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Abstract

We consider a discontinuous Galerkin method to solve boundary value prob-
lems in curved boundary domains in two-dimensional. The question that arises
concerns the reduction of the order of convergence of numerical methods when
considering the approximation of the domain by a polygonal mesh. Unless the
boundary conditions can be accurately transferred from the physical boundary
to the computational boundary, the isoparametric element method is usually
employed to recover the optimal convergence orders. However, this technique
involves more complex algebra and additional computational costs when com-
pared to approaches using polygonal meshes, which are widely used due to
their simplicity in many applications. In this paper, we present and analyse a
higher-order strategy that achieves the optimal convergence order on polygonal
approximations of domains with smooth boundaries. The boundary approxima-
tion error is corrected by means of polynomial reconstructions of the boundary
conditions. We present a study on the existence and uniqueness of the solution and
derive error estimates for a two-dimensional linear reaction-diffusion boundary-
value problem with homogeneous Dirichlet boundary conditions in convex and
non-convex domains. We prove that the numerical solution exhibits an optimal
convergence rate under certain regularity conditions on the solution. A numerical
benchmark is provided to illustrate the theoretical results proven in this work.
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1 Introduction

In this work, we present an approach for solving boundary-value problems posed in a
curved boundary domain of arbitrary shape in the context of discontinuous Galerkin
(DG) methods. The study of boundary value problems in curved boundary domains is
a subject of growing interest in the numerical analysis community. One of the major
problems is the reduction in the order of convergence of numerical methods when con-
sidering the approximation of the domain by a polygonal mesh. In particular, the DG
solutions are highly sensitive to the accuracy of approximations of the curved bound-
aries [5]. It has been shown that given homogeneous Dirichlet boundary conditions
on a curved boundary domain €2, if these conditions are imposed on the polygonal
domain 2, any finite element method will be at most second-order accurate [31]. This
highlights the importance of the boundary condition treatment since the errors in the
boundary may pollute the solution inside the domain.

Over the past few decades, several techniques have been developed to remedy this
loss of accuracy. There are two main strategies to address this issue. The isopara-
metric finite element method [5] and the isogeometric analysis [16] aim to reduce
the geometric error without modifying the variational form. Therefore this technique
requires the construction of a mesh with curved elements on the boundary, which is
a challenging geometric problem where ineligible cells can be produced. Moreover,
this approach also raises some numerical challenges since it considers non-constant
Jacobian transformations from the reference element.

Another strategy considers a polygonal approximation domain 25, and focuses on
a modified variational formulation. There has been a growing body of research focused
on correcting the error that results from the approximation of the physical boundary
08 by a polygonal boundary 92, by modifying the boundary condition. In [22], the
authors consider a computational polygonal domain in place of the physical domain
and modify the normal vector involved in the wall boundary condition. However, this
method can only be formulated for slip-wall boundary conditions and the work is lim-
ited to 2D geometries. In [33], the author proposes a modified DG scheme defined
on polygonal meshes that avoids integrals inside curved elements. However, integra-
tions along boundary curve segments are still necessary. This approach was extended
to solving three-dimensional Euler equations and it was simplified by considering the
relation between the normal vector of the computational domain and the surface Jaco-
bian [32]. In the Shifted Boundary Method (SBM), the location where the boundary
conditions are applied is shifted from the true boundary to an approximate (surro-
gate) boundary. The value of boundary conditions is modified by means of Taylor
expansion, in order to reflect this displacement (see [4] and the references therein).

In [30] we developed a strategy called DG-ROD (Reconstruction for Off-site Data)
method, which is based on a polynomial reconstruction of the boundary condition
imposed on the computational domain. The main advantage of this approach relies on
the use of polygonal meshes without losing the accuracy of the method by considering
polynomial reconstructions to correct the error resulting from the approximation of
the curved boundary with a polygonal boundary. The ROD method has been proposed
in the context of the finite volume (FV) method [10-14] and it has been later extended
for the finite difference (FD) method on Cartesian grids [9]. Despite the numerical



evidence in the context of the FV, FD, and DG methods, there is no theoretical
evidence on the proof of the convergence of the method. Thus, the main contribution of
this work is to establish error estimates for a two-dimensional linear reaction-diffusion
problem with homogeneous Dirichlet boundary conditions concerning the DG-norm
and the L?-norm, and hence, fill a theoretical gap in the analysis of the DG-ROD
method for boundary value problems. The overall DG-ROD method can be obtained
by considering two different approaches: we can consider an iterative procedure of the
DG method and the polynomial reconstruction or we can consider a global system
where we only have to solve the problem once. In this work, we address the last
approach.

This document is organized as follows. Section 2 is devoted to introductory con-
cepts related to mesh notations and the space of discontinuous functions, and the
formulation of the problem to be considered. In Section 3, we start by analysing some
basic properties of the method, namely, we show the boundedness of the bilinear
form and we prove a weak coercivity. Moreover, we present a study on the existence
and uniqueness of the solution for the reaction-diffusion problem with homogeneous
Dirichlet boundary conditions, following the work developed within the framework of
the classical finite element method [26, 27]. The core of this work is represented by
Section 4, where we derive error estimates for the method introduced in this Section
2 for convex and non-convex domains. For the first case, we prove that the DG-ROD
solution exhibits an optimal O(h¥*1) convergence rate in the L2-norm when N-degree
piecewise polynomials are used, under certain regularity conditions on the solution.
Finally, the numerical experiments and results are reported in Section 5. In Section
6, we summarize the results and present some final comments and perspectives for
future work. The last part of the paper is an appendix that contains technical results
and upper bounds estimates used in the analysis of the method.

2 The DG-ROD Method

This section addresses the DG-ROD formulation for a two-dimensional linear
boundary-value problem on a curved boundary domain, which is discretised with piece-
wise linear elements. This method has the advantage of overcoming the difficulties
inherent to curved mesh approaches by discretising the physical domain with polyg-
onal meshes constructed from the conventional meshing algorithms, where piecewise
linear elements approximate the arbitrary curved boundary. The main idea of the DG
method is based on the use of discontinuous functions to obtain an approximate solu-
tion. Additionally, the DG-ROD method employs specific polynomial reconstructions
for the prescribed boundary conditions on the physical boundary. In order to allow an
easier description of our methodology, thereby avoiding non-essential technical details,
we consider a two-dimensional reaction-diffusion problem. The first step is the def-
inition of the mesh and the broken polynomial spaces. After providing an overview
of some basic ideas related to computational meshes, we present the primal formula-
tion of the method, which incorporates the modification derived from the polynomial
reconstruction of the boundary conditions.



2.1 Model problem

The methodology for dealing with curved boundary domains studied in this work can
be applied to different equations. However, to avoid non-essential technical details, we
consider the reaction-diffusion equation in a two-dimensional physical domain 2 with
arbitrary smooth curved physical boundary 0f2, considering the Cartesian coordinate

system & = (x,y). We seek function u = wu(x), solution of the reaction-diffusion
problem

—Au(z)+ec(@)u(z)=f(x), =z, (1)

u(z) =0, =€, (2)

where ¢ € C(Q), with ¢(x) > 0, for z € Q, and f € L?(€2). The Lebesgue space L?()
is defined as a space of mensurable functions v : @ — R such that ||u|\%2(9) < 400,

equipped with norm Hu||2LQ(Q) = (u,u)r2(q) and inner product

(u, w)L2() Z/Qu(a:)w(w) dex.

2.2 Definition of the mesh

The physical domain €2 is meshed with K non-overlapping straight-sided triangles
Tk k=1,..., K, leading to an approximate computational domain €, given as

K
o= J 1" (3)
k=1

The triangulation 7; = {T’ﬂk =1,...,.K } is assumed to be conformed where the
intersection of two elements is either a complete edge, a vertex, or the empty set. We
assume that no element 7% has more than one edge on 9§, and all the vertexes of the
polygon lie on 9. The space parameter h represents the maximum element diameter,

namely
h = max {hy}, hy= sup ||PL—P.
T+eTh Py, PeTk
The triangulation is also assumed to be regular [19] in the sense that there is a constant
p > 0 such that

h
vT* e T, =X <p, (4)
Pk

where pj, denotes the maximum radius of a ball inscribed in T*.

Let &, denote all edges of elements in T, and & denotes all interior edges. We
assume that exists a positive constant p such that for every element T% € 7;, and
e € &, NITF, we have [24]

:U/hk: < h87 (5>



where h, denotes the length of the edge e. Assume that exists a positive constant p,
such that

_ -
=P (6)

where Rpin, = mingeeq, {h7"}, with " = infp p,epr [|P1 — Pa.

Given an element 7%, denote as I*¥ the index set of the elements T¢ that share
a common edge e and by I” the index set of elements which have an edge on the
boundary, e*Z. Normal vector n*¢, ¢ € I*, is pointed outward of element T* and
nt* = —n¥. For each element 7% k € IZ, denote as Ay, the closed set delimited
by 99 and the edge e*Z (see Figure 1). Consider QF a subset of I® such that QF
denote the index set of elements that have an edge on the boundary and T* \ § is not
restricted to a pair of vertexes of 0f2.

Ay o9
esz ekB
T* Bk 90
Tk
Ok Ok

Fig. 1: Element 7% with an edge ¢*” on the computational boundary 99, for the
convex case where T* C ) (left panel) and for the concave case, where T* ¢ € (right
panel).

2.3 Space of discontinuous functions

The discontinuous Galerkin method is based on the use of discontinuous approxima-
tions. Thus, we introduce the so-called broken Sobolev spaces Hl(ﬁ), with [ = 1,2,
as

HY(T) = {w € L*(Q) s w,, € H(T*)vT* € T}

Note that
K

(w,v)2(0,) = Z(’U},’U)L2(Tk), Yw,v € LQ(Qh),
k=1



where (u,v)p2(pry denotes the usual inner product on L?(T*). For w € H'(Ty), with
Il =1,2, we define the norm

K
2 2
[[w][ T = Wl (7 -
(Tw) (T*)
k=1

where [|wl| g1 () denotes the usual H Lnorm on the element T*. We define the space
of discontinuous piecewise polynomial functions

Spn = {v € L*() vy, € Py (Tk) VT € 771} ;

with Py (T’“) denoting the space of polynomials of degree less than or equal to N in
element T*. We also introduce broken operators by restriction to each element 7% € 7y,
as follows:
® The broken gradient operator V, : H*(Ty,) — [L?(21,)]? is defined by (V,,v)
V(v ), for TF € Tp, v € H'(T).
® The broken divergence operator V- : [H1(73)]? — L*(Q4) is defined by (Vy, -
@), = V- (q,,) for T" € Ty, g € [H(T;)]*.

Let T' = Ugprer, OT* and T'g = '\ 982y, the traces of functions in H'(75) belong to
T(T) = preq, L2(9TF). Note that v may be double-valued on Ty and is single-valued
on 0.

We introduce some operators that will be useful for manipulating the numerical
fluxes and obtaining the primal formulation. Let e¥* be an edge shared by the elements
T* and T*. For q € [T(T)]? and u € T(I'), we define the averages {{q;}}** and
{{up}}** and the jumps [q]*¢ and [up]*¢ as follows:

ok

k 0 k l

q; +q Uy +u
{{qh}}kz: h2 h’ {{uh}}M: h2 h’
[ = n* gk +n g, ] = n*uf +

B

For a boundary edge e*Z, we define

Han}* = ar,  ({un}}*P =uh, (@™ =n"" g, [un]™® = n*Puj.

When it is clear which edge we are referring to, we usually omit the superscript k¢ and
simply write {{-}} and [-]. A convenient norm with which to carry out the analysis of
the method is the following [3]

K

el = > (lalrs ey + B2 ulfrzrny ) + 2 b [l 2oy (™)

k=1 ecly,



for u € H?(T},). For notational convenience, let

o2 = 3 1ol - (8)

ecéy,

for v € L%(Q,). Using a inequality ([7], Lemma 4.5.3), we may prove that, for T* € Ty,

hilvl gz my < Clolgr sy - (9)
Thus,
K
2 2 2 2 2
ell® = 37 (10132 n) ol ) + BElelagm ) +ol?
k=1
< (1+C) (Wl +0E3) - (10)

For each element T%, with k € IZ, let I*B be the index set of the discontinuous
Galerkin nodes different from the vertexes that belong to the boundary edge e*? (see
left panel of Figure 2).

