
FULLY NONLINEAR FREE BOUNDARY PROBLEMS:

OPTIMAL BOUNDARY REGULARITY BEYOND

CONVEXITY
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Abstract. We study a general class of elliptic free boundary problems

equipped with a Dirichlet boundary condition. Our primary result es-

tablishes an optimal C1,1-regularity estimate for Lp-strong solutions at

points where the free and fixed boundaries intersect. A key novelty is

that no convexity or concavity assumptions are imposed on the fully

nonlinear operator governing the system.

Our analysis derives BMO estimates in a universal neighbourhood

of the fixed boundary. It relies solely on a differentiability assumption.

Once those estimates are available, applying by now standard methods

yields the optimal regularity.

1. Introduction

We consider Ln-strong solutions to the unconstrained free boundary prob-

lem


















F (D2u) = 1 in B+
1 ∩ Ω

|D2u| ≤ K in B+
1 \Ω

u = g in B′
1,

(1.1)

where K > 0 is a given constant, F denotes a fully nonlinear elliptic op-

erator, and g ∈ C2,α(B
+
1 ), α ∈ (0, 1), is a given boundary data. Here, B+

1

stands for the upper hemisphere of the unit ball B1 ⊂ R
n, whereas B′

1 is the

intersection of B1 with the set {xn = 0}. The unknown consists of a pair

(u,Ω), where u ∈ W 2,n(B+
1 ) satisfies (1.1) almost everywhere, and Ω ⊂ R

n

is such that Ω∩B+
1 represents the region where the Hessian of u is essentially

bounded by K. We refer to ∂Ω as the free boundary.
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We prove boundary C1,1-regularity estimates for Ln-strong solutions to

(1.1). Our main contribution is to work under no convexity/concavity as-

sumptions on the operator F . Instead, we only require it to be uniformly

elliptic and differentiable.

The model (1.1) amounts to the boundary value problem associated with

a broad class of free boundary problems introduced in the work of Figalli

and Shahgholian [FS14]; see also [FS15b, FS15a]. In [FS14], the authors

consider Ln-strong solutions to






F (D2u) = 1 in B1 ∩Ω

|D2u| ≤ K in B1 \Ω.
(1.2)

Under a convexity/concavity assumption on the uniformly elliptic operator

F , they prove interior C1,1-regularity of the solutions. Once the (optimal)

regularity of the solutions is understood, the authors examine the geometry

of the free boundary. They prove ∂Ω∩Br(0) to be the graph of a C1-regular

function.

The formulation in (1.2) accommodates a variety of obstacle-like types

of problems. As noted in [FS14], for Ω = {u 6= 0}, (1.2) becomes the fully

nonlinear obstacle problem

F (D2u) = χ{u 6=0}.

Moreover, for Ω = {|Du| 6= 0}, see [CS02], then (1.2) turns into

F (D2u) = χ{|Du|6=0}.

Regarding the regularity of the solutions to (1.2), the arguments in [FS14]

unravel in two main steps. The authors first notice that an Ln-strong

solution to (1.2) is an Ln-viscosity solution to an equation of the form

F (D2u) = f in B1, where f ∈ L∞(B1). Under the convexity of the op-

erator, this observation unlocks BMO-estimates for the hessian of u. These

estimates allow the authors to produce a fully nonlinear counterpart to the

arguments in [ALS13]. Indeed, instead of considering projections on second-

order harmonic polynomials, they work under a projection on polynomials

constrained by the BMO estimates stemming from the equation. Here, the

dichotomy relates the size of such polynomials and a decay rate for scaled

sets depending on Ω. The parabolic counterpart of the findings in [FS14] are

reported in [FS15a]. An extension of this corpus of results to the context of
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operators with variable coefficients and explicit dependence on lower-order

terms is the subject of [IM16b]. In [IM16a], the authors study the free

and the fixed boundary intersection and prove a non-transversality result in

the planar case. Regarding the non-transversal intersection of the free and

the fixed boundary in arbitrary dimension, we mention the developments in

[Ind19a]. See also [Ind19b, Ind23].

Concerning the boundary regularity of the solutions to (1.1), we notice

that convexity is critical even if one reduces the problem to an interior one.

Indeed, even in the case g ≡ 0, by considering an odd reflection of u around

the xn-axis, the use of an interior C1,1-regularity (e.g., [FS14, Theorem 1.2]),

would still require the convexity of F .

We examine the regularity of Ln-strong solutions to (1.1) in the absence of

convexity for the operator F . Instead, we suppose F is differentiable. Under

this condition, we relate strong and viscosity solutions to that problem.

More precisely, we recall that Lp-viscosity solutions to

F (D2u) = 0 in B+
1 ,

with u = 0 on B′
1, are C2,α-regular with estimates in a uniform neighbour-

hood of the flat boundary, provided F is differentiable [SS14, Theorem 1.3].

In this setting, we prove a BMO-estimate for the Ln-strong solutions to

(1.1). Once such control in average is available, we construct a sequence

of polynomials and explore a dichotomy. If this sequence is bounded, its

relation with the Hessian of the solutions yields C1,1-estimates. Conversely,

if this sequence is unbounded, we derive a geometric decay rate for the mea-

sure of scaled sets related to the region where the Hessian of u is bounded by

K. Such a geometric decay frames an auxiliary problem under a pointwise

boundary-variant of Caffarelli’s C2,α-regularity theory; see [Wan92, Section

2.3]. Our main result reads as follows.

