[v1] Mon,

27 Jan 2025

Critical loci of the 4 x 4 unistochastic map

Natalia Bebiano®! and Hiroshi NakazatoP

January 27th, 2025

& CMUC, Department of Mathematics, University of Coimbra, Coimbra,
Portugal,

E-mail: bebiano@mat.uc.pt

> Department of Mathematical and Physics, Hirosaki University (Emeritus),
Hirosaki 036-8561, Japan, E-mail: nakahr@hirosaki-u.ac.jp

ABSTRACT Let U(4) be the unitary group formed by the unitary matrices
of order 4, and let D(4) be its subgroup of diagonal matrices. The compact
set Uy of unistochastic matrices, determined by the squared moduli entries of
unitary matrices, is contained in the famous Birkhoff polytope Bjy. It is of great
interest, and our main goal, to determine the shape of Uy, and in particular its
boundary. For this purpose, the bicoset space D(4)\U(4)/D(4) will be viewed
as the preimage of Uy under the unistochastic map ®4 : U(4) — Uy, defined
as ®4(U) := U o U, where o denotes the Hadamard or entrywise product. The
investigation of the critical loci of this map is crucial for our purposes, since
every boundary point of Uy is the image of a critical point. Using a standard
parametrization of the bicoset space D(4)\U(4)/D(4), we provide a criterion for
a point of the bicoset space to be a critical point. We also present an algorithm
to decide the unistochascity of a given bistochastic matrix, and we analyze the
unistochascity of the bistochastic matrix obtained multiplying by 1/34 the magic
square engraved in Diirer‘s celebrated Melancolia I.
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1 Introduction

A real square matrix B = (Bij)%:l is bistochastic if it has non-negative
entries that add up to 1 in every row and column. The convex set By of all
bistochastic matrices of order IV is called the Birkhoff’s polytope, named after
Birkhoft‘s famous result in 1949 stating that the set of all the extreme points of
By is the set of permutation matrices of order IV, representing the symmetric
group of degree N, & . This set contains the closed subset Uy of unistochastic
matrices. A bistochastic matrix of order N is unistochastic if its entries are
the squared moduli entries of some unitary matrix U = (Uy;);—; € U(N), the
unitary group formed by the unitary matrices of order N. Denote by Ay the
(N —1)-dimensional probability simplex in RY. The transformation of Ay into
itself defined as Y = BX for X € Ay, performed by a bistochastic matrix B,
is quantized if B is unistochastic. Since U(N) C My (C) = R?V is an algebraic
set and U +— ®x(U) = U oU is a polynomial map, then Uy is a semi-algebraic
set and its boundary in By is also semi-algebraic [2]. Hence there is a non-zero
real polynomial P in B;; (4,7 =1,2,...,N — 1) for which

OUy C {B € By : P((By);,Zy) = 0},
with QU y the boundary of Uy. In this paper, we develop a differential geome-
trical approach to investigate QU for N = 4. Notice that in the case N = 2,
the two sets By and Uy coincide. For N = 3, Au-Yeung and Poon [1] charac-
terized the set Uz by using the bracelet conditions on the products of the square
roots \/Byj, with By; the entries of B = (Bj;)?,_, € Us (cf. [12]).

In this paper we mainly study the polynomial map ®4 from ¥/ (4) into Uy C
B4 C My(R). This map ®, is a (real) analytic map and hence a C(°)-map from
the 16-dimensional compact Lie group ¢(4) into the 9-dimensional affine space
of 4 x 4 real matrices B = (Bij);l’jzl satisfying

4 4
Y Bi=) Bij=1 1<ij<4
k=1 k=1

For any g € U(4), by using an analytic coordinate system (X7, ..., X16) around
g, we consider the 9 x 16-Jacobian matrix

9Y;

=1,2,...,9,j=1,2,...,16}

. g )
for
Yi=(Pa)1,1, Y2 = (Pa)1,2, Y3 = (Pa)1,3, Ya = (Pa)2,1, Y5 = (Pa)2,2,

Yo = (P4)2,3, Y7 = (P4)3,1, Yz = (P4)32, Yo = (Psg)3,3.
For a generic point g of U(4), the matrix rank of the map J(g) is 9.



If the matrix rank of J(g) for g € U(4) is less than or equal to 8, such a
point g is said to be a critical point of the unistochastic map ®,. We remark
that if the rank of J(g) is 9, the point ®(g) is an interior point of Uy in the
9-dimensional affine space spanned by By. So the condition for g € U(4) to
be a critical point of ®4 is a necessary condition for ®4(g) to be a boundary
point of Uy. Our main aim is to investigate the shape of the set Uy. The study
of the critical points of ®, is an adequate and efficient tool for this purpose.
The set Uy is a compact connected subset of the Birkhoff polytope By, and the
determination of its boundary 0Uy is a crucial subject to answer our problem.
The unistochastic map ®4 satisfies the following invariance for any angles ;s
and ng’s

®4(DggDy) = Pu(g),

where
Dy = diag(exp(ify), exp(ifs), exp(ibs), exp(iby)),

D,, = diag(exp(in1), exp(in2), exp(ins), exp(ina)).

Based on this invariance, ®4 is often restricted to the unitary matrices U =
(Uij);{jzl for which the 7 entries Uy1, U12, U1s, U14, Ua1, U1, Uy in the first row
and column are real (or more strictly, non-negative).

We mention some articles treating our subject or related topics. The articles
[18], [3], [4] and [15] have been published in recent years. A numerical algorithm
is presented in [16] to provide a criterion for a given 4 x 4 bistochastic matrix to
be, or not to be, unistochastic (cf. [8], [14]). In the present paper, we provide an
alternative method (cf. [4]). Many articles, e.g. [5], published in the last century
are related to our subject.

Our main motivation to study Uy arised from our interest in generalized
numerical ranges, namely the C-numerical range W (A), defined by

We(A) = {tr(CUAU*) : U € U(N)}.

For two N x N complex diagonal matrices C' = diag(aj,as,...,ay) and A =
diag(cy, ¢, ..., cn),it can be easily verified that this range may be rewritten as

N
Wc(A) = { Z aichij : (Bij) € UN}

ij=1

(cf. [13]). We are also interested in its analogue for Krein space operators ([7])
and the numerical range of an operator and its related topics ([10], [17]). The
relevance of Uy in quantum physics is another main motivation to study this
subject.

The remaining of the paper is organized as follows. In Section 2, we present a
parametrization of the unitary group U (4), which is efficient to treat the bicoset
space D(4)\U(4)/D(4) and the unistochastic map ®4. In Section 3, some special
critical points of the unistochastic map ®, are exhibited. The main theorem
of this paper is stated in Section 4. In this theorem, the necessary and the



sufficient condition for a point in the bicoset space to be a critical point of ®4
is obtained. The proof of the main theorem is given in Section 5. In Section 6,
a numerical criterion for a bistochastic matrix to be unistochastic is provided.
Here, we consider a 4 x 4 bistochastic matrix B for which 34B is the 4 x 4 magic
square of the German artist Albrecht Diirer (1471-1528) engraved in his work
Melancolia Iin 1514:

6 3 2 13
5 10 11 8
3B = 9 6 7 12
4 15 14 1

Moreover, we address and answer the question of the unistochasticy of B. In
Section 7, we present examples of a boundary point and of an inner point of the
set of unistochastic matrices, which are the images of some critical points of ®,.

2  An efficient parametrization of the unitary
group U(4)

Our parametrization of the 16-dimensional Lie group U(4) is based on some
parametrization of the bicoset space D(4)\U(4)/D(4). To start, we parametrize
this bicoset space or the set of its representatives, the space of 4 x 4 unitary
matrices (Ul-j);{j:l with real first row Uy, Ujs, Uz, U4 and real first column
Us1,Usz1,Uy;. As a first step, we parametrize the first row by the spherical co-
ordinates on the unit sphere S3:

Ui1 = costy, Uia = (sinty)(costs),
U13 = (Sintl)(SthQ)(COS tg)7 U14 = (Sintl)(sintg)(sintg),

where t1,ta,t3,t4 are real parameters. Let E; = (Uy1, U1z, U13, U14) be the row
vector with the above defined entries. We consider the orthonormal basis of its
orthogonal complement:

E5 = (—sinty, (costy)(costa), (costy)(sinta)(costs), (costy)(sinta)(sints)),
E5 = (0, —sinty, (costa)(costs), (costs)(sints)),
E, = (0,0, —sints, costs).

Next, we parametrize a general unit vector Ho of the complex vector space
spanned by Fs, E3, F4 as follows:

Hy = exp(iuy)(cos s1)Fatexp(iug)(sin s1)(cos s3) Es+exp(iug)(sin s1)(sin s9) Ey.