Now, we introduce two spaces V;, and W), associated to Tj,. The space V}, is defined
by

Vi = {v € H3(Th) : tlo, =0, v, € Py (TF) VT € ﬁ}.

For convenience, we extend by 0 every function v € V,, to 2\ Q. W, is the space
defined in €2, that satisfies the following properties for w € W,

(1) W), € Pn (Tk) ,VTk € Tr;

(2) we H*(Th);

(3) The expression of w is extended to Q \ €} in such a way that its polynomial
expression in T%, k € I8, also applies in Ay;

(4) w vanishes at the vertexes of 9, and w(P¥) = 0, r = 1,...,N — 1, ¥I* €
Th,k € IP (where each point P* is chosen to be the nearest intersection with
the physical boundary 9 of the line passing through the vertex Oy of T% not
belonging to 99 and one of N —1 discontinuous Galerkin nodes z¥,i € I*B lying
on the associated boundary edge, e*#). Thus, w vanishes at N + 1 points on 9.

For notation proposes, assume that the vertexes of the element T, k € I®, on
0f) are denoted by P]’f, and P]’f, 41+ Thus, according to property (4), we may write
w(P¥)=0,r=1,...,N+1,VT* € Ty,k € I®. An example of the nodes associated
with Wy, is reported in Figure 2. Namely, the discontinuous Galerkin nodal set and
the points P*, » = 1,..., N — 1, resulting from a projection of the nodal points lying
on the boundary edge e*Z. For the non-convex case, the points P* are obtained using
the same approach.

For each element T*, k € IP,let my = N(N +1)/2 be the number of nodal points
that do not lie in the interior of the edge e*®. In other words, my = N, — (N —-1),
with N, = (N 4 1) (N + 2) /2. The next lemma establishes that W), is a non-empty



Fig. 2: Discontinuous Galerkin nodal set {wf}ZN:pl denoted by the black dots (left
panel) and points P*, r = 1,....N —1, denoted by the dots with diagonal lines pattern
(right panel).

finite-dimensional space and the proof of this result follows the same arguments as in
[28].

Lemma 2.1. Let Py (Tk) be the space of polynomials defined in T*, k € IB, of degree
less than or equal to N. Provided h small enough VT*, k € 17, given a set of my real
values fyf, i =1,...,my, there exists a unique function w € Py (Tk) that vanishes
at both vertex of T* located on 92 and at the points P* of 9Q, r =1,...N — 1, and
takes value v¥ respectively at the my nodes of T* not located on 0.

2.4 Variational formulation

In order to use a mixed formulation, consider the vector function g = (qw, qy)T defined
as the gradient of u, i.e. g(z) = Vu(x). Thus, we may write Au(z) = V - g(x).
Replacing this expression in (1), the solution is sought for the equivalent problem

“Veq(x)+c(@)u(z)=f(z), (11)
= Vu(z). (12)

q(x)

Consider that numerical solution uy, has the following decomposition

uf (z) € Wh. (13)

P~

up () =

E
Il

1

In each element 7%, the local solution uf has a polynomial decomposition with the
two-dimensional Lagrange polynomials

N,
zeTheTh: up(z)=) ulth(z), (14)
=1



where uf = “Z (a:f) are the nodal values of the Lagrange polynomials basis Zf (x) at

T
points ¥ € T# i=1,... , Np,.Vector ub = (u’f, . ,u%p) gathers the IV, nodal val-
ues. The DG discretisation of vector function g is also introduced by taking qﬁx, qfw €

T
W;, and the auxiliary variable discretisation expressed as qﬁ = (qﬁ . qﬁy) with
xeTFeT,: th Zqzcﬁk (=uz,v. (15)

T
Vectors qé“ = (q’f,c, ey q]’“\[p&) , ( = x,y, gather the nodal values of polynomials q’}f’c.
A discrete solution (up, qp) is sought for (11) and (12) that satisfy

N (v ' q’]i’qsl’i)m(w) * (C“Iff“qs]’i)m(w) - (f’ ¢Z)L2(T’”‘)’ (16)

(qﬁ’ﬂlﬁ)m(w) B (Vulfb,ﬂﬁ) L2(1%) =0, (17)

where (bi = ¢h\Tk € V), and HlfL = ]‘_‘[hITk: € W%
Now, if we integrate (16) and (17) by parts, following the same arguments as in
[30], and if we add over all the elements of the mesh, we get

(Qh,vhcﬁh)m(gh) — (cun, én) 2 Qh)+(f én) )t Z / k% “ds, (18)
TkET,
(quh)Lz(Q, — (un, Vi, - IIy) Lz(Q )“r Z / II; uhkeds (19)
TkET),

where q""‘fZ = q;kfk and u;"LM = u’,"f’“ are symmetric numerical fluxes defined on the

interface e*¢, and (;Sﬁf and Hff are the polynomials gbf; and Hfl defined on the edge e*¢.
Using the average and jump operators, note that ([21], Lemma 7.9)

W T ds = [ T T ke g wn VYR kg
Z/aT nhTIE /Fu WM ({1 d +/FO{{ WY s, (20)

TkET)

Integrating by parts we get

_ / V- Tydz= |V, Thydz— / [un ™ {0 s — / I, ds.
Qp Qpn T To (21)



Thus, applying identity (20), we can rewrite (18) and (19) as
(@, Vaon) L2,y == (Cuha¢h)L2(Qh)+(f»¢h)L2(Qh)+/F[[¢hﬂ‘{{q;}} ds
+[ tohainas 22)
To
(0T 0,y ==V TIa) gz, + [ - (T s+ / [{ui MIM]ds. (23)

We omit the superscript k¢ for brevity of notation in the expressions above. Now,
using the identity (21) in (23), we get

(qhvnh)Lz(Qh,):/(; Vitn-I, 01«’B+/F[[7~L?§—uhﬂ'{{Hh}}dSJr/F {{u—un} }[ILp]ds. (24)

Taking IT, = Vj ¢y and combining (22) and (24), we obtain

(thh,Vhfﬁh)L?(Qh)Jr(Cuh,¢h)L2(Qh)+/F ([up —un]- AV non}ty—lon]-{{q;}}) ds

+ (i = Y IVnon] = (o} Hail) ds = (. 01)soce (25)
0
The numerical flux is defined by considering the internal penalty fluxes given by
M= YV = el wi = {{un}}, on T (26)
q;*? = Vuf — nkP (ulﬁ - gD) . upP =gp, on o, (27)

where £ corresponds to the index of an adjacent element in the case of an inner interface
and ¢ = B for a boundary element. Parameter 7 = n/h., where 1 is some large
positive constant. Moreover, gp defines the boundary condition imposed in 9€2j,. Then,
replacing the numerical flux in Eq. (25) and attending that [{{-}}] = 0, [[]] = 0,

(O = (03} and ({11} = [, we may write
(Tt V) 20+ cundn) ot~ [ (Tl +o0-{Thundy ) ds

/[[¢hﬂ *[[Uh]] ds=(f, én)r2(,)— Z / (ganB A he 9D¢h> ds, (28)

kelB

where g]kj = 9D, for k € IB. Thus, scheme (28) corresponds to the interior penalty
Galerkin method [21].

Instead of imposing homogeneous Dirichlet boundary conditions on 0€, i.e. gp =
0, we consider a new boundary condition grop determined by the ROD method. The
polynomial grop takes into account the geometrical mismatch between 02 and 02y,

10



and it has the following decomposition

grop(x;a) @9( )

kelB

and in each element T%, with k& € I”, the local polynomial g* has a polynomial
decomposition with the two-dimensional Lagrange polynomials

zeTFeT: gk( ) Zakék (29)

T
where vector a* = (a’f, cee alf\,p) gathers the N, nodal values, af, and a gathers all

the vectors a*, k € I®. From [30], recall that the coefficients of each polynomial g*,
k € IB, are determined by solving the following system

Iy, BF | |aF u”
[(Bk)T Oner| [AE] T 0] (30)
where Iy, is the identity matrix in RN>*No 01 is the null matrix in RIVHD)X(N+1)

0 is the null vector in RVHD*1 and BF = [Bf, e BJI%H} in RNp*(N+1) - wwith

f= [ ()]
J v
for r =1,..., N + 1, including the vertexes of T% on 0€,. Thus,
-1
a*| | In, BF ub|  [C1 Co] |ut
Ak (Bk)T On+1 0 C3 Cy 0|’

where C; denotes the i —th block of the inverse matrix. Noticing that Iy, is invertible,
the inverse of the N, x N, matrix C; is given by [6]

T -1 T
o1 (o () 1) ()15

— Iy, — B <<B’“)T B’“>_1 (Bk)T

Thus, we get
k k k k:T k - kT k
o =ub— B (B)B (B)u.

11



Note that

0 (Py) O, (PE) | T ot uy, (PY)
T 0 (Py) O, (P2) | | b up (P7)
(Bk) ut = : . : = =0,
& (Phiy) oo, (Pha) | [oho] |k (Phs)

since uf € Wy,. Then a* = «* and ¢ = uf, with k € I. Replacing g%, by u¥ in (28),
we get for v € V),

(TntnFno)iaten +euno) ooy - [ (Tl 00+ BT (0w} 71401 Lo s

= (f,v)r2q,) — Z

kelB ¢

= (f0) ) — /8 ] (Vs + /

o

k kB Mok
(uhn “Vhu o — huth’“) ds
€

kB
n

h—ﬂuh]] - [v] ds. (31)
Attending that v = 0 on 09, and considering (31), we obtain

(thh,vhv)Lz(Qh)+(cuh,v)L2(Qh)—/F [[uh]]-{{th}}ds—/F [o] - {{Vnun}} ds

+ /F hl[[v]] [unlds = (£,0)22()- (32)

€

Then, the variational problem of (1)—(2) can be reformulated as follows: find uj €
W, such that
ah(uh,v) = (f, 'U)LZ(Q}L), Yv € Vy, (33)
where the bilinear form ay (-, -) is defined as

an(un,v) = (Vitn, V) (o) + (€m0 20 — / [un] - {{Vho}} ds
o

- /F [o] - {{Vnun}} ds + / h%[[v]}-[[uh]]ds. (34)

To
We call (33)—(34) the primal formulation of the method and the bilinear form ay (-, -)

the primal form.

3 Existence and Uniqueness of the Solution

In this section, we prove the existence and uniqueness of the numerical solution. We
start by analysing some basic properties of the method, namely, we show the bound-
edness of the bilinear form ay (-, -) defined by (34). Then, we prove a weak coercivity
in connection with finite-dimensional subspaces, with dim(Wp,) = dim(V},).

12



Now, we present the Generalized Lax-Milgram Theorem as stated by Brezzi [8].
Theorem 3.1 ([8]). Let X and Y be two Hilbert spaces and consider a a continuous
real bilinear form defined on X x Y. The following properties are equivalent:

1. a is weakly coercive, i.e., the following conditions are satisfied:
(i) Ja > 0 such that inf e x\ {05} SUPyey\ {0y} % > a;

(i) Yv € Y\ {0y}, Ju € X, such that a(u,v) # 0.

2. VL € Y' the problem a(u,v) = L(v) has a unique solution u € X which satisfies
the stability condition
1Ly

lullx < ===,

where « is the co-norm of a, i.e. the mazimum of all « satisfying (i).

In practice, the subspaces X and Y are often finite-dimensional. The following
corollary establishes a result of the weak coercivity in connection with finite-
dimensional subspaces. In particular, condition (ii) can be replaced with dim(X) =
dim(Y") for bilinear forms associated with finite-dimensional spaces.

Corollary 3.1 ([15]). If X and Y are finite-dimensional spaces, the bilinear form a
is weakly coercive over X XY if and only if either:

e condition (i) holds and dim(X) = dim(Y');

e matriz A associated with the bilinear form a is a square invertible matriz;
both conditions being equivalent.

Thus, to prove the existence and uniqueness of the solution, we may prove that the
bilinear form (34) is bounded, the inf-sup condition (i) holds, and dim(W;,) = dim(V4).
We start by discussing the boundedness of the bilinear form ap (-, -).

