
Optimal error estimates for a Discontinuous

Galerkin method on curved boundaries
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Abstract

We consider a discontinuous Galerkin method to solve boundary value prob-

lems in curved boundary domains in two-dimensional. The question that arises

concerns the reduction of the order of convergence of numerical methods when

considering the approximation of the domain by a polygonal mesh. Unless the

boundary conditions can be accurately transferred from the physical boundary

to the computational boundary, the isoparametric element method is usually

employed to recover the optimal convergence orders. However, this technique

involves more complex algebra and additional computational costs when com-

pared to approaches using polygonal meshes, which are widely used due to

their simplicity in many applications. In this paper, we present and analyse a

higher-order strategy that achieves the optimal convergence order on polygonal

approximations of domains with smooth boundaries. The boundary approxima-

tion error is corrected by means of polynomial reconstructions of the boundary

conditions. We present a study on the existence and uniqueness of the solution and

derive error estimates for a two-dimensional linear reaction-diffusion boundary-

value problem with homogeneous Dirichlet boundary conditions in convex and

non-convex domains. We prove that the numerical solution exhibits an optimal

convergence rate under certain regularity conditions on the solution. A numerical

benchmark is provided to illustrate the theoretical results proven in this work.
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1 Introduction

In this work, we present an approach for solving boundary-value problems posed in a
curved boundary domain of arbitrary shape in the context of discontinuous Galerkin
(DG) methods. The study of boundary value problems in curved boundary domains is
a subject of growing interest in the numerical analysis community. One of the major
problems is the reduction in the order of convergence of numerical methods when con-
sidering the approximation of the domain by a polygonal mesh. In particular, the DG
solutions are highly sensitive to the accuracy of approximations of the curved bound-
aries [5]. It has been shown that given homogeneous Dirichlet boundary conditions
on a curved boundary domain Ω, if these conditions are imposed on the polygonal
domain Ωh, any finite element method will be at most second-order accurate [31]. This
highlights the importance of the boundary condition treatment since the errors in the
boundary may pollute the solution inside the domain.

Over the past few decades, several techniques have been developed to remedy this
loss of accuracy. There are two main strategies to address this issue. The isopara-
metric finite element method [5] and the isogeometric analysis [16] aim to reduce
the geometric error without modifying the variational form. Therefore this technique
requires the construction of a mesh with curved elements on the boundary, which is
a challenging geometric problem where ineligible cells can be produced. Moreover,
this approach also raises some numerical challenges since it considers non-constant
Jacobian transformations from the reference element.

Another strategy considers a polygonal approximation domain Ωh and focuses on
a modified variational formulation. There has been a growing body of research focused
on correcting the error that results from the approximation of the physical boundary
∂Ω by a polygonal boundary ∂Ωh, by modifying the boundary condition. In [22], the
authors consider a computational polygonal domain in place of the physical domain
and modify the normal vector involved in the wall boundary condition. However, this
method can only be formulated for slip-wall boundary conditions and the work is lim-
ited to 2D geometries. In [33], the author proposes a modified DG scheme defined
on polygonal meshes that avoids integrals inside curved elements. However, integra-
tions along boundary curve segments are still necessary. This approach was extended
to solving three-dimensional Euler equations and it was simplified by considering the
relation between the normal vector of the computational domain and the surface Jaco-
bian [32]. In the Shifted Boundary Method (SBM), the location where the boundary
conditions are applied is shifted from the true boundary to an approximate (surro-
gate) boundary. The value of boundary conditions is modified by means of Taylor
expansion, in order to reflect this displacement (see [4] and the references therein).

In [30] we developed a strategy called DG-ROD (Reconstruction for Off-site Data)
method, which is based on a polynomial reconstruction of the boundary condition
imposed on the computational domain. The main advantage of this approach relies on
the use of polygonal meshes without losing the accuracy of the method by considering
polynomial reconstructions to correct the error resulting from the approximation of
the curved boundary with a polygonal boundary. The ROD method has been proposed
in the context of the finite volume (FV) method [10–14] and it has been later extended
for the finite difference (FD) method on Cartesian grids [9]. Despite the numerical
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evidence in the context of the FV, FD, and DG methods, there is no theoretical
evidence on the proof of the convergence of the method. Thus, the main contribution of
this work is to establish error estimates for a two-dimensional linear reaction-diffusion
problem with homogeneous Dirichlet boundary conditions concerning the DG-norm
and the L2-norm, and hence, fill a theoretical gap in the analysis of the DG-ROD
method for boundary value problems. The overall DG-ROD method can be obtained
by considering two different approaches: we can consider an iterative procedure of the
DG method and the polynomial reconstruction or we can consider a global system
where we only have to solve the problem once. In this work, we address the last
approach.

This document is organized as follows. Section 2 is devoted to introductory con-
cepts related to mesh notations and the space of discontinuous functions, and the
formulation of the problem to be considered. In Section 3, we start by analysing some
basic properties of the method, namely, we show the boundedness of the bilinear
form and we prove a weak coercivity. Moreover, we present a study on the existence
and uniqueness of the solution for the reaction-diffusion problem with homogeneous
Dirichlet boundary conditions, following the work developed within the framework of
the classical finite element method [26, 27]. The core of this work is represented by
Section 4, where we derive error estimates for the method introduced in this Section
2 for convex and non-convex domains. For the first case, we prove that the DG-ROD
solution exhibits an optimal O(hN+1) convergence rate in the L2-norm when N -degree
piecewise polynomials are used, under certain regularity conditions on the solution.
Finally, the numerical experiments and results are reported in Section 5. In Section
6, we summarize the results and present some final comments and perspectives for
future work. The last part of the paper is an appendix that contains technical results
and upper bounds estimates used in the analysis of the method.

2 The DG-ROD Method

This section addresses the DG-ROD formulation for a two-dimensional linear
boundary-value problem on a curved boundary domain, which is discretised with piece-
wise linear elements. This method has the advantage of overcoming the difficulties
inherent to curved mesh approaches by discretising the physical domain with polyg-
onal meshes constructed from the conventional meshing algorithms, where piecewise
linear elements approximate the arbitrary curved boundary. The main idea of the DG
method is based on the use of discontinuous functions to obtain an approximate solu-
tion. Additionally, the DG-ROD method employs specific polynomial reconstructions
for the prescribed boundary conditions on the physical boundary. In order to allow an
easier description of our methodology, thereby avoiding non-essential technical details,
we consider a two-dimensional reaction-diffusion problem. The first step is the def-
inition of the mesh and the broken polynomial spaces. After providing an overview
of some basic ideas related to computational meshes, we present the primal formula-
tion of the method, which incorporates the modification derived from the polynomial
reconstruction of the boundary conditions.
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2.1 Model problem

The methodology for dealing with curved boundary domains studied in this work can
be applied to different equations. However, to avoid non-essential technical details, we
consider the reaction-diffusion equation in a two-dimensional physical domain Ω with
arbitrary smooth curved physical boundary ∂Ω, considering the Cartesian coordinate
system x = (x, y). We seek function u = u(x), solution of the reaction-diffusion
problem

−∆u (x) + c (x)u (x) = f (x) , x ∈ Ω, (1)

u (x) = 0, x ∈ ∂Ω, (2)

where c ∈ C(Ω), with c (x) ≥ 0, for x ∈ Ω, and f ∈ L2(Ω). The Lebesgue space L2(Ω)
is defined as a space of mensurable functions u : Ω → R such that ||u||2L2(Ω) < +∞,

equipped with norm ||u||2L2(Ω) = (u, u)L2(Ω) and inner product

(u,w)L2(Ω) =

ˆ

Ω

u(x)w(x) dx.

2.2 Definition of the mesh

The physical domain Ω is meshed with K non-overlapping straight-sided triangles
T k, k = 1, . . . ,K, leading to an approximate computational domain Ωh given as

Ωh =

K⋃

k=1

T k. (3)

The triangulation Th =
{
T k, k = 1, . . . ,K

}
is assumed to be conformed where the

intersection of two elements is either a complete edge, a vertex, or the empty set. We
assume that no element T k has more than one edge on ∂Ωh and all the vertexes of the
polygon lie on ∂Ω. The space parameter h represents the maximum element diameter,
namely

h = max
Tk∈Th

{hk}, hk = sup
P1,P2∈Tk

∥P1 − P2∥ .

The triangulation is also assumed to be regular [19] in the sense that there is a constant
ρ > 0 such that

∀T k ∈ Th,
hk

ρk
≤ ρ, (4)

where ρk denotes the maximum radius of a ball inscribed in T k.
Let Eh denote all edges of elements in Th and E0 denotes all interior edges. We

assume that exists a positive constant µ such that for every element T k ∈ Th and
e ∈ Eh ∩ ∂T k, we have [24]

µhk ≤ he, (5)
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where he denotes the length of the edge e. Assume that exists a positive constant ρ̃,
such that

h

hmin
≤ ρ̃, (6)

where hmin = minTk∈Th
{hmin

k }, with hmin
k = infP1,P2∈Tk ∥P1 − P2∥.

Given an element T k, denote as Ik the index set of the elements T ℓ that share
a common edge ekℓ and by IB the index set of elements which have an edge on the
boundary, ekB . Normal vector nkℓ, ℓ ∈ Ik, is pointed outward of element T k and
nℓk = −nkℓ. For each element T k, k ∈ IB , denote as ∆k the closed set delimited
by ∂Ω and the edge ekB (see Figure 1). Consider QB a subset of IB such that QB

denote the index set of elements that have an edge on the boundary and T k \Ω is not
restricted to a pair of vertexes of ∂Ω.

T k

ekB
∂Ω∆k

Ok

T k

ekB

∂Ω
∆k

Ok

Fig. 1: Element T k with an edge ekB on the computational boundary ∂Ωh, for the
convex case where T k ⊂ Ω (left panel) and for the concave case, where T k ̸⊂ Ω (right
panel).

2.3 Space of discontinuous functions

The discontinuous Galerkin method is based on the use of discontinuous approxima-
tions. Thus, we introduce the so-called broken Sobolev spaces H l(Th), with l = 1, 2,
as

H l(Th) = {w ∈ L2(Ωh) : w|
Tk

∈ H l(T k) ∀T k ∈ Th}.
Note that

(w, v)L2(Ωh) =

K∑

k=1

(w, v)L2(Tk), ∀w, v ∈ L2(Ωh),
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where (u, v)L2(Tk) denotes the usual inner product on L2(T k). For w ∈ H l(Th), with
l = 1, 2, we define the norm

∥w∥2Hl(Th)
=

K∑

k=1

∥w∥2Hl(Tk) ,

where ∥w∥Hl(Tk) denotes the usual H l-norm on the element T k. We define the space
of discontinuous piecewise polynomial functions

ShN =

{
v ∈ L2(Ωh) : v|

Tk
∈ PN

(
T k
)
∀T k ∈ Th

}
,

with PN

(
T k
)
denoting the space of polynomials of degree less than or equal to N in

element T k. We also introduce broken operators by restriction to each element T k ∈ Th
as follows:

• The broken gradient operator ∇h : H1(Th) → [L2(Ωh)]
2 is defined by (∇hv)|

Tk
=

∇(v|
Tk

), for T k ∈ Th, v ∈ H1(Th).
• The broken divergence operator ∇h· : [H1(Th)]2 → L2(Ωh) is defined by (∇h ·
q)|

Tk
= ∇ · (q|

Tk
), for T k ∈ Th, q ∈ [H1(Th)]2.

Let Γ = ∪Tk∈Th
∂T k and Γ0 = Γ\∂Ωh, the traces of functions in H1(Th) belong to

T (Γ) = ΠTk∈Th
L2(∂T k). Note that v may be double-valued on Γ0 and is single-valued

on ∂Ωh.
We introduce some operators that will be useful for manipulating the numerical

fluxes and obtaining the primal formulation. Let ekℓ be an edge shared by the elements
T k and T ℓ. For q ∈ [T (Γ)]2 and u ∈ T (Γ), we define the averages {{qh}}kℓ and
{{uh}}kℓ and the jumps JqhKkℓ and JuhKkℓ as follows:

{{qh}}kℓ =
qk
h + qℓ

h

2
, {{uh}}kℓ =

uk
h + uℓ

h

2
,

JqhKkℓ = nkℓ · qk
h + nℓk · qℓ

h, JuhKkℓ = nkℓuk
h + nℓkuℓ

h.