Thus, we get Hy = (— exp(iuy)(cossy)(sinty),...). We choose the second row
of the unitary matrix U as Hy = (U1, Uag, Uas, Uay). Following the requirement
for Us; to be real, we may assume u; = 0. On this condition, we join the two



following unit vectors Hs and Hy, so that {Hs, H3, Hy} is an orthonormal basis
of the space CEy + CE3 + CEy:

H; = —sin $1 F5 + exp(iuz)(cos s1)(cos s2) E3 + exp(iuz)(cos s1)(sin s2) Ey,
Hy = —exp(iusg)(sin s2) E5 4 exp(ius)(cos s2) Ey.

Finally, we parametrize a general unit vector K3 of the complex vector space
spanned by Hs, Hy as

K3 = exp(iug)(cos s3)Hs + exp(ius ) (sin s3) Hy.
A unit vector in CH3 + CH,4 orthogonal to K3 is given by
K4 = —exp(iug)(sin sg) Hs + exp(ius)(cos s3) Hy,

up to a unit multiple. WI‘ltlIlg K3 = (Uvgl7 . .,U34) and K4 = (U41, ey U44),
the respective entries Usy, Uy are

exp(iug)(sinty)(sin sy)(cos s3), —exp(iug)(sinty)(sinsy)(sin s3).

Following the requirement for Us;,Us; to be real, we may assume uy = 0,
and so the representatives of D(4)\U(4)/D(4) are parametrized by the 9 real
parameters t1,to,t3, S1,S2,53 and ug, usg, us. We unify the symbols to express
the bicoset space by letting:

81 = ty4, 82 = 15,83 = lg, us = t7,uz = tg,uz = tg.

By using these 9 real parameters t1, ..., tg, we shall present the exact parametri-
zation of the representatives of the bicoset space. For this purpose, we introduce
the abbreviated notation C's; = cost;, Si; =sint; (j =1,2,...,9), and we get

Uy = Csy,Upg = Si1Csq, Uz = Si15i5Cs3, Uy = Si1Si9S43,

Usy = —Si1Csy,Usy = S811814Csg,Uyy = Si15i4 546,

Uss = Cs1Cs9Csy — Si9Si4Cs5(Csg + Sig), Uaz = Cs1512Cs3C 34
+Cs9Cs3814Cs5(Csg + iSig) — Si55145i5(Csg + iSig), Uag

= C'51509513C s4 + Cs28i3514Cs5(Csg + 1Sis) + Cs35145i5(Csg + iSiy),
Uss = —C51C52514Csg — SiaCs4Cs5Cs6(Csg + iSis) + SiaSisSig -

(Csy +1Si7)(Css + 1Sig), Uszs = —Cs1512Cs3514C'sg
+Cs9Cs3Cs4Cs5Cs6(C'sg + 1Sig) — SizCs4S5i5Cs6(Csg + 1Si9)
—Cs9C053515516(Cs7 + 15i7)(Css + iSig) — SigCs5Si6(Cs7 + Si7) -
(Csg + iSiy),



Usy = —C515i2513514Cs6 + Cs25i3Cs4Cs5C s6(Csg + 1Sig) + Css -
C54815Cs6(Csg + iSig) — C's25i3S5i5S16(Csy + 1Si7)(Csg + 1Sig)
+Cs3Cs5S8i6(Csy + iSi7)(Csg + iSig),

Uy = Cs1C828514S16 + SiaCs4Cs5516(Csg + iSig) + Si2Si5C'sg -

(Csy 4 1Si7)(Css + 1Sig), Uss = Cs1515Cs3514516 — Cs2Cs3C54Cs5S%6 -
(Csg +1iSig) + Si3Cs45i5516(Csg + 1Sig) — Cs2Cs3Si5Cs6(Csy + iSiz) -
(Csg +1iSig) — SizCs5Cs6(Csy + Si7)(Csg + iSig),

Uyg = C515i9503514 516 — C52513C s4C's5516(Csg + 1Sig) — Cs3C545%5 -
Sig(Csg 4 1Si9) — Cs2S5i3S15Cs6(Csy + 1Si7)(Css + iSig) + Cs3Cs5Csg -
(Cs7 +1iSi7)(Csg + 1Sig).

In the case t; = tg = tg = 0, the unitary matrix U(ty,...,t,0,0,0) is a
real orthogonal matrix with determinant 1. The set of these matrices form the
6-dimensional Lie group SO(4).

We denote a general element of the above parametrized bicoset space by
U(ti,...,t9) = {Ui; : 4,5 = 1,...,9}. Using this, we also parametrize the uni-
tary group U(4). Indeed, let

g = D(tio,t11,t12,013)U (L1, - - - s to) D(t1a, t15, tie, ti7),
where D(s1, s2, S3,54) is the 4 x 4 diagonal matrix defined as
diag(exp(isy), exp(iss), exp(iss), exp(isy)).
Since D(s, s, s, s) is a scalar matrix for any s € R, we have
D(s,s,8,8)U(t1,...,tg) =U(t1,...,t9)D(s,s,s,s),
and it follows that
D(tio,t11,t12,t13)U(t1, .. ., to) D(t14, t15, t16, t17)

= D(ti0 — t13,t11 — t13,t12 — t13,0)U (L1, - . ., t9) D(t13 + t1a,

t13 + t15,t13 + tig, t1z + ti7).
Hence, we can parametrize the group U(4) by 16 real parameters. Every element
go € U(4) has a neighborhood {gpexp(X) : X + X* = 0,||X]|| < €} for small
€ > 0, where X is a 4 x 4 skew-Hermitian matrix, and so the space {goX :

X 4+ X* = 0} can be viewed as the tangent space of U(4) at go. By using this
system, we shall determine the condition for the parametrization

g = D(Ul,’UQ, us, O)U(tl, N ,tg)D(Ul,’l}271)3,U4), (21)

to be a (faithful) local coordinate system in a small neighborhood.



Theorem 2.1 The parametrization (2.1) is a local coordinate system in a small
open set if and only if the condition H?Zl(cos(tj)o)(sin(tj)o) # 0 holds.

Proof For small real numbers hq, ..., hig and taking into account the relation

D(uy + hio, ug + hi1,u3 + hi2,0)D(t1 + hy, ..., tg + ho)D(v1 + has,
Vg + hi4,v3 + his,v4 + hig)
= D(u1,us,u3,0)D(h1, he, h3,0)D(t1 + ha, ..., tg + hg)D(his, hia,

his, hie)D(v1,v2,v3,v4),

the condition for the faithfulness of the parametrization in a small neighborhood
of g € U(4) is reduced to the case u; = us = uz =0, v1 = vo = v3 = v4 = 0,
and so we may assume that g € D(4)\U(4)/D(4). In this situation, we consider
the elements

U(ti, ..., t9)"D(hio, 11, h12,0)U(t1 + h1, ..., tg + ho)U(his, hia, his, hig)

in a neighborhood of the identity Iy. For each 1 < j < 16, let Ay = 0 for
ke {l,...,16}\{j}, and consider the derivative of the above matrix function
at h; = 0. We denote the 4 x 4 skew-Hermitian matrix so obtained by X;. The
faithfulness of the coordinates around g = U(ty,...,t9) is formulated as

RX;+RXs+...+RXj5 ={X : Xisa4 x dmatrix, X + X* =0}. (2.2)
We remark that
Ulti, ... t9)*Ul(t1,...,t9)D(his, hia, h1s, hig) = D(his, hia, his, hie),

so that RXq3 + ... + RXy¢ = {diag(ia1, tas,ia3,ia4) : a; € R}. We focus our
attention on the above mentioned (1,2),(1,3),(1,4),(2,3),(2,4), (3,4)-entries
of the skew Hermitian matrices X1, Xo, ..., X12 to examine the condition (2.2).
We have

t10X10 +t11X11 + t12 X2 =0 U (L1, .. ., tg)"diag(tio, ti1, ti2,0)U(t1, . .., tg),

where ¢ = /—1. We shall denote the (1,2),...,(3,4)-entries of the matrix X;
by X; using a row vector. We get

X3 ={0,0,0,0,0,1}, X5 = {0, 0,0, cos t3,sints, 0},

X, = {cos ta, sin tg cos ts, sinte sints, 0, 0,0},

X4 = {Cs55i155(Csg+iSig), Si1(—CsyC53C s5(Csg+iSig)+SisSis(Csg+iSig),
Si1{—Cs2Cs5Si3(Csg + iSig) — Cs35i5(Csg + iSig)},
Cs1{Cs3Cs5(Csg + icos(2t2)Sis — Cs25i35%5(Csg + 1Si9) },
Cs1{Cs5S5i3(Csg + icos(2ta)Sig + Cs2Cs3515(Csg + 1Sig)},



0815i2{0895i5 + i[CSQCS5Sin(2t3)Si8 + COS(2t3)Si5Si9]},
Xs = {O, O7 0, SiQSig (COS(tg—tg)—i Sin(tg—tg), CSgSiQ(— COS(tg—tg)-‘r?; Sin(tg—tg)),
Csy(cos(ts — tg) — i cos(2ts) sin(ts — t9))},

ey

X:l() = {iCSlcSQSil, i0810835i15i2, iCslSilSiQSig,
iCs9C53811Sia,iC598i3 SiaSi3,1Cs3513 Si3Si3}

Next, we take the Cartesian decomposition of each entry of X ; and let
X; = {R(X;), (X))}, j=1,...,12
By using these row vectors, a 12 x 12 real matrix is obtained
MO = {X97 X3a XS? 16X77 8X67 X57 X47 Xla X17 X107 Xll7 XlQ}-

This matrix has a rather complicated form. We compute its determinant by
using some software ( e.g. "Mathematica"). We obtain

det(Mo) =16 x 8 X Si?SigSigSiiS%SiGCsl032053034035056.

