

)
, (49)

where C denotes a suitable positive constant. This implies the bound
(
D−xT

m+1
ℓ,σ , γD−xE

m+1/2
σ,h +D−xE

m+1/2
ℓ,h

)
+
≤ ϵ22

∥∥D−xE
m+1/2
ℓ,h

∥∥2
+

+ ϵ23
∥∥D−xE

m+1/2
σ,h

∥∥2
+
+ T̃m+1

ℓ,σ ,
(50)

with

T̃m+1
ℓ,σ ≤ C∆t3

∑

p=cℓ,σ

(
3∑

k=2

∥∥∥p(k)
∥∥∥
L2(tm,tm+1;H2(0,R))

)

and ϵi ̸= 0, i = 2, 3.
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Combining eqs. (47), (48) and (50) we get

D−t

[∥∥Em+1
ℓ,h

∥∥2
h
+
∥∥D−xE

m+1/2
σ,h + γD−xE

m+1/2
ℓ,h

∥∥2
+

]

+A0(ϵ3)
∥∥D−xE

m+1/2
σ,h

∥∥2
+
+B0(ϵ)

∥∥D−xE
m+1/2
ℓ,h

∥∥2
+

≤ 1

ϵ2

∑

p=cℓ,σ

(
M2

p

∥∥D−xRhp
m+1/2

∥∥2
+,∞

+
1

2

)∥∥Em+1/2
ℓ,h

∥∥2
h
+ 2T̃m+1

ℓ,σ + Tm+1
ℓ,h ,

where 2ϵ22 = ϵ2,

A0(ϵ3) = 2

(
β − Mσ

2
− α+ βγ

2
− ϵ23

)

and

B0(ϵ) = 2

(
αγ + a0,ℓ −

Mσ

2
− α+ βγ

2
− 2ϵ2

)
.

Considering the assumption (31) on the coefficients α, β, γ, a0,ℓ and Mσ, we conclude the
existence the coefficients ϵ, ϵ3 ̸= 0 such that A0(ϵ3), B0(ϵ) are positive such that

(1−∆tθℓ(cℓ, σ))E
m+1
ℓ,σ +∆tmin{A0(ϵ3), B0(ϵ)}

(∥∥D−xE
m+1/2
σ,h

∥∥2
+
+
∥∥D−xE

m+1/2
ℓ,h

∥∥2
+

)

≤
(
1 + ∆tθℓ(cℓ, σ)

)
Em

ℓ,σ +∆t
(
2T̃m+1

ℓ,σ + Tm+1
ℓ,h

)
,

(51)

where

θℓ(cℓ, σ) =
1

2ϵ2
max
p=ℓ,σ

Mp · max
p=ℓ,σ

∥p∥C0(H2) .

Assuming

∆t <
2ϵ2

maxp=ℓ,σMp ·maxp=ℓ,σ ∥p∥C0(H2)

and applying a discrete Gronwall Lemma to eq. (51), we conclude the proof.

We finally turn our attention to the error associated with the concentration of solid and
dissolved drugs, cd and cs. Let

X = C0(0, T ;H3(0, R) ∩H1
0,R(0, R)) ∩H2(0, T ;H2(0, R) ∩H1

0,R(0, R)) ∩H3(0, T ;H1
0,R(0, R)).

Proposition 10. Let cℓ, σ ∈ V , cd ∈ X and cs ∈ H3(0, T ;H1(0, R)) denote solutions of the

problem defined by eqs. (1) and (5) to (8) and cd,h ∈ Vh,0 and cs,h ∈ Vh denote the solution of

the problem defined by eqs. (9) to (20). If f(cs, cd, cℓ) ∈ C0(H2), the assumption Hdiff and Hf

hold, and the coefficients satisfy eq. (31) then, there exists a positive constant Cd,s, such that for

∆t small enough,

∥∥Em
d,h

∥∥2
h
+
∥∥Em

s,h

∥∥2
h
+∆t

m−1∑

j=0

∥∥D−xE
j+1/2
d,h

∥∥2
+
≤ Cd,s

(
∥E0

d,h∥2h + ∥E0
s,h∥2h + Ter,d,s

)
,

where

Terr,d,s ≤ h4max

( ∑

p=cℓ,σ

(
∥p∥C0(H2) ∥cℓ∥C0(H2)

+ ∥p∥C0(H3) + ∥p∥C1(H2)