3.1 Boundedness

We show that the bilinear form ay(-,-) is continuous on H2(7,) x H?(Ty) equipped
with the norm |[|-]||, i.e., there exists a positive real number C}, such that

|an(un, v)| < Collunllllvll,  Vun € H*(Th), Yo € H?(Th). (35)

In particular, note that Wy, C H%(Ty,) and Vi, C H?(T3,). Recall that

|ah(uh,v)| < ‘(thh,vhv),;zmh) +’(CUh,'U)L2(Qh) —l—/ H[uhﬂ~{{vhv}}|ds
I'o

+/FO|M A{Vaun}}| ds + /F ds. (36)

h%[[vﬂ - [un]

We show that each term in (36) can be bounded by the |||-|||—norm. For the first and
second terms, we use the Cauchy-Schwarz inequality and obtain

K
(vhuh7 VhU)Lz(Qh,) + Z‘(Cuh,v)LZ(Tk)

K
+‘(Cuhav)L2(Qh) < Z‘(thhavhU)L%T"‘)
k=1

13



K

K
<D VRl g2 V0l pagrmy Hlel ooy D Munll z2iomy 10l 2 ey
k=1 k=1

<2 (1 el oy ) Nl (37)

Now, we bound the third term in (36). Using the definition of jump and average,
a straightforward computation shows that

/eﬂuh]] A{Vyv}tds = /e[[nuh]]{{vhv -n}}ds.

Thus,

/ [un] - (Vo) |ds = / runl {n0 - i} |ds < Imus]] .., {{ZZ}} . (38)

L2(e)

Employing the trace inequality ([2], equation (2.5)) for e € 9T, T* € Ty, we get

Using the inequality above and the inequality (9), we conclude

ov |I?

on

< C3 (he—1|u|§p(Tk) + he|u|§,2(Tk)) . wve HYTY). (39)
L2(e)

5 oo St 2)]

e€&o ec&y L2(e)
1/2 2 1/2
-1 2 Bv
<[l )| 2l {o]
ec&y e€&y L2(e)
1/2
K ov
< h || 22
cl [ 2 w2
k=1 \e€dT*nE, L2(e)
1/2

K
2 2
<lual, Z C7 ('U‘Hl(Tk)+hi|v|H2(Tk))
k=1

< Crv1+ Cqlupl, vl g,y < CrV 1+ Clupl o] (40)

Similarly, we can bound the fourth term in (36) as

/ o] - ({Vhun}}| ds < CrvV/ 1+ C2[of, Junl g,y < OrV1+ C2ol, [lunll-  (41)
o
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Finally, for the last term, we have
1/2 1/2

ds <n{ 3 b llllaey | {20 b el | =nlunltol.

ecly ec&p

[ur]- *[[vﬂ

J,

(42)

Combining (37), (40)—(42), for u, € H*(Ty) and v € H*(Ty), we get (35) with
C, = max{? (1 +\|c|\Lw(Qh)) CrVIT Cz’n}

3.2 Weak coercivity

Now, we address the weak coercivity of the bilinear form. The following theorem
establishes an inf-sup condition for the DG-ROD formulation (33)—(34).

Theorem 3.2. Consider the bilinear form ay(-,-) defined in (34). Given h sufficiently
small and n sufficiently large, there exists a constant o > 0 independent of h such that

ah(w7v)
Yw e Wy, \ {0}, sup ——— >a. (43)
AO% sup Tl

Proof. Let w € Wj,. Let v € V, such that v coincide with w at all mesh nodes, except
those located on 0%, that are not mesh vertexes. Thus, (w — v)|Tk = 0, for every

element T* that does not have an edge on 99,. Taking advantage of the relationship
between w and v, we may write

i (Vw Vw) 2 (rry +(cw, w)L2(Tk))—|—/ hl[[w]][w]] ds—Q/F [w]-{Vrw}} ds

k=1 Do Te
— Z ( (Vw, VrF( (w)) L2(w) +(cw, ¥ (w)) 2 Tk)) Z w)]-[u] ds
kelB ceeB 6
+ ) [[w]-{Vnrw)l ds + w)]-{{Vrw}}ds, (44)
ecEP”C eced €
where r(w) = @, rF(w), rk(w) = (w — v)|Tk = Y icivB w(zk)k(z), EF =

UkeIB’aTk and gOB = EhB n Fo.
We aim to estimate bounds for each of the nine terms in (44). Using the definition
of norm, we may write

K
Z Vw Vw L2 (T*k) —||Vhw||L2 (Qn) (45)
k

=1
> [ el fohas = n | S5 ol | = nCulel? 0

e€&y e€&y

15



with 0 < C,, < 1. Now, using the inequalities of the boundedness of subsection 3.1
(see (40)) and for ¢; > 0 we can estimate the following upper bound for the fourth
term in (44)

2> /[[w]] {Vhw}tds<2> /|[[wﬂ {{Vrw}}| ds

ec&y e€&y

2
w
< 200V1+ Clul g . < Crv/1+C? <el|wil<m,> + ') S

Now, we bound the terms with r(w). In order to achieve that, we start by noticing
that

Ol ;(w /. (48)
0 3 et .

From standard results, it holds for mesh independent constants C; and Cs

gk

< Cyhy,  and Hwk

< Ch.

L2(T*) L2(T*)

Using Proposition (A.1), Lemma (A.1) and following similar arguments as in [28], we
may prove that

\w(:cf)| < CooCoc Crhi||Vw| o (pr) -
Then, we get

Hrk(w)) <C vaHm(Tk)» (50)

L2(Tk)
where C; = (N —1)C1Csq, CxCy, and

ot

<C vaHLZ(Tk) ) (51)

L2(T*)

where Cy = (N = 1)C2C%q, CCy.
Thus, using the inequality (51), we get for the fifth term in (44)

Vi) < ChlVawliag,) -

> (Vw, Vit (w) ey < Y Vwll gz

kelB kelB

L2(T*)
(52)

16



Using the inequality (50) and considering €5 > 0, we obtain for the sixth term in (44)

> (ew r @)pany < Y lewll oy

kelB kelB

< Z llewl] papry Crh? [ Vawl| o

()

L2(T*)

< éthHCU)HLz(Qh) ||vhw||L2(Qh,)

2
o 2 thwHL2 Qn
< ?]72 62||Cw||L2(Qh) + ?(h) (53)
Let us now estimate the last three terms in (44). Note that, for €5 > 0,
n [r(w)] [w]
Z/—[[T - [v] ds<Z/ ) follds<n 3| 502 .t
ecgB” ¢ ecgB” ¢ eceB e L2(e)ll''e 1lL2(e)
2
n 2 Wi,
< 77|7'(w)|*|w|* < 5 <€3|T(’LU)|* +‘ | ) . (54)
€3
Using a trace inequality ([2], equation (2.4)) for e € 9T, T* € Tj,
2 ~ - 2 2
lolZqey < 3 (T lolZecrny + helolipnrny ) o v € HYTY), (55)

for v = r(w), and employing the inequality (5) we obtain

NI

k=1 ecdTkNE},

K
<> > htCER! ( rk
k=

1 \e€cdT*kNE,

2
(w) :

L2(T*)

Vrk(w)’

2
LZ(T’“)>

K
~ 1
<G| Y o (CERIVUl g, + CERI V)
k=

1 e€OT*NEY k

< 21| Vsl

where C2? = C% (C~’12 + C~’22> /u?. Then, we can write (54) as

> /7[[1” wlds <5 <6302h2|

ecEl

17



For the eighth term in (44) we have

el o oo

and then we need to bound each of the terms on the right-hand side of the inequality
above. Note that

UQ[[wn]]‘

> [l Farw }}ds>—2 I

ecEl ¢

UQ[[wn]]’ ds < Z/ IH[“’]H ds—lwl (58)

e€éy

On the other hand, using the inequality (39), we get

2

K or(w)
h1/2 < he
>/ s ¥ on
ecEP k=1 \e€dT*nEy e
. 271 k 2 2| koo
< Z Z heC7h, (HVT (w)‘ g + hZ|r"(w) H2(Tk)>
k=1 e€cdTkNEy
Using (51) and recalling that h2|r*(w {H?'(Tk) < C%rF(w |§{1(T’€)’ (see [7]), we obtain

K 2
ds <> 31+ c?)Hwk(w)‘
k=1

L2(T*)

w{{e

Finally, replacing (58) and (59) in (57), we get

oy

ecEP

< C3(1+ C?)CER?|Viwl[}aq,) - (59)

> [Tl (b ds = 5 (ul + 030+ ORIV, - (60)

ecEP

Applying a similar argument, we can estimate a lower bound for last term in (44).

Note that
5 2
w
he{{an}}‘ dS, (61)

n [l |+

>[I ﬂ{{vhw}}dwfz/

ecgB ¢
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and so we need to bound each of the terms on the right-hand side of the inequality
above. Recalling assumption (6) we may write

h rtwyn]| ds < [r(w)

2 1 -
LS h%th2|w|2H1(Th) < Pcfh|w|§11(n) - (62)

ecEl

On the other hand,

= e dfa ]

ecEl

o[ 0w
on

ds

D

1 \ecdT*kNEy,

k L2(e)

]~

> nCint (vaHi%Tk) + h3|wﬁ12(w)>

k=1 \e€dT*kNEy,
K
k=1

Thus, replacing (62) and (63) in (61), we obtain

/[[7“ - {Vaw}}ds > — <p02 +C2(1+ 02)) Wwli i, - (64)

ecEP

Let us finally consider the terms containing the function ¢ in (44). Taking (53) into
account and considering

nt <t =2/ (Cresllell e, ) (65)
we get
X c
Z(Cw,’lU)L2(Tk)— Z (cw, r* (w LZ(TA)>Z < cw,w) 2 Tk)——h €2||Cw||L2(Tk)>
k=1

C
((cw, w)2(rky + (cw, —21h,2€20w)L2(Tk)>

Il
M= T &
o]

C
(cw7 (1— 21h2620)w> > cminc'||w\|ig(ﬂh) ,
L2(T*)

=
I
—

with ¢min = mingegq, c(x) and

Ch
d=1-— 7h252”CHL°°(Qh) . (66>
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Using (10), we may write
ol < Cu (02 +IVA 13200, +luol?) (67)

Note that using an inequality of Poincaré-Friedrichs type valid for w € H(T;,) (see
[2], Lemma 2.1), we get

ll® < e (Co (190010 +Hul2) +1¥01E 5+l )
< C2u (14 Cr) (19wl +lul?) (65)

Then, combining the bounds for each term of (44), namely (45)—(47), (52), (53),
(56), (60), (64), we may write (44) as

an(w,v) = Callwl|?, (69)

s i Cmin > 0, and Cy, = min{62763}/(02ux(1 +
Cp)), if emin = 0, and Cy = ¢pinc’, with ¢’ is given by (66),

62 = (1 —Crv1 +0261) —h <é2 + % (Cfﬁ+c%(1 +C2)))

where Cp, = min{@1,62763}/02

G, 1 N Cc?
21 L 2) A2 Oy
h <2€2+20T(1+C)02+7763 2)

and Cs = —CpvV1+ C2 /ey — 1/2 +1Cy — 1/ (2¢€3).

Note that, considering (65) and cpin > 0, Cy > 0 (see (66)). For Cs, if we take
€1 <1/(Crv1+ C?) and h < hgy, where hy is the positive root of the equation (in h)
Cy = 0, we have Cy > 0. For 6’3, considering €3 > 1/(2C,,) and taking

( 1 )(1 CT\/1+C2>
n=2——— | (5 + ),
Cw 2 €1

we get

~ 1 Crv1+C?

Gy Ly CVIECE
2 €1

Thus, considering h sufficiently small in the sense that h < hg = min{h;, ho}, we have

(69) with C, > 0.

Note that using (50)

0.

0]l 2 ny S Nwllzirmy + Crh? [ Vwll g2 gny < V21 + Cib®)|[w]] g vy - (70)
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Similarly, considering (51), we obtain
V0] L2y < (14 Cab) IVl 2y - (71)

Note that |v]* < 2th2||Vhw||2Lg(Qh) + 2|w|? and then
2 _ A 2 2 2 2
1 < B2 (101 ) +I V00120, +12) < C2ll?

where C2 = C2, max{2,2(1 + C1h2)2 + (1 + Cahg)? 4 202h2}. We get

ap(w,v) _ Cy

— T > _— = q.
lwl[{llv]ll — C

an(w,v) > g—jnmuunvm -

O

Using condition (i) of Corollary 3.1, since dim(W},) = dim(V}), the fact that the
inf-sup condition (43) holds, implies that (33)—(34) is uniquely solvable.