Thus, we conclude that sin(2t;) = 2sint;cost; # 0 ( j = 1,2,...,6) is the
necessary and the sufficient condition for the parametrization (2.1) to be a local
coordinate system. [

Corollary 2.1 IfU((t1)o,-- -, (t9)o) € D(n)\U(n)//D(n) satisfies sin(2(t;)o) #
0(j=1,2,...,6) and the Jacobian (Y1,Ya,...,Yy)/O(t1,ta,...,t9) at U((t1)o,
(t2)o, - - -, (t9)o) vanishes, then the matriz U((t1)o, ..., (tg)o) is a critical point
of the unistochastic map ®4. In the above

Yi=(Pa)1,1,Y2 = (Pa)1,2, Y3 = (Pa)1,3, Ya = (Pa)2,1, Y5 = (Pa)2,2,
Yo = (Pa)2,3, Y7 = (Pa)3,1, Yz = (Pa)32, Yo = (Ps)3,3.

Proof By considering the tangent space of U(4) at the point U(¢1,ta,...,t9),
the property

Oy (D(ur, ug, u3)U(t1,ta, ..., tg)D(v1,v2,v3,0v4)) = P4(Ul(t1, 12, .., t9))

implies that the point U(ty,...,t9) is a critical point of ®4 via the faithfulness
of the coordinates (t1,ta,...,t9) at that point. O



3  Some special critical points of the unistocha-
stic map

Before using the previous coordinates (t1,ts,...,t9) in the bicoset space D(4)\
U(4)/D(4) to characterize the critical points of ®,4, we develop a more primi-
tive method to analyze the critical points of ®4 via a linear approximation of
the expotential map exp(X) for a 4 x 4 skew-Hermitian matrix X. For a real
parameter t and a 4 X 4 unitary matrix g, we have

— —2
Py(gexp(tX)) = (g +tgX +12/29X* +.. ) o (g+tgX +t2/25X +...)

=gog+2R(7- (9X)) + O(t?),

so that

(d®4)[x(9) = 2R(g o (9X)), (3.1)
where R(A) is the entrywise real part of the matrix A = (A)};_,, that is,
R(A) = (%(Aij))?,jzl' For any diagonal skew-Hermitian matrix X = diag(y/—1b11,

v —1ba2, v/—1bss,/—1bsa) (the b;; are real), we have
P4 (gexp(tX)) = Pu(g), (dP4)|x(g9) = 0.

Based on this fact, we consider the 4 x 4 skew Hermitian matrix in the form

0 a2 + ib12 a13 + b1z ays + iba
x o | @zt %:b12 0 . a3 + b2z a4 + lib24 7 (3.2)
—ai3 +ibiz  —agz +ibes 0 a34 + ib34
—a1a + b1y —aga +ibos  —aszs +ib3s 0

with a;; and b;; real parameters (cf. [9]), and we analyze the 9 x 12 Jacobian
matrix

0(Y1,Ys,...,Yy)/0(a12, a13, a14, G23, 24, A3, b12, b13, D14, b2z, baa, b3a).

The point g is a critical point of @, if and only if the matrix rank of this Jacobian
matrix is less than 9.

Proposition 3.1 If an entry U,, of a 4 x 4 unitary matrizx U = (Ui'),ﬁjzl
vanishes for some 1 < p,q < 4, then U is a critical point of the unistochastic
map ®4. Especially, if one of the 5 parameters ti,ta,t3,t4,t6 satisfies t; = 0
modulo /2, or equivalently C's; = 0 or Si; = 0, for some j € {1,2,3,4,6},
then U = U(t1,ta,...,tg) is a critical point of ®y.

Proof By applying permutations on the indexes (i, j) with U;; = 0, we may
assume 1 < 4,5 < 3 since the unistochasticity is invariant under such per-
mutations. Then (3.1) implies that the (i,7)-entry of U o (UX) vanishes for
any skew-Hermitian matrix X. It follows that one row of the Jacobian matrix
o(Y1,...,Yy)/0(a12,...,bss) vanishes, and so the matrix rank of the Jacobian
is less than 9. 0.



Proposition 3.2 If two rows (or two columns) of a 4 x 4 unitary matriz U
have real entries, then U is a critical point of ®y4.

Proof We may assume that the first and the second rows of U are real by
considering some suitable permutations on rows and columns. We express the
matrix U as

Un Uiz Uis Uia
U= U Usa Uas Usy
Us1 + V31 Usa +1V3a Usz +1Vzz Usg +1Vay
Ust +iVy Usg +iVio Uyz +iVag Ugs +1Viyy
where Uyp and Vi, are real numbers. By the property ®4(D(uq,...,uq) U) =

®4(U), we may assume that V33 = Vj3 = 0. We compute the (1, 1)7( 2),(1.3
(2,1),(2,2),(2,3), (3,1),(3,2), (3, 3)-entries of the matrix K = R[U o UX] fo
the skew-Hermitian matrix (3.2). The (1, 1)-entry of K is given by

C1 = —UnUiza12 — Un1Uiza1z — U Uisai4.
Similarly, the (1,2),(1,3),(2,1),(2,2),(2,3), (3,1)-entries of K are given by

Cy = —UraUr1a12 — Ur2Uizazs — Ur2Ur4a24,
Cs = UrzUr1a13 + UrzUiza23 — Ur3Ui4a34,
Cy = —UUsa12 — Uz1Uszarz — Uz1Uszgana,
Cs = UUz1a12 — UzaUzzazs — UaaUsgasy,
Cs = UazUz1a13 + UazUzza23 — UazUzgass,
C7 = —U31Usza12 — Uz Uszars — Uz Usgang
—U31Va2b12 — U31V33b13 — Us1V34b14,

It can be seen that the entries C,...,Cy are linear forms in the 12 variables
a12,013,014, 23,424, b12, b13, b14, [)237 b24, b34. ‘We consider the Jacobian matrix
of &4 as a 9 x 12 matrix, and we concentrate on its first 6 rows. We adopt the
following numbering of the variables X = a2, Xo = a13, X3 = a14, X4 = ao3,
X5 = as4, Xg = az4. The entries C4, ..., Cg are linear forms in X1, ..., Xg, and
the 6 x 6 Jacobian determinant

[0(C4,Ca,C3,C4,C5,C6) /0(X1, Xo, X3, X4, X5, Xg)]
is
(=U11)(U12)(U13)(=Ua1)(Uz2)(Ua3) x
Uiz Uiz Uns 0 0 0
Uiy 0 0 —U;s —Uys 0

U21 O O _U23 —U24 0
O U21 O U22 0 *U24

det(

10



Applying Laplace development by the 6-th column of the above determinant,
we conclude that the determinant is

(U12U21 - U11U22)(U14U23 - U13U24)(_U24U14 + U14U24) = 07

so that the forms C1, ..., (s are linearly dependent and the matrix rank of ®4
at U is less than 9. O

As a consequence of Proposition 3.2, if tg = 0, tg = 0 modulo 7, or equiva-
lently sintg = sintg = 0, then the 4 x 4 unitary matrix U(t1,...,t9) given as
the representative of a point of D(4)\U(4)/D(4) is a critical point of ®@y.

By Theorem 2.1 and since ®4(D1UD3) = ®4(U) for any 4 x 4 unitary matrix
U and diagonal matrices D1, Dy, we can provide a criterion for U € D(4)\U (4)/
D(4) to be a critical point of ®4 by using the coordinates (¢1,ts,...,t9) under
the condition (cost;)(sint;) # 0 for j = 1,2,3,4,5,6. By Proposition 3.1, if
(cost;)(sint;) = 0 for some j =1,2,3,4,6, then U(ty,...,t9) is a critical point.
So the remaining delicate situations occur in the cases (costs)(sints) = 0 under
(cost;)(sint;) # 0 for j = 1,2,3,4,6. We provide a special remark for these
situations, considering separately the two cases (i) costs = 0 and (ii) sints = 0.