For a boundary edge ekB , we define

{{qh}}kB = qk
h, {{uh}}kB = uk

h, JqhKkB = nkB · qk
h, JuhKkB = nkBuk

h.

When it is clear which edge we are referring to, we usually omit the superscript kℓ and
simply write {{·}} and J·K. A convenient norm with which to carry out the analysis of
the method is the following [3]

|||u|||2 =

K∑

k=1

(
∥u∥2H1(Tk) + h2

k|u|
2
H2(Tk)

)
+
∑

e∈Eh

h−1
e

∥∥JuK
∥∥2
L2(e)

, (7)
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for u ∈ H2(Th). For notational convenience, let

|v|2∗ =
∑

e∈Eh

h−1
e

∥∥JvK
∥∥2
L2(e)

, (8)

for v ∈ L2(Ωh). Using a inequality ([7], Lemma 4.5.3), we may prove that, for T k ∈ Th,

hk|v|H2(Tk) ≤ C|v|H1(Tk) . (9)

Thus,

|||v|||2 =

K∑

k=1

(
∥v∥2L2(Tk) +|v|2H1(Tk) + h2

k|v|2H2(Tk)

)
+|v|2∗

≤ (1 + C2)
(
∥v∥2H1(Th)

+|v|2∗
)
. (10)

For each element T k, with k ∈ IB , let IkB be the index set of the discontinuous
Galerkin nodes different from the vertexes that belong to the boundary edge ekB (see
left panel of Figure 2).

Now, we introduce two spaces Vh and Wh associated to Th. The space Vh is defined
by

Vh =

{
v ∈ H2(Th) : v|∂Ωh

= 0, v|
Tk

∈ PN

(
T k
)
, ∀T k ∈ Th

}
.

For convenience, we extend by 0 every function v ∈ Vh to Ω \ Ωh. Wh is the space
defined in Ωh that satisfies the following properties for w ∈ Wh

(1) w|
Tk

∈ PN

(
T k
)
, ∀T k ∈ Th;

(2) w ∈ H2(Th);
(3) The expression of w is extended to Ω \ Ωh in such a way that its polynomial

expression in T k, k ∈ IB , also applies in ∆k;
(4) w vanishes at the vertexes of ∂Ωh and w(P k

r ) = 0, r = 1, . . . , N − 1, ∀T k ∈
Th, k ∈ IB (where each point P k

r is chosen to be the nearest intersection with
the physical boundary ∂Ω of the line passing through the vertex Ok of T k not
belonging to ∂Ω and one of N−1 discontinuous Galerkin nodes xk

i , i ∈ IkB , lying
on the associated boundary edge, ekB). Thus, w vanishes at N +1 points on ∂Ω.

For notation proposes, assume that the vertexes of the element T k, k ∈ IB , on
∂Ω are denoted by P k

N and P k
N+1. Thus, according to property (4), we may write

w(P k
r ) = 0, r = 1, . . . , N + 1, ∀T k ∈ Th, k ∈ IB . An example of the nodes associated

with Wh is reported in Figure 2. Namely, the discontinuous Galerkin nodal set and
the points P k

r , r = 1, . . . , N − 1, resulting from a projection of the nodal points lying
on the boundary edge ekB . For the non-convex case, the points P k

r are obtained using
the same approach.

For each element T k, k ∈ IB , let mN = N(N+1)/2 be the number of nodal points
that do not lie in the interior of the edge ekB . In other words, mN = Np − (N − 1),
with Np = (N + 1) (N + 2) /2. The next lemma establishes that Wh is a non-empty
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T k

ekB
∂Ω

T k

ekB
∂Ω

Fig. 2: Discontinuous Galerkin nodal set {xk
i }

Np

i=1 denoted by the black dots (left
panel) and points P k

r , r = 1, . . . .N−1, denoted by the dots with diagonal lines pattern
(right panel).

finite-dimensional space and the proof of this result follows the same arguments as in
[28].
Lemma 2.1. Let PN

(
T k
)
be the space of polynomials defined in T k, k ∈ IB, of degree

less than or equal to N . Provided h small enough ∀T k, k ∈ IB, given a set of mN real
values γk

i , i = 1, . . . ,mN , there exists a unique function w ∈ PN

(
T k
)
that vanishes

at both vertex of T k located on ∂Ω and at the points P k
r of ∂Ω, r = 1, . . . N − 1, and

takes value γk
i respectively at the mN nodes of T k not located on ∂Ωh.

2.4 Variational formulation

In order to use a mixed formulation, consider the vector function q =
(
qx, qy

)T
defined

as the gradient of u, i.e. q (x) = ∇u (x). Thus, we may write ∆u (x) = ∇ · q (x).
Replacing this expression in (1), the solution is sought for the equivalent problem

−∇ · q (x) + c (x)u (x) = f (x) , (11)

q (x) = ∇u (x) . (12)

Consider that numerical solution uh has the following decomposition

uh (x) =

K⊕

k=1

uk
h (x) ∈ Wh. (13)

In each element T k, the local solution uk
h has a polynomial decomposition with the

two-dimensional Lagrange polynomials

x ∈ T k ∈ Th : uk
h (x) =

Np∑

i=1

uk
i ℓ

k
i (x) , (14)
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where uk
i = uk

h

(
xk
i

)
are the nodal values of the Lagrange polynomials basis ℓki (x) at

points xk
i ∈ T k, i = 1, . . . , Np.Vector u

k =
(
uk
1 , . . . , u

k
Np

)T
gathers the Np nodal val-

ues. The DG discretisation of vector function q is also introduced by taking qkh,x, q
k
h,y ∈

Wh and the auxiliary variable discretisation expressed as qk
h =

(
qkh,x, q

k
h,y

)T
with

x ∈ T k ∈ Th : qkh,ζ (x) =

Np∑

i=1

qki,ζℓ
k
i (x) , ζ = x, y. (15)

Vectors qk
ζ =

(
qk1,ζ , . . . , q

k
Np,ζ

)T
, ζ = x, y, gather the nodal values of polynomials qkh,ζ .

A discrete solution (uh, qh) is sought for (11) and (12) that satisfy

−
(
∇ · qk

h, ϕ
k
h

)
L2(Tk)

+
(
cuk

h, ϕ
k
h

)
L2(Tk)

=
(
f, ϕk

h

)
L2(Tk)

, (16)

(
qk
h,Π

k
h

)
L2(Tk)

−
(
∇uk

h,Π
k
h

)
L2(Tk)

= 0, (17)

where ϕk
h = ϕh|

Tk
∈ Vh and Πk

h = Πh|
Tk

∈ [Vh]
2.

Now, if we integrate (16) and (17) by parts, following the same arguments as in
[30], and if we add over all the elements of the mesh, we get

(qh,∇hϕh)L2(Ωh)
=− (cuh, ϕh)L2(Ωh)

+(f, ϕh)L2(Ωh)
+
∑

Tk∈Th

ˆ

∂Tk

nkℓ ·q∗kℓ
h ϕkℓ

h ds, (18)

(qh,Πh)L2(Ωh)
= − (uh,∇h ·Πh)L2(Ωh)

+
∑

Tk∈Th

ˆ

∂Tk

nkℓ ·Πkℓ
h u∗kℓ

h ds, (19)

where q∗kℓ
h = q∗ℓk

h and u∗kℓ
h = u∗ℓk

h are symmetric numerical fluxes defined on the
interface ekℓ, and ϕkℓ

h and Πkℓ
h are the polynomials ϕk

h and Πk
h defined on the edge ekℓ.

Using the average and jump operators, note that ([21], Lemma 7.9)

∑

Tk∈Th

ˆ

∂Tk

ukℓ
h nkℓ ·Πkℓ

h ds =

ˆ

Γ

JuhKkℓ · {{Πh}}kℓ ds+
ˆ

Γ0

{{uh}}kℓJΠhKkℓ ds. (20)

Integrating by parts we get

−
ˆ

Ωh

uh∇h ·Πhdx=

ˆ

Ωh

∇huh ·Πhdx−
ˆ

Γ

JuhKkℓ ·{{Πh}}kℓds−
ˆ

Γ0

{{uh}}kℓJΠhKkℓds.

(21)
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Thus, applying identity (20), we can rewrite (18) and (19) as

(qh,∇hϕh)L2(Ωh)
=− (cuh,ϕh)L2(Ωh)

+(f,ϕh)L2(Ωh)
+

ˆ

Γ

JϕhK·{{q∗
h}} ds

+

ˆ

Γ0

{{ϕh}}Jq∗
hKds, (22)

(qh,Πh)L2(Ωh)
=−(uh,∇h ·Πh)L2(Ωh)

+

ˆ

Γ

Ju∗
hK·{{Πh}}ds+

ˆ

Γ0

{{u∗
h}}JΠhKds. (23)

We omit the superscript kℓ for brevity of notation in the expressions above. Now,
using the identity (21) in (23), we get

(qh,Πh)L2(Ωh)
=

ˆ

Ωh

∇huh·Πh dx+

ˆ

Γ

Ju∗
h−uhK·{{Πh}}ds+

ˆ

Γ0

{{u∗
h−uh}}JΠhKds. (24)

Taking Πh = ∇hϕh and combining (22) and (24), we obtain

(∇huh,∇hϕh)L2(Ωh)+(cuh, ϕh)L2(Ωh)+

ˆ

Γ

(
Ju∗

h−uhK·{{∇hϕh}}−JϕhK·{{q∗
h}}
)
ds

+

ˆ

Γ0

(
{{u∗

h − uh}}J∇hϕhK − {{ϕh}}Jq∗
hK
)
ds = (f, ϕh)L2(Ωh). (25)

The numerical flux is defined by considering the internal penalty fluxes given by

q∗kℓ
h = {{∇uh}}kℓ − τJuhKkℓ, u∗kℓ

h = {{uh}}kℓ, on Γ0 (26)

q∗kB
h = ∇uk

h − τnkB
(
uk
h − gD

)
, u∗kB

h = gD, on ∂Ωh (27)

where ℓ corresponds to the index of an adjacent element in the case of an inner interface
and ℓ = B for a boundary element. Parameter τ = η/he, where η is some large
positive constant. Moreover, gD defines the boundary condition imposed in ∂Ωh. Then,
replacing the numerical flux in Eq. (25) and attending that J{{·}}K = 0, JJ·KK = 0,
{{{{·}}}} = {{·}} and {{J·K}} = J·K, we may write

(∇huh,∇hϕh)L2(Ωh)+(cuh,ϕh)L2(Ωh)−
ˆ

Γ

(
JuhK·{{∇hϕh}}+JϕhK·{{∇huh}}

)
ds

+

ˆ

Γ

JϕhK·
η

he
JuhKds=(f, ϕh)L2(Ωh)−

∑

k∈IB

ˆ

ekB

(
gkDnkB · ∇hϕ

k
h − η

he
gkDϕk

h

)
ds, (28)

where gkD = gD|
Tk

, for k ∈ IB . Thus, scheme (28) corresponds to the interior penalty
Galerkin method [21].

Instead of imposing homogeneous Dirichlet boundary conditions on ∂Ωh, i.e. gD =
0, we consider a new boundary condition gROD determined by the ROD method. The
polynomial gROD takes into account the geometrical mismatch between ∂Ω and ∂Ωh
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and it has the following decomposition

gROD(x;a) =
⊕

k∈IB

gk
(
x;ak

)
,

and in each element T k, with k ∈ IB , the local polynomial gk has a polynomial
decomposition with the two-dimensional Lagrange polynomials

x ∈ T k ∈ Th : gk
(
x;ak

)
=

Np∑

i=1

aki ℓ
k
i (x) , (29)

where vector ak =
(
ak1 , . . . , a

k
Np

)T
gathers the Np nodal values, aki , and a gathers all

the vectors ak, k ∈ IB . From [30], recall that the coefficients of each polynomial gk,
k ∈ IB , are determined by solving the following system

[
INp

Bk

(
Bk
)T

0N+1

][
ak

λk

]
=

[
uk

0

]
, (30)

where INp
is the identity matrix in RNp×Np , 0N+1 is the null matrix in R(N+1)×(N+1),

0 is the null vector in R(N+1)×1, and Bk =
[
Bk

1 , . . . ,B
k
N+1

]
in RNp×(N+1), with

Bk
r =

[
ℓkj

(
P k
r

) ]Np

j=1
,

for r = 1, . . . , N + 1, including the vertexes of T k on ∂Ωh. Thus,

[
ak

λk

]
=

[
INp

Bk

(
Bk
)T

0N+1

]−1 [
uk

0

]
=

[
C1 C2

C3 C4

] [
uk

0

]
,

where Ci denotes the i−th block of the inverse matrix. Noticing that INp
is invertible,

the inverse of the Np ×Np matrix C1 is given by [6]

C1 = I−1
Np

+ I−1
Np

Bk

(
0N+1 −

(
Bk
)T

I−1
Np

Bk

)−1 (
Bk
)T

I−1
Np

= INp
−Bk

((
Bk
)T

Bk

)−1 (
Bk
)T

.