4 FError Estimates

In this section, we derive error estimates for the DG-ROD method for convex and
non-convex domains. We first analyse whether the Galerking orthogonality holds in
each case, and if it does not hold, we derive estimates for the resulting residual. To
estimate the error, we use the inf-sup condition (43) and classical interpolation results.
Let I,(w) € W), be the Py-interpolate of w at the nodes associated with W,. First,
we note that if k ¢ IZ, then Ij,(w) is the standard interpolate of w at the mesh nodes
x¥ (see left panel of Figure 2). If k € IZ, then I;(w) is the interpolate of w at the
set of my + 2 mesh nodes =¥ that do not lie in the interior of e¥Z, together with the
N — 1 points lying on 0 associated with the mesh nodes of 7% lying in the interior
of e¥B (see right panel of Figure 2).

4.1 Convex case

We start by discussing the consistency of the method. Let 2 be a convex domain,
u € H?(Q) the exact solution of the boundary value problem (1)—(2) and v € V.
Attending that Qj, C Q, [u] =0, [Vu] = 0 and using the estimate (21), we get

ap(u,v) = (Viu, Vav)p2q,)+(cu,v) 12 ;)

Ui
—Aoﬂuﬂ {{Vnv}} ds—/FO [v] - {{Vhu}}ds + /Fo Kﬂv]] - [u] ds
= (Vau, Viv)r2(q,) + (cu,v) L2 q,) —/F [v] - {{Vru}}ds

=~ Vi o)saey + [ [ {Twubds+ [ (oD Vaulds
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+(cu,v)2(y) 7/1‘ [v] - {{Vau}}tds = (f,v)r2(,)-

Thus, the method is consistent and the Galerkin orthogonality holds
ap(u —up,v) =0, Yv € V. (72)
Theorem 4.1. Let Q be convex and u € HNTL(Q) be the solution of (1)—(2). Then,
for h sufficiently small and for a suitable constant C independent of h and u, the
solution up, of (33)—(34) satisfies
llw = wnlll < CAN[ul prvs1(g).- (73)
Proof. First, note that ||u — upl]] < ||u — In(w)||| + ||ur — In(w)]|||, with Ip(u) the

Pn-interpolate of u at the nodes associated with W),. Using the inf-sup inequality
(Theorem 3.2), we get

1 ap(up — Ip(u),v
M - ()] < £ sup 20 —In(w),0)

(74)
@ vev,\ {0} [l

Adding and subtracting u in the first argument of aj,, using the Galerkin orthogonality
and the boundedness inequality (35) yields

Cy
e = wall < (1+ ) o= Tl

Recall that, as the interpolant Iy (u) is discontinuous across the inter-elements
boundaries, the jumps u — Ip,(u) will not be zero. Therefore

K
Il = ) lI* = 37 ([ = Tu )y + 1w = T s gy + B = Tn(0) Gy )
k=1
SO [ R %) [ (75)
e€éy,

and, using (75) and (55), we obtain

K
Ila = In@)II? < €7 (= a0 [y +lu = Iy + 1E|w = T (0)
k=1

_ 2
+hk2||u_1h(u)“L2(Tk)) : (76)
From Lemma A.2, considering p =2, m=N+1, 7=0,1,2 and h < 1, we establish

llu = In(u)lll < Cah™ul gr-q)
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Thus, (73) holds with € = C, (1 + Cy/a). O

The next theorem establishes that the DG-ROD solution exhibits an optimal

O(hN*1) convergence rate in the L?-norm when N-degree piecewise polynomials are
used, under certain regularity conditions on the solution.
Theorem 4.2. Let Q be convex and u be the solution of (1)—(2) belonging to
HNTMH7(Q), with r = 1/2 + ¢, for € > 0 arbitrary small. Then, given h sufficiently
small, the solution up of (33)—(34) satisfies for N > 1 and a suitable constant Cy
independent of h and u

flu— uh||L2(Qh) < COhN+1||u||HN+1+’“(Q) : (77)

Proof. Recall that every function in W, is defined in Q\ Q, and let z € Hg () be the
solution of

—Az(x)+c(x)z(x) =u(x) —up(x), x€,
z(x)=0, =z
We know that u — uj, € L*(Q), z € H*(Q). It is well-known that if 9 is C? (see,

for example, [17], Theorem 6.3.4) or  is a convex polygonal bounded domain with a
Lipschitz boundary (see [20], Theorem 4.3.1.4) there exists a constant C' () such that

HzHHz(Q) < CQ)|lu— uhHL2(Q) : (78)
Then,

2
||U—Uh||L2(Q) (u—uh,—Az—i—cz)Lz(Q)

[ = unllp2(q) < C(Q) =C(Q) (79)

||Z||H2(Q) HZHHQ(Q)
Considering Ah = Q\ 5, we have

(u—up, —Az + cz)r2() = (U — up, —Az + cz)2(,) + (U — up, —Az + cz) 2 (an)

= (Vi(u—up),Vz)r2(0,) + (U — un, cz)r2(0,)

K
0z N
_ E / k(u — uh)% ds+aap(u — up, 2)+b1p(u — up, 2),
k=1"9T"

with

anp(u—up, 2) = / Vi(u—wup) Vz 4+ (u—up)czde, (80)
Ah
and 5
z
bip(u —up,z) = —/ém(u—uh)% ds. (81)

Using the equality (20) and attending that [z] = 0 and [Vz] = 0, we may write

(u—up, —Az +cz)r2(0) = (Vi(u —up), Vz)r20q,) + (U — un, c2)12(0,)
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f/ﬂufuh]]{{v,z}}dsf/ {{u —un}}[Vz] ds
r Lo
- [ v w s+ [ L ds

To
+ aAh(u — Up, Z) + blh(u — Up, Z)

= ap(u — up, 2) + aap(u — up, 2) + bip(u — up, 2)

0z
_ /Bﬂh (u— uh)% ds. (82)

In order to estimate the bilinear forms, consider II;(z) a continuous piecewise
linear interpolate of z in Q at the vertexes of the mesh. Then, setting z;, = IIj,(2), in
Oy, we have z, € V. Therefore, since €;, C Q

an(u, zn) = (f, 2n)12(Qn) = an(Un; 21)- (83)
Now, observe that

ann(u—up, 2) = aap(u —up, 2 — Mp(2)) + aan(u — up, Op(2))

—aAh(u—uh,z—Hh Z A u—uh)Hh( )d
kelB
O(u — up)
+ c(u — up)p(2) de + Z ——— 1 (2)ds
i Jaruagnee On

= 6Ah(u — Up, 2 — Hh(z)) =+ bgh(u — uh,Hh(z)) + b3h(u — uh,Hh(z)),

where
ban (u — up, I (2 Z / A(u — up)p(2) + c(u — up) i (2) de, (84)
kers ’Ax
O(u — up)
ban(u — up, x(2)) = Z Tﬂh(z) ds. (85)
pern ) (TFUAL)NOQ n
Setting ey, (z) = z — I (2), we get
b4h(u—uh,eh(z)) :6Ah(ufuh,zfﬂh(z)). (86)

Then, we may write
ann(u—up, z) = bop(u — up, Up(2)) + bap(u — wp, Mg (2)) + bap(u — up, en(z)). (87)
Now, using the Galerkin orthogonality (72), since II5(z) € V,, we may write

ap(u—up, 2) = ap(u — up, z — Up(2) + Up(2)) = an(u — up, en(2)). (88)
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Considering

0z
bsp(u —up, z) = 7/ (ufuh)a— ds, (89)
oy, n

and combining (87) and (88) into (82), we get

(v —up, —Az +cz)r2(0) = an(u — un, en(2)) + bin(u — un, 2) + bap(u — up, Iy (2))
+b3p (u — up, I (2)) +bap (w — up, ep(2)) +bsn (v — up, 2). (90)

Thus, we obtain

u— up, ep(2)) + bip(u — up, 2) + bop(u — up, My (2))
||Z||H2(Q)

u — up, Up(2))+ban (v — up, en(2)) +bsp(u — up, 2)
||ZHH2(Q) .

an
s — unll gy < C(O) 2

+C(Q) ban( (91)

Using the boundedness inequality (35) and applying Theorem 4.1, we note that
an(u —un, en(2)) < Cylllu = unllllen()ll < CoCh™ul gravsa gy llen(2)l. - (92)
From (76) and applying Lemma A.2 with j =0, 1,2 and since h < 1, we establish
llea (I < Cozhlzl sy (93)
with Cq . a mesh-independent constant. Thus, we rewrite (92) as
an (i — s n(2)) < Cah™ull grasssn |2l sz (94)
where C, = Cp,CClq .

Estimates for b;;, with ¢ = 1,2,3, 4,5, can be established as follows (see Appendix
B):

bun(u — up, 2) < Corh™ [l gravrir oy 12l 20 » (95)

bon(u — un, Mx(2)) < b2hN+2||u||HN+1+’(Q) 121 r2(q) » (96)

ban (u — un, I (2)) < Coah™ Hull grvrsr ) 12l 2y » (97)
ban(un — u, en(2)) < Coah™ 32 |[ull yxrsr oy 121l 2 - (98)

bsn(u — un, z) < Cs N+1||u||HN+1+7‘(Q)”ZHH?(Q) : (99)

Finally, combining (94) with the estimates for b;,, with ¢ = 1,2,3,4,5,
(95)—(99) into (91), owing to the fact h < 1, we obtain (77) with Cy =
C(Q) (Cy + Cp1 + Crz + Chs + Cpa + Cis). O
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4.2 Non-convex case

Now, we consider a non-convex domain €. In this case, as the Galerkin orthogonality
does not hold, there will be a non-zero residual ap(u,v) — (f,v)r2(,), v € Vi. We
introduce a smooth domain € close to Q such that ), = QUQ;, C Q and length(9Q) —
length(09) < ¢, for € sufficiently small (see Figure 3). Similarly to the norm defined
in (7), we consider the following norm in Q N Qy, for u € H%(Ty),

2 K
(Il = 3= (lulliscrengy + B luliacrengy ) + D2 e [ udlffaunny - (100)

=1 ecép

Fig. 3: Left panel: Example of a non-convex domain € delimited by the solid lines,
a polygonal mesh ) delimited by the dashed lines and §2 delimited by the dotted
lines. Right panel: example of QN Q.

Consider f extended to Q\ Q such that f € HN='(Q) and we still denote the
extended function by f. Assume a continuous extension of ¢ to \ Q. Then, the
following theorem holds:

Theorem 4.3. Assume that there exists a function @ defined in Q such that @ €
HNHY(Q), @ coincide with u in Q, @ satisfies (1) in Q and @ vanishes on OQ in the
sense of trace. Then, for h sufficiently small there exists a mesh-independent constant
C such that B

llw = unlll” < CA¥[@l grvr iy (101)

where |||-||" denotes the norm defined in (100).

