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Abstract. Among the most well-known and widely used heuristic methods
for the Traveling Salesman Problem (TSP) is the local search with k-exchange
neighbors, k-opt, and in particular the 2-opt. This paper explores further how
Topological Data Analysis (TDA) can improve the performance of the 2-opt
heuristics in solving the TSP.

1. Introduction

Local search algorithms, such as the 2-opt algorithm, have proven to be effec-
tive heuristics for addressing the TSP. These algorithms iteratively improve the
solution by making small, local changes. However, local search methods often face
challenges, such as getting trapped in local optima, which prevent them from finding
the global optimal solution. To overcome these limitations, various enhancement
techniques have been explored, including the integration of insights from TDA [1].

Topological Data Analysis is an emerging field that provides tools for analyzing
the shape of data. TDA uses concepts from algebraic topology and computational
geometry to uncover the intrinsic geometric and topological structure of data sets.
Persistent homology, one of the main tools in TDA, allows for the identification of
features across multiple scales, which makes it particularly useful for understanding
complex data structures from a global perspective.

In this paper, we study a method for incorporating TDA into the 2-opt algo-
rithm complementing existing work in the literature as in [1]. However, instead
of warm-starting the TSP algorithm with a traditional persistence homology ap-
proach, we explore further with the use of the Topological Mode Analysis Tool
(ToMATo) method.

The findings suggest that TDA, particularly through ToMATo clustering, can
significantly influence the performance of local search algorithms compared to sim-
ple TSP or a traditional persistence approach. In addition, a single-cluster study
approach yielded promising results comparable to those of the ToMATo approach.

In Section 2 we introduce the main aspects of the TSP, the 2-opt heuristics, and
TDA. In Section 3 we present a description of the methodology used to integrate
TDA with local search algorithms. In Section 4 we present the main experimental
results of the method presented in the paper.
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2. Preliminaires

2.1. Local search problems. Local search algorithms are iterative methods de-
signed to identify local minima within a set of feasible solutions. With each iter-
ation, these algorithms improve the value of the objective function, typically by
decreasing it, until a local optimal solution is reached.

Over the past decade, there has been a resurgence of interest in local search
algorithms. This renewed enthusiasm can be attributed to several factors. Firstly,
the relative ease of implementation of some local search algorithms makes them
applicable across various disciplines. Secondly, many local search algorithms have
robust mathematical foundations, offering reliable theoretical results and insights.
Finally, advances in computational resources and data structures have increased
the capability of local search algorithms to be used in large-scale problems.

2.1.1. Travelling salesman problem and the 2-opt heuristics. The Traveling Sales-
man Problem is a classical optimization problem. The basic concept is the following:
a traveling salesman wishes to visit a list of n cities only once. To go from city i

to city j there is a distance (cost) associated. What is the least costly route the
salesman can take, always returning to the starting point? In other words, what
is the shortest Hamiltonian cycle on the complete graph determined by the cities,
where cities are represented as nodes and edge weights represent the costs of trav-
eling between them?

Since the 1900’s many attempts to solve the TSP have emerged but it was first
formulated, as we know it, by Karl Menger in the 1930’s. There are some algo-
rithms and heuristics capable of providing an approximate solution to the TSP
[5]. Yet, since it is a NP-hard problem, an efficient optimal method is unlikely to
exist. One classical approach to the TSP is the 2-opt heuristics. It is called 2-opt
because it makes changes in 2 edges if the cost function is improved. One of the
many advantages this heuristic offers is its speed on each iteration. In addition, the
solutions obtained are very close to optimal or, in some cases, the actual optimal
solution.

Starting with an initial Hamiltonian cycle on the complete undirected graph de-
termined by the cities, the 2-opt heuristic iteratively improves the tour by removing
two edges and reconnecting the two resulting paths in the opposite way, effectively
reversing the order of the nodes between these two edges. This swap continues
until no further improvements can be made, reducing the total travel cost and con-
verging towards a more optimal solution. This approach leverages the properties
of Hamiltonian cycles and binary decision variables to systematically reduce the
search space and find a near-optimal solution in a computationally efficient man-
ner. In Chapters 8 and 9 of the book [3] by Gutin and Punnen we can find an
overview of these TSP heuristics.