(i) Let costs = 0. We can assume sin t5 = 1, by replacing t7, tg by t7+7, to+7

if necessary. Under this setting, the unitary matrix U(¢y, ..., t9) is parametrized
as:

Uss = C(C$1C59Cs4,Us3 = Cs18512Cs3Csy — SizgSig(Csg + iSig),

Usy = C15i35i3Csy + Cs35i14(Csg + iSig),

Uss = —Cs1C535i4Csg + SiaSig(Csy +iSiz)(Css + iSis),

Uss = —Cs15i2Cs3514Cs¢ — Si3Cs4Cs6(Csg + 1Sig)

—Cs9Cs3S8i6(Csy + 1Si7)(Css + iSig),
Usy = —Cs15i25135i4Csg + Cs3Cs4Cs6(Csg + 1Sig)

—CSgSigS’ig(CS’z + 2527)(088 + iSig),
Uy = (5105981456 + SigCSG(CS7 + iSi7)(CSg + iSig),

Uys = Cs1519Cs3514576 + Si30845i5(059 + ZSZg)
—082083686(087 + 1527)(058 + iSig),
U44 = 0815i25i35i45i6 — 083084Si6(089 + ZSZg)

*CSQSigSi5C86(CS7 + iSi7)(C$8 + ZSZg)

Hence, the parameters t7,tgs can be unified by ¢7 + ts. In this situation, we
assume tg = 0, or equivalently C'sg = 1, Sig = 0.

(ii) Let sints = 0. We can assume costs = 1, by replacing t7, tg by t7 +
7, tg + 7 if necessary. Under this setting, the unitary matrix U(t1,...,tg) is
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parametrized as:

U22 = 081082084 — Si25i4(088 + iSig),

Uss = C(s515i3Cs3C sy + +Cs2Cs3514(Csg + iSig),

Uy = C(515025i5Cs4 + Cs25i35i4(Csg + Sig),

Usa = —CslCs385i4Csg — SiaCs4Cs6(Css + iSis),

Uss = —Cs15i3053514Cs6 + Cs9Cs3Cs4Cs5Cs6(C'sg + 1Sig)
—Si3Si6(Cs7 +11Si7)(Csg + iSig),

Uy = —Cs15125i3514Cs6 + Cs25i3C54C55Cs6(Csg + 1Sig)
+Cs38i6(Csy + Si7)(Csg + iSig),

Ui = Cs1Cs58i4Sig + SinCs4Sig(Css + iSis),

Uiz = C(s15i2Cs35i45is — Cs9Cs3Cs4S16(C'sg +iSig)

—SigCSG(CS'r + 2527)(089 + iSig),
U44 = 0815i25i35i45i6 — 0825i30845i6(088 + ZSZg)
+Cs3C'sg (CS7 + iSi7)(CSg + 1529)

Thus, the parameters t7,tg can be unified by t7+tg. In this situation, we assume
tg = 0, or equivalently C'sg = 1, Sig = 0.

We shall assume that sints = 1, tg = 0 in (i) and costs = 1, tg = 0 in (ii), as
the standard reduced form of U under the situation (costs)(sints) = 0. Using
this form, we provide the criterion for U € D(4)\U(4)/D(4) to be a critical
point of @, in the statement (II) of our main theorem.

4  Main Theorem

Next, we state the main theorem of this paper.

Theorem 4.1 (I) Assume that (cost;)(sint;) #0 (j =1,2,3,4,5,6). Under
this assumption, the point U € D(4)\U(4)/D(4), represented as U = (t1,t2,...,t9)
by the parameters ty,to, ..., tg, is a critical point of the unistochastic map ®4 if
and only if the main factor MF of the Jacobian J(U) determined in the below
vanishes at the point (t1,ta,...,t9) € R2/[27Z]°. For the 9-parameter system
U=U(ty,ta,...,t9) of the 4 x 4 matriz, the Jacobian determinant

J(U) = 0(Bu11, Bi2, B13, Ba1, Baz, Bas, Ba1, Baa, B33)/0(t1,t2,t3, 14,5, t6, l7, 3, 9)
of the map ®4 with respect to the variables

Bi1 = ®4(U)1,1, Bia = ®4(U)1,2, Biz = ®4(U)1,3, Bo1 = ®4(U)2,1, Baz =
Q4(U)2,2, B2z = ®4(U)a3, Bs1 = ®4(U)3,1, Bza = ®4(U)3,2, B3z = ®4(U)3.3

has the factor

Co = —27(sin” t1) (cos® t; ) (sin® t5) (cos® ty) (sin? t3) (cos? t3)
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-(sin® t4)(cos® t4) (sin ts) (cos ts) (sin? ) (cos? tg). (4.1)

The main factor MF of the Jacobian J(U) divided by this factor Cy is expres-
sed as the following trigonometric polynomial in the 9 variables ty,ts, t3,t4, ts, tg
and t7, tg, tg N

MF = [ag;sintg + agasintg + apg sin(ts + tg) + apg sin(ts — to)
+aps sin(2tg) + apg sin(2tg) + apr sin(2tg + tg) + s sin(ts + 2tg)
“+agg sin(2tg — tg) + 1o sin(ts — 2tg) + ap11 sin(3tg)
+ap12 sin(2tg — 2tg) + ag13 sin(3tg — 2tg)] + [a101 Sint7 + @102 -
sin(t7 + tg) + a0z sin(tr + tg) + ajoq sin(ty — tg) + a0 sin(ty — tg)
+anpg sin(ty + 2ts) + ago7 sin(ty + 2tg) + s sin(ty + 2tg + tg)
+apg sin(try + ts + 2tg) + 110 sin(ty + 3tg),
+aqy sin(ty — tg + 2tg) + aq12sin(ty + tg — 2t9) + aq13 sin(ty — 2t + t9)
+aqigasin(ty + 2tg — tg) + aq1s sin(ty — 2tg + 2t9) + a116 sin(ty + 2ts — 2tg)
+aq17sin(ty + 3ts — 2tg) + a1g sin(ty — 3tg + 2tg)] + [avo01 sin(2t7)
“+ans sin(2t7 + tg) + aooz sin(2t7 + tg) + ooq sin(2ty — tg)
“+agos sin(2t7 — tg) + agpe sin(2t7 + 2tg) + agor sin(2t7 + 2ty)
+anos sin(2t7 + tg + tg) + aopg sin(2t7 + tg — tg) + 1o sin(2ty — tg + tg)
+ag11 sin(2t7 + 3ts) + ao12 8in(2t7 + tg + 2tg) + a3 sin(2tr + 2tg + tg)
+ag148in(2t7 + tg — 2tg) + qa15 Sin(2t7 — tg + 2t9) + a1 Sin(2t7 + 2ts — to)
+agy7 sin(2t; — 2tg + to) + aa1s Sin(2t7 + 2tg + 2tg) + aa19 Sin(2t; — 2tg + 2tg)
Faggg sin(2ty + 2tg — 2tg) + o971 sin(2t7 + 3tg — 2tg) + qago sin(2t; — 3tg + 2t9)],

where the 53 coefficients of the trigonometric polynomials oupqr int1, ..., ts have
at most degree 15 as polynomials in

OSj = COStj7 Sij = Sintj, j = 1,2,3,4,5,6.

(II) Assume that (costs)(sints) = 0, (cost;)(sint;) #0 (1 <7 <6,j#5),
and that the unitary matric U = U(ty,...,t9) has the standard reduced form
in this situation for the parameters tg,tg. Then the main factor MF in (I) is
expressed as

MF = {Cs51Cs5C548i7Si9}[—Si2Cs535i3C52C 56Si6Si7C's9
—C'51Cs38i5C530545i4Cs6Si6Si7 — Cs18i5Cs35C548i,Cs6Si6Si7
+C'518i95i3C 5450405686 Si7 + Cs3Cs35i35i3C'56516Si7C'sg
+0518i3C535i35i3C'565916Si7Cs9 — Cs1C528i5C538i3C53514C,6%Sig
—081CSQSiQCSgSi;;SiZCS%Sig + Si%CSgSiBCsiC’sGSiGCS7Si9
—Cs550538i35i2Cs56Si6Cs7Sig + Cs39i3Cs35i35i3Cs6Si6C 5759
+C'51C528i2C's3513514513 5]
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in the case costs =0, and

MF = {CSgSigCSﬁSiﬁSig}[0515i25i45i7 — CSQCS4<Si7CSg — CS7Si8)]
[081(08352i + 513082)527 + OSQSiQCS4Si4(Si7CSs - CS7Si8)
+CS%CSQS’L'QCS4Si4(Si7CSg + 087528)]

in the case sints = 0. Further, U(t1,...,t9) is a critical point of @4 if and only
if the polynomial MF vanishes at this point.

In the next subsection, we list the explicit expressions of the 53 coefficient
polynomials a,q-. We outline the computation of the Jacobian determinant
J(U) in the next section. We observe that in an expanded form of the MF in
Csy,Si1,...,Csg, it has 362 terms.