)2
+ ∥f(cs, cd, cℓ)∥2C0(H2)

+
(
∥cd∥C1(H2) + ∥cd∥C0(H3)

(
∥cℓ∥C0(H2) + 1

))2)

+∆t4

( ∑

p=cℓ,σ

(
∥p∥C0(H2) ∥cℓ∥H2(H1) + ∥p∥H2(H2)

)2

+ ∥p∥H3(H2) + ∥cd∥2C0(H2) ∥cℓ∥
2
H2(H1) + ∥cd∥2H2(H2)

+ ∥cd∥2H3(H1) + ∥cs∥2H3(H1)

)
.
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Proof. We follow the steps of the proof of Proposition 9. We start by noticing that from eqs. (11)
and (12) we easily establish, for all ϵ ̸= 0, that

1

2
D−t

(∥∥Em+1
d,h

∥∥2
h
+
∥∥Em+1

s,h

∥∥2
h

)
+

(
a0,d −

ϵ2

2

)∥∥D−xE
m+1/2
d,h

∥∥2
+

≤ M2
d

2ϵ2
∥cd∥2C0(H2)

∥∥Em+1/2
ℓ,h

∥∥2
h
+ T1 + T2 ++Td,s

where
T1 =

(
(Rhf

m+1/2)h −Rhf
m+1/2, E

m+1/2
d,h

)
h

T2 =
(
Rhf

m+1/2 − f
m+1/2
h , E

m+1/2
d,h + E

m+1/2
s,h

)
h

Td,s ≤ C1

(
h2max

(
∥cd∥C1(H2) + ∥cd∥C0(H3)

(
∥cℓ∥C0(H2) + 1

))∥∥D−xE
m+1/2
d,h

∥∥
+

+∆t3/2
(
∥cd∥C0(H2) ∥cℓ∥H2(tm,tm+1;H1(0,R)) + ∥cd∥H2(tm,tm+1;H2(0,R))

)∥∥D−xE
m+1/2
d,h

∥∥
+

+∆t3/2
(
∥cd∥H3(tm,tm+1;H1(0,R))

∥∥Em+1/2
d,h

∥∥
h
+ ∥cs∥H3(tm,tm+1;H1(0,R))

∥∥Em+1/2
s,h

∥∥
h

))

for some positive constant C1, independent of h and ∆t. Both terms T1 and T2 can be bound
using the Bramble-Hilbert Lemma. For T1 we get

|T1| ≤ C2h
2
max ∥f(cs, cd, cℓ)∥C0(H2)

∥∥D−xE
m+1/2
d,h

∥∥
+

for some positive constant C2, independent of h and ∆t.
Regarding T2, using assumption Hf , it holds, for all η ̸= 0,

|T2| ≤

(
Cf (1 + ∥cd∥C0(H1))

)2

η2
∥∥Em+1/2

ℓ,h

∥∥2
h

+


η

2

2
+
C2
fR
∥∥cm+1/2

ℓ,h

∥∥2
h

2ϵ2
+
Cf ∥cℓ∥C0(H1))(1 + ∥cd∥C0(H1))

2


∥∥Em+1/2

d,h

∥∥2
h

+


η

2

2
+
C2
fR
∥∥cm+1/2

ℓ,h

∥∥2
h

2ϵ2
+

3Cf ∥cℓ∥C0(H1) (1 + ∥cd∥C0(H1))

2


∥∥Em+1/2

s,h

∥∥2
h

+ ϵ2
∥∥D−xE

m+1/2
d,h

∥∥2
+

From Proposition 9, we know that
∥∥cm+1/2

ℓ,h

∥∥
h

is uniformly bounded, w.r.t, h and ∆t, which
means that there exists a positive constant Cconv,ℓ such that

∥∥cm+1/2
ℓ,h

∥∥2
h
≤ Cconv,ℓ.