Theorem 1.1. Let u ∈ W 2,n(B+
1 ) be an Ln-strong solution to (1.1). Sup-

pose Assumptions (A1) and (A2), to be detailed further, are in force. Then

there exist universal constants C > 0 and 0 < µ ≪ 1 such that

∣

∣D2u(x)
∣

∣ ≤ C,

for almost every x ∈ Bµ
1/2.
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Remark 1.2 (General C2,α-regular domains). We state Theorem 1.1 for

the upper unit ball B+
1 for simplicity. Indeed, if we prescribe (1.1) in a

C2,α-regular domain U ⊂ R
n, it would be possible to recover the unit ball

setting by flattening the boundary ∂U . In that case, (1.1) would be driven

by an operator F̃ : S(n) × R
n × B+

1 → R, which incorporates into F the

geometric adjustments stemming from the (local) flattening of ∂U ; see [SS14,

Proposition 2.1]. Our rationale still applies in that case; it suffices to extend

our analysis along the same lines as in [IM16b].

The remainder of this paper is organised as follows. Section 2.1 details our

main assumption, whereas Section 2.2 discusses the notions of solutions used

in the paper. We recall former boundary regularity results of second order

in Section 2.3. In Section 3, we establish BMO-estimates for the solutions

to (1.1) in a uniform neighbourhood of the flat boundary. The proof of

Theorem 1.1 is the subject of Section 4.

2. Preliminaries

In this section, we collect the foundational material necessary for the

developments in the paper. We begin by introducing key definitions and

outlining the main assumptions that will be employed throughout our anal-

ysis. These elements provide the framework for understanding the problem

setting and serve as the basis for the subsequent results.

2.1. Main assumptions. Denote with S(n) the space of symmetric ma-

trices of order n. For x ∈ R
n and r > 0, we denote with B+

r (x) the upper

hemisphere of the ball of radius r centred at x ∈ R
n. That is,

B+
r (x) := {y ∈ R

n | ‖y − x‖ < r, yn > 0} .

The flat boundary of B+
r (x) is denoted with B′

r(x), and given by

B′
r(x) := {y ∈ R

n | ‖y − x‖ < r, yn = 0} .

Finally, for 0 < µ ≪ 1 and r > 0, we define the strip ball

Bµ
r (x) := {y ∈ B+

r (x) | yn < µ} ∪B′
r.

As usual, we set B+
r (0) =: B+

r , B
′
r(0) =: B′

r, and Bµ
r (0) =: Bµ

r . Our first

assumption concerns the operator F .
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Assumption (A1) (Uniform ellipticity). We suppose F : S(n) → R is a

(λ,Λ)-elliptic operator. That is, for every M, N ∈ S(n) we have

λ ‖N‖ ≤ F (M +N)− F (M) ≤ Λ ‖N‖ ,

provided N ≥ 0. Furthermore, F (0) = 0.

We also require F to satisfy a differentiability condition.

Assumption (A2) (Differentiability of the operator). We suppose F ∈

C1(S(n)). That is, there exists a modulus of continuity ωF : R+ → R+ such

that

|DF (M)−DF (N)| ≤ ωF (|M −N |),

for every M, N ∈ S(n).

Assumptions (A1)–(A2) completely characterise the class of operators

under analysis in the present manuscript. As mentioned, we drop the usual

convexity assumption on F , imposing a differentiability condition on the

operator; see [Sav07]. Notice that Assumption (A1) naturally generalises

to the case of operators with variable coefficients. When dealing with such

operators, we require them to have a modulus of continuity with respect to

x ∈ B+
1 ; this is the content of the next assumption.

Assumption (A3) (Continuity of the operator). Let F : S(n)×B+
1 → R be

a fully nonlinear uniformly elliptic operator. We suppose there exists C > 0

and β ∈ (0, 1) such that

|F (M,x) − F (M,y)| ≤ C|x− y|β ‖M‖ ,

for every M ∈ S(n) and every x, y ∈ B+
1 .

Before we proceed, recall the definition of the Pucci extremal operators.

Let 0 < λ ≤ Λ; define Aλ,Λ ⊂ S(n) as

Aλ,Λ :=
{

A ∈ S(n) | λ|ξ|2 ≤ Aξ · ξ ≤ Λ|ξ|2 for every ξ ∈ R
n
}

.

Definition 2.1 (Extremal Pucci operators). Fix constants 0 < λ ≤ Λ. The

extremal Pucci operator M−
λ,Λ : S(n) → R is given by

M−
λ,Λ(M) := inf

A∈Aλ,Λ

Tr(AM).

We also define M+
λ,Λ(M) := −M−

λ,Λ(−M).
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Notice Assumption (A1) can be phrased in terms of M±
λ,Λ. Indeed, F is

(λ,Λ)-elliptic if and only if

M−
λ,Λ(M −N) ≤ F (M) − F (N) ≤ M+

λ,Λ(M −N), (2.1)

for every M, N ∈ S(n).

2.2. Solvability in the Lp-strong and Lp-viscosity senses. We study

Ln-strong solutions to (1.1). However, several arguments in the paper stem

from the realm of Ln-viscosity solutions. Therefore, we recall the connec-

tion between both notions in the context of uniformly elliptic equations

[CCKŚ96]. For the sake of completeness, we include the next two defini-

tions.