Proof. We extend every v € V, by zero on Q \ Q. Thanks to the properties of ,
note that the proof of this theorem is based on the same arguments of the proof of
Theorem 4.1. Since ||u — up|||"” < [||& — ual||, we obtain (101). O

Note that, given a regular f in €2, the existence of an associated @ satisfying the
above assumptions is not ensured. Thus, let us consider that f vanishes in Qj \ Q.
Denoting by @ the regular extension of v to € such that @ € HN11(Q) and Ul = U,
in the following theorems we estimate the non-zero residual ay(,v) — (f,v)r2(q,)
considering two different approaches.
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Theorem 4.4. Let u € HVNTY(Q) be the solution of (1)—~(2). Provided h sufficiently
small, there exists mesh independent constants C; and Cqy such that the numerical
solution uy, satisfies

= unlll” < Coh™ |l gva ) + Coh®’?||-Adi + ctl| 2y (102)
where @ is the regular extension of u to @ such that i € HN“(Q),
Proof. Note that

Ml = unlll” < (115 = wnlll < [l1G = Zn (@) + lun — (@), (103)

with Ip, (@) the Py-interpolate of @ at the nodes associated with Wj,. From the inf-sup
condition (Theorem 3.2), we get

ah(uh — Ih('ﬁ)/l))

1
llun = In(@)] < = sup (104)
@ pev,\{0} (]l
Adding and subtracting @ in the first argument of a;, yields
an(up — In (@), v) <|ap (@ — In(@), v)| +|an(w, — @,v)|. (105)

Following the same argument as in the proof of Theorem 4.1, using the boundedness
inequality (35) we obtain

|an (@ — In(@),v)| < Collla— In(@|lflv]ll

As the Galerkin orthogonality does not hold, we need to estimate ap(up — @,v).
First, note that

an(t,v) = (Vpi, Viv)r2(,) + (€, v)12(0,) —/F [v] - {{Vni}}ds
=—(Vp- Vha,U)LZ(Qh) + /F[[’U]] . {{Vm]}}ds —|—/F {{U}}[[Vhaﬂ ds
+et) oy = [ [0 (i} s

—(V -Va, U)Lz(Qh) + (Cﬂ, U)LZ(Qh)

Z (—Aﬂ+C’L~L,U)L2(Tk) —+ Z (—Aﬁ—i—cﬂ, 'U)LZ(Tk).
keQB k¢QB

Then,

ap(up —a,v) = (f, v)LZ(Qh) —ap(t,v)
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Z (va)L2(Ak) - Z (*Aﬂ+cﬂ,v)L2(Ak)

keQB keQB
= Z (—Aﬂ + cu, ’U)Lz(Ak)7
keQB

since f = 0 in Q, \ Q. Now, following the same argument as in Appendix B for the
estimate for byj, we obtain

Z (=AU~ ct,v)r2(a,)| < Z [=Ad + cil| 2 q 0 V]l L2,

keQB keQb
3/2 ~ ~
< D7 VCoahi =8+ cilla a0l 1o s - (106)
keQB

Recalling that v = 0 on 09y, by the Mean Value Theorem and Proposition A.1, we get
[v(P)] < Coah V|l oo (rriin,) » VP € Dk, T k€ 17, (107)

Considering the inequality (107) and Lemma A.1, we may write
[0l a0y < ConCotn|T0ll o, (108)

Then, replacing (108) in (106), we get

2 2 ~ ~
Z (A + cti, v)r2(ay) Z Cgs/z Cth/ I=Ad + ctl 2 q ) VOl L2 ()

keQB keQB
< CHEC 2| = At + cil] o) I VY| 2y
< CHECIR2 |~ A+ cl| 2 g 0]l (109)

and so the inequality (104) may be written as

N Gy N 03/20, o
llun = Tn(@ll < —lla = Tn(@)]l + —OL B2 = At + cill| 2 g -

Finally, replacing the previous inequality in (103), we establish

&\ N 03/20, o
lu —unl|” < (1 + ) @ — In (@)l + —22—=h"2||=Ad + cill| L2 (g -

Now, following similar arguments as in (75) and using Lemma A.2, considering
p=2,m=N+1,7=0,1,2 and h < 1, we establish

= Tn (@)l < Cah™|al vy -
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Thus, (102) holds with ¢; = G, (1 + G, /a) and Gy = C32C, /a. O

We can estimate a similar result by considering || —Ad + cﬂ||Lw(Q).

Theorem 4.5. Let u € HNTY(Q) be the solution of (1)~(2). Provided h sufficiently
small, there exists a mesh independent constants C1 and C{ such that the numerical
solution uy, satisfies

Il = wnll” < Cult™ |l @y + ColT2 =B+ cill iy, (110)

where @ is the regqular extension of u to Q such that & € HN11(Q).

Proof. According to the Sobolev embedding Theorem [1], since & € H N+1(Q)), then

Au € L>*(Q). Now, following the same steps as in the proof of the Theorem 4.4 up to
equation (106), and applying the Cauchy-Schwarz inequality, we get

Z (AT + cli,v)2(a,)| < Z ||*Aﬁ+Cﬁ||L2(Ak)HU||L2(Ak)

keQB keQB
3/2 - - 3/2
< Z \/Caﬂhk/ ||—AU+CU||Loo(Ak) VCBQhk/ ”'UHLOO(Ak)
keQB
~ ~ 1/2
< C3aCyh™ ||~ + cit] ooy 3 ha 2V ey
keQB
1/2
< C3aCuh 2|~ At + ciill ooy | D T ([l]l
keQB
< C3aCrCOQ)NT?||=Adi + cit| oo q V]I, (111)

C2(99). Thus, (110) holds with C; = C, (1 + C’b/oz) and C) = C2,C;C(00) /. O

assuming that exists a mesh-independent constant C'(92) such that » , on hr <

Note that, using the Theorem 4.4 for N = 2 and a suitable constant Cs, we get
= unll” < Coh? ([l s gy + h/2 | =i + ]z g (112)

and considering the Theorem 4.5 for NV = 3 and a suitable constant Cs, we obtain
e = unll < Csh® (@l sy + 721~ 00+ €l ) - (13)

We now establish error estimates in the L?— norm in the case of a non-convex
domain 2, by requiring more regularity from the solution u. The optimal convergence
can be achieved not only when u is more regular but also when the computational
domain 2, approximates better the physical domain €, i.e., when Qj \ Q is of order
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h?, with ¢ > 2 [23]. However, unless the assumptions of the Theorem 4.3 hold, with
our definition of €, optimally is not attained for N > 2, see Proposition A.2.
Theorem 4.6. Let N = 2. Assume that ) is not convex and u € H3¥" () is the
solution of (1)—(2), forr = 1/2+¢, with e > 0 arbitrarily small. Then for h sufficiently
small, the following error estimate holds:

Ju— uh”L?(QﬂQh) < Coh? (||ﬂ||H3+v-(Q) +|ﬂ|H3(Q) + h1/2H—Aﬂ + Cﬂ”y(ﬁ)) ;o (114)

where Cy is a mesh independent constant and u is the regular extension of u to Q such
that @ € H3*(Q), for r =1/2 + €, with € > 0.

Proof. Recalling the proof of Theorem 4.2, let z € HZ(£2) be the solution of

—Az(x)+c(x)z(x) =u(x)—up(x), =,
z(x) =0, x e

Then, considering Q = (2N Q) U Ay, and using integration by parts we obtain

— ,_A +

HZHH2(Q)
_ C(Q)a%(u — up, z) + aan(u — up, 2) + bip(u — up, 2) — faﬁmﬂ(u — uh)g—fl ds
B 120 220 ,
(115)
where aap, and by, are defined in (80) and (81), respectively and
ap(z,u —up) = (Vi(u —un), V2)2(0na,) + (4 — un, ¢2) 12 (0nay)
= [ [l {Valu—up)}tds — / [v—wun] - {{Vz}}ds
To To
n
+/ h—ﬂu—uh]] - [#] ds.
Ty €
Thus, since [|u — un || 12(0n0,) < v = unll 2, we have
ay (u—up, z) + aan(u — up, 2) + bip(u — up, 2)
= wnll gy < C(R) %
HZHHz(Q)
9z
u — up) = ds
o C(Q) fthﬂQ( h’)an (116)

[

Since f =01in Qp \ , Yv € V), we get

ap(up,vp) = / —(Au+ cu)v, de = —/ g—uvh ds + aj, (u, vp). (117)
QnQy, aangy, on
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Thus, using (117), for v € Vy,, we may write

—ay, (u — up,vp) + ben(un, vn) + brn(u — up,vp) = 0, (118)
where
ben (up, vp) Z / (—Auyp, + cup)vp, de, (119)
keQB ¥ Ak
and
brn(u — up,vp) = Z / th ds. (120)
kcoB JoenT* n

Now, considering v, = II(z) in (118) and

bsp(u — up, z) = —/ (u—uh)%ds, (121)
9Q,NQ on

we may write (116) as

ay, (u —up, en(2)) + aan(u — up, 2) + bip(u — up, 2)
||Z||H2(Q)
up, 115 (2)) + brn(u — up, 15 (2)) + bsp(u — up, 2)

||z||H2(Q)

flu — Uh“m(smszh <C(9)

+ C’(Q)b6h(

)

where ep,(z) = z — I, (2). Recalling bap,, bgp, and by, given by (84), (85) and (86),
respectively, and adding and subtracting IT;,(2) in the second argument of the bilinear
form aap, note that

ann(u — up, 2) + byn(u — up, i (2)) = aan(u — un, en(2)) + @an(u — un, i (2))
+ brp (1 — up, Iy (2))
= ban(u — un, en(z)) + ban(u — up, Hp(2))
(

+ b3h(u — up, I Z))
Thus, we may write

bin(u — un, 2) + bap(u — up, i (2)) + bap(u — up, Mx(2))

l|u— UhHm(mQ,,) <C(Q)

H2HH2(Q)
N C(Q)b4h(u — up, en(2)) + ben(up, Ip(2)) + bgp(u — up, 2)
||Z||H2(Q)
/ —
+C(Q)ah(“ un; en(2)) (122)

HZ||H2(Q)

We are left to estimate upper bounds for the bilinear forms aj,, bgp, and bgp. Using
the boundedness of the bilinear form and applying the Theorem 4.4 with N = 2 (see
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inequality (112)), we first note that
(1w en(2)) < CoCah?® (] sy + B2~ A0+ el oy ) len(2)II' (123)
On the other hand, similiar to (93), we get
llen(I" < Co 2hlzl g2y »

with Cf, , a mesh-independent constant. Thus, we rewrite (123) as
(1 = uns en(2) < Cu? ([ oy + B2 =00 + cill oy )2l gaey . (124)

where C! = CbCNQCb’z. An estimate for an upper bound for bg;, can be established as
follows (see Appendix B):

bon (.14 (2)) < Cph™ anw@ﬁhw (@ s + hl/znAmcanm))) 2l 120
(125)

Following similar arguments as in the estimates for bs;, and applying the error
estimate (112), we get

< Cysh?® (H’&”HEerT(Q) +|71|H3(Q) + hl/QH_Aa + CﬂHLQ(Q)) ||Z||H2(Q) :
(126)

Estimates for byj, bap, bsp, and byp, can be obtained by following the same arguments
as in the proof of Theorem 4.2, taking NV = 2 and noticing that in this case, we apply
Theorem 4.4 instead of Theorem 4.1 (see Appendix B). Thus, |u|H3(Q) is replaced by

1] s () + M2 || —Ad+ ctlf| 12 (g in the estimates for by, i =1,2,3,4.
Finally, combining (124), (125) and (126) with the estimates for b;,, with
i = 1,2,3,4, into (122), owing to the fact h < 1, we obtain (114) with Cy =

() (C’(’l + Cp1 4+ Cha + Chs + Cha + Cos + ébg), where Cp; is the constant in the
estimate for b;j,. O

5 Numerical Results

Let denote by up, an approximation of the solution v for a given mesh 7, and ||u — up, ||
the norm of the error. The method is of convergence order p if one has asymptotically

[l = unl| < CHP,
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with C' a real constant independent of h. The errors are assessed at the node points
of the elements, T* € T;, k=1,..., K. We compute the L?-errors

K
2
By (T) = llu = unl 2,y = y| DIt = unlZacrey-
k=1
Recall that

N, N,
ooy = (ko) = [ 2D et (@) 6 () o = ()T

i=1j=1
k _ (pk gk
where M} = (fi ’EJ)L? %)’
Consider two different meshes, denoted as 7j, and 7},,, whose the corresponding

numerical solutions are denoted as uy, and wup,, respectively. Then, the convergence
order between two successively finer meshes is determined as

log (B2 (Th) /B (Th.) )

02 (77L177712> = log (hl/h2)

For the numerical tests, we consider c¢(x) = 1.

5.1 Disk domain

Consider the reaction-diffusion equation on a disk of radius R = 1 with a homogeneous
Dirichlet boundary condition. An analytical solution is manufactured for problem (1)—
(2) and is given as u (x,y) = xsin (1 — 22 — y?), from which the corresponding source
term is deduced. Simulations are carried out with successively finer meshes generated
by Gmsh (version 4.6.0) [18] (see Figure 4).

Simulations are first performed for the classical DG method prescribing the homo-
geneous Dirichlet boundary condition at the nodes of the computational boundary
(the edges of the mesh). More precisely, each node of the computational boundary
has a corresponding node on the real boundary where the Dirichlet boundary condi-
tion is prescribed. For the classical DG method, the value evaluated at the physical
boundary point is used at the corresponding node on the computational boundary.
The results, reported in Table 1, demonstrate the accuracy deterioration from such a
geometrical mismatch without any specific treatment for curved boundaries, and the
error convergence is limited to the second-order.

Table 2 reports the L?—errors and convergence orders for the DG-ROD method
taking N = 2,3,4. As observed, the quality of the approximations obtained with the
DG-ROD method is in good agreement with the theoretical results.
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Fig. 4: Unstructured meshes generated for the disk domain. Mesh with K = 14 and
h =9.34E—-01 (left panel) and mesh with K = 262 and h = 2.34E—01 (right panel).
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Table 1: Errors and convergence orders for the classical DG
method in the disk domain with the Dirichlet boundary con-

ditions.