Choosing ϵ2 = ad
6 and

η2 = 3 ·min

{
C2
fRCconv,ℓ

ad
,
Cf ∥cℓ∥C0(H1) (1 + ∥cd∥C0(H1))

2

}
,

it follows that

(1− α∆t)
(∥∥Em+1

d,h

∥∥2
h
+
∥∥Em+1

s,h

∥∥2
h

)
+∆ta0,d

∥∥D−xE
m+1/2
d,h

∥∥2
+

≤ 2∆t

(
(1 + ∥cd∥)2 +

M2
d

2ϵ2
∥cd∥2C0(H2)

)∥∥Em+1/2
ℓ,h

∥∥2
h

(1 + α∆t)
(∥∥Em

d,h

∥∥2
h
+
∥∥Em

s,h

∥∥2
h

)
+∆tzm
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where

α = 2max

{
3C2

fRCconv,ℓ

ad
,
3Cf ∥cℓ∥C0(H1) (1 + ∥cd∥C0(H1))

2

}

and

zm = C3h
4
max

((
∥cd∥C1(H2) + ∥cd∥C0(H3)

(
∥cℓ∥C0(H2) + 1

))2

+ ∥f(cs, cd, cℓ)∥2C0(H2)

)

+ C3∆t
3
(
∥cd∥2C0(H2) ∥cℓ∥

2
H2(tm,tm+1;H1(0,R)) + ∥cd∥2H2(tm,tm+1;H2(0,R))

)

+ C3∆t
3
(
∥cd∥2H3(tm,tm+1;H1(0,R)) + ∥cs∥2H3(tm,tm+1;H1(0,R))

)

for some positive constant C3, independent of h and ∆t. Assuming ∆t < 1
α , we finally conclude

the proof.

We can now state our final convergence result for the error

E
m
h =

∑

p=ℓ,d,s

∥∥Em
p,h

∥∥2
h
+
∥∥D−x

(
Em

σ,h + γEm
ℓ,h

) ∥∥2
+
+∆t

m−1∑

j=0

∑

p=ℓ,σ,d

∥∥D−xE
j+1/2
p,h

∥∥2
+

Theorem 2. Let cℓ, σ ∈ V , cd ∈ X and cs ∈ H3(0, T ;H1(0, R)) denote solutions of the problem

defined by eqs. (1) and (5) to (8) and cd,h ∈ Vh,0 and cℓ,h, σh, cs,h ∈ Vh denote the solution of the

problem defined by eqs. (9) to (20). If f(cs, cd, cℓ) ∈ C0(H2), the assumption Hdiff and Hf hold

and the coefficients satisfy eq. (31) then, there exists a positive constant C, independent of h and

∆t, such that for ∆t small enough,

E
m
h ≤ C(h4max +∆t4), m = 1, . . . ,M.

Remark 6. Let us suppose that the initial errors are null. In this case Theorem 2 establishes
that the fully discrete piecewise linear-constant finite element method (28) presents second con-
vergence order

∥Em
ℓ,h∥2h + ∥Em

σ,h + γEm
ℓ,h∥21,h +∆t

m−1∑

j=0

∑

p=ℓ,σ

∥Ej+1/2
p,h ∥21,h ≤ C

(
h4max +∆t4

)
,

∑

p=d,s

∥Em
p,h∥2h +∆t

m−1∑

j=0

∥Ej+1/2
d,h ∥21,h ≤ C

(
h4max +∆t4

)
.

As mentioned before, these upper bounds were established avoiding the approach of Wheeler
[37]. Furthermore, as the fully-discrete Galerkin method is obtained considering linear piecewise
approximation for cℓ, σ and cd, the second convergence order with respect to the norm ∥.∥1,h
which can be seen as a discrete version of the usual H1-norm.

Remark 7. As mentioned in Section 3.1, the stability of the fluid discretization can be established

showing that
∥∥D−xc

j+1/2
ℓ,h

∥∥2
+,∞

and
∥∥D−xσ

j+1/2
h

∥∥2
+,∞

, are uniformelly bounded, w.r.t. h and ∆t.

Let c0ℓ,h, σ
0
h be such that

∥E0
ℓ,h∥h ≤ Ch2max, ∥D−xE

0
ℓ,h∥+ ≤ Ch2max, ∥D−xE

0
σ,h∥+ ≤ Ch2max.

From Proposition 2 it follows that

∥∥D−xc
j+1/2
ℓ,h

∥∥2
+,∞

≤ 2
∥∥D−xE

j+1/2
ℓ,h

∥∥2
+,∞

+ 2
∥∥D−xRhc

j+1/2
ℓ

∥∥2
+,∞

≤ 8

h3min

∥∥Em+1/2
ℓ,h

∥∥2
h
+ 2 ∥cℓ∥2C0(H2) .
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Using the estimate from Proposition 9, there exists a positive constant C, independent of h and
∆t, such that

∥∥D−xc
j+1/2
ℓ,h

∥∥2
+,∞

≤ C
h4max +∆t4

h4min

+ 2 ∥cℓ∥2C0(H2) .