Definition 2.2 (Lp-viscosity solution). Let G : S(n) → R be a (λ,Λ)-

uniformly elliptic operator and f ∈ Lp(Ω) for some p > n/2. We say that

u ∈ C(Ω) is an Lp-viscosity sub-solution to

G(D2u, x) = f in Ω, (2.2)

if, whenever φ ∈ W 2,p
loc (Ω) is such that u−φ has a local minimum at x0 ∈ Ω,

we have

ess lim sup
x→x0

(

G(D2φ(x), x) − f(x)
)

≥ 0.

We say that u ∈ C(Ω) is an Lp-viscosity super-solution to (2.2) if, whenever

φ ∈ W 2,p
loc (Ω) is such that u− φ has a local maximum at x0 ∈ Ω, we have

ess lim inf
x→x0

(

G(D2φ(x), x) − f(x)
)

≤ 0.

If u ∈ C(Ω) is an Lp-viscosity sub-solution and an Lp-viscosity super-

solution to (2.2), we say it is an Lp-viscosity solution to (2.2).

Definition 2.3 (Lp-strong solution). Let G : S(n) → R be a (λ,Λ)-uniformly

elliptic operator and f ∈ Lp(Ω) for some p > n/2. We say that u ∈ W 2,p(Ω)

is an Lp-strong solution to (2.2) if G(D2u(x), x) = f(x) for almost every

x ∈ Ω.

Although Definitions 2.3 and 2.2 require p > n/2, our arguments impose

p > p0 > n/2, where p0 = p0(λ,Λ, n) is the so-called Escauriaza exponent.

That is, the integrability level above which the Aleksandrov–Bakelman–

Pucci estimates are available for Lp-viscosity solutions to (2.2). Throughout

our analysis, we deal with problems whose right-hand side is essentially
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bounded, ensuring the integrability condition mentioned above is naturally

met. Before proceeding, we note that a solution satisfying ‖u‖L∞(B+
1
) ≤ 1 is

referred to as a normalized solution, both in the Lp-strong and Lp-viscosity

sense.

A fundamental ingredient in our argument is the connection of Lp-strong

solutions to (1.1) and Lp-viscosity solutions to a uniformly elliptic equation.

Suppose u ∈ W 2,p(B+
1 ) is an Lp-strong solution to (1.1). Therefore,

F (D2u(x)) = 1 for almost every x ∈ B+
1 ∩ Ω. (2.3)

However,
∣

∣D2u(x)
∣

∣ ≤ K for almost every x ∈ B+
1 \ Ω. Hence, Assumption

(A1) yields

M−
λ,Λ(D

2u(x)) + F (0) ≤ F (D2u(x)) ≤ M+
λ,Λ(D

2u(x)) + F (0),

which in turn implies

∣

∣F (D2u(x))
∣

∣ ≤ C(λ,Λ, d,K)+F (0) for almost every x ∈ B+
1 \Ω. (2.4)

By combining (2.3) and (2.4), one gets that

F (D2u(x)) = f(x) for almost every x ∈ B+
1 , (2.5)

for some f ∈ L∞(B+
1 ). Thus an Lp-strong solution to (1.1) is also an Lp-

strong solution to (2.5). We establish the following proposition by resorting

to [CCKŚ96, Lemma 2.8].

Proposition 2.4 (Lp-viscosity solution). Let u ∈ W 2,p(B+
1 ) be an Lp-strong

solution to (1.1), for p ≥ n. Then there exists f ∈ Lp(B+
1 ) such that u is

an Lp-viscosity solution to

F (D2u) = f in B+
1 .

In what follows we consider Lp-viscosity solutions to






M−
λ,Λ(D

2v) ≤ g ≤ M+
λ,Λ(D

2v) in B+
1

v = 0 on ∂B+
1 ,

(2.6)

where g ∈ Lp(B+
1 ), for some n/2 < p0 < p. We resort to an Aleksandrov–

Bakelman–Pucci estimate to conclude that solutions to (2.6) satisfy an L∞-

estimate. For completeness, we include it in the sequel in the form of a

lemma.
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Lemma 2.5. Let v ∈ C(B+
1 ) be an Ln-viscosity solution to (2.6). Suppose

g ∈ Lp(B+
1 ), where n/2 < p0 < p. Then there exists C > 0 such that

sup
x∈B+

1

|v(x)| ≤ C ‖g‖Lp(B+
1 ) .

The proof of Lemma 2.5 follows from a straightforward application of

[CCKŚ96, Proposition 3.3]. The next section discusses boundary regularity

estimates of second order, which play a fundamental role in the proof of

Theorem 1.1.

2.3. Boundary regularity estimates of second order. Our strategy is

to produce a BMO-estimate in a uniform neighbourhood of the flat boundary

B′
1. To that end, our argument builds upon available regularity estimates

in W 2,p and C2,α-spaces. Let u ∈ C(B+
1 ) be an Lp-viscosity solution to







F (D2u, x) = f in B+
1

u = 0 on B′
1.

(2.7)

By imposing different conditions on the ingredients in (2.7), one obtains

distinct second-order estimates. We proceed with a proposition.

Proposition 2.6 (Sobolev boundary regularity, [Win09, Theorem 4.5]). Let

v ∈ C(B+
1 ) be an Lp-viscosity solution to (2.7), with f ∈ Lp(B+

1 ), for n/2 <

p0 < p < ∞. Suppose F satisfies Assumptions (A1) and (A3). Suppose

further that solutions to the homogeneous counterpart of (2.7), driven by

the fixed coefficients operator F (M,x0), are in C1,1
loc

(

B+
1/2

(x0)
)

, for every

x0 ∈ B+
1/2, with estimates. Then u ∈ W 2,p(B+

1 ). In addition, there exists

C > 0 such that

‖u‖
W 2,p

(

B+

1/2

) ≤ C
(

‖u‖L∞(B+
1
) + ‖f‖Lp(B+

1
)

)

.