4.2 List of Coefficients

In order to provide the exact expressions of the 53 coefficient polynomials of
MF, we remark once more that if t7 = tg = t9 = 0, the point U(¢4,...,1,0,0,0)
is a critical point of ®4. We express it as the trigonometric polynomial in t7, tg, tg
with coefficients g, which are polynomials in S%; = sint; and Cs; = cost;
(j=1,2,3,4,5,6):

MF = aqqpsintg+...+ ap13 sin(Stg — 2t9)
+aqorsinty + ... 4+ o118 sin(t7 — 3ts + 2t9)
“+ai901 sin(2t7) + ...+ oo2 sin(2t7 — 3tg + 2t9),

where the 53 polynomial coefficients g, are given as follows:

agr = —Cs53Cs50568i25i35i45i6{5i2*(2057Cs3Cs2 4 Cs39i2
—2Cs3Cs38i2 — Cs38i39i2 — Cs25i39i2) + Os3(CsiCs30s:
—2Cs3Cs3 + 2053052517 — 6Cs3Cs38i2 + Si3Si2 — 2051942 Siz
+2Cs28i3)1,

aga = —C59Cs56Si95i48i55i6(Cs3 — Si3)(—Cs30s2: + 2057Cs5Cs2
+Cs2Cs28i2 — 2052052802 4 Cs28i2Si2),

a3 = Cs51Cs4Cs5C55i3Si5Si6(Cs3 — Si3)(Csa — $;3%),

aps = Cs51Cs4Cs5CsSi3Si5Si6(Cs2% — Si2%)(Cs3% — Si3%)(Cs? — Si),

ags = —C51Cs9053C5405:C56Si3Si6(—Cs3Si3 — Cs3Sis
+5i35i3 4+ Cs15i25i7),
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Qo6
Qo7
Qg
Qo9

Qp10

ap11
Q012
Q013
@101

@102

@103
Q104
105
106
@107
Q108
109
Q110
111
Q112
113
114
115
Q116
117
@118
@201

@202

Q203
Q204

Q205

—(C'51055C53C54C565i35i2Si6(—Cs3Si2 + Cs25i% + Cs15i25i7),
Cs3Cs9C53Cs2056812504Si5Si6(Cs3 — Si3),
—Cs%05308305503652'2&352'452%5’2'6,
—Cs5905%C565i25i145i55i6(Cs3 — Si3)(Cs3 — Cs3 — Si38i2),
Cs3C55C 5651253514512 Si6(—3Cs3Cs3Cs3

—Cs18i3 + Os3Si3 + Cs28i3Si5 — Cs38i35i3),
CS%083083CSiCS?CS@SiQSi;),SMSi@7
—C51059053C54C52C565i35139i28i6(2Cs3 — Si3),
Cs2Cs3Cs3Cs6Si9Si35i45i2Si2 Si,
—C'51Cs59053C'555158i35i5(Cs3 — Si3)(Csz — Siz)(Csa — Siz),
—('s3C'5481S5i35i14Si5(Cs2 — Si2)(2Cs2Cs2C's2 — Cs2C'ss
+0s3Cs25i5 — 2Cs3Cs38i2 — Cs3Cs28i2 + Os2Si3Si2),
—C's5505,C558i25145i2(Cs2 — Si2)(Csz — Si2)(Cs? + Cs?),
C53C5,C528i55i35i,Si5(Csi — Si2)(Cst — Cs3 — Si3Siz),
C'55Cs54C558128045i2(Csz — Si3)(Csz — Siz)(Cs? — Cs5?),
C'51C53C'53Cs55i38i35i5(Cs? — Si%)(Cs2 — Si),
—C'51Cs59053C555i58i35i5(Cs3 — Si3)(Csz — Siz),
Cs3Cs9C54C'55S095i,8i2(Cs3 — Si2)(Cs2 — Si2),
C57C53C'545125i35145i5(CsE — Si2)(CsiSia — Cs35i3),
Cs3Cs3Cs3C 54052 Si9Si3S5i4Si5(Cs2 — Si2),
—C'53C5,05%8i28i3504Si5(Csz — Si2)(Cs5Cs2 + Cs3Sis — Si35i3),
—Cs53C'548i5i351,48i3(Cs2 — Si2)(CsiCs3 — Cs3Cs2 — Cs2Si3,
C59C54C'535025149i2(Cs3 — Si2)(Cs2 — Si),
—C's59054C558i25i45i%(Cs2 — Si2)(Csa — Si2)(Cs? — Cs?),
C'51Cs9C53Cs38i38i38i5(Cs5 — Si3)(Csé — Si3),
—(Cs51C5,Cs3C555138i35i%(Cs3 — Si3)(Csz — Siz),
—Cs5505305,C528i28i38145i3 (Cs% — Si2),
Cs2Cs53C54Cs38i98i35i4Si5(Cs2 — Si2).
C51Cs9C53C5,05%C'56515S5i35i2Si6(2Cs3 — Si3),

C'53C's5C 56512513514512516(3Cs2Cs2Cs% 4+ Cs2Si2

—Cs38i3 — Os28i35i3 + Cs35i25i2),
—Cs5505%C568i25i45i5Si6(Cs3 — Si2)(Cs2Cs2 + Cs18i2 — Si2Si),
—Cs3Cs5055C 5651551351452 S,

C'55Cs3C52C 5609514813 Sig(Cs2 — Siz),
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206 = 70810820530840865i38i§S’i(;{CSiSZ% -+ (*053 + CS%SZ%)SZZ},

aoor = —Cs1Cs9Cs3C5,C52Cs568i35i6(Cs2Si2 + Cs25i2 + Cs2Si2Si>
—Cs28i28i2 — Si35i28i2),

ooy = —Cs108,055C565i38i55i6(Cs3 — Si3)(Cs3 — Si3),

aong = Cs108,055C565i28i5Si(Cs3 — Si3)(Cs2 — Si3),

a0 = Cs1054Cs3C568i38i5516(Cs3 — Si3)(Cs3 — Si3),

911 = —Cs%ng03305508652'2&352'45’2'?52’6,

ao1s = —Cs2C0s30550565i25i35145i6(Cs30s5 — CsiCs2Si%
—Cs30528i% 4+ Cs2Cs2Si2 + Si2Si2Si2),

o3 = Cs3055C565095145i55i6(Cs3 — Si3)(Cs2Si5 — Cs3Si2),

Q914 = —Cs;;CsZCS5CSGSiQSi35i4Si§SiG,

o5 = Cs30580565i25i35i4Si6(Cs3Cs30s3 — Cs3Cs2C's?
—Cs1Cs3Si3 — CsiCs38i3 + Si39i2 + Cs38i35i2),

o1 = (5905681504502 Si6(Cs3 — Si3)(CsiCsh — Cs2),

Qo7 CSQCSZCS%CSGSiQSi4S7;5Si6(CS% - Si%)7

ag1g = Cs3C55Cs5305,C565i35i35i2Sis,

ao1g = C51089053C5,C58Cs565i35i6(Cs25i2 + Cs28i% — Si2Si%),
o290 = C51055C5305,C56Si3503Si6(Cs38i5 — Cs3543),

o1 = Cs5053055C565i25i35i45i3Sis,

Qoge = Cs50s3052Cs2C 5651250351456

Example 4.3 We exhibit the main factor MF in Theorem 4.1 in a special case.

In the setting cost; = costy = 1/2, sint; = sint; = \/3/2, costy = —costy =
1/4/3,sinty = sinty = /2/3, costs = sints = costg = —sintg = 1/v/2, costy =
0,sinty = 1, costg = 1,sintg = 0, costg = —1,sintg = 0, the unitary matrix

Ul(ty,...,to) satisfies

1 1 1 1

1 -1 1 -1

2U (t1,...,t9) = Lo 1

1 7 -1 —

and so

1 1 11
— 1|1 1 1 1
Ultreito) o Ultnnto) = 7 [ 1 1 1 4
1 1 11

Preserving the above assumption on ¢; ( 1 < j < 6) and removing the assump-
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tion on t7,tg,tg, the condition MF = 0 is rewritten as

7sints — 2sin(2ts) — sin(3tg) + 9sin(ts — 2t9) — 6sin(3ts — 2ty) — 6sin(2tg)
+9sin(ts + 2tg) + 6sin(2t7 — tg) — 9sin(2t7 + ¢5) — 6sin(2t7 + 2ts)
+9sin(2t7 + 3tg) + 27sin(2t7 + tg — 2tg) — 27 sin(2t7 + 3tg — 2tg)
—2sin(2t7 4+ 2tg) — sin(2t7 — 3t + 2t9) — 20sin(2ty — tg + 2t9)

+15sin(2t7 + ts + 2tg) + 8sin(2t7 + 2tg + 2tg) = 0.