Thus, we get

ak = uk −Bk

((
Bk
)T

Bk

)−1 (
Bk
)T

uk.
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Note that

(
Bk
)T

uk =




ℓk1
(
P k
1

)
. . . ℓkNp

(
P k
1

)

ℓk1
(
P k
2

)
. . . ℓkNp

(
P k
2

)

...
. . .

...

ℓk1

(
P k
N+1

)
. . . ℓkNp

(
P k
N+1

)







uk
1

uk
2
...

uk
Np



=




uk
h

(
P k
1

)

uk
h

(
P k
2

)
...

uk
h

(
P k
N+1

)



= 0,

since uk
h ∈ Wh. Then ak = uk and gk = uk

h, with k ∈ IB . Replacing gkD by uk
h in (28),

we get for v ∈ Vh

(∇huh,∇hv)L2(Ωh)+(cuh,v)L2(Ωh)−
ˆ

Γ

(
JuhK·{{∇hv}}+JvK·{{∇huh}}−

η

he
JvK·JuhK

)
ds

= (f, v)L2(Ωh) −
∑

k∈IB

ˆ

ekB

(
uk
hn

kB · ∇hv|
Tk

− η

he
uk
hv|Tk

)
ds

= (f, v)L2(Ωh) −
ˆ

∂Ωh

JuhK · {{∇hv}} ds+
ˆ

∂Ωh

η

he
JuhK · JvKds. (31)

Attending that v = 0 on ∂Ωh and considering (31), we obtain

(∇huh,∇hv)L2(Ωh) + (cuh, v)L2(Ωh) −
ˆ

Γ0

JuhK · {{∇hv}} ds−
ˆ

Γ0

JvK · {{∇huh}} ds

+

ˆ

Γ0

η

he
JvK · JuhKds = (f, v)L2(Ωh). (32)

Then, the variational problem of (1)–(2) can be reformulated as follows: find uh ∈
Wh such that

ah(uh, v) = (f, v)L2(Ωh), ∀v ∈ Vh, (33)

where the bilinear form ah(·, ·) is defined as

ah(uh, v) = (∇huh,∇hv)L2(Ωh) + (cuh, v)L2(Ωh) −
ˆ

Γ0

JuhK · {{∇hv}} ds

−
ˆ

Γ0

JvK · {{∇huh}} ds+
ˆ

Γ0

η

he
JvK · JuhK ds. (34)

We call (33)–(34) the primal formulation of the method and the bilinear form ah(·, ·)
the primal form.

3 Existence and Uniqueness of the Solution

In this section, we prove the existence and uniqueness of the numerical solution. We
start by analysing some basic properties of the method, namely, we show the bound-
edness of the bilinear form ah(·, ·) defined by (34). Then, we prove a weak coercivity
in connection with finite-dimensional subspaces, with dim(Wh) = dim(Vh).
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Now, we present the Generalized Lax-Milgram Theorem as stated by Brezzi [8].
Theorem 3.1 ([8]). Let X and Y be two Hilbert spaces and consider a a continuous
real bilinear form defined on X × Y . The following properties are equivalent:
1. a is weakly coercive, i.e., the following conditions are satisfied:

(i) ∃α > 0 such that infu∈X\{0X} supv∈Y \{0Y }
a(u,v)

∥u∥X∥v∥Y

≥ α;

(ii) ∀v ∈ Y \ {0Y }, ∃u ∈ X, such that a(u, v) ̸= 0.
2. ∀L ∈ Y ' the problem a(u, v) = L(v) has a unique solution u ∈ X which satisfies

the stability condition

∥u∥X ≤ ∥L∥Y '

α
,

where α is the co-norm of a, i.e. the maximum of all α satisfying (i).
In practice, the subspaces X and Y are often finite-dimensional. The following

corollary establishes a result of the weak coercivity in connection with finite-
dimensional subspaces. In particular, condition (ii) can be replaced with dim(X) =
dim(Y ) for bilinear forms associated with finite-dimensional spaces.
Corollary 3.1 ([15]). If X and Y are finite-dimensional spaces, the bilinear form a
is weakly coercive over X × Y if and only if either:

• condition (i) holds and dim(X) = dim(Y );
• matrix A associated with the bilinear form a is a square invertible matrix;

both conditions being equivalent.
Thus, to prove the existence and uniqueness of the solution, we may prove that the

bilinear form (34) is bounded, the inf-sup condition (i) holds, and dim(Wh) = dim(Vh).
We start by discussing the boundedness of the bilinear form ah(·, ·).

3.1 Boundedness

We show that the bilinear form ah(·, ·) is continuous on H2(Th) × H2(Th) equipped
with the norm |||·|||, i.e., there exists a positive real number Cb such that

∣∣ah(uh, v)
∣∣ ≤ Cb|||uh||||||v|||, ∀uh ∈ H2(Th), ∀v ∈ H2(Th). (35)

In particular, note that Wh ⊂ H2(Th) and Vh ⊂ H2(Th). Recall that

∣∣ah(uh, v)
∣∣ ≤

∣∣∣(∇huh,∇hv)L2(Ωh)

∣∣∣+
∣∣∣(cuh, v)L2(Ωh)

∣∣∣+
ˆ

Γ0

∣∣JuhK · {{∇hv}}
∣∣ ds

+

ˆ

Γ0

∣∣JvK · {{∇huh}}
∣∣ ds+

ˆ

Γ0

∣∣∣∣
η

he
JvK · JuhK

∣∣∣∣ ds. (36)

We show that each term in (36) can be bounded by the |||·|||−norm. For the first and
second terms, we use the Cauchy-Schwarz inequality and obtain

∣∣∣(∇huh,∇hv)L2(Ωh)

∣∣∣+
∣∣∣(cuh, v)L2(Ωh)

∣∣∣ ≤
K∑

k=1

∣∣∣(∇huh,∇hv)L2(Tk)

∣∣∣+
K∑

k=1

∣∣∣(cuh, v)L2(Tk)

∣∣∣
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≤
K∑

k=1

∥∇uh∥L2(Tk)∥∇v∥L2(Tk)+∥c∥L∞(Ωh)

K∑

k=1

∥uh∥L2(Tk)∥v∥L2(Tk)

≤ 2
(
1 +∥c∥L∞(Ωh)

)
|||uh||||||v|||. (37)

Now, we bound the third term in (36). Using the definition of jump and average,
a straightforward computation shows that

ˆ

e

JuhK · {{∇hv}} ds =
ˆ

e

JnuhK{{∇hv · n}} ds.

Thus,

ˆ

e

∣∣JuhK · {{∇hv}}
∣∣ds =

ˆ

e

∣∣JnuhK{{∇hv · n}}
∣∣ds ≤

∥∥JnuhK
∥∥
L2(e)

∥∥∥∥∥∥

{{
∂v

∂n

}}∥∥∥∥∥∥
L2(e)

. (38)

Employing the trace inequality ([2], equation (2.5)) for e ∈ ∂T k, T k ∈ Th, we get

∥∥∥∥
∂v

∂n

∥∥∥∥
2

L2(e)

≤ C2
T

(
h−1
e |v|2H1(Tk) + he|v|2H2(Tk)

)
, v ∈ H2(T k). (39)

Using the inequality above and the inequality (9), we conclude

∑

e∈E0

ˆ

e

∣∣JuhK · {{∇hv}}
∣∣ ds ≤

∑

e∈Eh

∥∥JuhK
∥∥
L2(e)

∥∥∥∥∥∥

{{
∂v

∂n

}}∥∥∥∥∥∥
L2(e)

≤


∑

e∈Eh

h−1
e

∥∥JuhK
∥∥2
L2(e)




1/2


∑

e∈Eh

he

∥∥∥∥∥∥

{{
∂v

∂n

}}∥∥∥∥∥∥

2

L2(e)




1/2

≤|uh|∗




K∑

k=1


 ∑

e∈∂Tk∩Eh

he

∥∥∥∥
∂v

∂n

∥∥∥∥
2

L2(e)







1/2

≤|uh|∗




K∑

k=1

C2
T

(
|v|2H1(Tk)+h2

k|v|2H2(Tk)

)



1/2

≤ CT

√
1 + C2|uh|∗|v|H1(Ωh)

≤ CT

√
1 + C2|uh|∗|||v|||. (40)

Similarly, we can bound the fourth term in (36) as

ˆ

Γ0

∣∣JvK · {{∇huh}}
∣∣ ds ≤ CT

√
1 + C2|v|∗|uh|H1(Ωh)

≤ CT

√
1 + C2|v|∗ |||uh|||. (41)
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Finally, for the last term, we have

ˆ

Γ0

∣∣∣∣JuhK·
η

he
JvK

∣∣∣∣ ds ≤η


∑

e∈Eh

h−1
e

∥∥JuhK
∥∥2
L2(e)




1/2
∑

e∈Eh

h−1
e

∥∥JvK
∥∥2
L2(e)




1/2

=η|uh|∗|v|∗ .

(42)

Combining (37), (40)–(42), for uh ∈ H2(Th) and v ∈ H2(Th), we get (35) with

Cb = max

{
2
(
1 +∥c∥L∞(Ωh)

)
, CT

√
1 + C2, η

}
.

3.2 Weak coercivity

Now, we address the weak coercivity of the bilinear form. The following theorem
establishes an inf-sup condition for the DG-ROD formulation (33)–(34).
Theorem 3.2. Consider the bilinear form ah(·, ·) defined in (34). Given h sufficiently
small and η sufficiently large, there exists a constant α > 0 independent of h such that

∀w ∈ Wh \ {0}, sup
v∈Vh\{0}

ah(w, v)

|||w||||||v||| ≥ α. (43)

Proof. Let w ∈ Wh. Let v ∈ Vh such that v coincide with w at all mesh nodes, except
those located on ∂Ωh that are not mesh vertexes. Thus, (w − v)|

Tk
= 0, for every

element T k that does not have an edge on ∂Ωh. Taking advantage of the relationship
between w and v, we may write

ah(w, v)=

K∑

k=1

(
(∇w,∇w)L2(Tk)+(cw,w)L2(Tk)

)
+

ˆ

Γ0

η

he
JwK·JwKds−2

ˆ

Γ0

JwK·{{∇hw}} ds

−
∑

k∈IB

(
(∇w,∇rk(w))L2(Tk) +(cw, rk(w))L2(Tk)

)
−
∑

e∈EB
0

ˆ

e

η

he
Jr(w)K·JwKds

+
∑

e∈EB
0

ˆ

e

JwK·{{∇hr(w)}} ds+
∑

e∈EB
0

ˆ

e

Jr(w)K·{{∇hw}} ds, (44)

where r(w) =
⊕

k∈IB rk(w), rk(w) = (w − v)|
Tk

=
∑

i∈IkB w(xk
i )ℓ

k
i (x), EB

h =

∪k∈IB∂T k and EB
0 = EB

h ∩ Γ0.
We aim to estimate bounds for each of the nine terms in (44). Using the definition

of norm, we may write

K∑

k=1

(∇w,∇w)L2(Tk) =∥∇hw∥2L2(Ωh)
, (45)

∑

e∈E0

ˆ

e

η

he
JwK · JwKds = η


∑

e∈E0

h−1
e

∥∥JwK
∥∥2
L2(e)


 = ηCw|w|2∗ , (46)
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with 0 < Cw ≤ 1. Now, using the inequalities of the boundedness of subsection 3.1
(see (40)) and for ϵ1 > 0 we can estimate the following upper bound for the fourth
term in (44)

2
∑

e∈E0

ˆ

e

JwK · {{∇hw}} ds ≤ 2
∑

e∈E0

ˆ

e

∣∣JwK · {{∇hw}}
∣∣ ds

≤ 2CT

√
1 + C2|w|H1(Ωh)

|w|∗ ≤ CT

√
1 + C2

(
ϵ1|w|2H1(Ωh)

+
|w|2∗
ϵ1

)
. (47)

Now, we bound the terms with r(w). In order to achieve that, we start by noticing
that

∥∥∥rk(w)
∥∥∥
L2(Tk)

≤
∑

i∈IkB

∣∣∣w(xk
i )
∣∣∣
∥∥∥ℓki
∥∥∥
L2(Tk)

, (48)

∥∥∥∇rk(w)
∥∥∥
L2(Tk)

≤
∑

i∈IkB

∣∣∣w(xk
i )
∣∣∣
∥∥∥∇ℓki

∥∥∥
L2(Tk)

. (49)

From standard results, it holds for mesh independent constants C1 and C2

∥∥∥ℓki
∥∥∥
L2(Tk)

≤ C1hk and
∥∥∥∇ℓki

∥∥∥
L2(Tk)

≤ C2.