Therefore, under the assumption of the grids being quasiuniform, the stability condition ∆t
hmax

≤
C̃, for some constant C̃ and that we choose our perturbations in a ball centered around the
numerical solution and with radius such that

∥∥ω0
ℓ,h

∥∥2
h
+
∥∥D−xω

0
σ,h

∥∥2
+
+
∥∥D−xω

0
ℓ,h

∥∥2
+
+ ∥ω0

d,h∥2h + ∥ω0
s,h∥2h ≤ Ch4max,

we can conclude that for ∆t small enough, the bound given by eq. (32) holds and the stability
is ensured in the mentioned sense. Regarding the stability of the scheme w.r.t. cd,h and cs,h,
using Proposition 3, similar uniform bounds can be obtained for

∥∥cmp,h
∥∥
h,∞

, with p = d, s and∥∥c̃mℓ,h
∥∥
h,∞

, under the same requirements for the grids and ∆t.

Theorem 1 can now be reformulated as follows.

Theorem 3. Let cmi,h, i = d, s, ℓ and σmh , m = 0, . . . ,M denote fixed solutions of the discrete

problem defined by eqs. (9) to (20). If the grid is quasiuniform, the assumptions Hdiff and Hf

hold and the coefficients satisfy eq. (31) then for ∆t sufficiently small, the numerical method

is stable, provided the perturbations ωm
i,h = cmi,h − c̃mi,h, i = d, s, ℓ and ωm

σ,h = σmh − σ̃mh , where

c̃mi,h, i = d, s, ℓ and σ̃mh satisfy the same discrete problem with perturbed initial data and

∥∥ω0
ℓ,h

∥∥2
h
+
∥∥D−xω

0
σ,h

∥∥2
+
+
∥∥D−xω

0
ℓ,h

∥∥2
+
+ ∥ω0

d,h∥2h + ∥ω0
s,h∥2h ≤ Ch4max,

for some positive constant C.

4 Numerical simulation

This section aims to illustrate the main convergence result of this work, Theorem 2, for the fully-
discrete approximation defined by eqs. (9) to (20). The theoretical solutions cℓ, σ ∈ V , cd ∈ X
and cs ∈ H3(0, T ;H1(0, R)) of eqs. (1) and (5) to (8) used in our numerical test solve a modified
problem obtained by adding in each partial differential equation a source term Ri, i = ℓ, d, s, σ.

In our test we run the simulation in the time interval [0, T ] with T = 5 s and in the space
interval [0, R] with R = 1 mm representing the radius of Maxwell-Wichert polymeric platform
with Young modules E0 = E1 = 1 Pa, viscosity µ = 106 Pa · s, and relaxation time τ = µ

E1
=

106 s.
The solvent concentration cℓ used is defined by

cℓ(x, t) = e−
t
15 c̃(x) + ϕ(t), (x, t) ∈ [0, R]× [0, T ]

with ϕ(t) = cext(1− e−
t
15 ) and

c̃(x) =

(
1− 1

m

)
(cext − 1)

x2

R2
+
cext − 1

m
+

|ax−R|p+1 + aRp(p+ 1)(x−R)

(aR−R)p+1
,

where cext = 755.74 kg/m3 is the exterior solvent concentration, a = 3, m = 10 and p = 1.7.
Note that x = R

a is a critical point that guarantees that cℓ(·, t) ∈ H3(0, R) (and not in C3(0, R)),
in order to satisfy the hypothesis of Theorem 2.

We also define
cd(x, t) = g(x, t)ψ(t), (x, t) ∈ [0, R]× [0, T ] (52)

where

g(x, t) =





exp
(
− (x−a2(t))2+|x−a2(t)|p+1

10−3

)
if 0 ≤ x ≤ a2(t)

1 if a2(t) < x < a0

exp
(
− (x−a0)2+|x−a0|p+1

2·10−3

)
if a0 ≤ x ≤ R,
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Figure 1: Plot of the analytical solutions for different instances of t ∈ [0, T ].

with

a2(t) =





a0 if 0 ≤ t < t̃

a0 −
(
t− t̃

T

)2

if t̃ ≤ t ≤ T

and

ψ(t) =




1−

(
t− t̃

t̃

)2

if 0 ≤ t < t̃

1 if t̃ ≤ t ≤ T.