In the more special situation ¢7 = 0, the above equation is rewritten as
ks (ks — 3ko)(3 + ksko)(1 + 2kskg — kg) = 0,

by using ks = tan(ts/2), ko = tan(tg/2), and so this equation has the following
4 solutions in kg = tan(tg/2):

tan(ts/2) = 0, tan(ts/2) = 3 tan(te/2), tan(ts/2) = —3/ tan(te/2) = —3 cot(tg/2)

and
tan(ts/2) = —(1 — k3)/(2ko) = — cot(ts).

5 Proof of the main theorem

We shall prove the assertion (I) of Theorem 4.1. For this purpose, we compute
the Jacobian determinant of the 9 x 9 matrix

O(B11, B12, Bis, Ba1, Baa, Bag) /O(t1,ta, t3, ta, ts, te, t7, ts, to).
We use the notation

Jlj = 8311/8tj, Jgj = 8312/8tj, Jgj = 6313/6tj,
J4j = 3321/8tj, J5j = 8322/8tj, Jﬁj = 8323/8tj,
J7j = 8B31/8tj, Jsj = 8B32/8tj, Jgj = (9B33/(9tj.

As shown below, a partial triangular property of the Jacobian matrix essen-
tially reduces the computation of the Jacobian determinant to the determinant
of a 4 x 4 submatrix.

By the relation By, = cos?t;, we have
Ji1 = —2(sinty)(costy), Jia = Jig = Jig = J15 = Jig = Ji7 = J1g = J19 = 0.
By the relation Biy = (sin2 t1)(cos? ta), we find
Jog = —2(sin® t1)(sinta)(costa), Jog = Jog = Jos = Jog = Joy = Jog = Jag = 0.
By the relation Bjs = (sin?t1)(sin? t5)(cos? t3), we have

J33 = —2(sin2 tl)(sin2 tQ)(Sintg (COStg), J34 = J35 = J36 = J37 = J38 = J39 =0.
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By the relation By = (sin®t#)(sin®t4), we get

Jus = —2(sin t1)(sinty)(costy), Jus = Jag = Jar = Jug = Jag = 0.
By the relation Bs; = (sin®t;)(sin? t4)(cos? tg), we obtain

Jr6 = —2(sin® t;)(sin® t4) (sintg) (coste), Jrs = Jr7 = Jrg = J7g = 0.

Hence, the Jacobian determinant of the 9 x 9 matrix is, up to a +1 factor, given
by

25(sin® t1)(cos t1 ) (sin® ty ) (cos to ) (sin t3)(cos t3)(sin® t4)(cos t4)(sin tg ) (cos tg)

Jss  Jsr Jss Jsg
Jos  Jer  Jes  Jeo

xdet .
et( Jss  Jsr Jss Jso )
Jos  Jor  Jog  Jog
Now, by the relation
B3y = (cos?t1)(cos? ty)(cos? tg) + (sin® t5)(sin” t4)(cos® t5)

—2(costy)(sints)(costy)(sinty)(costy)(costs)(costs),

we find
Js7 = Js9 = 0.

On the other hand, by the relation

Bys = (cos?t1)(sin® ty)(cos? t3)(cos? t4) + (cos® ta)(cos® t3)(sin? t4) (cos® ts)
+(sin? £3) (sin” t4) (sin t5) + 2(cos t1)(sinty)(cos? t3)(sinty)(costy) -
(costs)(costs) — 2(costy)(sinty)(sints)(costs)(sinty)(costy)(sints) -
(costy) — 2(costo)(sint3)(cos t3)(sin t4)(sin t5)(cos ts) cos(ts — tg),

we get
Je7 = 0.

Finally, by the relation
Bsy = (cos? t1)(cos? tg)(sin? t4)(cos? tg) + (sin? t2)[(cos? t4)(cos? t5)(cos? tg)
+(sin? t5) (sin” tg) — 2(cos t4)(sints)(cos ts)(sin tg)(cos tg)(cos tr)]
+(costy)(sin[2ts])(sinty)(coste)[(costy)(costs)(costs)(costs)

—(sints)(sintg) cos(t7 + tg)],

we obtain
Jgg =0.

Henceforth, the computation of the main factor of the Jacobian det(.J;;) is re-
duced to
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Jss 0 Jsg O
Jos 0 Jes  Jeg )
Jgs  Jsr Jsg O
Jos  Jor Jog  Jog

JsgJes — Jssdes 0 Jso
= det(| JsgJss — JssJzs Jsr O
JsgJos — JssJog  Jor  Jog

= —Js5J69Jss 97 + J55J69J87Jos — J55J68 57 Jo9
—Js8Je9Js7Jos + 586985 Jor + J58 6587 Jog.

MFO = det (

The exact computation of the above polynomial MF( shows that this polynomial
has the factor
(costy)(sin? t5)(cos ty) (sintz)(cos ts)

-(sin t4)(cos t4)(sin ts)(cos ts)(sin tg)(cos tg).

Thus, the factor Cy of the Jacobian J(U) given by (4.1) is deduced.The constant
—27 is arranged so that the expression of the coefficient polynomials Olpgr N
Csy,Siq,...,Csg, Sig are integers.

Next, we list the non identically vanishing 12 entries of the above 4 x4 matrix.
For simplicity of notation, we use the symbols C's; = cost;, Si; = sint;:

Jss = —2Si25i4$i5{—051052084038 + C’S5Si2Si4},
J5g = 20810520840855125%45%,
Jos = —28i4[Cs1Cs3Cs4Cs5Cs9Si25%3 + 085(083083 — Sig)Si4Si5

+C59C53C53{C52C59Si35i4 + Si5(Cs1C53054Sin — Cs9Si35i45i5)}
+C'59C538i35i4(Csi — Siz)SigSig),

Jos = —2Cs9C53C3s5514{Cs1C83C 84512518 — C895135145%5Ss
+C's85i3514505S519}, Jog = 2C$35135145i5{—C's9Cs5C59 51455
+C51C84812S19 + Cs9Cs5Cs3514S19},

Jgs = —28i5[Sin{CsiCs5C528i5 + Cs,Cs6Cs7(Cs2 — Siz)Sig — Cs5SisSia}
+Cs1C83C86S514(C54C36St5 + Cs5Cs75%6)C'sg
—C's1Cs9Cs5C 56514516517 S138], Jsr = 2C'565125155i6{Cs4C85512 517
+C51C9814S17Csg + Cs1Cs9C57514 505}, Jgg = —2C's1C's9C 5651251 -
{=Cs5Si5Si6Si7 + Cs4Cs5Cs6Sis — Cs7.5055165%s },
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Jos = —2[CsiCs2{Cs30s5Cs28i5 + Cs4Cs6Cs7(Cs? — Siz)Sig — Cs5Sis5Sia}
+8i3{Cs3Cs505%Si5 + Cs,Cs6Cs7(Cs2 — Siz)Sig — Cs5Si5Sia}
+Cs1C53C86512514C 54Cs5Cs6C 89 + C'51C'53C 8651251451557¢ -
(—Cs7Cs9 + Si7Sig) — CsaCs3{—Cs3Cs2Si3(Cs? — SiZ)(CsgCsg
+SigSig) + Cs4C56515{Cs1Cs3C s6C's3S12514 + 4Cs5C 5751354 -
(CsgCsg + SigSig)} + SigCs1Cs3C s5C 56512514 (Cs7Csg — SizSig)
+8i3SiZ(Cs2 — Si2)(CssCsg + SigSig)}],

Jor = 20s6Si6[Sis{Cs305505,Cs5Si7 — Cs4C55i3Si7 — Cs1C590535i55 -
(CsgSiz + Cs78ig)} + Cs38i3Cs9{—Cs1C558i25i4Si7 + Cs3C54C's? -
(CsgSiz — Cs78ig) — Cs20548;5%(CsgSiy + Cs7Sig)} + Cs3Si3Sig -
{—Cs,Cs5C 57809514 + Cs590548i2(Cs7Csg — SizSig) + Cs3Cs54Cs% -
(Cs7Csg + Si7Sis)}],

Jog = 2Cs50s3[Cs5{Cs1Cs3Cs54C525i2504Sig + SizSis(Cs2Cs2 — Si2) -
(CsgSig — CsgSig)} + CsSigCs7{—Cs1C55512514515S5s
+C'548i3(Cs2 — Si2)(CsgSig — CsgSig)} — Cs6SigSiz{Cs1Cs3Csg -
512514515 + Cs45i3(CsgCsg + SigSig)}H,

Jog = —2Cs38i3[Cs1C54Cs2Si95i48i5Si9 4+ Cs3Cs5Si5(Cs3C sz — Si3) -
(CsgSig — CsgSig) + CsSigCs7{Cs1Cs5512514Si9g + Cs2C3y4 -

(Cs2 — Si2)(CsgSig — CsgSig)} + Cs1Cs55Cs6C'59 81250457657
—C's59C54Cs6Si65i7(CssCsg + SigSig)].