By requiring F = F (M,x) to be differentiable with respect to M , we

access regularity estimates in Bµ
1 for some universal 0 < µ ≪ 1.

Proposition 2.7 (C2,α-regularity estimates, [SS14, Theorem 1.3]). Let u ∈

C(B+
1 ) be an Lp-viscosity solution to (2.7), with f ≡ 0. Suppose Assump-

tions (A1), (A2), and (A3) hold. Then there exists α = α(n, λ,Λ, β) and

µ > 0 such that u ∈ C2,α(Bµ
1 ). Moreover, for a universal constant C > 0,

we have

‖u‖C2,α(Bµ
1 )

≤ C ‖u‖L∞(B+
1 ) .
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b
µ

B
+
1

B
+
r0

x0

r

Figure 1. Our analysis produce a radius r0 > 0 and a height
µ > 0 such that Ln-strong solutions to (2.7) satisfy a uni-
versal estimate in spaces W 2,BMO. I.e., the Hessian of u is
uniformly bounded in the BMO-norm.

Here, 0 < µ ≪ 1 depends on the dimension n, the ellipticity constants

0 < λ ≤ Λ, β ∈ (0, 1) and the modulus of continuity ωF .

We notice Proposition 2.7 can be phrased in terms of second-order poly-

nomials. In fact, given x0 ∈ Bµ
1 , it is tantamount to the existence of a

second-order polynomial px0
satisfying

‖px0
‖L∞(B+

1 ) ≤ C and F (D2px0
, x0) = 0, (2.8)

with

|u(x)− px0
(x)| ≤ C |x− x0|

α , (2.9)

for every x ∈ Br(x0), provided Br(x0) ⊂ Bµ
1 .

3. Boundary BMO estimates

This section considers Lp-viscosity solutions to (2.7) and establishes BMO-

boundary estimates. We start by examining points universally close to the

fixed boundary. That is, we localise the argument in a strip of universal

height µ > 0 inside B+
1 ; see Figure 1.

We proceed with the statement of the main result in this section.

Theorem 3.1. Let u be an Ln-viscosity solution of (2.7). Suppose As-

sumptions (A1) and (A2) are in force. Suppose further that f ∈ L∞(B+
1 ).

There exist universal constants C > 0 and 0 < µ, r0 ≪ 1 such that, for each

0 < r ≤ r0 and x0 ∈ Bµ
r , one finds a second-order polynomial pr,x0 satisfying

F (D2pr,x0 , x0) = 0,
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|D2p2r,x0 −D2pr,x0 | ≤ Cmax
{

1, ‖u‖L∞(B+
1 )

}

,

and

sup
Br(x0)∩B+

1

∣

∣u(x)− pr,x0(x)
∣

∣ ≤ Cmax
{

1, ‖u‖L∞(B+
1 )

}

r2. (3.1)

Theorem 3.1 follows from an iterative procedure stemming from Propo-

sition 2.7. It relies on the C2,α regularity estimates at points near the flat

boundary available in that proposition. To state and prove the building

blocks of Theorem 3.1, we consider points x0 ∈ Bµ
1/2, for 0 < µ ≪ 1 yet to

be chosen.

Proposition 3.2. Let u ∈ C(B+
1 ) be a normalized Lp-viscosity solution to

(2.7). Suppose Assumptions (A1), (A2), and (A3) are in force. Then there

exist universal constants C > 0 and ε0 > 0 such that, for 0 < ε ≤ ε0 one

finds δ > 0 for which, if

‖f‖L∞(B+
1 ) ≤ δ and sup

t>0
ω(t) ≤ δ, (3.2)

there exists a second-order polynomial p satisfying

‖p‖L∞(B+
1 ) ≤ C and F (D2p, x0) = 0,

with

sup
x∈Bε(x0)∩B+

1

|u(x)− p(x)| ≤ ε2.

Proof. We argue by contradiction and split the proof into three steps for an

easy presentation.

Step 1 - Suppose the proposition statement is false. Hence, there exist

ε0 > 0 and sequences (Fk)k∈N, (ωk)k∈N, (uk)k∈N, and (fk)k∈N such that uk

is a normalized Lp-viscosity solution to (2.7) driven by Fk, with

max

{

sup
t>0

ωk(t), ‖fk‖L∞(B+
1
)

}

≤
1

k
.

but

sup
‖p‖L∞≤2C
Fk(D

2p)=0



 sup
x∈Bε0 (x

0)∩B+

3/4

|uk(x)− p(x)|



 > ε20 (3.3)

for every k ∈ N, where C > 0 is given as in (2.8)-(2.9).
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Step 2 - Applying uniform global estimates to uk, as stated in [SS14, Propo-

sition 2.6], we extract a subsequence still denoted with (uk)k∈N which con-

verges uniformly in B+
3/4 to some u∞ ∈ C(B+

3/4). Standard stability results

in the theory of Lp-viscosity solutions ensure






F∞(D2u∞) = 0 in B+
3/4

u∞ = 0 on B′
3/4,

(3.4)

where F∞ is a constant coefficients operator, satisfying Assumptions (A1)

and (A2). Hence, Proposition 2.7 implies that, for

0 < ε0 ≤

(

1

3C

)
1
α

,

we have

sup
Bε0 (x

0)

|u∞(x)− px0(x)| ≤
1

3
ε20,

for some quadratic polynomial px0 satisfying

‖px0‖L∞(B+

3/4
) ≤ C

and

F∞(D2px0) = 0 in B+
1/2.