Using Proposition (A.1), Lemma (A.1) and following similar arguments as in [28], we
may prove that

|w(xk
j )| ≤ C∂ΩC∞CJhk∥∇w∥L2(Tk) .

Then, we get

∥∥∥rk(w)
∥∥∥
L2(Tk)

≤ C̃1h
2∥∇w∥L2(Tk) , (50)

where C̃1 = (N − 1)C1C∂Ωh
C∞CJ , and

∥∥∥∇rk(w)
∥∥∥
L2(Tk)

≤ C̃2h∥∇w∥L2(Tk) , (51)

where C̃2 = (N − 1)C2C∂Ωh
C∞CJ .

Thus, using the inequality (51), we get for the fifth term in (44)

∑

k∈IB

(∇w,∇rk(w))L2(Tk)≤
∑

k∈IB

∥∇w∥L2(Tk)

∥∥∥∇rk(w)
∥∥∥
L2(Tk)

≤ C̃2h∥∇hw∥2L2(Ωh)
.

(52)
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Using the inequality (50) and considering ϵ2 > 0, we obtain for the sixth term in (44)

∑

k∈IB

(cw, rk(w))L2(Tk)≤
∑

k∈IB

∥cw∥L2(Tk)

∥∥∥rk(w)
∥∥∥
L2(Tk)

≤
∑

k∈IB

∥cw∥L2(Tk) C̃1h
2∥∇w∥L2(Tk)

≤ C̃1h
2∥cw∥L2(Ωh)

∥∇hw∥L2(Ωh)

≤ C̃1

2
h2


ϵ2∥cw∥2L2(Ωh)

+
∥∇hw∥2L2(Ωh)

ϵ2


 . (53)

Let us now estimate the last three terms in (44). Note that, for ϵ3 > 0,

∑

e∈EB
0

ˆ

e

η

he
Jr(w)K · JwKds≤

∑

e∈EB
h

ˆ

e

η

he

∣∣Jr(w)K · JwK
∣∣ds≤η

∑

e∈EB
h

∥∥∥∥∥
Jr(w)K

h
1/2
e

∥∥∥∥∥
L2(e)

∥∥∥∥∥
JwK

h
1/2
e

∥∥∥∥∥
L2(e)

≤ η
∣∣r(w)

∣∣
∗
|w|∗ ≤ η

2

(
ϵ3
∣∣r(w)

∣∣2
∗
+
|w|2∗
ϵ3

)
. (54)

Using a trace inequality ([2], equation (2.4)) for e ∈ ∂T k, T k ∈ Th

∥v∥2L2(e) ≤ C̃2
T

(
h−1
e ∥v∥2L2(Tk) + he|v|2H1(Tk)

)
, v ∈ H1(T k), (55)

for v = r(w), and employing the inequality (5) we obtain

∣∣r(w)
∣∣2
∗
≤

K∑

k=1


 ∑

e∈∂Tk∩Eh

h−1
e

∥∥∥rk(w)
∥∥∥
2

L2(e)




≤
K∑

k=1


 ∑

e∈∂Tk∩Eh

h−1
e C̃2

Th
−1
e

(∥∥∥rk(w)
∥∥∥
2

L2(Tk)
+ h2

e

∥∥∥∇rk(w)
∥∥∥
2

L2(Tk)

)


≤
K∑

k=1

C̃2
T


 ∑

e∈∂Tk∩Eh

1

µ2h2
k

(
C̃2

1h
4
k∥∇w∥2L2(Tk) + C̃2

2h
4
k∥∇w∥2L2(Tk)

)



≤ C2
∗h

2∥∇hw∥2L2(Ωh)
,

where C2
∗ = C̃2

T

(
C̃2

1 + C̃2
2

)
/µ2. Then, we can write (54) as

∑

e∈EB
0

ˆ

e

η

he
Jr(w)K · JwKds ≤ η

2

(
ϵ3C

2
∗h

2∥∇hw∥2L2(Ωh)
+
|w|2∗
ϵ3

)
. (56)
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For the eighth term in (44) we have

∑

e∈EB
0

ˆ

e

JwK·{{∇hr(w)}}ds≥
−1

2

∑

e∈EB
0

ˆ

e



∣∣∣h−1/2

e JwnK
∣∣∣
2

+

∣∣∣∣∣h
1/2
e

{{
∂r(w)

∂n

}}∣∣∣∣∣

2

ds, (57)

and then we need to bound each of the terms on the right-hand side of the inequality
above. Note that

∑

e∈EB
0

ˆ

e

∣∣∣h−1/2
e JwnK

∣∣∣
2

ds ≤
∑

e∈Eh

ˆ

e

h−1
e

∣∣JwK
∣∣2 ds = |w|2∗ . (58)

On the other hand, using the inequality (39), we get

∑

e∈EB
0

ˆ

e

∣∣∣∣∣h
1/2
e

{{
∂r(w)

∂n

}}∣∣∣∣∣

2

ds ≤
K∑

k=1


 ∑

e∈∂Tk∩Eh

he

∥∥∥∥
∂r(w)

∂n

∥∥∥∥
2

L(e)




≤
K∑

k=1


 ∑

e∈∂Tk∩Eh

heC
2
Th

−1
e

(∥∥∥∇rk(w)
∥∥∥
2

L2(Tk)
+ h2

e

∣∣∣rk(w)
∣∣∣
2

H2(Tk)

)
 .

Using (51) and recalling that h2
e

∣∣rk(w)
∣∣2
H2(Tk)

≤ C2
∣∣rk(w)

∣∣2
H1(Tk)

, (see [7]), we obtain

∑

e∈EB
0

ˆ

e

∣∣∣∣∣h
1/2
e

{{
∂r(w)

∂n

}}∣∣∣∣∣

2

ds ≤
K∑

k=1

C2
T (1 + C2)

∥∥∥∇rk(w)
∥∥∥
2

L2(Tk)

≤ C2
T (1 + C2)C̃2

2h
2∥∇hw∥2L2(Ωh)

. (59)

Finally, replacing (58) and (59) in (57), we get

∑

e∈EB
0

ˆ

e

JwK · {{∇hr(w)}} ds ≥
−1

2

(
|w|2∗ + C2

T (1 + C2)C̃2
2h

2∥∇hw∥2L2(Ωh)

)
. (60)

Applying a similar argument, we can estimate a lower bound for last term in (44).
Note that

∑

e∈EB
0

ˆ

e

Jr(w)K·{{∇hw}} ds ≥
−1

2

∑

e∈EB
0

ˆ

e



∣∣∣h−1

e Jr(w)nK
∣∣∣
2

+

∣∣∣∣∣he

{{
∂w

∂n

}}∣∣∣∣∣

2

 ds, (61)
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and so we need to bound each of the terms on the right-hand side of the inequality
above. Recalling assumption (6) we may write

∑

e∈EB
0

ˆ

e

∣∣∣h−1
e Jr(w)nK

∣∣∣
2

ds≤ 1

hmin

∣∣r(w)
∣∣2
∗
≤ 1

hmin
C2

∗h
2|w|2H1(Th)

≤ ρ̃C2
∗h|w|2H1(Th)

. (62)

On the other hand,

∑

e∈EB
0

ˆ

e

∣∣∣∣∣he

{{
∂w

∂n

}}∣∣∣∣∣

2

ds ≤
K∑

k=1


 ∑

e∈∂Tk∩Eh

h2
e

∥∥∥∥
∂w

∂n

∥∥∥∥
2

L2(e)




≤
K∑

k=1


 ∑

e∈∂Tk∩Eh

h2
eC

2
Th

−1
e

(
∥∇w∥2L2(Tk) + h2

e|w|2H2(Tk)

)



≤C2
T (1+C2)

K∑

k=1

hk∥∇w∥2L2(Tk)≤C2
T (1+C2)h|w|2H1(Th)

. (63)

Thus, replacing (62) and (63) in (61), we obtain

∑

e∈EB
0

ˆ

e

Jr(w)K · {{∇hw}} ds ≥
−1

2

(
ρ̃C2

∗ + C2
T (1 + C2)

)
h|w|2H1(Th)

. (64)

Let us finally consider the terms containing the function c in (44). Taking (53) into
account and considering

h2 < h2
1 = 2

/(
C̃1ϵ2∥c∥L∞(Ωh)

)
, (65)

we get

K∑

k=1

(cw,w)L2(Tk)−
∑

k∈IB

(cw, rk(w))L2(Tk)≥
K∑

k=1

(
(cw,w)L2(Tk)−

C̃1

2
h2ϵ2∥cw∥2L2(Tk)

)

=

K∑

k=1

(
(cw,w)L2(Tk) + (cw,− C̃1

2
h2ϵ2cw)L2(Tk)

)

=

K∑

k=1

(
cw, (1− C̃1

2
h2ϵ2c)w

)

L2(Tk)

≥ cminc
′∥w∥2L2(Ωh)

,

with cmin = minx∈Ωh
c(x) and

c′ = 1− C̃1

2
h2ϵ2∥c∥L∞(Ωh)

. (66)
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Using (10), we may write

|||w|||2 ≤ C2
aux

(
∥w∥2L2(Ωh)

+∥∇hw∥2L2(Ωh)
+|w|2∗

)
. (67)

Note that using an inequality of Poincaré-Friedrichs type valid for w ∈ H1(Th) (see
[2], Lemma 2.1), we get

|||w|||2 ≤ C2
aux

(
CP

(
∥∇hw∥2L2(Ωh)

+|w|2∗
)
+∥∇hw∥2L2(Ωh)

+|w|2∗
)

≤ C2
aux(1 + CP )

(
∥∇hw∥2L2(Ωh)

+|w|2∗
)
. (68)

Then, combining the bounds for each term of (44), namely (45)–(47), (52), (53),
(56), (60), (64), we may write (44) as

ah(w, v) ≥ Cα|||w|||2, (69)

where Cα = min{Ĉ1, Ĉ2, Ĉ3}/C2
aux, if cmin > 0, and Cα = min{Ĉ2, Ĉ3}/(C2

aux(1 +

CP )), if cmin = 0, and Ĉ1 = cminc
′, with c′ is given by (66),

Ĉ2 =
(
1− CT

√
1 + C2ϵ1

)
− h

(
C̃2 +

1

2

(
C2

∗ ρ̃+ C2
T (1 + C2)

))

− h2

(
C̃1

2ϵ2
+

1

2
C2

T (1 + C2)C̃2
2 + ηϵ3

C2
∗

2

)

and Ĉ3 = −CT

√
1 + C2/ϵ1 − 1/2 + ηCw − η/(2ϵ3).

Note that, considering (65) and cmin > 0, Ĉ1 > 0 (see (66)). For Ĉ2, if we take
ϵ1 < 1/(CT

√
1 + C2) and h < h2, where h2 is the positive root of the equation (in h)

Ĉ2 = 0, we have Ĉ2 > 0. For Ĉ3, considering ϵ3 > 1/(2Cw) and taking

η = 2

(
1

Cw − 1
2ϵ3

)(
1

2
+

CT

√
1 + C2

ϵ1

)
,

we get

Ĉ3 =
1

2
+

CT

√
1 + C2

ϵ1
> 0.

Thus, considering h sufficiently small in the sense that h < h0 = min{h1, h2}, we have
(69) with Cα > 0.