2.2. Topological Data Analysis. Topological data analysis is a rapidly growing
area of applied mathematics. It involves the application of mathematical concepts
and techniques from algebraic topology and computational geometry to analyze
and interpret data.
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With TDA we can extract topological features from point cloud data that are
invariant under different metrics. These features can be calculated from the data
using mathematical objects called simplicial complexes. By constructing the sim-
plicial complexes from the data, TDA captures the local and global connectivity
and higher-dimensional relationships present in the data set. Key Instruments used
in topological data analysis include persistent homology and Betti numbers. Per-
sistent homology measures the persistence of topological features across different
scales or levels of threshold, such as connected components and global connectivity,
holes, voids, and higher-dimensional voids. The Betti numbers describe the num-
ber of connected components, holes, and voids in a topological space. They can
be computed from the persistent homology and provide quantitative measures of
the data’s topological structure. In [4], Carlsson and Johansson provide a recent
introduction to TDA.

2.2.1. ToMATo algorithm. The ToMATo algorithm (Topological Mode Analysis
Tool) is a clustering algorithm based on the local density of the point cloud [2].
It starts by estimating the density of each point, using the distance-to-measure
function. Then, considering a nearest-neighbors graph, each point is associated
with the densest neighbor, thus creating an initial clustering, whose clusters are
dominated by the vertices (the modes) whose neighbors are less dense. Then we
determine the proeminence of each of these clusters, which is given by the con-
nections with other clusters: traversing the points in descending order of density,
if a point P has neighbors in two different clusters, the proeminence of the least
dense cluster C is the difference of the densities of P and the mode of C; these
two clusters are then merged. Once we finish the process, thus arriving at a single
cluster, we restart the process. Since we do not want to merge all clusters, we set
a threshold that determines that the merging occurs only for proeminences lower
than the threshold. This threshold can be set automatically, by looking at the
largest interval between proeminences, and choosing it inside this interval, or can
be chosen appropriately to reach a given number of components.

3. Methodology

In this paper, data sets will be treated as point clouds, the points being local
minimizers of the TSP problem. TDA will be used to find similar features that are
usually present in good local minimizers. The goal is to identify those features and
then encourage the presence of those segments in subsequent runs. This approach
has some similarities to some common heuristics known in the optimization field,
such as Simulated Annealing, Guided Local Search or Tabu Search.

Let X be a point cloud with N vertices. A collection E of edges connecting
points of X will be called simple if it consists of disjoint simple open paths. A
simple collection E can be extended to a closed simple tour with N edges (therefore
passing by all vertices of X), which we call a completion of E.

The general method used to find short tours on X, in all algorithms, is the
following:

(1) Start with a simple collection E of edges;
(2) Pick T random completions of E;
(3) Apply the 2-opt algorithm to each of these completions.
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We first use the general method with E = ∅, obtaining a set S of T tours. Then,
we use again the general method with a specific E, which depends on the algorithm.
For algorithm 1 (2-opt+2-opt), we set again E = ∅. For algorithm 2 (2-opt+TDA),
we consider the Hamming distance on S and use TDA to group the tours of S in C

classes. For algorithm 3 (2-opt+ToMATo), we use instead the ToMATo algorithm
to cluster S in the automatic number of classes determined by the algorithm. For
algorithms 2 and 3, we then consider the set E of edges that are present in all
classes. We prune this set in the following way: we order the edges by decreasing
order of frequency and eliminate an edge en if {e1, . . . , en} is not simple. If we end
up with a collection E with more that pN edges (where p < 1 is a parameter), we
consider only the pN most frequent edges.

After applying each algorithm we obtain 2T tours. In each algorithm, we choose
the shortest of the 2T tours obtained.

4. Experimental Results

In order to test the efficacy of the association of the ToMATo algorithm with the
2-opt strategy, we performed a series of tests on specific point clouds.

We used the parameters T = 500, C = 3 and p = 0.9. Moreover, for each point
cloud, we repeated the process 100 times and averaged the lengths of the shortest
tours obtained.

The 46 point clouds used were taken from TSPLIB [6], with sizes varying from
48 to 493.

In smaller sets, using 2-opt alone is sufficient to obtain optimal solutions, so
there is no advantage in using other methods.