Step 3 - Recall that Assumptions (A1), (A2) and (A3) are in force for Fk,

for every n ∈ N. We also have Fn(0, x) = 0 for every n ∈ N. Hence, there

exists a sequence of real numbers (ak)k∈N with ak → 0 such that

Fk(D
2pn + akI, x

0) = 0.

From this and the fact that uk → u∞ uniformly in B+
3/4, we have for k ≫ 1,

that

sup
Bε0 (x

0)∩B+

3/4

|uk − pk| ≤ sup
Bε0 (x

0)∩B+

3/4

|u∞ − px0 |

+ sup
B+

3/4

|uk − u∞|+ sup
B+

3/4

|pk(x)− p(x)|

≤
1

3
ε20 +

1

3
ε20 +

1

3
ε20.

(3.5)

The former inequality yields a contradiction in light of (3.3) and completes

the proof. �
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Proposition 3.3. Let u ∈ C(B+
1 ) be a normalized Lp-viscosity solution to

(2.7). Suppose Assumptions (A1), (A2), and (A3) are in force. There exist

universal constants C > 0, δ0 > 0 and ρ > 0, such that if

‖f‖L∞(B+
1 ) + sup

0<t≤1
ω(t) ≤ δ0 (3.6)

then for each k ∈ N there is a second-order polynomial pk, satisfying

∣

∣D2pk −D2pk−1

∣

∣ ≤ C

and

F (D2pk, x
0) = 0,

with

sup
x∈B

ρk
(x0)∩B+

1

|u(x)− pk(x)| ≤ ρ2k. (3.7)

Proof. We argue by induction in k ∈ N. As before, we split the proof into

two steps.

Step 1 - Set p0 = p−1 = 0; the case k = 0 follows because u is a normalized

solution. Suppose the thesis of the proposition has been verified for k = j.

We proceed by verifying it holds for k = j + 1. Indeed, we define

uj(x) :=
u(ρjx+ x0)− pl(ρ

jx+ x0)

ρ2j
,

for x ∈ B+
1 . The induction hypothesis ensures uj is normalised. Notice it

solves

Fj(D
2uj , x) = fl in B+

1 ,

for Fj(M,x) = F (M+D2pj, ρ
jx+x0), fj := f(ρjx+x0) and ωj(t) := ω(ρjt).

The new modulus of continuity ωk still falls within the scope of (A2). Also,

(A1) and (A3) remain in force at the j-th level. Finally, we observe that

‖fj‖L∞(B+
1 ) ≤ ‖f‖L∞(B+

1
) ≤ δ0

and

sup
t>0

ωj(t) ≤ sup
t>0

ω(ρ t) ≤ δ0.
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Step 2 - Take δ0 = δ depending on ε0 = ρ, as in Proposition 3.2. We

conclude there exists a polynomial

p(x) =
1

2
xTAx+ b · x+ κ,

with universally bounded coefficients A ∈ R
n×n, b ∈ R

n, and κ ∈ R, such

that Fj(A, 0) = 0 and

sup
Bρ(xj)∩B

+

3/4

|uj(x)− p(x)| ≤ ρ2

for xj := ρ−jx0. It implies that

sup
B

ρj+1 (x0)∩B+

3/4

|u(x)− pj+1(x)| ≤ ρ2(j+1),

for

pj+1(x) := p(x) + pj(x)

where

p(x) :=
1

2
xTAx+ ρjbx+ ρ2jκ.

In addition, we note that

F (D2pj+1, x
0) = F (A+D2pj, x

0) = Fj(A, 0) = 0;

a further application of Proposition 3.2 ensures

|D2pj+1 −D2pj | = |A| ≤ C,

which completes the induction argument and ends the proof. �

Now, we are in a position to detail the proof of Theorem 3.1.

Proof of Theorem 3.1. We split the proof into three steps.

Step 1 - We start with an application of Proposition 3.3. To that end,

we proceed with a scaling argument. For parameters τ and κ, to be chosen

universally, define

u(x) := κ · u(τx) in B+
1 .

Notice u solves

F (D2u, x) = f(x) in B+
1

where

F (M,x) := κτ2 · F ([κτ2]−1 ·M, τx)



14 DAMIÃO J. ARAÚJO, ANDREAS MINNE, AND EDGARD A. PIMENTEL

and

f(x) = kτ2f(τx).

Note that F satisfies Assumptions (A1), (A2), and (A3). Set

κ ≤ min
{

1, ‖u‖−1
L∞(B+

1 )

}

and τ ≤

√

min
{

δ‖f‖−1
L∞(B+

1 )
, ω−1(δ)

}

,

to ensure that u is a normalized solution and (3.6) is in force.