We remark that cd(·, t) is in H3(0, R) but not in C3(0, R).
The solid drug concentration solution used in our simulation is

cs(x, t) =

(
1 +

t

5× 10−5
e−10( 10

4
− tx

3 )
)−1

, (x, t) ∈ [0, R]× [0, T ]. (53)

Finally the polymeric chains’ stress is given by

σ(x, t) = (cℓ(x, t)− cext)ξ(t), (x, t) ∈ [0, R]× [0, T ] (54)

where

ξ(t) = E0

(
1− e−

t
15

)
+

(
E1τ

τ − 15

)(
1− e−t( 1

15
− 1

τ )
)
.

Profile plots of cℓ, cd, cs, σ are given in Figure 1 for different values of t. The numerical method
defined by eqs. (9) to (20) is implemented with initial conditions given by cℓ(x, 0), cd(x, 0), cs(x, 0).
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Based on real biological information, see [5, 6, 13], we use the coefficient functions aℓ(cℓ), ad(cℓ),
aσ(cℓ) defined as follows

aℓ(cℓ) = Dℓe e
−βℓ

(

1−
cℓ

cext

)

, ad(cℓ) = Dde e
−βd

(

1−
cℓ

cext

)

, aσ(cℓ) =
R2

8µ̃
cℓ,

with Dℓe = 3.74 ·10−9m2s−1, Dde = 2.72 ·10−10m2s−1, βℓ = 0.8, βd = 0.5, µ̃ = 106 Pa ·s. These
choices yield a nonlinear numerical problem in cℓ,h that is solved iteratively by Newton’s method
to get an approximation of cℓ,h at each time step. In Table 1 we show the errors calculated versus
different values for ∆t at time T = 5 s in a fixed grid with hmax = 9.8638 · 10−4. Thus we can
show computationally that the method reaches second order for E

m
h with respect to ∆t.

∆t E
m
h Rate

3.1250 · 10−1 13.9571 -
2.0833 · 10−1 8.1536 1.3262
1.5625 · 10−1 4.5565 2.0227
1.0416 · 10−1 1.7421 2.3713
7.8125 · 10−2 9.5928 · 10−1 2.0740

Table 1: Estimated convergence rates for fixed hmax = 9.8638 · 10−4 and varying ∆t.

In Table 2 we plot the numerical errors versus different values for hmax using a fixed ∆t =
4.8828 · 104 in each grid. The results illustrate computationally that E

m
h is of second order with

respect to hmax.

hmax E
m
h Rate

6.2801 · 10−2 2.9494 · 10−1 -
3.1362 · 10−2 1.9660 · 10−1 0.5840
1.5639 · 10−2 1.1810 · 10−1 0.7324
7.8246 · 10−3 3.4207 · 10−2 1.7892
3.9635 · 10−3 8.3530 · 10−3 2.0728
1.9932 · 10−3 2.2342 · 10−3 1.9184
9.7753 · 10−4 5.2751 · 10−4 2.0260

Table 2: Estimated convergence rates for fixed ∆t = 4.8828 · 10−4 and varying hmax.

5 Conclusions

In this paper we present a model to simulate the complex interplay between solvent absorption,
polymer swelling, drug release, and stress development within polymeric drug delivery platforms.
A Maxwell-Wiechert model has been incorporated to capture the memory effect arising from
polymer relaxation. To avoid the drawbacks of using an integral representation for the stress, we
replace such memory term with a new differential equation. From a numerical standpoint, this
leads to eliminating the need to store information from all previous time steps.

The main goal of this manuscript is to propose a fully discrete numerical scheme for the afore-
mentioned system of differential equations, and subsequent stability and convergence analysis.
Being a nonlinear system of differential equations, stability needs careful attention. Our main
results are: (i) the stability of the numerical method provided suitable uniform bounds for the
numerical solution and its perturbation and (ii) second order, in space and time, convergence for
nonsmooth solutions, with no restriction on the grids. The bounds needed to ensure stability
are derived from our main convergence theorem and are valid if the grid is quasiuniform and the
timestep satisfies a relation of the type ∆t ≤ Chmax, for some constant C. Finally, we illustrate
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numerically the convergence rates obtained in the main result using an exact solution based on
biological information.
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