K h N=2 N =3 N =4
E2 02 E2 02 E2 02
14 9.34E-01 9.21E—02 — 8.98E—-02 —  8.76E—-02 —
64 4.70E-01 247E-02 19 243E-02 19 240E-02 1.9
262 2.34E-01 4.89E-03 2.3 481E-03 2.3 4.78E-03 2.3
1096 1.13E—-01 1.08E—-03 2.1 1.07E—-03 2.1 1.07E-03 2.1
4136 5.69E—02 2.67TE—-04 2.0 2.66E—04 2.0 2.65E—04 2.0

Table 2: Errors and convergence orders for the DG-ROD
method in the disk domain with the Dirichlet boundary con-

ditions.

K A N =2 N=3 N=4
Es Oz Es Oz Es O2
14 9.34E—-01 1.79E-02 —  9.69E-04 — 8.93E-04 —
64 4.70E-01 7.36E—04 4.6 7.00E—05 3.8 1.65E—05 5.8
262 2.34E-01 5.64dE—05 3.7 4.59E-06 3.9 3.55E—-07 5.5
1096 1.13E—-01 3.47E-06 3.8 2.53E—-07 4.0 8.16E-09 5.2
4136 5.69E—02 2.52E-07 3.8 1.67TE—08 4.0 2.43E-10 5.1

5.2 Annulus domain

Now, we consider an annulus domain with inner radius R; = 0.5 and outer radius Rg =
1 meshed with triangular elements (see Figure 5). The analytic solution corresponds
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to the manufactured solution u(x,y) = log(z? +y?) and the boundaries are prescribed
with constant Dirichlet boundary conditions. The numerical simulations are carried
out with successively finer meshes generated by Gmsh. As for the previous test case,
simulations are firstly performed for the classical DG method and the results are
reported in Table 3. On the other hand, Table 4 reports the errors and convergence
rate for the DG-ROD method where the optimal convergence orders are recovered due
to the polynomial reconstruction of the boundary conditions. In this case, the solution
satisfies the conditions of Theorem 4.3 for non-convex domains. Thus, the method
recovers the optimal convergence orders for N > 2.

1t 1
057 1 051
0 or
-05¢ 1 -0.5r
qF 1
| 05 o 05 1‘ T 05 o 0s 1‘

Fig. 5: Unstructured mesh generated for the annulus domain. Mesh with K = 40 and
h = 5.00E—01 (left panel) and mesh with K = 608 and h = 1.31E—01 (right panel).

Table 3: Errors and convergence orders for the classical DG
method in the annulus domain with the Dirichlet boundary

conditions.
K h N =2 N=3 N=4
E2 02 E2 02 E2 02
40 5.00E—01 8.90E—-02 — 9.02E-02 — 9.09E-02 —

144 2.57E-01 2.25E-02 2.1 227E-02 2.1 228E-02 2.1
608 1.31E-01 5.71E-03 2.0 5.75E-03 2.0 5.76E-03 2.0
2576  6.45E—-02 1.29E-03 2.1 1.30E-03 2.1 1.30E-03 2.1
10226  3.18E—-02 3.23E—-04 2.0 3.24E-04 2.0 3.24E-04 2.0

5.3 Rose—shaped domain

Consider a geometry generated by applying a diffeomorphic transformation to an
annular domain, denoted as ', with interior and exterior physical boundaries with
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Table 4: Errors and convergence orders for the DG-ROD
method in the annulus domain with the Dirichlet boundary

conditions.
e h N=2 N=3 N =4
E2 OQ E2 02 E2 02
40 5.00E—01 4.48E—03 — 4.45E-04 — 8.17E-05 —

144 2.57E-01 5.16E—04 3.2 3.67TE—05 3.8 2.74E-06 5.1
608 1.31E-01 3.96E-05 3.8 1.51E-06 4.7 6.01E-08 5.6
2576 6.45E—-02 2.64E-06 3.8 4.60E-87 4.9 9.62E-10 5.9
10226  3.18E—02 2.03E—-07 3.6 1.83E—09 4.6 2.26E-11 5.3

radius r; and rg, respectively. The diffeomorphic transformation corresponds to the
mapping Q' — Q, where 2 is the rose-shaped domain, given in polar coordinates

Q- Q: {ﬂ - m — [R““"eg';a’ﬁ)} : (127)

where « is the number of petals and function R(r',8') := R(r',0'; ., B) corresponds
to a periodic radius perturbation of magnitude in [—3, 5], with 8 € R, given as

R(r',0';a,8) =r'(1— B+ Bcos(ad")). (128)

Thus, the interior and exterior physical boundaries parametrisation are given as
R; := R(rr,0) and Rg := R(rg, 0), respectively. The analytic solution corresponds to
the manufactured solution u (z,y) = log (x2 + yg). In this test case, the interior and
exterior boundaries are prescribed with a non-constant Dirichlet boundary condition.

We consider r; = 0.5, rg = 1, the number of petals is & = 8, and the perturbation
magnitude is 8 = 0.1. The rose-shaped domain is meshed with triangular elements
(see Figure 6). The reaction-diffusion equation is solved and the approximate solution
is compared with the exact solution. The numerical simulations are carried out with
successively finer meshes generated by Gmsh. Table 5 reports the errors and converge
rates for the classical DG method. The results confirm the accuracy deterioration due
to the lack of specific treatment for curved boundaries, where the error convergence is
limited to the second order. On the other hand, the results for the DG-ROD method
are reported in Table 6, where the optimal convergence orders are recovered. The
method behaves similarly to the previous test case, where the optimal convergence
orders can be achieved for N > 2.

For further numerical results, the authors refer to [30]. Recall that in [30] the
overall DG-ROD method was obtained by considering an iterative procedure of the DG
method and the polynomial reconstruction and for the numerical results the authors
computed the L>-errors and L'-errors. In the mentioned paper, the authors considered
different approaches to obtain the nodes associated with Wj, located on 02, namely
the intuitive construction of the nodes lying on normals to edges of 0€2;. In this work,
the construction of such nodes for the numerical results is described in item (4).

36



051 051
SO
VAV
ROBRER
RSN
SR
0r 0r
»
XK QKA
"AVA':’:‘ D, i%’fégégg%%"
05F LB ARRRIS 05F
0.5 NSRRI A 05

AV o
ORI SORKINAAR AN X
LSRRI
74

-4 05 0 05 1 -4 05 0 05 1
Fig. 6: Unstructured mesh generated for the rose-shaped domain. Mesh with K = 888
and h = 1.41E—01 (left panel) and mesh with K = 6912 and h = 5.25E—02 (right
panel).

Table 5: Errors and convergence orders for the classical DG
method in the rose-shaped domain with the Dirichlet boundary

conditions.
K h N=2 N=3 N =4
E2 02 E2 02 E2 OQ
3072 7.50E—02 1.85E—03 — 1.82E-03 — 1.81E-03 —

4792  6.33E—-02 1.18E-03 2.7 1.16E-03 2.6 1.16E—-03 2.6
6912 5.25E—-02 8.16E-04 2.0 8.08E-04 2.0 8.07E-04 2.0
10478 4.27E—-02 5.26E-04 2.1 5.22E-04 2.1 5.21E-04 2.1
15346  3.52E—-02 3.56E—-04 2.0 3.54E-04 2.0 3.53E-04 2.0

Table 6: Errors and convergence orders for the DG-ROD
method in the rose-shaped domain with the Dirichlet bound-
ary conditions.

K h N=2 N=3 N =4
Es Oz Es O2 Es O>
3072 7.50E—02 2.05E—06 —  2.84E-08 —  4.58E—-10 —

4792  6.33E—-02 9.64E—07 4.5 1.07TE-08 5.8 1.43E-10 6.9
6912 5.25E—02 5.90E—07 2.6 5.25E—09 3.8 5.83E—11 4.8
10478  4.27TE—02 2.98E-07 3.3 2.14E-09 4.4 1.94E-11 5.3
15346  3.52E—02 1.78E—-07 2.7 1.03E—-09 3.8 8.48E—-12 4.3
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6 Conclusions

We have discussed a modified DG scheme, defined on a polygonal mesh €2}, for solving
boundary value problems on a two-dimensional curved boundary domain €2, where
piecewise linear elements approximate the curved boundaries. The DG-ROD method
corrects the error resulting from the approximation of the curved boundary 9€2 by the
computational boundary 02, by means of polynomial reconstructions of the boundary
conditions. This correction is reflected in the variational formulation of the problem.

We present a study on the existence and uniqueness of the solution for the reaction-
diffusion equation with homogeneous Dirichlet boundary conditions. We provided a
complete mathematical analysis of the convergence in the natural norm of the DG
method, as well as L2-error estimates, considering convex and non-convex domains. For
the convex domains, we prove that the DG-ROD solution exhibits an optimal O(hN+1)
convergence rate in the L?-norm when N-degree piecewise polynomials are used,
under certain regularity conditions on the solution. For non-convex domains, unless
the solution satisfies certain regularity conditions and the computational domain 2y,
approximates better the physical domain Q, i.e., when Q \ Q is of order h?, with
q > 2, optimally is not attained for N > 2. In other words, the error is affected by the
geometrical mismatch of order O(h?) between the curved physical boundaries and the
associated piecewise linear representation. Then, for non-convex domains, we prove
that the DG-ROD solution exhibits an optimal O(h®) convergence rate in the L2-
norm when piecewise polynomials of degree N = 2 are used, under certain regularity
conditions on the solution.

The sharpness of the theoretical results is confirmed by a series of numerical
experiments in convex and non-convex domains. It is important to highlight that the
assumption on the mesh size h is just a sufficient condition for the formal analysis
given in this work. Good numerical results can be obtained even for coarse meshes.
For example, in the test case 5.1, the polynomial reconstructions of the boundary con-
dition correct the error from approximating the curved boundary with a polygonal
boundary even for a mesh with K = 14, where the corresponding mesh size h has the
same order of magnitude as the radius of the disk.

Extensions of this work considering nonlinear equations and time-dependent prob-
lems are challenging and this will be carried out in the future. For future work, we
also plan to extend this approach to other boundary conditions (Neumann, Robin)
and derive error estimates for the respective problems.
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Appendix A Technical tools

The following assumptions and results can be found (except Lemma A.4) in [28].
Assumption A.1. Let T[’f be the homothetic transformation of T* with center Oy
(the vertex of T* not located on 0y, ) and ratio p < 1. Consider h small enough for the
intersection P with 02 of a straight line joining any point of T; to a point M € kB
is uniquely defined for all T*, k € IP (see Figure A1).

Fig. A1: Example of a homothetic transformation of 7% with center Oy and p = 1/2.

Let Q* be the closest intersection with 9§ of the perpendicular to e*? passing
through its mid-point M*. We know that exists a ball B(Q¥,7*) and a straight line
II* swept by the coordinate zj of an orthogonal coordinate system (O, z,ys) with a
suitably chosen origin O, such that a function fj () uniquely expresses the coordinate
yi, of points located on 992, as long as they lie in B(Q*,r*) [17] (see Figure A2).
Assumption A.2. Consider h small enough such that II¥ is aligned with e*® and
the ball B(Q*,r*) contains e*B, VT* k € IB.

Proposition A.1 ([28], Proposition 2.1). If Assumption A.1 and Assumption A.2
hold there exists a constant Caq depending only on O such that VM € e*B the length
of the segment joining M and P € 0 aligned with Oy and M is bounded above by
Caahi (see Figure AS3).

Proposition A.2 ([28], Proposition 2.2). Assume that O is of the piecewise
CN+1_class for N > 1. Let v\9) denote the derivative of order j with respect to x of
a sufficiently differentiable function v(x), 0 < j < N + 1, with v(® = v, o) = v/,
v =" If assumption A.2 holds, there exists a constant Clq, depending only of 02
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Fig. A2: Each point P € 9Q N B(Q*,7*) has coordinates (zy, f(xx)) in the cartesian
coordinate system (O, g, Yk )-

Fig. A3: Intersection of 92 with the straight line joining M and Ok.

such that
FPOD)| < Chohi™ P90 M e P for =01, N+1 (AD)

Lemma A.1 ([28], Lemma 3.1). Consider h small enough such that Assumption A.1
and Assumption A.2 hold. Then, there exists two mesh-independent constants Cs, and
Cy depending only on OQ and the shape reqularity of Ty, such that Yw € Py (T* U Ay)
and VT* k € I® (see Figure A4), it holds

Hw”Lw(T’«uAk) < COC”w”LOC(T’“ﬂQ) (A2)
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”w”LOO(TkuAk) < CJhlngw”L%Tka) . (A3)

kB

Tk Ak o0

Ok Ok

Fig. A4: Example for the convex case, where T* C €, (left panel) and for the concave
case, where T* ¢ Q (right panel).