Step 2 - In this setting, we resort to Proposition 3.3, obtaining (3.7) centred

at τ−1x0. That is, one obtains a sequence of second-order polynomials

(pk)k∈N, such that

|D2pk −D2pk−1| ≤ C and F (D2pk, τ
−1x0) = 0.

for every k ∈ N. Moreover, for the universal radius ρ > 0, we ensure

κ sup
x∈B

τρk
(x0)∩B+

1

|u(x) − p̃k(x)| ≤ κ sup
x∈B

τρk
(x0)∩B+

τ

|u(x)− p̃k(x)|

≤ sup
x∈B

ρk
(τ−1x0)∩B+

1

|u(x)− pk(x)|

≤ ρ2k,

where p̃k(x) := κ−1pk(τ
−1x). We also note that

F (D2p̃k, x
0) = τ−2κ−1F (D2pk, τ

−1x0) = τ−2κ−1F (D2pk, τ
−1x0) = 0.

Step 3 - Finally, for 0 < r < τρ, we select pr,x0 := p̃k where k = k(r) is the

positive integer such that

τρk+1 < r ≤ τρk.

Hence,

sup
x∈Br(x0)∩B+

1

|u(x) − pr,x0(x)| ≤ sup
x∈B

τρk
(x0)∩B+

1

|u(x)− p̃k(x)|

≤ κ−1ρ2k

≤ (τ−2ρ−2κ−1)τ2ρ2(k+1)

≤ Cκ−1r2.



OPTIMAL BOUNDARY REGULARITY FOR FREE BOUNDARY PROBLEMS 15

In addition, for any

0 < r <
1

2
τρ,

we also obtain

sup
x∈Br(x0)∩B+

1

∣

∣p2r,x0 − pr,x0

∣

∣ ≤ sup
x∈B2r(x0)∩B+

1

∣

∣u− p2r,x0

∣

∣

+ sup
x∈Br(x0)∩B+

1

∣

∣u− pr,x0

∣

∣

≤ Cr2

(3.8)

for some universal C > 0. Since ‖pr,x0‖L∞(B+
1 ) is universally bounded, one

gets

|D2p2r,x0 −D2pr,x0 | ≤ C, (3.9)

for some C > 0. By noticing that such a constant is universal, one completes

the proof. �

4. Proof of Theorem 1.1

In this section, we detail the proof of our main result. We follow ideas in

[FS14], adapting them carefully for the boundary scenario. To simplify our

arguments, we rewrite Theorem 3.1 in terms of polynomials approximating

the Hessian of solutions; see [FS14, Lemma 2.2].

Corollary 4.1. Let u be an Ln-strong solution to (1.1). Let 0 < µ ≪ 1 be

the universal constant from Theorem 3.1. Fix x0 ∈ B
µ/2
1/2 and suppose

u(x0) = |Du(x0)| = 0.

Suppose further Assumptions (A1) and (A2) are in force. There exist uni-

versal constants C > 0 and r0 > 0, such that, for each 0 < r ≤ r0, one finds

pr,x0
∈ S(n), satisfying F (pr,x0

) = 1,

|p2r,x0
− pr,x0

| ≤ Cmax{1, ‖u‖L∞(B+
1 )}, (4.1)

and

sup
B+

r (x0)

∣

∣

∣

∣

u−
1

2
〈pr,x0

(y − x0), y − x0〉

∣

∣

∣

∣

≤ Cr2. (4.2)

In particular, there holds

sup
B+

r (x0)

|u| ≤ (C + |pr,x0
|)r2. (4.3)
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Proof. Proposition 2.4 ensures u is entitled to the conclusion of Theorem

3.1. Consequently, we consider µ and r0 as defined in that theorem. For

each 0 < r ≤ r0 and x0 ∈ Bµ
r0 , there exists a second-order polynomial pr,x0

such that

F (D2pr,x0) = 0,

|D2p2r,x0 −D2pr,x0| ≤ Cmax{1, ‖u‖L∞(B+
1
)},

and

sup
Br(x0)∩B+

1

∣

∣u(x)− pr,x0(x)
∣

∣ ≤ Cmax{1, ‖u‖L∞(B+
1 )} r

2. (4.4)

Define

v(x) =
u(rx− x0)− pr,x0(rx− x0)

r2
,

for x ∈ B+
1 . Notice that v is a normalized Lp-viscosity solution to

G(D2v) = g in B+
1 ,

where G(M) := F (M + Pr,x0), and g ∈ L∞(B+
1 ) satisfies ‖g‖L∞(B+

1
) ≤

min {1,K}. Since u(x0) = |Du(x0)| = 0, standard regularity estimates

imply
|Dpr,x0(x0)|r + |pr,x0(x0)|

r2
≤ |Dv(0)| + |v(0)| ≤ C, (4.5)

for some universal C > 0.

In addition, Assumption (A1) builds upon the equality F (D2pr,x0) = 0 to

produce a universal constant δ ∈ R such that, for p̃r,x0 := D2pr,x0 + δIn, we

have

F (p̃r,x0) = 1.

Finally, combining (4.4), (4.5), and the triangle inequality, we conclude

sup
Br(x0)∩B+

1

∣

∣

∣

∣

u(x)−
1

2
〈p̃r,x0(x− x0), x− x0〉

∣

∣

∣

∣

≤
(

C(1 + ‖u‖L∞(B+
1 )) + δ

)

r2.

Hence, (4.2) holds. Also, estimate (4.3) follows from (4.2). Renaming p̃r,x0

as pr,x0
one finishes the proof. �

Hereafter, we suppose x0 ∈ ∂Ω and u(x0) = |Du(x0)| = 0. For r > 0 to

be chosen universally small, we define

H+
r,x0

:=
(B+

r (x0) \ Ω)− x0
r

.