Especially, these 12 entries are degree 1 polynomials in C'sg, Sig. A similar
property holds for C'sg, Sig and also for C's7, Siz. With respect to C's7, Siz, Css,
Sig, Csg, Sig, terms like Si7CsgC'sg appear in MF, and the degree of the poly-
nomial MF with respect to Csg, Sig is 2, and so the equation MF = 0 is expres-
sed as a quartic equation in tan(to/2) with coefficients expressed by C's;, Si; (
j=1,...,8).

The exact computation of the polynomial MF by substituting the above
expressions of J;; (i = 5,6,8,9,7 = 5,7,8,9) can be performed by using some
computer software like "Mathematica". This computation is performed by a
usual lap-top personal computer in a few minutes.

Next, we shall prove the assertion (II) of Theorem 4.1. The exact expression
of the polynomial MF in the case (costs)(sints) = 0 can be easily obtained by
computation with some software, like "Mathematica". The criterion for the point
U to be a critical point of ®4 provided in (I) under the condition (costs)(sints) #
0, is extended to its limit by using the MF since the critical points form a closed
subset of D(4)\U(4)//D(4). O

We remark the relation among Theorem 4.1 and Propositions 3.1 and 3.2.
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In the case sint; = sintg = 0, the unitary matrix U(¢1,...,%9) is not necessarily
a critical point of ®,4. In this situation, the main factor MF of Theorem 4.1 is a
constant multiple of

(sin? 1) (sin o) (cos? t5) (sin t3) (cos t3) (sin t4) (cos ts ) (sin® tg)
{(costys)(costs)(sintg)(costy) + (sints)(costs) }{(costs)(costs)
(costg) — (sints)(sintg)(costr)}.

If (costs)(costs)(costs) — (sints)(sintg)(costy) = 0, then the third row of the
unitary matrix U(t1,...,t9) is real. Similarly, if (costs)(costs)(sintg)(costy) +
(sints)(costg) = 0, the fourth row is real. So that Proposition 3.2 implies that
U(t1,...,tg) is a critical point. If sint7 = sintg = 0, the first and second columns
of U(ty,...,tg) are real, while if sints = sintg = 0, the first and second rows
of U(ty,...,tg) are real. Henceforth, the point U(ty,...,t9) is a critical point in
these two situations by Proposition 3.2. Theorem 4.1 would provide a method
to find critical points of ®4.

6 Numerical criterion for a bistochastic matrix
to be unistochastic

In Section 1, we posed a question on Diirer’s 4 X 4 magic square. In this section
we shall provide a numerical criterion for a given 4 x 4 bistochastic matrix
B = (Bij)ij:l to be unistochastic. The principle of the criterion is simple.
The matrix B is unistochastic if and only if the equation B = ®4(U) holds for
some U (ty,to, ..., t9) with real parameters t1,ts,. .., tg. Firstly, we remark that
a generic 4 X 4 unitary matrix U with real first row and column has several
parameter expressions by real parameters 0 < t1,ts,...,t9 < 27. In fact, we can
confirm the following 4 facts, used in the sequel.

I The points (tl, tQ, tg, t4, t5, tG, t7, tg, tg) € Rg and (—tl, to + ™, t3, ty + ™, —t5,
tg, t7,ts, tg) correspond to the common unitary matrix

U(tl,...tg) :U(—t17t2+777...).

IT The pOintS (tlv o, 13,t4,t5,%6, 17, s, t9) € R? and (tla —tg,l3 +m, —ta,l5, 86 +
m,t7,ts,tg) correspond to the same unitary matrix

U(ty,...,tg) = Ulty, —ta,t3 + 7, —ta, 5,16 + 7, t7, 13, tg).

IIT The points (tl, tg, t3, t4, t5, tﬁ, t7, tg, tg) € Rg and (tl, —tg, t3 +7T, t4, t5, tﬁ, t7,
tg + 7, tg + ) correspond to the common unitary matrix

U(tl,...,tg) :U(tl,—t27...,t9+7l').

IV The points (t1,ta,t3,ta,t5,t6, t7, s, tg) € R? and (t1,ta,t3, —ta, ts,t6 + 7, t7,
tg + m,tg + m) correspond to the common unitary matrix

U(tl,...,tg):U(tl,...,—t4,...,t9—|—ﬂ').
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We assume that a 4 x 4 matrix U is given and satisfies the conditions
Uir > 0,U12 >0,U13 >0,U14 >0,Uz; >0,U31 >0,Usq > 0.

Then, there are just 8 quintet systems 0 < t1,ta, t3,14,t6 < 27 satisfying

Ui1 = costy,Ups = (sinty)(costy), Uiz = (sinty)(sints)(costs),
Ug = (sinty)(sinty)(sints), Usy = —(sinty)(costy),
Usy = (sintq)(sints)(costs), Usy = —(sinty)(sinty)(sinty).
Denoting such a quintet system by
(7/) : (T17 T27 T37 T47 T6)7

the remaining 7 quintet systems are given by

(i) : (T, =T, Ts + 7, — T4, Tg + ),
(iii) : (T, =T, Ty + 7, Ty, Tg),

() : (T1, T, T5, —Ty, Ts + ),

(v): (=T, Ty + 7, T3, Ty + 7, Tg),

(
(

If a unitary matrix U with positive first row and column is realized by (11, T», 15, ts,
T6,t7,ts,t9), then it is also realized by (17, Ts, ..., T¢) in (ii) -(viii) with suitable
(t5,th, 5, 1), by (1),(I1),(II1),(IV). In fact, the sequence (¢f,...,t5) is given by

(Z> : (t57t77t8;t9)7 (Zl) . (t57t77t87t9)a

(Z’LZ) N (t57t77t8 +7T7t9 -|—7T), (M)) . (t5,t7,t8 + 7T,t9 + ’/T),

(U) : (7t57t77t87t9)a (UZ) : (7t57t77t87t9)
(vid) : (=ts,tr,ts +m to + ),  (vidd) : (—ts,t7,ts + 7, b9 + ),
We take the limits in the above situation:

U1 20,U12 20,...,Usn = 0.

Next, we judge whether a given 4x4 bistochastic matrix B is unistochastic or
not. We take just one quintet system (77,75, T3, Ty, ) satisfying

V/Bi1 = cos Ty, /Bis = (sinTy)(cos Tz), v/ Bz = (sin Ty) (sin Ty ) (cos T3),
V/Bia = (sin T1)(sin T) (sin T3),
V/Ba1 = —(cos Ty)(cos Ty), v/ Ba1 = (sinT1)(sin Ty)(cos Tp),

By = —(sinTy)(sin Ty ) (sin Tg).
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We solve numerically the simultaneous equations in 0 < ts5, t7,tg,tg < 27:
Bz] = ‘U(Th T27 T37 T47 t57 Tﬁa t7a t8a t9)|2

for (¢,7) = (2,2),(2,3),(3,2),(3.3). If one real solution (5, t7,ts, tg) exists, then
B is unistochastic. If there is no real solution, then B is not unistochastic.

We have other transformations on the points (1, ta,...,t9), which yield a
common point U(ty,ts,...,t9). By exact computations, we can confirm the fol-
lowing.

(V) For a fixed (ti,to,t3,t4,t6) € R®, the two points (t5,t7,ts,t9) € R*
and (—t5 + m,t7y + m,ts + m,tg) correspond to the common unitary matrix
Ulty, ta,. .. ty).

(VI) For a fixed (tl, ta,t3,14, tﬁ) S RS, the two points (t5, t7,1s, tg) € R* and
(—t5,t7+m,ts, to+m) correspond to the common unitary matrix U (1, ta, ..., tg).

The following fact is also useful to study the map ®4.

(VII) The point (t1,ts,t3,t4,t5,ts, —t7, —ts, —t9) € R? corresponds to the
complex conjugate of U(ty,...,ts,t7,ts,t9), and so

(D4(U(t17 - te, —t7, —ts, _t9)) = <D4(U(t17 s 7t9))'

By (i)-(viil) and (I)-(VII), we may assume that 0 < ¢t; < 7/2 for j =1,2,3
and /2 <ty <, —7/2 < tg < 0 to examine whether B is unistochastic or not.
In a generic case, there are 8 real solutions (ts5,t7,1s,tg), if real solutions exist.
If we restrict solutions as 0 < t5 < 7/2, the solutions are restricted as (7, ts, to)
and (—t7, —tg, —tg).

Next,we answer our question concerning Diirer’s magic square.

Example 6.1 The 4 x 4 doubly stochastic matrix B obtained by the norma-
lization of Diirer’s magic square is not unistochastic.