Figure 1 shows the box plots of the results obtained for one of the point clouds,
which shows that using ToMATo provides consistently better results. The complete
set of results is given in Table 1.

2320 2340 2360 2380 2400 2420 2440 2460 2480 2500

r 2opt+2opt
b 2opt+TDA
b 2opt+ToMATo

Figure 1. Box plots of results obtained by the three algorithms
on the point cloud rat195.

In Figure 2, we have represented a graph with the results achieved by the three
methods. The x-axis corresponds to the excess, relative to the optimal solution,
obtained by the best of T runs of the 2-opt algorithm. The y-axis corresponds
to the excess, relative to the optimal solution, obtained by the three algorithms.
For example, for the point cloud rat195, the optimal solution has length 2323,
the average shortest tour obtained by performing 2-opt T times had length 2466
(excess of 6.2%) and the average shortest tour obtained by algorithm 3 had length
2353 (excess of 1.3%), thus corresponding to the triangular point with coordinates
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(0.062, 0.013) in the graph below. We also trace the three regression lines and
indicate their slopes.
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Figure 2. Representation of the results achieved by the three
methods applied to the 46 point clouds taken from TSPLIB. The
x-axis corresponds to the excess, relative to the optimal solution,
obtained by the best of T runs of the 2-opt algorithm. The y-axis
corresponds to the excess, relative to the optimal solution, obtained
by the three algorithms. We also trace the three regression lines
and indicate their slopes.

We concluded that running the 2-opt algorithm T more times improved the
solution obtained by 4%. Applying the TDA method is slightly better, improving
the solution by 13%, confirmimg the results obtained in [1]. Applying the ToMATo
method has proven to be much better, improving the solution by 70%.

By testing further the case of a single clusters (that is, setting C = 1), we
obtained results very similar to Algorithm 3. In fact, the clustering provided by
ToMATo had generally a small cluster of just one tour and a large cluster consisting
of all other tours.
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Point
cloud

N Optimal 2-opt+
2-opt

2-opt+
TDA

2-opt+
ToMATo

a280 280 2579 2707 2693 2673
att48 48 10628 10630 10634 10630
bier127 127 118282 119547 119640 118376
ch130 130 6110 6203 6209 6149
ch150 150 6528 6691 6679 6554
d198 198 15780 16017 16014 15809
d493 493 35002 36579 36441 35459
eil101 101 629 649 649 635
eil51 51 426 428 428 428
eil76 76 538 550 551 543
fl417 417 11861 12032 12030 11921
gil262 262 2378 2477 2472 2410
gr137 137 69853 71295 71339 70863
gr202 202 40160 41894 41858 41069
gr229 229 134602 138552 138360 135769
gr96 96 55209 56311 56317 56201
kroA100 100 21282 21341 21360 21329
kroA150 150 26524 27038 27036 26645
kroA200 200 29368 30159 30114 29454
kroB100 100 22141 22296 22327 22223
kroB150 150 26130 26546 26563 26287
kroB200 200 29437 30359 30345 29853
kroC100 100 20749 20836 20848 20862
kroD100 100 21294 21477 21502 21505
kroE100 100 22068 22231 22239 22158
lin105 105 14379 14410 14412 14402
lin318 318 42029 42682 42768 42286
pcb442 442 50788 53808 53390 51785
pr107 107 44303 44487 44507 44387
pr124 124 14379 14410 14412 14402
pr136 136 96772 98312 98417 98182
pr144 144 58537 58545 58549 58552
pr152 152 73682 73904 73978 73682
pr226 226 80369 80843 80867 80802
pr264 264 49135 50645 50442 49280
pr299 299 48191 49981 49843 48559
pr439 439 107217 111153 110781 108396
pr76 76 108159 108286 108359 108166
rat195 195 2323 2458 2449 2353
rat99 99 1211 1235 1237 1211
rd100 100 7910 7976 7985 7928
rd400 400 15281 16096 16053 15558
st70 70 675 676 676 676
ts225 225 126643 127300 127368 127186
tsp225 225 3916 4079 4077 3958
u159 159 42080 42682 42768 42286

Table 1. Comparison of the three optimization methods results
on the 46 point clouds taken from TSPLIB. Each result is the
averaged length of the shortest tours obtained on repeating the
method 100 times. For each point cloud, the best method is high-
lighted.
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