In other words, Hr is the rescaled region where the Hessian is bounded a

priori.



OPTIMAL BOUNDARY REGULARITY FOR FREE BOUNDARY PROBLEMS 17

Remark 4.2 (Geometry of H+
r,x0

). For the reader’s convenience, we notice

two properties of H+
r,x0

, which are helpful in the upcoming arguments. For

each β, ρ ∈ (0, 1), we first claim that if x ∈ H+
β,x0

∩B+
ρ (x0) then

x
ρ ∈ H+

βρ,x0
.

In fact, taking x as above, we denote z = (x/ρ) and note that

(βρ)z = βx /∈ Ω, with |z| ≤ 1;

hence, z ∈ H+
βρ,x0

. We also claim that, if y ∈ H+
β,x0

, then ρy ∈ H+
β
ρ
,x0

∩

B+
ρ (x0). Indeed, βy ∈ B+

β (x0) and βy /∈ Ω; therefore,

β

ρ
(ρy) ∈ B+

β (x0) ⊂ B+
β/ρ(x0) and

β

ρ
(ρy) /∈ Ω.

Next, assuming Pr is large, we prove that H+
r has a universal Ln-decay.

Proposition 4.3. Let u be an Ln-strong solution to (1.1). Let 0 < µ ≪ 1

be the universal constant from Theorem 3.1. Fix x0 ∈ B
µ/2
1/2 and suppose

u(x0) = |Du(x0)| = 0.

Suppose Assumptions (A1) and (A2) are in force. There exists a universal

constant M such that if

|pr,x0
| ≥ M,

then

|H+
r/2,x0

∩B+
µ (x0)| ≤

|H+
r,x0

∩B+
µ (x0)|

2n
,

for every 0 < r ≪ 1.

Proof. Set

ur,x0
(x) :=

u(x0 + rx)

r2

and let vr,x0
be the solution of







F (pr,x0
+D2vr,x0

)− 1 = 0 in B+
1

vr,x0
= ur,x0

− 〈pr,x0
(x− x0), x− x0〉 on ∂B+

1 .

From Corollary 4.1, we infer that F (pr,x0
) = 1, and that vr,x0

is universally

bounded on ∂B+
1 . Also, F (pr,x0

+ M) is of class C1, with the same mod-

ulus of continuity as F (M). Hence, an application of [SS14, Theorem 1.3]

guarantees that

‖D2vr‖C0,α(B+
µ ) ≤ ‖D2vr‖C0,α(Bµ

1/2
) ≤ C, (4.6)
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for some universal α ∈ (0, 1). Now, we define

wr,x0
:= ur,x0

−
1

2
〈pr,x0

(x− x0), x− x0〉 − vr,x0
in B+

1 .

Since fr,x0
:= F (D2ur,x0

) ∈ L∞(B+
1 ) and fr,x0

≡ 1 outside H+
r,x0

, we observe

that

F (D2ur,x0
)− F (pr,x0

+D2vr) = (fr,x0
− 1)χH+

r,x0
.

Assumption (A1) implies






M−
λ,Λ(D

2wr,x0
) ≤ (fr,x0

− 1) · χH+
r,x0

≤ M+
λ,Λ(D

2wr,x0
) in B+

1

wr,x0
= 0 on ∂B+

1 .

Because fr,x0
is universally bounded, we apply Lemma 2.5 to conclude

sup
B+

1

|wr,x0
| ≤ C‖χH+

r,x0
‖Ln(B+

1 ) = C|H+
r,x0

|1/n. (4.7)

In parallel, we notice that wr,x0
solves

G(D2wr,x0
, x) = (fr,x0

− 1)χH+
r,x0

in B+
µ ,

where G(M,x) := F (pr,x0
+ D2vr,x0

(x) + M) − 1. From estimate (4.6),

we observe that G is a fully nonlinear operator with Hölder coefficients in

B+
µ . To apply Proposition 2.6, we must examine the solutions’ regularity to

G(M,x0) = 0.

Indeed,

G(M,x0) = F (pr,x0
+D2vr,x0

(x0) +M)− 1.

It is clear that G is (λ,Λ)-elliptic. Furthermore,

DG(M,x0) = DF (pr,x0
+D2vr,x0

(x0) +M);

hence, the modulus of continuity of DG coincides with the one prescribed

in Assumption (A2). We conclude that solutions to G(D2w, x0) = 0 in B+
µ ,

with w = 0 on B′
µ, are locally C2,α-regular. Proposition 2.6 builds upon the

former discussion to yield
∫

B+

µ/2
(x0)

∣

∣D2wr,x0

∣

∣

2n
≤ C

(

‖wr,x0
‖L∞(B+

µ/2
(x0))

+ ‖χH+
r,x0

‖L2n(B+

µ/2
(x0))

)2n

≤ C|H+
r,x0

∩B+
µ/2(x0)|.

Where we have used (4.7).
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To conclude the proof, observe that (1.1) implies
∫

H+
r,x0

∩B+

µ/2
(x0)

|D2ur,x0
|2n dx ≤ K2n|H+

r,x0
∩B+

µ/2(x0)| ≤ K2n|H+
r,x0

|.