In fact, we can show that there is no unitary matrix U = U(ty,...,t9) €
D(4)\U(4)/D(4) satisfying

16/34 3/34 2/34 13/34
5/34 10/34 11/34 8/34
9/34  6/34 7/34 12/34
4/34  15/34 14/34 1/34

U(tl,...,t4) e} U(tl,.. .,t4) =
Firstly, we solve numerically the simultaneous equations:

U11 = COStl =1/ 16/34, U12 = (Sintl)(COStg) = \/3/34,
Uiz = (sinty)(sints)(costs) = 1/2/34,

23



Uia = (sinty)(sintz)(costs) = 1/13/34,
Ug1 = —(sintq)(costs) = 1/5/34,Usy = (sinty)(sints)(costs) = 1/9/34,

U41 = (Sin tl)(SiH t4)(SiIl tﬁ).

We use rational parameters ki, ko, k3, k4, kg € R by the relations k; = tan(¢1/2),
so that

y -k " 2k
COS = —5,S1 = .
R TR oy 2=
Similarly, we set
. K 2k R SR
costy = ——=,8inty = ———,costy3 = ——=,sinty3 = ——
T 2 T 2 T 7 Ryl
. L L 1ok 2ke
COS = ——5,S511 = ——, COS = ——5, 811 = .
R T ™A Y 2 R N T ¥ oy

The simultaneous equations have 8 quintets of real solutions. One of these sys-
tems of solutions is numerically given by

k1 = 0.4315595002904898, ko = 0.6482315195103737,

ks = 0.6819400407827797, k4 = 0.5565231378830596,

ke = 0.3027756377319944.

By the above facts (i) -(viii), we may restrict our attention to this solution. Based
on this numerical solution we solve the simultaneous equations in ts, t7, ts, tg:

Boy = CsiCs3Cs3 + Si3Si3(cos® t5) — 2C's1Cs98i9Cs4Si4(costs)(costs) = ;—27

Boz = Cs28i2Cs2Cs3 + CsaCs28i3(cos’ ts) + SizSis(sin? t5) + 2C's,Cs2 Sy -
C'530548i4(costs)(costy) — 2C51Si2Cs38i3C 54504 (sin t5)(cos to)
—2C'55C's38i35i3(cos t5)(sints)(cos[ts — to]) = %,

Bsy = Cs2Cs38i3Cs2 + Si3Si2(sin® ts) + Si2Cs2Cs2(cos? ts) + 2Cs,C'sy -

SiyC's48i4Cs2(costs)(costy) — 25i2C's4Cs6Si6(cos ts)(sin ts)(cos ty)

—2051Cs2512514Cs6Si6(sints)(cos[ty + tg]) = %,
B3z = C(518i30s38i2Cs2 — 2Cs51C558i5Cs5C548i4Cs%(cos ts)(costs)
+2C's15i5C'538i3C54814Cs%(sin t5)(costg) + Cs2Cs2Cs2Cs52Csa(cos? ts)
+8i3Cs3Cs2(sin? t5) + Si35i3(cos? t5) + Cs3Cs3Sig -
(sin® t5) 4+ 2C's1Si5C'53514C56Si6{Cs2Cs3(sints)(cos(ty + tg])
+Siz(cos ts)(cos[ty + tg])} — 2Cs2Cs38i3(Cs3Csa — Siz)(costs) -
(sints)(cos|ts — to]]) — 2C'52C's38i3C 54C's6Si6(cos® t5)(cos[tr + tog — tg)])
7

+2082083Si30840865i6(Sin2 t5)(COS[t7 +tg — tg]) = 3*4
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By using the rational parameters ks, k7, ks, kg:

2
1 —k;
2
1+ k;

cost; =

we solve the above simultaneous equations in the field of complex numbers,
under the assumptions k1 = 0.431559..., ..., k¢ = 0.302775. The equations have
8 distinct (numerical) solutions, none of which being real, like the following one:

ks = 0.00602669 + 1.97721¢, k7 = 0.630428 + 0.7763014,

kg = 0.0010087 — 0.759703¢, kg = 0.222319 — 0.9757674.

Remark 6.2 The German artist Albrecht Diirer (1471-1528) published mathe-
matical works in the latest years of his life. Some authors studied his mathema-
tical contributions. We mention Fettis’ paper [6], where his contributions to the
theory of plane curves is analized, and Hughes’ article [11] on his contributions
to the approximate construction of regular polygons.

The following 4 x 4 unistochastic matrix is the normalization of a magic
square

5/13 4/13 3/13 1/13

2/13 4/13 3/13 4/13

4/13 2/13 5/13 2/13

2/13 3/13 2/13 6/13

We can find a unitary matrix U = U(t,...,t9) satisfying ®4(U) = B by a
numerical method.

7 Examples of a boundary point and of an inner
point of the set Uy

We shall provide an example of a boundary point of Uy, and an example of an
inner point of Uy corresponding to the critical points of ®y4.

Example 7.1 Let cost; = 1/2, sint; = \/3/2, costy = —costy = costy; =
1/\/§7 sinty = sinty = sint:m, costy = costg = costs; = costg = 1/\/5,
sints = —sintg = sints = 1/\@ Then the equation MF = 0 in Theorem 4.1 is
expressed as

F(tg) = (3 — 2V2) 4 (8 — 2v/2) cos(2tg) + (—5 + 10v/2) sin(2ty)

1

= { Atan®t —10 + 20v2) tant 11 —4v2)} = 0.
1+tan2(t9){ an”to + ( +20V/2) tanty + v2)}
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We can solve this equation as an algebraic equation in tantg, and the four
real solutions are:

(costg); = 5 (sintg); = 5+ 10v2 — 2V770 - 30v2
9)1 — K7 9)1 — K
with
K = [530 — 220v/2 + (=80 + 20v/2)\/35 — 15v/2 ]¥/2,
5 . —5 4+ 10v/2 + 21/70 — 30v/2
(costg)a = —=, (sintg)s = - ,
K
and

K = [530 — 220v/2 + (80 — 20v/2)1/35 — 15v/2 ]'/2,

(costg)s = —(costg)1, (sintg)s = —(sintg)1,
(COSt9)4 = 7(COS tg)g, (Sint9)4 = 7(Sint9)2.
Approximate values of these solutions are

(COS tg)l ~ 096494286, (sin tg)l ~ *026246005,
(costg)s ~ 0.24666287, (sintg)y ~ 0.96910135.44.

The corresponding two bistochastic matrices B = (B;;) have entries

1
By1 = Bia = Bi3 = Ba1 = B31 = 1
13 5—2V2
Boy = — ~0.36111111, B3y = ———— ~ 0.060321469
22 = 30 ) 32 36
commonly for the four solutions, and
1

By = %(7 — 2V/6(sinty);),

B3y = %{11+\f7(2\/§+\/6)(Cost9)j+(4\/§+\/6)(Sintg)j}

for j = 1,2. Approximate values of (Ba3);, (Bs3); are
(Ba3)1 ~ 0.23016073, (Bss3)1 ~ 0.11796295,

(Bas)a ~ 0.062566455, (Bs3)s ~ 0.55676347.

At the two critical points U(t1,...,ts, (t9);) (7 = 1,2), the rank of d®4 is
commonly 8. With respect to the inner product (Hy, He) = tr(H;Hz) of two
4 x 4 real matrices, the normal vectors N; orthogonal to the tangent vectors
d®y(X) for X € My(C), such that X + X* = 0, are (approximately up to a
factor) given by

N1 = (dB11,dBy2,dB13,dBs1,dBas, dBas, dBsy, dBsg, dBs3)
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~ (1.0937850, 1.4859549, 1.5016907, 1.229821, 1.5551168,
1.5858860, 1.3784921, 0.870277261, 1)

and
Ny = (dB11,dBy2,dB13,d B2y, dBaz, dBas, dBsy, dBsg, dBs3)

~ (—0.16851123,2.6998517,4.3188399, —1.3035747,
1.0939334, 6.6567463, —2.0949601, —5.5329685, 1).

We shall judge whether the bistochastic matrix B = (By¢) corresponding to
(to);, 5 = 1,2, is a boundary point or an inner point of Uy in the space of
4 x 4 bistochastic matrices. For this purpose, we use the criterion: (i) if both
B + eN; and B — eN; are unistochastic matrices for a sufficiently small ¢ > 0,
then B is an inner point; (ii) if one of B + €N is unistochastic and the other is
not unistochastic, then B is a boundary point. As a practical method, we use
the numerical approach in Section 4. For the matrix B corresponding to (tg)1
for (sintg); ~ —0.262460, we take € = 1/100. For the matrix B corresponding
to (tg)2, we take € = 1/200. The numerical criterion shows that the matrix
B is a boundary point for (t9);,while the other matrix B for (tg)s is an inner
point. In fact, B+ N;/100 is unistochastic and B — N7 /100 is not unistochastic.
The bistochastic matrices B corresponding to (tg)s and (tg)4 can be similarly
treated.
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