Note that using (50)

∥v∥L2(Tk) ≤∥w∥L2(Tk) + C̃1h
2∥∇w∥L2(Tk) ≤

√
2(1 + C̃1h

2)∥w∥H1(Tk) . (70)
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Similarly, considering (51), we obtain

∥∇v∥L2(Tk) ≤ (1 + C̃2h)∥∇w∥L2(Tk) . (71)

Note that |v|2∗ ≤ 2C2
∗h

2∥∇hw∥2L2(Ωh)
+ 2|w|2∗ and then

|||v|||2 ≤ Ĉ2
aux

(
∥v∥2L2(Ωh)

+∥∇hv∥2L2(Ωh)
+|v|2∗

)
≤ C2

v |||w|||
2
,

where C2
v = Ĉ2

aux max{2, 2(1 + C̃1h
2
0)

2 + (1 + C̃2h0)
2 + 2C2

∗h
2
0}. We get

ah(w, v) ≥
Cα

Cv
|||w||||||v||| ⇒ ah(w, v)

|||w||||||v||| ≥
Cα

Cv
= α.

Using condition (i) of Corollary 3.1, since dim(Wh) = dim(Vh), the fact that the
inf-sup condition (43) holds, implies that (33)–(34) is uniquely solvable.

4 Error Estimates

In this section, we derive error estimates for the DG-ROD method for convex and
non-convex domains. We first analyse whether the Galerking orthogonality holds in
each case, and if it does not hold, we derive estimates for the resulting residual. To
estimate the error, we use the inf-sup condition (43) and classical interpolation results.
Let Ih(w) ∈ Wh be the PN -interpolate of w at the nodes associated with Wh. First,
we note that if k /∈ IB , then Ih(w) is the standard interpolate of w at the mesh nodes
xk
i (see left panel of Figure 2). If k ∈ IB , then Ih(w) is the interpolate of w at the

set of mN + 2 mesh nodes xk
i that do not lie in the interior of ekB , together with the

N − 1 points lying on ∂Ω associated with the mesh nodes of T k lying in the interior
of ekB (see right panel of Figure 2).

4.1 Convex case

We start by discussing the consistency of the method. Let Ω be a convex domain,
u ∈ H2(Ω) the exact solution of the boundary value problem (1)–(2) and v ∈ Vh.
Attending that Ωh ⊂ Ω, JuK = 0, J∇uK = 0 and using the estimate (21), we get

ah(u, v) = (∇hu,∇hv)L2(Ωh)+(cu, v)L2(Ωh)

−
ˆ

Γ0

JuK · {{∇hv}} ds−
ˆ

Γ0

JvK · {{∇hu}} ds+
ˆ

Γ0

η

he
JvK · JuKds

= (∇hu,∇hv)L2(Ωh) + (cu, v)L2(Ωh) −
ˆ

Γ0

JvK · {{∇hu}} ds

= −(∇h · ∇hu, v)L2(Ωh) +

ˆ

Γ

JvK · {{∇hu}} ds+
ˆ

Γ0

{{v}}J∇huKds
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+(cu, v)L2(Ωh) −
ˆ

Γ0

JvK · {{∇hu}} ds = (f, v)L2(Ωh).

Thus, the method is consistent and the Galerkin orthogonality holds

ah(u− uh, v) = 0, ∀v ∈ Vh. (72)

Theorem 4.1. Let Ω be convex and u ∈ HN+1(Ω) be the solution of (1)–(2). Then,
for h sufficiently small and for a suitable constant C independent of h and u, the
solution uh of (33)–(34) satisfies

|||u− uh||| ≤ ChN |u|HN+1(Ω). (73)

Proof. First, note that |||u − uh||| ≤ |||u − Ih(u)||| + |||uh − Ih(u)|||, with Ih(u) the
PN -interpolate of u at the nodes associated with Wh. Using the inf-sup inequality
(Theorem 3.2), we get

|||uh − Ih(u)||| ≤
1

α
sup

v∈Vh\{0}

ah(uh − Ih(u), v)

|||v||| . (74)

Adding and subtracting u in the first argument of ah, using the Galerkin orthogonality
and the boundedness inequality (35) yields

|||u− uh||| ≤
(
1 +

Cb

α

)
|||u− Ih(u)|||.

Recall that, as the interpolant Ih(u) is discontinuous across the inter-elements
boundaries, the jumps u− Ih(u) will not be zero. Therefore

|||u− Ih(u)|||2 =

K∑

k=1

(∥∥u− Ih(u)
∥∥2
L2(Tk)

+
∣∣u− Ih(u)

∣∣2
H1(Tk)

+ h2
k

∣∣u− Ih(u)
∣∣2
H2(Tk)

)

+
∑

e∈Eh

h−1
e

∥∥Ju− Ih(u)K
∥∥2
L2(e)

(75)

and, using (75) and (55), we obtain

|||u− Ih(u)|||2 ≤ C

K∑

k=1

(∥∥u− Ih(u)
∥∥2
L2(Tk)

+
∣∣u− Ih(u)

∣∣2
H1(Tk)

+ h2
k

∣∣u− Ih(u)
∣∣2
H2(Tk)

+h−2
k

∥∥u− Ih(u)
∥∥2
L2(Tk)

)
. (76)

From Lemma A.2, considering p = 2, m = N + 1, j = 0, 1, 2 and h < 1, we establish

|||u− Ih(u)||| ≤ CahN |u|HN+1(Ω) .
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Thus, (73) holds with C = Ca
(
1 + Cb/α

)
.

The next theorem establishes that the DG-ROD solution exhibits an optimal
O(hN+1) convergence rate in the L2-norm when N -degree piecewise polynomials are
used, under certain regularity conditions on the solution.
Theorem 4.2. Let Ω be convex and u be the solution of (1)–(2) belonging to
HN+1+r(Ω), with r = 1/2 + ϵ, for ϵ > 0 arbitrary small. Then, given h sufficiently
small, the solution uh of (33)–(34) satisfies for N > 1 and a suitable constant C0
independent of h and u

∥u− uh∥L2(Ωh)
≤ C0hN+1∥u∥HN+1+r(Ω) . (77)

Proof. Recall that every function in Wh is defined in Ω \Ωh and let z ∈ H1
0 (Ω) be the

solution of

−∆z (x) + c (x) z (x) = u (x)− uh (x) , x ∈ Ω,

z (x) = 0, x ∈ ∂Ω.

We know that u − uh ∈ L2(Ω), z ∈ H2(Ω). It is well-known that if ∂Ω is C2 (see,
for example, [17], Theorem 6.3.4) or Ω is a convex polygonal bounded domain with a
Lipschitz boundary (see [20], Theorem 4.3.1.4) there exists a constant C(Ω) such that

∥z∥H2(Ω) ≤ C(Ω)∥u− uh∥L2(Ω) . (78)

Then,

∥u− uh∥L2(Ω) ≤ C(Ω)
∥u− uh∥2L2(Ω)

∥z∥H2(Ω)

= C(Ω)
(u− uh,−∆z + cz)L2(Ω)

∥z∥H2(Ω)

. (79)

Considering ∆h = Ω \ Ωh, we have

(u− uh,−∆z + cz)L2(Ω) = (u− uh,−∆z + cz)L2(Ωh) + (u− uh,−∆z + cz)L2(∆h)

= (∇h(u− uh),∇z)L2(Ωh) + (u− uh, cz)L2(Ωh)

−
K∑

k=1

ˆ

∂Tk

(u− uh)
∂z

∂n
ds+â∆h(u− uh, z)+b1h(u− uh, z),

with

â∆h(u− uh, z) =

ˆ

∆h

∇h(u− uh) · ∇z + (u− uh)cz dx, (80)

and

b1h(u− uh, z) = −
ˆ

∂Ω

(u− uh)
∂z

∂n
ds. (81)

Using the equality (20) and attending that JzK = 0 and J∇zK = 0, we may write

(u− uh,−∆z + cz)L2(Ω) = (∇h(u− uh),∇z)L2(Ωh) + (u− uh, cz)L2(Ωh)
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−
ˆ

Γ

Ju− uhK · {{∇z}} ds−
ˆ

Γ0

{{u− uh}}J∇zKds

−
ˆ

Γ0

JzK · {{∇h(u− uh)}} ds+
ˆ

Γ0

η

he
Ju− uhK · JzKds

+ â∆h(u− uh, z) + b1h(u− uh, z)

= ah(u− uh, z) + â∆h(u− uh, z) + b1h(u− uh, z)

−
ˆ

∂Ωh

(u− uh)
∂z

∂n
ds. (82)

In order to estimate the bilinear forms, consider Πh(z) a continuous piecewise
linear interpolate of z in Ω at the vertexes of the mesh. Then, setting zh = Πh(z), in
Ωh, we have zh ∈ Vh. Therefore, since Ωh ⊂ Ω

ah(u, zh) = (f, zh)L2(Ωh) = ah(uh, zh). (83)

Now, observe that

â∆h(u− uh, z) = â∆h(u− uh, z −Πh(z)) + â∆h(u− uh,Πh(z))

= â∆h(u− uh, z −Πh(z)) +
∑

k∈IB

ˆ

∆k

−∆(u− uh)Πh(z) dx

+ c(u− uh)Πh(z) dx+
∑

k∈IB

ˆ

(Tk∪∆k)∩∂Ω

∂(u− uh)

∂n
Πh(z) ds

= â∆h(u− uh, z −Πh(z)) + b2h(u− uh,Πh(z)) + b3h(u− uh,Πh(z)),

where

b2h(u− uh,Πh(z)) =
∑

k∈IB

ˆ

∆k

−∆(u− uh)Πh(z) + c(u− uh)Πh(z) dx, (84)

b3h(u− uh,Πh(z)) =
∑

k∈IB

ˆ

(Tk∪∆k)∩∂Ω

∂(u− uh)

∂n
Πh(z) ds. (85)

Setting eh(z) = z −Πh(z), we get

b4h(u− uh, eh(z)) = â∆h(u− uh, z −Πh(z)). (86)

Then, we may write

â∆h(u− uh, z) = b2h(u− uh,Πh(z)) + b3h(u− uh,Πh(z)) + b4h(u− uh, eh(z)). (87)

Now, using the Galerkin orthogonality (72), since Πh(z) ∈ Vh, we may write

ah(u− uh, z) = ah(u− uh, z −Πh(z) + Πh(z)) = ah(u− uh, eh(z)). (88)
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Considering

b5h(u− uh, z) = −
ˆ

∂Ωh

(u− uh)
∂z

∂n
ds, (89)

and combining (87) and (88) into (82), we get

(u− uh,−∆z + cz)L2(Ω) = ah(u− uh, eh(z)) + b1h(u− uh, z) + b2h(u− uh,Πh(z))

+b3h(u− uh,Πh(z))+b4h(u− uh, eh(z))+b5h(u− uh, z). (90)

Thus, we obtain

∥u− uh∥L2(Ω) ≤ C(Ω)
ah(u− uh, eh(z)) + b1h(u− uh, z) + b2h(u− uh,Πh(z))

∥z∥H2(Ω)

+ C(Ω)
b3h(u− uh,Πh(z))+b4h(u− uh, eh(z))+b5h(u− uh, z)

∥z∥H2(Ω)

. (91)

Using the boundedness inequality (35) and applying Theorem 4.1, we note that

ah(u− uh, eh(z)) ≤ Cb|||u− uh||||||eh(z)||| ≤ CbChN |u|HN+1(Ω) |||eh(z)|||. (92)

From (76) and applying Lemma A.2 with j = 0, 1, 2 and since h < 1, we establish

|||eh(z)||| ≤ CΩ,zh|z|H2(Ω) , (93)

with CΩ,z a mesh-independent constant. Thus, we rewrite (92) as

ah(u− uh, eh(z)) ≤ Cah
N+1∥u∥HN+1+r(Ω)∥z∥H2(Ω) , (94)

where Ca = CbCCΩ,z.
Estimates for bih, with i = 1, 2, 3, 4, 5, can be established as follows (see Appendix

B):

b1h(u− uh, z) ≤ Cb1h
N+1∥u∥HN+1+r(Ω)∥z∥H2(Ω) , (95)

b2h(u− uh,Πh(z)) ≤ Cb2h
N+2∥u∥HN+1+r(Ω)∥z∥H2(Ω) , (96)

b3h(u− uh,Πh(z)) ≤ Cb3h
N+1∥u∥HN+1+r(Ω)∥z∥H2(Ω) , (97)

b4h(uh − u, eh(z)) ≤ Cb4h
N+3/2∥u∥HN+1+r(Ω)∥z∥H2(Ω) , (98)

b5h(u− uh, z) ≤ Cb5h
N+1∥u∥HN+1+r(Ω)∥z∥H2(Ω) . (99)

Finally, combining (94) with the estimates for bih, with i = 1, 2, 3, 4, 5,
(95)–(99) into (91), owing to the fact h < 1, we obtain (77) with C0 =
C(Ω) (Ca + Cb1 + Cb2 + Cb3 + Cb4 + Cb5).
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4.2 Non-convex case

Now, we consider a non-convex domain Ω. In this case, as the Galerkin orthogonality
does not hold, there will be a non-zero residual ah(u, v) − (f, v)L2(Ωh), v ∈ Vh. We

introduce a smooth domain Ω̃ close to Ω such that Ω̃h = Ω∪Ωh ⊂ Ω̃ and length(∂Ω̃)−
length(∂Ω) ≤ ϵ, for ϵ sufficiently small (see Figure 3). Similarly to the norm defined
in (7), we consider the following norm in Ω ∩ Ωh for u ∈ H2(Th),

(
|||u|||′

)2
=

K∑

k=1

(
∥u∥2H1(Tk∩Ω) + h2

k|u|2H2(Tk∩Ω)

)
+
∑

e∈Eh

h−1
e

∥∥JuK
∥∥2
L2(e∩Ω)

. (100)

Fig. 3: Left panel: Example of a non-convex domain Ω delimited by the solid lines,
a polygonal mesh Ωh delimited by the dashed lines and Ω̃ delimited by the dotted
lines. Right panel: example of Ω ∩ Ωh.