Therefore,

|H+
r,x0

∩B+
µ/2(x0)||Pr |

2n =

∫

H+
r,x0

∩B+

µ/2
(x0)

|pr,x0
|2n dx

≤ C

∫

H+
r ∩B+

µ/2
(x0)

|D2ur,x0
|2n dx

+

∫

H+
r ∩B+

µ/2
(x0)

|D2vr,x0
|2n + |D2wr,x0

|2n dx

≤ K2n|H+
r,x0

∩B+
µ (x0)|+ C|H+

r,x0
∩B+

µ/2(x0)|.

Hence, we suppose |Pr| is universally large so that

|H+
r,x0

∩B+
µ/2(x0)||pr,x0

|2n ≤ C|H+
r,x0

∩B+
µ (x0)|

≤
1

4n
|pr,x0

|2n|H+
r,x0

∩B+
µ (x0)|,

(4.8)

for some unversal C > 0. Remark 4.2 yields

(H+
r/2,x0

∩B+
µ (x0))

2
⊂ (H+

r,x0
∩B+

µ/2(x0)),

where

(H+
r/2,x0

∩B+
µ (x0))

2
:= {y ∈ B+

1 | 2y ∈ H+
r/2,x0

∩B+
µ (x0)}.

The former inclusion holds because

ry =
r

2
(2y) ∈ B+

r/2(x0) \ Ω ⊂ B+
r (x0) \Ω,

for each

y ∈
(H+

r/2,x0
∩B+

µ (x0))

2
.

Therefore,

|H+
r/2,x0

∩B+
µ (x0)| ≤ 2n|H+

r,x0
∩B+

µ/2(x0)|.

Finally, from (4.8), we conclude that

|H+
r/2,x0

∩B+
µ (x0)| ≤

1

2n
|H+

r,x0
∩B+

µ (x0)|,

which gives us the desired estimate. �

In the sequel, we put forward the proof of Theorem 1.1.
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Proof of Theorem 1.1. Because u ∈ W 2,n(B+
1 ), it is twice differentiable al-

most everywhere. We suppose x0 is a Lebesgue point for u, and u(x0) =

|Du(x0)| = 0. For M as in Proposition 4.3, the following alternative arises:

either

lim inf
k→∞

|p2−k ,x0
| ≤ 3M

or

lim inf
k→∞

|p2−k ,x0
| ≥ 3M. (4.9)

In the former case, an application of Corollary 4.1 yields

|D2u(x0)| = lim
k→∞

∫

B+

2−k (x0)
|D2u(y)| dy

= lim
k→∞

∫

B+

2−k (x0)
|D2u(y)− p2−k,x0

| dy + |p2−k ,x0
|

≤ C + 3M,

(4.10)

and concludes the proof. It remains to consider (4.9).

Step 2 - If (4.9) is in force, we define k0 ∈ N as

k0 := inf
{

k ≥ 2, such that |p2−j ,x0
| ≥ 2M for every j ≥ k

}

.

We claim that k0 is finite; indeed, because of (4.9), there must be k1 ∈ N

such that |p2−k1 ,x0
| > 2M . By the very definition of k0, it follows that

k0 ≤ k1. It also follows from the definition of k0 that |p2−k0−1,x0
| ≤ 2M .

Now, we resort to Corollary 4.1 for the first time in the proof. In fact, (4.1)

yields
∣

∣

∣
p2−k0 ,x0

∣

∣

∣
≤

∣

∣

∣
p2−k0 ,x0

− p2−k0−1,x0

∣

∣

∣
+

∣

∣

∣
p2−k0−1,x0

∣

∣

∣
≤ C + 2M.

Step 3 - We continue by defining the function u0 as

u0(x) := 4k0u(2−kx+ x0)−
1

2

〈

p2−k0 ,x0
(x− x0), x− x0

〉

.

Notice u0 solves

F (D2u0 + p2k0 ,x0
)− 1 =

(

f2−k0 ,x0
− 1

)

χH+

2−k0 ,x0

in B+
1 (4.11)

We want to apply a boundary variant of Caffarelli’s regularity estimates.

First notice that F̃ (M) := F (M + p2k0 ,x0
) − 1 satisfies Assumptions (A1)

and (A2), with the same constants.
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Now, we examine f̃ := (f2−k0 ,x0
− 1)χH+

2−k0

. Because |p2−k,x0
| ≥ 2M for

every k ≥ k0, Proposition 4.3 implies
∣

∣

∣
H+

2−k0−j ,x0
∩B+

µ (x0)
∣

∣

∣
≤

1

2jn

∣

∣

∣
H+

2−k0 ,x0
∩B+

µ (x0)
∣

∣

∣
≤

1

2jn

∣

∣B+
1

∣

∣ ,

for every j ≥ k0. As a consequence, for

r ≤ min
(

µ, 2−k0
)

,

we get
∫

B+
r

∣

∣

∣

∣

(f2−k0 ,x0
− 1)χH+

2−k0 ,x0

∣

∣

∣

∣

n

dx ≤ C

∫

B+
r

χH+

2−k0 ,x0
∩B+

µ (x0)
dx ≤ Crn,

(4.12)

for some universal constant C > 0.

Because of Proposition 2.6, solutions to F̃ = 0 have C2,α-regularity esti-

mates at x = 0. The geometric decay in (4.12) ensures u0 is of class C2,α at

x = 0 (see, for instance, [Wan92, Theorem 2.7]). Therefore,

∣

∣D2u(x0)
∣

∣ ≤
∣

∣D2u0(0)
∣

∣ +
∣

∣

∣
p2−k0 ,x0

∣

∣

∣
≤ C,

for some universal constant C > 0, which completes the proof. �
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