Let D/w be the j—th order tensor whose components are the j—th order partial
derivatives with respect to the space of variables of a function w. In the following, we
introduce some technical lemmas that are useful in proving the error estimates.
Lemma A.2 ([28], Lemma 4.1). Let m be an integer, m > 1, and w € H™(Q) such
that wy,, = 0, for j = 0,1,...,m. Let In(w) be the Py-interpolate of w. Then, for
p € [1,00], there exists a mesh-independent constant Cq such that:

|27 o =],

ooy =GP Wy - (A4)

Lemma A.3 ([28], Lemma 4.2). Let r = 1/2 + € for a certain ¢ € (0,1/2) and
w € HY T (QUQY,) be such that w|ag = 0. Let T be a closed set fulfilling (T* N Q) C

TC (Tk U Ak) and wy, be a function in W), extended to Ay, k € IB. Then there exist
constants C; independent of T* and hy, such that for j =1,2,...,N it holds

HDJ (w — wh)HLOO(T) < th;] (HV(’U} — U/h)HLQ(Tka)
+h{€V|’LU|HN+1(Tka) + hiv+r||w||HN+1+"'(T"UAk)) . (A5)

Now, we deduce a similar result to (A5) for j = 0.
Lemma A.4. Let r = 1/2 + € for a certain € € (0,1/2) and w € HNFHH"(Q U Q)

be such that w|pg = 0. Let T be a closed set fulfilling (Tk ﬂQ) - T - (T’c UAk)
and wy, be a function in Wy, extended to Ay, k € IB. Then there exist a constant C
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independent of T* and hy, such that

0
o= will gy < 327 (I = wnlagreng + 2 ol gracoy

+hi:v+’l‘+1||U)||HN+1+T(TkuAk)> . (A6>

Proof. Recall that I (w) interpolate w in QUQ, and w—wp, = (w—Ip(w)) + (In(w) —
wy,). Now, for all T*, with k € I8

[|w — whHLoo(T)<Hw In(w |‘L°°TkuAk)+HIh whHLOO(TkUAk)

<Hw Ih (A?)

) - whHLZ(Tka) '

HLoo (TFUAL) ;TkHIh(w

using the inequality (A3). Consider the mapping O from T* U Ak to a unit element
TE U Ay, where Or(z,y) = (z,y)/hy. Setting O (T* U Ap) = TE U Ay, we note that
HN+Hr (Tk/L—J\Ak) is continuously embedded in WX (T’C UAy), ie., there exists a
constant C, depending only on T' k/U\Ak such that [1]

Vo e HNVIFT(TRUA,).  (AS)

2]

Wo]cv(TkUAk) S CeH'U”

HN+147(TRUA)

On the other hand, consider w and (1) the transformations under Oy, in T* U Ay,

—

of w and Ij(w), respectively. Notice that I(w) is a PN—mterpolate of W in T* U Ay.
Then, there exists a constant CTh depending on Tk U Ay such that

W — I(w 7. Co ||t

‘Loc(TkuA y ||HN+1+T<T’CUA;€) ’

||w Ih

||L°°(TKUA)C)

using (A8). Thus, applying standard transformations to functions in fractional Sobolev
spaces, we may write for suitable mesh-independent constants C’OA [29]

[Jw = In(w HLoc(TkuAk) < G hN+r||wHHN+1+r(T’“UAk) (A9)
Note that
[ (w) — whHLZ(Tka) < 7n(w) ~ me(Tan) Hlw = wall 2 rrng) - (A10)
Now, following the proof of Theorem 4.4.4 in [7], we get
175 ()

N+1
- wHL2(Tka) < Crhy Tl gas (prng) - (A11)

with C;, a mesh-independent constant.
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Finally, combining (A7), (A9), (A10) and (A11), we get
|lw — wh”LOO(T) < C()AhkN+r‘|w||HN+1+T(TkuAk) + CJhlzl (CLhIICV+1|w‘HN+1(Tka)
lw = wnll 2 k)

and (A6) follows with Cyp = max{C};, C;Cy, COA}. O

Appendix B Upper bounds estimates

In what follows we derive upper bounds for b;,, with ¢ = 1,2,3,4,5, given by (81),
(84), (85), (86), (89), respectively, used in Theorem 4.2 and for bg, (119), used in
Theorem 4.6.

Estimate for by, (u — up, z) defined by (81)

Using the Cauchy-Schwarz inequality and applying the trace theorem, there exists a
constant C; depending only on © ([1], Theorem 1) such that

bin(u — un, 2) <llu— uh”L?(aQ)HVZHL?((’)Q) < Ctllu — Uh||L2(aQ)||Z||H2(Q) :

In order to estimate ||u — uh||L2(6§2)7 consider for each element T%, k € IB, a local

orthogonal frame (O;x,y) whose origin O is a vertex of T* in 99, x is the abscissa
along the edge e*” and y increases from e*® to 9. Let s be the curvilinear abscissa
along (T* U Ay) N 9Q with origin at O. Note that s can be uniquely expressed in
terms of x, for x € [0,lxp], where lp is the length of e*Z. Considering fi(z) the
y—abscissa of the points in (T% U Ay) N 99, let 1y, be the function of = defined by

ap(z) = [u— upl(z, fr(z)) = [u — up](s(x)). Since ds = /14 (f})?dx, we have
2
length((T* U Ag) N 0Q) < Cylyp, with C; = \/ 1+ (h0|| fé’HLoo(o,w) . Thus,

2
_ — _ d
”u uh||L2(89) k%:B /(T’“UAk)QSQ | (u Uh | §
l
= Z /kB /1 + (fi')?de < Cy Z/ x)|2dx.
kelB kelB

(B12)

Since @y, vanishes at N + 1 different points in [0,l;p] and up), € PN (T’C), from
standard results for one-dimensional interpolation [25] there exists a mesh independent

1Consider hg as defined in Theorem 3.2.
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constant C, such that

1/2
lkB 2
~ ~(N+1
204,y < Crbi¥ ™ ( || dx) . (B13)

On the other hand, using Proposition A.2, there is mesh-independent constants
¢j.aq such that

max
z€[0,lxB]

f;ﬂ@)\ <cioahl . for j=1,... N+1¥T* kel*®.  (Bl4)

Thus, taking into account that the derivatives of uy, of order greater than N vanish
in T% U Ay, using the chain rule yields for suitable mesh-independent constants ¢y,
j=0,1,...,N:

N
a0 < o DYF )|+ 30 e DV ). (B15)
j=1

Then, combining (B12), (B13) and (B15), and using the Cauchy-Schwarz inequal-
ity, for a suitable mesh-independent constant C'n 9, we get

lke N . .
lu = unlZegon) <CoCE D g™ / o DV @)+ 3 e | DY )
keIB 0 j=1

2
< Cno <h2(N+1) / ‘DN“(U)‘ ds
o0

+3 hi(N—H)/ ihi(l—j)

. 2
DNH*J(ufuh)’ ds| . (B16)
A (TFUAYNIR S

From the trace theorem ([1], Theorem 1), we know that there exists a constant C,
such that

2 2
HDNH(“)‘ 12(09) /aQ‘DNH(U)‘ ds < CFullfyn-ver (g - (B17)

On the other hand, using the curved triangle T*UA}, and considering i = N+1—j
2(1=4) | HN+1—j 2
hy, ‘D (u—uh)’ ds
(TkuAk)mé)szl
2

N
2(1—j —j
chhkzhk( J)HDN—H J(u_Uh)HLOO(T’CuAk)
J=1
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2

O S | D )| (319
i=1

Loo(TRUAL)
Now, using Lemmas A.3 with w = v and wy, = up, we get

HDi(u - Uh)H < C;hy" (HV(U - Uh)HLz(TmQ) + h11cV|U|HN+1(Tka)

L>(TFUAR)

+h]kV+T||uHHN+r+1(TkuAk)) . (Blg)

From (B16), combining (B18) and (B19), and applying the Cauchy-Schwarz
inequality, we obtain

N
Z hi(lfj) ‘DN+1—j(u _ uh)

2
> | [ as
kelB (TRUAR)NOR j—y

e N N 2
2(N+1 i g

<> Cohi Y hy, HD (u_uh)HL"O(TkUAk)

kelB i=1

N
2(N+1 2(i—N —2%
< Z hk( + )thk th( )CEhk2 (HV('LL - uh)HLQ(Tan) + hljcv‘u|HN+1(TkﬁQ)
kelB i=1
N+r 2
Rl s reay) )

N

< Z hi?)Cq Z 012 (HV(U - uh)”iz(Tka) + hiN|u|§{N+1(T’“ﬂQ)
kelB i=1

_’_hiNJr?T||UH1211N+T+1(TkuAk)) .
Recalling that » = 1/2 + ¢, h < 1 and taking into account Theorem 4.1, the

definition of the semi norm || +1(q) and the definition of the norm |[-[| g 114 (), we
infer that for a suitable mesh independent constant Cp ; it holds

Z hi(N+1) /

el (TFUAL)NIN

N . , 2
Z hi(lﬂ) ‘DN'H_J (u—up)| ds
j=1
N
§h330q Z 01'2 (02h2N|U|§{N+1(Q) + hiN|u|§IN+1(Q) + h2N+2THu”iIN+r+1(Q)>
i=1
<CN RPN ul2n i ) (B20)
Finally, combining (B17) and (B20) in (B16), we get

||U - UhHi2 o) < CN,O hz(N+1)03HU||§{N+1+r o)+ CN,1h2(N+1)HU||§1N+r+1 Q
(69) Q)] (0]
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< CRoP N ulfn e
where C%y = Cn0(C? + Cy,1). Thus
lu — Uh”L?(@Q) < CN,2hN+1||“||HN+1+r(Q) . (B21)
Then,

bin(u — up, 2) < CbthH||u||HN+1+r(Q)||Z||H2(Q) )

where Cp; = CiCh 2.

Estimate for bop(u — up, II5(2)) defined by (84)

Since I, () is piecewise linear, V11, (2) is constant in TFUA},. Recalling that ITj,(2) =
0 on 09}, by the Mean Value Theorem and Proposition A.1, we get for P; € 0Q,

[T04(=)(P)| < length(PPy)|V (I (2)] )

< thi‘v (T (2) 1) |, ¥P € A, T | € IP. (B22)

Using the Cauchy-Schwarz inequality, the inequality above and noticing that
area(Ag) < Cohs, we may write

bon(u — up, p(2)) = —A(u—up) + c(u—up)) Op(z) de
h hyLln g,;/m( h h) h

< (1+llell e qenan) Do (1860 = un)llaa,y +lu = unll2a,))

kelB
x |1 (2) HL2(Ak)
<c Z 01/2 3/2 (HA w— up, HLOO(Ak) +||u—uhHLoc(Ak)>
kelB
C1/2 3/2”Hh Z)HLOO(A;C)
<c Z 01/2 3/2 (HA u—up)|| (rruag Tl = unllpe TkuAk))

kelB

x 02{22]1;/2 [ VIL, (2)]] Loo(TRUAL)

where Cc =1 +|l¢|[ Lo (\0,)- From Lemma A.1, we obtain

bon(u — un, Ti(2)) < CeC3Cy Y Iy (HA(U = un)|| e (i, Tl uhHLOO(T’CUAk))
kelB

xHVHh(Z)HLz(TkmAk)'
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Now, considering Lemma A.3 with j = 2 and Lemma A.4, applying the Cauchy-
Schwarz inequality and recalling that hy < h, we get

bon (u — up, I, (2)) < C.C36Cy Z (hiOQ (HV(“ - “h)HLz(TmQ) + 1y Ul v reng)
kelB

+hg+r||UI|HN+1+T(TkUAk,)> + hiCo (||U - UhHm(Tka)
+hg+1|u|HN+l(Tka) + hierlJrTHuHNJrlJrr(TkuAk))) HVH}L(Z)HLZ(T’C)
< CC3aCir(Co + Co)t? (V2 = unll s 75 + 20V ul s,