Consider f extended to Ω̃ \ Ω such that f ∈ HN−1(Ω̃) and we still denote the
extended function by f . Assume a continuous extension of c to Ω̃ \ Ω. Then, the
following theorem holds:
Theorem 4.3. Assume that there exists a function ũ defined in Ω̃ such that ũ ∈
HN+1(Ω̃), ũ coincide with u in Ω, ũ satisfies (1) in Ω̃ and ũ vanishes on ∂Ω in the
sense of trace. Then, for h sufficiently small there exists a mesh-independent constant
C̃ such that

|||u− uh|||′ ≤ C̃hN |ũ|HN+1(Ω̃), (101)

where |||·|||′ denotes the norm defined in (100).

Proof. We extend every v ∈ Vh by zero on Ω̃ \ Ωh. Thanks to the properties of ũ,
note that the proof of this theorem is based on the same arguments of the proof of
Theorem 4.1. Since |||u− uh|||′ ≤ |||ũ− uh|||, we obtain (101).

Note that, given a regular f in Ω̃, the existence of an associated ũ satisfying the
above assumptions is not ensured. Thus, let us consider that f vanishes in Ωh \ Ω.
Denoting by ũ the regular extension of u to Ω̃ such that ũ ∈ HN+1(Ω̃) and ũ|Ω = u,
in the following theorems we estimate the non-zero residual ah(ũ, v) − (f, v)L2(Ωh)

considering two different approaches.
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Theorem 4.4. Let u ∈ HN+1(Ω) be the solution of (1)–(2). Provided h sufficiently

small, there exists mesh independent constants C̃1 and Ĉ0 such that the numerical
solution uh satisfies

|||u− uh|||′ ≤ C̃1hN |ũ|HN+1(Ω̃) + Ĉ0h
5/2∥−∆ũ+ cũ∥L2(Ω̃) , (102)

where ũ is the regular extension of u to Ω̃ such that ũ ∈ HN+1(Ω̃).

Proof. Note that

|||u− uh|||′ ≤ |||ũ− uh||| ≤ |||ũ− Ih(ũ)|||+ |||uh − Ih(ũ)|||, (103)

with Ih(ũ) the PN -interpolate of ũ at the nodes associated with Wh. From the inf-sup
condition (Theorem 3.2), we get

|||uh − Ih(ũ)||| ≤
1

α
sup

v∈Vh\{0}

ah(uh − Ih(ũ), v)

|||v||| . (104)

Adding and subtracting ũ in the first argument of ah yields

ah(uh − Ih(ũ), v) ≤
∣∣ah(ũ− Ih(ũ), v)

∣∣+
∣∣ah(uh − ũ, v)

∣∣ . (105)

Following the same argument as in the proof of Theorem 4.1, using the boundedness
inequality (35) we obtain

∣∣ah(ũ− Ih(ũ), v)
∣∣ ≤ C̃b|||ũ− Ih(ũ)||||||v|||.

As the Galerkin orthogonality does not hold, we need to estimate ah(uh − ũ, v).
First, note that

ah(ũ, v) = (∇hũ,∇hv)L2(Ωh) + (cũ, v)L2(Ωh) −
ˆ

Γ0

JvK · {{∇hũ}} ds

= −(∇h · ∇hũ, v)L2(Ωh) +

ˆ

Γ

JvK · {{∇hũ}} ds+
ˆ

Γ0

{{v}}J∇hũKds

+ (cũ, v)L2(Ωh) −
ˆ

Γ0

JvK · {{∇hũ}} ds

= −(∇ · ∇ũ, v)L2(Ωh) + (cũ, v)L2(Ωh)

=
∑

k∈QB

(−∆ũ+ cũ, v)L2(Tk) +
∑

k/∈QB

(−∆ũ+ cũ, v)L2(Tk).

Then,

ah(uh − ũ, v) = (f, v)L2(Ωh) − ah(ũ, v)

27



=
∑

k∈QB

(f, v)L2(∆k) −
∑

k∈QB

(−∆ũ+ cũ, v)L2(∆k)

=
∑

k∈QB

(−∆ũ+ cũ, v)L2(∆k),

since f = 0 in Ωh \ Ω. Now, following the same argument as in Appendix B for the
estimate for b2h, we obtain

∣∣∣∣∣∣
∑

k∈QB

(−∆ũ+ cũ, v)L2(∆k)

∣∣∣∣∣∣
≤
∑

k∈QB

∥−∆ũ+ cũ∥L2(∆k)
∥v∥L2(∆k)

≤
∑

k∈QB

√
C∂Ωh

3/2
k ∥−∆ũ+ cũ∥L2(∆k)

∥v∥L∞(∆k)
. (106)

Recalling that v = 0 on ∂Ωh, by the Mean Value Theorem and Proposition A.1, we get

∣∣v(P )
∣∣ ≤ C∂Ωh

2
k∥∇v∥L∞(Tk∪∆k)

, ∀P ∈ ∆k, T
k, k ∈ IB . (107)

Considering the inequality (107) and Lemma A.1, we may write

∥v∥L∞(∆k)
≤ C∂ΩCJhk∥∇v∥L2(Tk) . (108)

Then, replacing (108) in (106), we get

∣∣∣∣∣∣
∑

k∈QB

(−∆ũ+ cũ, v)L2(∆k)

∣∣∣∣∣∣
≤
∑

k∈QB

C
3/2
∂Ω CJh

5/2
k ∥−∆ũ+ cũ∥L2(∆k)

∥∇v∥L2(Tk)

≤ C
3/2
∂Ω CJh

5/2∥−∆ũ+ cũ∥L2(Ω̃)∥∇v∥L2(Ωh)

≤ C
3/2
∂Ω CJh

5/2∥−∆ũ+ cũ∥L2(Ω̃) |||v||| (109)

and so the inequality (104) may be written as

|||uh − Ih(ũ)||| ≤
C̃b

α
|||ũ− Ih(ũ)|||+

C
3/2
∂Ω CJ

α
h5/2∥−∆ũ+ cũ∥L2(Ω̃) .

Finally, replacing the previous inequality in (103), we establish

|||u− uh|||′ ≤
(
1 +

C̃b

α

)
|||ũ− Ih(ũ)|||+

C
3/2
∂Ω CJ

α
h5/2∥−∆ũ+ cũ∥L2(Ω̃) .

Now, following similar arguments as in (75) and using Lemma A.2, considering
p = 2, m = N + 1, j = 0, 1, 2 and h < 1, we establish

|||ũ− Ih(ũ)||| ≤ C̃ahN |ũ|HN+1(Ω̃) .
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Thus, (102) holds with C̃1 = C̃a
(
1 + C̃b/α

)
and Ĉ0 = C

3/2
∂Ω CJ/α.

We can estimate a similar result by considering ∥−∆ũ+ cũ∥L∞(Ω̃).

Theorem 4.5. Let u ∈ HN+1(Ω) be the solution of (1)–(2). Provided h sufficiently
small, there exists a mesh independent constants C̃1 and C ′

0 such that the numerical
solution uh satisfies

|||u− uh|||′ ≤ C̃1hN |ũ|HN+1(Ω̃) + C ′
0h

7/2∥−∆ũ+ cũ∥L∞(Ω̃) , (110)

where ũ is the regular extension of u to Ω̃ such that ũ ∈ HN+1(Ω̃).

Proof. According to the Sobolev embedding Theorem [1], since ũ ∈ HN+1(Ω̃), then
∆ũ ∈ L∞(Ω̃). Now, following the same steps as in the proof of the Theorem 4.4 up to
equation (106), and applying the Cauchy-Schwarz inequality, we get

∣∣∣∣∣∣
∑

k∈QB

(−∆ũ+ cũ, v)L2(∆k)

∣∣∣∣∣∣
≤
∑

k∈QB

∥−∆ũ+ cũ∥L2(∆k)
∥v∥L2(∆k)

≤
∑

k∈QB

√
C∂Ωh

3/2
k ∥−∆ũ+ cũ∥L∞(∆k)

√
C∂Ωh

3/2
k ∥v∥L∞(∆k)

≤ C2
∂ΩCJh

7/2∥−∆ũ+ cũ∥L∞(Ω̃)

∑

k∈QB

h
1/2
k ∥∇v∥L2(Tk)

≤ C2
∂ΩCJh

7/2∥−∆ũ+ cũ∥L∞(Ω̃)


 ∑

k∈QB

hk




1/2

|||v|||

≤ C2
∂ΩCJC(∂Ω)h7/2∥−∆ũ+ cũ∥L∞(Ω̃) |||v|||, (111)

assuming that exists a mesh-independent constant C(∂Ω) such that
∑

k∈QB hk ≤
C2(∂Ω). Thus, (110) holds with C̃1 = C̃a

(
1 + C̃b/α

)
and C ′

0 = C2
∂ΩCJC(∂Ω)/α.

Note that, using the Theorem 4.4 for N = 2 and a suitable constant C̃2, we get

|||u− uh|||′ ≤ C̃2h2
(
|ũ|H3(Ω̃) + h1/2∥−∆ũ+ cũ∥L2(Ω̃)

)
(112)

and considering the Theorem 4.5 for N = 3 and a suitable constant C̃3, we obtain

|||u− uh|||′ ≤ C̃3h3
(
|ũ|H4(Ω̃) + h1/2∥−∆ũ+ cũ∥L∞(Ω̃)

)
. (113)

We now establish error estimates in the L2− norm in the case of a non-convex
domain Ω, by requiring more regularity from the solution u. The optimal convergence
can be achieved not only when u is more regular but also when the computational
domain Ωh approximates better the physical domain Ω, i.e., when Ωh \ Ω is of order
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hq, with q > 2 [23]. However, unless the assumptions of the Theorem 4.3 hold, with
our definition of Ωh, optimally is not attained for N > 2, see Proposition A.2.
Theorem 4.6. Let N = 2. Assume that Ω is not convex and u ∈ H3+r(Ω) is the
solution of (1)–(2), for r = 1/2+ϵ, with ϵ > 0 arbitrarily small. Then for h sufficiently
small, the following error estimate holds:

∥u− uh∥L2(Ω∩Ωh)
≤ C̃0h3

(
∥ũ∥H3+r(Ω̃) +|ũ|H3(Ω̃) + h1/2∥−∆ũ+ cũ∥L2(Ω̃)

)
, (114)

where C̃0 is a mesh independent constant and ũ is the regular extension of u to Ω̃ such
that ũ ∈ H3+r(Ω̃), for r = 1/2 + ϵ, with ϵ > 0.

Proof. Recalling the proof of Theorem 4.2, let z ∈ H1
0 (Ω) be the solution of

−∆z (x) + c (x) z (x) = u (x)− uh (x) , x ∈ Ω,

z (x) = 0, x ∈ ∂Ω.

Then, considering Ω = (Ω ∩ Ωh) ∪∆h and using integration by parts we obtain

∥u− uh∥L2(Ω) ≤ C(Ω)
(u− uh,−∆z + cz)L2(Ω)

∥z∥H2(Ω)

≤ C(Ω)
a′h(u− uh, z) + â∆h(u− uh, z) + b1h(u− uh, z)−

´

∂Ωh∩Ω
(u− uh)

∂z
∂n ds

∥z∥H2(Ω)

,

(115)

where â∆h and b1h are defined in (80) and (81), respectively and

a′h(z, u− uh) = (∇h(u− uh),∇z)L2(Ω∩Ωh) + (u− uh, cz)L2(Ω∩Ωh)

−
ˆ

Γ0

JzK · {{∇h(u− uh)}} ds−
ˆ

Γ0

Ju− uhK · {{∇z}} ds

+

ˆ

Γ0

η

he
Ju− uhK · JzKds.

Thus, since ∥u− uh∥L2(Ω∩Ωh)
≤∥u− uh∥L2(Ω), we have

∥u− uh∥L2(Ω∩Ωh)
≤ C(Ω)

a′h(u− uh, z) + â∆h(u− uh, z) + b1h(u− uh, z)

∥z∥H2(Ω)

− C(Ω)

´

∂Ωh∩Ω
(u− uh)

∂z
∂n ds

∥z∥H2(Ω)

. (116)

Since f = 0 in Ωh \ Ω, ∀v ∈ Vh we get

ah(uh, vh) =

ˆ

Ω∩Ωh

−(∆u+ cu)vh dx = −
ˆ

∂Ω∩Ωh

∂u

∂n
vh ds+ a′h(u, vh). (117)
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Thus, using (117), for v ∈ Vh, we may write

−a′h(u− uh, vh) + b6h(uh, vh) + b7h(u− uh, vh) = 0, (118)

where

b6h(uh, vh) = −
∑

k∈QB

ˆ

∆k

(−∆uh + cuh)vh dx, (119)

and

b7h(u− uh, vh) =
∑

k∈QB

ˆ

∂Ω∩Tk

∂(u− uh)

∂n
vh ds. (120)

Now, considering vh = Πh(z) in (118) and

b8h(u− uh, z) = −
ˆ

∂Ωh∩Ω

(u− uh)
∂z

∂n
ds, (121)

we may write (116) as

∥u− uh∥L2(Ω∩Ωh)
≤ C(Ω)

a′h(u− uh, eh(z)) + â∆h(u− uh, z) + b1h(u− uh, z)

∥z∥H2(Ω)

+ C(Ω)
b6h(uh,Πh(z)) + b7h(u− uh,Πh(z)) + b8h(u− uh, z)

∥z∥H2(Ω)

,

where eh(z) = z − Πh(z). Recalling b2h, b3h and b4h given by (84), (85) and (86),
respectively, and adding and subtracting Πh(z) in the second argument of the bilinear
form â∆h, note that

â∆h(u− uh, z) + b7h(u− uh,Πh(z)) = â∆h(u− uh, eh(z)) + â∆h(u− uh,Πh(z))

+ b7h(u− uh,Πh(z))

= b4h(u− uh, eh(z)) + b2h(u− uh,Πh(z))

+ b3h(u− uh,Πh(z)).

Thus, we may write

∥u− uh∥L2(Ω∩Ωh)
≤C(Ω)

b1h(u− uh, z) + b2h(u− uh,Πh(z)) + b3h(u− uh,Πh(z))

∥z∥H2(Ω)

+ C(Ω)
b4h(u− uh, eh(z)) + b6h(uh,Πh(z)) + b8h(u− uh, z)

∥z∥H2(Ω)

+ C(Ω)
a′h(u− uh, eh(z))

∥z∥H2(Ω)

. (122)

We are left to estimate upper bounds for the bilinear forms a′h, b6h and b8h. Using
the boundedness of the bilinear form and applying the Theorem 4.4 with N = 2 (see
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inequality (112)), we first note that

a′h(u− uh, eh(z)) ≤ CbC̃2h2
(
|ũ|H3(Ω̃) + h1/2∥−∆ũ+ cũ∥L2(Ω̃)

)
|||eh(z)|||′. (123)

On the other hand, similiar to (93), we get

|||eh(z)|||′ ≤ C ′
Ω,zh|z|H2(Ω) ,

with C ′
Ω,z a mesh-independent constant. Thus, we rewrite (123) as

a′h(u− uh, eh(z)) ≤ C ′
ah

3
(
|ũ|H3(Ω̃) + h1/2∥−∆ũ+ cũ∥L2(Ω̃)

)
∥z∥H2(Ω) , (124)

where C ′
a = CbC̃2C ′

Ω,z. An estimate for an upper bound for b6h can be established as
follows (see Appendix B):

b6h(uh,Πh(z)) ≤ C̃b6h
7/2

(
∥ũ∥H3+r(Ω̃)+h1/2

(
|ũ|H3(Ω̃) + h1/2∥−∆ũ+cũ∥L2(Ω̃)

))
∥z∥H2(Ω) .

(125)

Following similar arguments as in the estimates for b5h and applying the error
estimate (112), we get

b8h(u− uh, z) ≤ C̃b8h
3
(
|ũ|H3(Ω̃) + h1/2∥−∆ũ+ cũ∥L2(Ω̃)

)
∥z∥H2(Ω)

≤ C̃b8h
3
(
∥ũ∥H3+r(Ω̃) +|ũ|H3(Ω̃) + h1/2∥−∆ũ+ cũ∥L2(Ω̃)

)
∥z∥H2(Ω) .

(126)

Estimates for b1h, b2h, b3h and b4h can be obtained by following the same arguments
as in the proof of Theorem 4.2, taking N = 2 and noticing that in this case, we apply
Theorem 4.4 instead of Theorem 4.1 (see Appendix B). Thus, |u|H3(Ω) is replaced by

|ũ|H3(Ω̃) + h1/2∥−∆ũ+ cũ∥L2(Ω̃) in the estimates for bih, i = 1, 2, 3, 4.

Finally, combining (124), (125) and (126) with the estimates for bih, with
i = 1, 2, 3, 4, into (122), owing to the fact h < 1, we obtain (114) with C̃0 =

C(Ω)
(
C ′

a + C̃b1 + C̃b2 + C̃b3 + C̃b4 + C̃b6 + C̃b8

)
, where C̃bi is the constant in the

estimate for bih.

5 Numerical Results

Let denote by uh an approximation of the solution u for a given mesh Th and ∥u− uh∥
the norm of the error. The method is of convergence order p if one has asymptotically

∥u− uh∥ ≤ Chp,
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with C a real constant independent of h. The errors are assessed at the node points
of the elements, T k ∈ Th, k = 1, . . . ,K. We compute the L2-errors

E2 (Th) =∥u− uh∥L2(Ωh)
=

√√√√
K∑

k=1

∥u− uh∥2L2(Tk).

Recall that

∥uh∥2L2(Tk) =
(
uk
h, u

k
h

)
L2(Tk)

=

ˆ

Tk

Np∑

i=1

Np∑

j=1

uk
i u

k
j ℓ

k
i (x) ℓ

k
j (x) dx = (uk)TMkuk,

where Mk
ij =

(
ℓki , ℓ

k
j

)
L2(Tk)

.

Consider two different meshes, denoted as Th1
and Th2

, whose the corresponding
numerical solutions are denoted as uh1

and uh2
, respectively. Then, the convergence

order between two successively finer meshes is determined as

O2 (Th1
, Th2

) =
log
(
E2 (Th1

) /E2 (Th2
)
)

log
(
h1/h2

) .

For the numerical tests, we consider c(x) = 1.

5.1 Disk domain

Consider the reaction-diffusion equation on a disk of radius R = 1 with a homogeneous
Dirichlet boundary condition. An analytical solution is manufactured for problem (1)–
(2) and is given as u (x, y) = x sin (1− x2 − y2), from which the corresponding source
term is deduced. Simulations are carried out with successively finer meshes generated
by Gmsh (version 4.6.0) [18] (see Figure 4).

Simulations are first performed for the classical DG method prescribing the homo-
geneous Dirichlet boundary condition at the nodes of the computational boundary
(the edges of the mesh). More precisely, each node of the computational boundary
has a corresponding node on the real boundary where the Dirichlet boundary condi-
tion is prescribed. For the classical DG method, the value evaluated at the physical
boundary point is used at the corresponding node on the computational boundary.
The results, reported in Table 1, demonstrate the accuracy deterioration from such a
geometrical mismatch without any specific treatment for curved boundaries, and the
error convergence is limited to the second-order.

Table 2 reports the L2−errors and convergence orders for the DG–ROD method
taking N = 2, 3, 4. As observed, the quality of the approximations obtained with the
DG-ROD method is in good agreement with the theoretical results.
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Fig. 4: Unstructured meshes generated for the disk domain. Mesh with K = 14 and
h = 9.34E−01 (left panel) and mesh with K = 262 and h = 2.34E−01 (right panel).

Table 1: Errors and convergence orders for the classical DG
method in the disk domain with the Dirichlet boundary con-
ditions.

K h
N = 2 N = 3 N = 4

E2 O2 E2 O2 E2 O2

14 9.34E−01 9.21E−02 — 8.98E−02 — 8.76E−02 —
64 4.70E−01 2.47E−02 1.9 2.43E−02 1.9 2.40E−02 1.9

262 2.34E−01 4.89E−03 2.3 4.81E−03 2.3 4.78E−03 2.3
1096 1.13E−01 1.08E−03 2.1 1.07E−03 2.1 1.07E−03 2.1
4136 5.69E−02 2.67E−04 2.0 2.66E−04 2.0 2.65E−04 2.0

Table 2: Errors and convergence orders for the DG-ROD
method in the disk domain with the Dirichlet boundary con-
ditions.

K h
N = 2 N = 3 N = 4

E2 O2 E2 O2 E2 O2

14 9.34E−01 1.79E−02 — 9.69E−04 — 8.93E−04 —
64 4.70E−01 7.36E−04 4.6 7.00E−05 3.8 1.65E−05 5.8

262 2.34E−01 5.64E−05 3.7 4.59E−06 3.9 3.55E−07 5.5
1096 1.13E−01 3.47E−06 3.8 2.53E−07 4.0 8.16E−09 5.2
4136 5.69E−02 2.52E−07 3.8 1.67E−08 4.0 2.43E−10 5.1

5.2 Annulus domain

Now, we consider an annulus domain with inner radiusRI = 0.5 and outer radiusRE =
1 meshed with triangular elements (see Figure 5). The analytic solution corresponds
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to the manufactured solution u(x, y) = log(x2+y2) and the boundaries are prescribed
with constant Dirichlet boundary conditions. The numerical simulations are carried
out with successively finer meshes generated by Gmsh. As for the previous test case,
simulations are firstly performed for the classical DG method and the results are
reported in Table 3. On the other hand, Table 4 reports the errors and convergence
rate for the DG-ROD method where the optimal convergence orders are recovered due
to the polynomial reconstruction of the boundary conditions. In this case, the solution
satisfies the conditions of Theorem 4.3 for non-convex domains. Thus, the method
recovers the optimal convergence orders for N > 2.
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Fig. 5: Unstructured mesh generated for the annulus domain. Mesh with K = 40 and
h = 5.00E−01 (left panel) and mesh with K = 608 and h = 1.31E−01 (right panel).

Table 3: Errors and convergence orders for the classical DG
method in the annulus domain with the Dirichlet boundary
conditions.

K h
N = 2 N = 3 N = 4

E2 O2 E2 O2 E2 O2

40 5.00E−01 8.90E−02 — 9.02E−02 — 9.09E−02 —
144 2.57E−01 2.25E−02 2.1 2.27E−02 2.1 2.28E−02 2.1
608 1.31E−01 5.71E−03 2.0 5.75E−03 2.0 5.76E−03 2.0

2576 6.45E−02 1.29E−03 2.1 1.30E−03 2.1 1.30E−03 2.1
10226 3.18E−02 3.23E−04 2.0 3.24E−04 2.0 3.24E−04 2.0

5.3 Rose–shaped domain

Consider a geometry generated by applying a diffeomorphic transformation to an
annular domain, denoted as Ω', with interior and exterior physical boundaries with
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Table 4: Errors and convergence orders for the DG-ROD
method in the annulus domain with the Dirichlet boundary
conditions.