+2hN+T||uHHN+1+T(Q)> HVHh(Z)HL2(Qh) .
Applying Theorem 4.1 and since h < 1, we may write

@hutf1m,nh@))g<1L%chazy+65xvﬁc4ﬂ®hN+ﬂhmHN+H¢“DHvru(@HL%Q“

= éthN+2Hu”HN+1+"(Q)HVHh(’Z)HLQ(Qh) ’

where Cy; = C.C3,C1(Co + C2)(v/2C + 4). On the other hand, from Lemma A.2 we
have

[V(z— Hh(’z))HL2(Qh) <|[v(z- Hh(z))||L2(Q) < Cahlzlpa(q) -

Then, using the Cauchy-Schwarz inequality, we get
2 2
HVHh(Z)HLmz) =[|V(z -2+ Hh(z))HLz(sz)
2 2
< 2|V~ ()22 ) + 21V 2y
2 2
< 205h2|Z\H2(Q) + 2/|2 [l 72
2 ~ 2
< (2+ 2080912l 72(0) = Callz N2 - (B23)
with Cq = /2 + 2C%h3. Thus, we derive for Cyp = CorCo
bon (u — up, T3 (2)) < Cozh™ 2|l gvsvir oy 2] 2 ) -

Estimate for bz, (u — up, I15(2)) defined by (85)

VHh(z)HLw(TkuAk) =
, VT* k € IP. Thus, recalling (B22),

We know that VII(z) is constant on each element. Then,

VT e vy Lt w1, = V(= )]

‘Tk
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we get

bsn(u — up, Ix(2)) < / wy_, |n(z)]| ds
Z (T*UAL)NOR - |

kelB
< Coah2||VIIL(2)]|, .. / wy_ ds.
kEZIB k” HL (T*) (THUANGR |k
Applying Lemma A.1, we obtain
bgh(u — uh,Hh(z)) S Z CBSZCJhkHVHh(Z)Hsz(Tk)/ w|Tk ds.
LelB (T*UAE)NON

Now, consider the master triangle T with vertices (0,0), (0,1), (1,0) in the reference
frame (O, 7, %), where the origin O is one of the vertices of T* belonging to 5. Denote
the transformation of (T* U Ax) N 9Q under the affine mapping F, from T% to T by

9T . Taking into account that length(T% U A,) N o) = OlkB 1+ (f,’c)2 dxe < Cyhy,

2 .
where C, = \/1 + (hOHflgHL‘X’(O,lkB)> , and length(0T") = 1, we have

bsp (u — up, Ix(2)) < Z C@QC.]thzHVHh(Z)HLQ(Tk) / _wds,

kelB T

where @ is the transformation of w)_, under the mapping Fy.

We apply the Trace Theorem to the transformation T% U Ay, of T U Ay under Fj.
Since 0f2 is smooth and h is sufficiently small, there exists a constant C; independent

of T* such that
) 1/2
/ wds < & //\ (w%‘%( >d§ :
6T TkUAk

where V is the gradient operator for functions defined in T% U Ay,. }
Now, moving back to T*U A}, we get for a suitable mesh-independent constant Cs

1/2

N _—12
bgh(u — Up, Hh(z)) SC@QCJCth Z h%HVHh(z)HL%T’C) <//\ (@2+‘VUA)’ ) d§>

kelB TFUAK
2
ds

1/2

SOS Z thVHh(Z)HLz(Tk) <‘/TkuA <w2Tk+hi‘Vw|Tk
"UAE

kelB
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Applying the Cauchy-Schwarz inequality, we have

2

ban (1 — un, I (2)) < Csh| VIl (2 ||L2(Qh) Z Hv(u_uh)HL"’(TkuAk)

kelB
5 1/2
h2HD2 _ ‘ .
+ k (’U, Uh) L2(TFUAR)
Note that
D2(u — ( < \/area(T* U A HD2 - H .
H (u uh) L2(TFUAL) area( k) (u un) L>=(T*UAR)

Now, observe that area(T* U Ay) < area(T*) + Canhi < h(1/2 + Canho). Applying
Lemma A.3, the Cauchy-Schwarz inequality and Theorem 4.1, we get

2
O (TRl RN LR
kelB
<y (hi(m + Cooho) ||V (u = un) |} < grua,, +1E (hz(l/Q + cagho))

kelB

2
D~
XH (Uh U) LOQ(T]"UA)C)

2
< 3" 3(C2 + C2)(1/2 + Conho) <||V(u — )3 iy + P 4l s e
kelB

R e riay) ) S Col?N Nl s o)
with 62 = 3(CF 4 C3)(1/2 + Caqho)(C* 4 2). Thus, using (B23)
ban(u — un, Mn(2)) < Coah™M|ull vsvir oy 12l 2 () »
with Cy3 = 6'36963.

Estimate for by, (u — up, en(z)) defined by (86)

Using the Cauchy-Schwarz inequality and attending the fact that area(Ay) < Cohj,
we obtain

b4h(u — Up, eh(z)) = aAh<u — Up, 2 — Hh( ))

E /A (u—wup) - V(z—Ix(2)) + c(u —up)(z — p(2)) dz

kelB

<c. Z C1/2 3/2Hv

kelB

—1IIx(2

h)HL‘X’(T’“UAk)HV HL2(TkUAk)

49



+Cl/2 3/2||U_uh||L°° TkUAk)|{Z Ia (2 )HLZ’(T“’A’“)7

with Cc =1 +||c[| e g\, )- Now, applying Lemma A.3 with j = 1 and Lemma A.4,
the Cauchy-Schwarz inequality and using Theorem 4.1, we arrive at

ban(u — up, en(2)) < CeCh (Cr + Co)h/? (HZ = ()| oy +[ V(2 = Hh(z))||L2(Q)>
% (Il = wnll gy VA0 = )] g2y + 20V Tl s
F2RNH ull s )
< 060562(01 + Co)h'/? (Hz - Hh(Z)HLQ(Q) +HV(Z - Hh(z))HH(Q))
% (24 VIR lul s ) + 20Vl s )
< CoC3(Cr + Co)d + VIORN T2 (|2 = T (2) | g
+||V(z — Oy (z HLQ(Q )||uHHN+r+1(Q)'
Considering Lemma A.2 with j = 0,1 we get
ban(u — up,ep(z2)) < C’b4hN+3/2||UHHN+r+1(Q)HZHH2(Q) ;
where Chy = 2C.Ch7(Cy + Co) (4 +v/2C)Cq

Estimate for bs,(u — up, z) defined by (89)

Attending to the definition of jump and average along a boundary edge, we may write

0z
bsn(u — up, z :f/ U —up)—ds
5k ( hy2) mh( Dl

. /[[u_uh]] V(2 — iy (2) + My (2)) ds

ecoNp

> /[[u—uhﬂ V(T (2) + Ty (2)) ds

e€coNy,

Thus, applying the Cauchy-Schwarz inequality we get

bsn(u—up,z) < Y Hh 1/2[[U—Uh]]’

B2V (2 = T0a(2) + 114 (2))|

o L2(e) L2(e)
/25, _
<y Hh [u uh]]]m ] (2 Hh(z))’Lz(e) (B24)
e€coQy,
o1/ H hi/2vTL ) . B2
) |/ = un] Leme)| (B25)

a0



Now, following similar arguments as in Subsection 3.1, using Theorem 4.1 and
Lemma A.2 , we may write (B24) as follows:

>

e€oy,

<>

e€éy

hi/2v(z — Hh(z))'

he 2 = w|

L2(e)’ L2(e)

b9 (z ~ T ()

hg1/2 [u— uhﬂ‘

L2(e) L2(e)

1/2 1/2

2 den(2) |2
S Z h;1||ﬂu7uhﬂ||L2(e) Z he

an
ecép ecép

L2(e)

1/2
K
2 2
<fu—unl, [ 3 C3 (jen() s ny + Blen() gy
k=1
<llu = unllCrvVICahl2l oy < Chsh™ M ullyvsnio 2l oy (B26)
with O}, = v2CCrCo.

Considering A the boundary of Ay, for k € IB, applying Lemma A.1 and
inequality (B23), we can rewrite (B25) in the following way

|net 2t =), [p/2VIIa ()
e%h L2(e) L?(e)
1/2 1/2
< 3w llu =l > kel VL),
ceE), ceoQy,
1/2 1/2
_ 2 2
< Z helHIIu*uh]]HLz(e) Z thth(z)HLQ(é)Ak)
e€lp kelB
1/2
<lu —upl, Z hkOtQHVHh(Z)Hi{l(Ak)
kelB
1/2
=|u — up|, Z hkaHVHh(Z)Hiz(Ak)
kelB
1/2

<lu—upl, | S hiCECaQHVHh(Z)Hiw(Am
kelB
1/2

—fu—ul, [ 3 hiCECaQHVHh(Z)HQLoo(TkuAm
kelB

o1



1/2

<fu—ul, | 3 W3C3CoaC3||VIL() |2 ganoa,)

kelB
<Cctcl/QCJhN+1||u||HN+1+T(Q || VITa (2 HL2(Q)
<Cosh™ Hlull gravsrer oy 12l 20 (B27)

with CJt, = CC,CA2CCq.
Thus, combining (B26) and (B27), we get

bsn(u — up, 2) < Cb5hN+1||u||HN+1+T(Q)||Z||H2(Q) )
where Cys = Cp5 + Cy.

Estimate for bg,(un,IIn(2)) defined by (119)

Following similar arguments as in (B22), we get for P; € 99y,

I,(2)(P)] < (J@th‘v (T (2) | 7e) |, VP € A, T |k € QB (B28)

Using the Cauchy-Schwarz inequality, the inequality above and noticing that
area(Ag) < Coqhs, we may write

b@h(U}HHh Z/ Auh—i—cuh)Hh(z)dw
keQB 7 Ak
1/2,3/2 3/2)7/2
<CL Y Colm (180l g iy Hlun | e o) CEERY VI e ey
keQB

where C¢ =1 +|l¢|[ (0, \q)- From Lemma A.1, we obtain
ben (un, x(2)) < CéCgQCJ Z hi <||A“h||Loo(Tk) +||Uh||Loo(Tk)) ||VHh(Z)HL2(TkﬁQ) .
keQFb
Note that by adding and subtracting the exact solution u, we get
||Auh||Loo(Tk) +||uh||L°°(Tk) < HA(“ - Uh)HLoo(Tk) +lu — UhHLoo(Tk) +|‘AuHL°°(T’€)
Fllull poo (ry -

Thus, considering the previous inequality, Lemma A.3 with j = 2 and Lemma
A.4, applying the Cauchy-Schwarz inequality, and recalling that iy < h and that @
is the regular extension of u to (2 such that 4|, = u, we conclude that for a suitable
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mesh-independent constant Cf it holds

ben (un, i (2)) < CLC3C Z hiHVHh(Z)HLz(TmQ) <C (||AU||Loo(Q) +HU||Loo(Q))

keQB
+ 2 (19— )| Bl + B2

hi r)l L2 (T*na) k1Y H3(TkNQ) k H3+7(TFUA)
Co

+h7k (||U = unl| L2 (rrng) + hi|U\H3(Tka) + h2+rﬂ||H3+r(TkuAk))>

<Cj

VHh(z)HLz(mQh) <h7/2u||wgo(n) +h? (||U = unl2anan)

|V (u - Uh)||L2<mm>> + Wl s o) + h4+r|a”HW(m) '
(B29)

Now, we note that by the Sobolev embedding Theorem, there exists a constant C'
such that

||U||W2 @) < Cs Hu||H3+r(Q < Cllttl| o Q- (B30)
Considering the previous inequality and applying (112),

for a suitable mesh-
independent constant, we may rewrite (B29) as follows:

ben (un, 114 (2)) < Cs1||VIIL(2) ||L2(QOQ;)

< ||ﬂ’||H3+7'(Q~) +ht (|a|H3(())
=80 il y) + W)+ 5 e
e e PR (8 L P

+h1/2||_Aa+ca||L2(Q))> . (B31)

On the other hand, considering similar arguments as in inequality (B23), we obtain

VI (2) |22 0y < CRlIZ 1T (0) (B32)

with Cr; = /2 + 2C2h2. Thus, we derive for Cys = C52Crr

ben (un, n(2)) < CN’b6h7/2 (||1~L||H3+T(Q) +n'/? (W|H3(Q) + hl/ZH_Aﬂ + Ca“ﬁ(ﬁ)))

x[|2]l g2 (q) - (B33)
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