K h
N = 2 N = 3 N = 4

E2 O2 E2 O2 E2 O2

40 5.00E−01 4.48E−03 — 4.45E−04 — 8.17E−05 —
144 2.57E−01 5.16E−04 3.2 3.67E−05 3.8 2.74E−06 5.1
608 1.31E−01 3.96E−05 3.8 1.51E−06 4.7 6.01E−08 5.6

2576 6.45E−02 2.64E−06 3.8 4.60E−87 4.9 9.62E−10 5.9
10226 3.18E−02 2.03E−07 3.6 1.83E−09 4.6 2.26E−11 5.3

radius rI and rE , respectively. The diffeomorphic transformation corresponds to the
mapping Ω' → Ω, where Ω is the rose-shaped domain, given in polar coordinates

Ω' → Ω :

[
r'
θ'

]
→
[
r
θ

]
=

[
R(r', θ';α, β)

θ

]
, (127)

where α is the number of petals and function R(r', θ') := R(r', θ';α, β) corresponds
to a periodic radius perturbation of magnitude in [−β, β], with β ∈ R, given as

R(r', θ';α, β) = r'
(
1− β + β cos(αθ')

)
. (128)

Thus, the interior and exterior physical boundaries parametrisation are given as
RI := R(rI , θ) and RE := R(rE , θ), respectively. The analytic solution corresponds to
the manufactured solution u (x, y) = log

(
x2 + y2

)
. In this test case, the interior and

exterior boundaries are prescribed with a non-constant Dirichlet boundary condition.
We consider rI = 0.5, rE = 1, the number of petals is α = 8, and the perturbation

magnitude is β = 0.1. The rose-shaped domain is meshed with triangular elements
(see Figure 6). The reaction-diffusion equation is solved and the approximate solution
is compared with the exact solution. The numerical simulations are carried out with
successively finer meshes generated by Gmsh. Table 5 reports the errors and converge
rates for the classical DG method. The results confirm the accuracy deterioration due
to the lack of specific treatment for curved boundaries, where the error convergence is
limited to the second order. On the other hand, the results for the DG-ROD method
are reported in Table 6, where the optimal convergence orders are recovered. The
method behaves similarly to the previous test case, where the optimal convergence
orders can be achieved for N > 2.

For further numerical results, the authors refer to [30]. Recall that in [30] the
overall DG-ROD method was obtained by considering an iterative procedure of the DG
method and the polynomial reconstruction and for the numerical results the authors
computed the L∞-errors and L1-errors. In the mentioned paper, the authors considered
different approaches to obtain the nodes associated with Wh located on ∂Ω, namely
the intuitive construction of the nodes lying on normals to edges of ∂Ωh. In this work,
the construction of such nodes for the numerical results is described in item (4).
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Fig. 6: Unstructured mesh generated for the rose-shaped domain. Mesh with K = 888
and h = 1.41E−01 (left panel) and mesh with K = 6912 and h = 5.25E−02 (right
panel).

Table 5: Errors and convergence orders for the classical DG
method in the rose-shaped domain with the Dirichlet boundary
conditions.

K h
N = 2 N = 3 N = 4

E2 O2 E2 O2 E2 O2

3072 7.50E−02 1.85E−03 — 1.82E−03 — 1.81E−03 —
4792 6.33E−02 1.18E−03 2.7 1.16E−03 2.6 1.16E−03 2.6
6912 5.25E−02 8.16E−04 2.0 8.08E−04 2.0 8.07E−04 2.0

10478 4.27E−02 5.26E−04 2.1 5.22E−04 2.1 5.21E−04 2.1
15346 3.52E−02 3.56E−04 2.0 3.54E−04 2.0 3.53E−04 2.0

Table 6: Errors and convergence orders for the DG-ROD
method in the rose-shaped domain with the Dirichlet bound-
ary conditions.

K h
N = 2 N = 3 N = 4

E2 O2 E2 O2 E2 O2

3072 7.50E−02 2.05E−06 — 2.84E−08 — 4.58E−10 —
4792 6.33E−02 9.64E−07 4.5 1.07E−08 5.8 1.43E−10 6.9
6912 5.25E−02 5.90E−07 2.6 5.25E−09 3.8 5.83E−11 4.8

10478 4.27E−02 2.98E−07 3.3 2.14E−09 4.4 1.94E−11 5.3
15346 3.52E−02 1.78E−07 2.7 1.03E−09 3.8 8.48E−12 4.3
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6 Conclusions

We have discussed a modified DG scheme, defined on a polygonal mesh Ωh for solving
boundary value problems on a two-dimensional curved boundary domain Ω, where
piecewise linear elements approximate the curved boundaries. The DG-ROD method
corrects the error resulting from the approximation of the curved boundary ∂Ω by the
computational boundary ∂Ωh by means of polynomial reconstructions of the boundary
conditions. This correction is reflected in the variational formulation of the problem.

We present a study on the existence and uniqueness of the solution for the reaction-
diffusion equation with homogeneous Dirichlet boundary conditions. We provided a
complete mathematical analysis of the convergence in the natural norm of the DG
method, as well as L2-error estimates, considering convex and non-convex domains. For
the convex domains, we prove that the DG–ROD solution exhibits an optimalO(hN+1)
convergence rate in the L2-norm when N -degree piecewise polynomials are used,
under certain regularity conditions on the solution. For non-convex domains, unless
the solution satisfies certain regularity conditions and the computational domain Ωh

approximates better the physical domain Ω, i.e., when Ωh \ Ω is of order hq, with
q > 2, optimally is not attained for N > 2. In other words, the error is affected by the
geometrical mismatch of order O(h2) between the curved physical boundaries and the
associated piecewise linear representation. Then, for non-convex domains, we prove
that the DG–ROD solution exhibits an optimal O(h3) convergence rate in the L2-
norm when piecewise polynomials of degree N = 2 are used, under certain regularity
conditions on the solution.

The sharpness of the theoretical results is confirmed by a series of numerical
experiments in convex and non-convex domains. It is important to highlight that the
assumption on the mesh size h is just a sufficient condition for the formal analysis
given in this work. Good numerical results can be obtained even for coarse meshes.
For example, in the test case 5.1, the polynomial reconstructions of the boundary con-
dition correct the error from approximating the curved boundary with a polygonal
boundary even for a mesh with K = 14, where the corresponding mesh size h has the
same order of magnitude as the radius of the disk.

Extensions of this work considering nonlinear equations and time-dependent prob-
lems are challenging and this will be carried out in the future. For future work, we
also plan to extend this approach to other boundary conditions (Neumann, Robin)
and derive error estimates for the respective problems.

Acknowledgements. The authors were financially supported by the
Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Sci-
ence and Technology) under the scope of the projects UIDB/00324/2020
(https://doi.org/10.54499/UIDB/00324/2020) and UIDP/00324/2020
(https://doi.org/10.54499/UIDP/00324/2020) (Centre for Mathematics of the Uni-
versity of Coimbra). M. Santos acknowledges FCT for the support under the Ph.D.
scholarship UI/BD/153816/2022.

38



Declarations

Conflict of interest. The authors declare that they have no known competing
financial interests or personal relationships that could have appeared to influence the
work reported in this paper.

Appendix A Technical tools

The following assumptions and results can be found (except Lemma A.4) in [28].
Assumption A.1. Let T k

ρ be the homothetic transformation of T k with center Ok

(the vertex of T k not located on ∂Ωh) and ratio ρ < 1. Consider h small enough for the
intersection P with ∂Ω of a straight line joining any point of T k

ρ to a point M ∈ ekB

is uniquely defined for all T k, k ∈ IB (see Figure A1).

Ok

P

M

T k

T k
ρ

ekB
∂Ω

Fig. A1: Example of a homothetic transformation of T k with center Ok and ρ = 1/2.

Let Qk be the closest intersection with ∂Ω of the perpendicular to ekB passing
through its mid-point Mk. We know that exists a ball B(Qk, rk) and a straight line
Πk swept by the coordinate xk of an orthogonal coordinate system (O, xk, yk) with a
suitably chosen origin O, such that a function fk(xk) uniquely expresses the coordinate
yk of points located on ∂Ω, as long as they lie in B(Qk, rk) [17] (see Figure A2).
Assumption A.2. Consider h small enough such that Πk is aligned with ekB and
the ball B(Qk, rk) contains ekB, ∀T k, k ∈ IB.
Proposition A.1 ([28], Proposition 2.1). If Assumption A.1 and Assumption A.2
hold there exists a constant C∂Ω depending only on ∂Ω such that ∀M ∈ ekB the length
of the segment joining M and P ∈ ∂Ω aligned with Ok and M is bounded above by
C∂Ωh

2
k (see Figure A3).

Proposition A.2 ([28], Proposition 2.2). Assume that ∂Ω is of the piecewise
CN+1−class for N > 1. Let v(j) denote the derivative of order j with respect to x of
a sufficiently differentiable function v(x), 0 ≤ j ≤ N + 1, with v(0) = v, v(1) = v′,
v(2) = v′′. If assumption A.2 holds, there exists a constant Cj

∂Ω depending only of ∂Ω
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Ok

Qk

Mk

T k

ekB
∂Ω

r
k

xk

yk

O

Fig. A2: Each point P ∈ ∂Ω∩B(Qk, rk) has coordinates (xk, f(xk)) in the cartesian
coordinate system (O, xk, yk).

Ok

P

M

T k

ekB
∂Ω

Fig. A3: Intersection of ∂Ω with the straight line joining M and Ok.

such that

∣∣∣f (j)
k (M)

∣∣∣ ≤ Cj
∂Ωh

max{2−j,0}
k , ∀M ∈ ekB for j = 0, 1, . . . , N + 1. (A1)

Lemma A.1 ([28], Lemma 3.1). Consider h small enough such that Assumption A.1
and Assumption A.2 hold. Then, there exists two mesh-independent constants C∞ and
CJ depending only on ∂Ω and the shape regularity of Th such that ∀w ∈ PN (T k ∪∆k)
and ∀T k, k ∈ IB (see Figure A4), it holds

∥w∥L∞(Tk∪∆k)
≤ C∞∥w∥L∞(Tk∩Ω) (A2)
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∥w∥L∞(Tk∪∆k)
≤ CJh

−1
k ∥w∥L2(Tk∩Ω) . (A3)

Ok

T k

ekB
∂Ω

T∆k = T k ∪∆k

∆k

Ok

T k

ekB

∂Ω

T
′k = T k ∩ Ω

∆k

Fig. A4: Example for the convex case, where T k ⊂ Ω, (left panel) and for the concave
case, where T k ̸⊂ Ω (right panel).

Let Djw be the j–th order tensor whose components are the j–th order partial
derivatives with respect to the space of variables of a function w. In the following, we
introduce some technical lemmas that are useful in proving the error estimates.
Lemma A.2 ([28], Lemma 4.1). Let m be an integer, m > 1, and w ∈ Hm(Ω) such
that w|∂Ω

= 0, for j = 0, 1, . . . ,m. Let Ih(w) be the PN -interpolate of w. Then, for
p ∈ [1,∞], there exists a mesh-independent constant CΩ such that:

∥∥∥Dj
(
w − Ih(w)

)∥∥∥
Lp(Ω)

≤ CΩh
m−j |w|Wm

p (Ω) . (A4)

Lemma A.3 ([28], Lemma 4.2). Let r = 1/2 + ϵ for a certain ϵ ∈ (0, 1/2) and
w ∈ HN+1+r(Ω∪Ωh) be such that w|∂Ω = 0. Let T̃ be a closed set fulfilling

(
T k ∩ Ω

)
⊆

T̃ ⊆
(
T k ∪∆k

)
and wh be a function in Wh extended to ∆k, k ∈ IB. Then there exist

constants Cj independent of T k and hk such that for j = 1, 2, . . . , N it holds

∥∥∥Dj(w − wh)
∥∥∥
L∞(T̃ )

≤ Cjh
−j
k

(∥∥∇(w − wh)
∥∥
L2(Tk∩Ω)

+hN
k |w|HN+1(Tk∩Ω) + hN+r

k ∥w∥HN+1+r(Tk∪∆k)

)
. (A5)

Now, we deduce a similar result to (A5) for j = 0.
Lemma A.4. Let r = 1/2 + ϵ for a certain ϵ ∈ (0, 1/2) and w ∈ HN+1+r(Ω ∪ Ωh)
be such that w|∂Ω = 0. Let T̃ be a closed set fulfilling

(
T k ∩ Ω

)
⊆ T̃ ⊆

(
T k ∪∆k

)

and wh be a function in Wh extended to ∆k, k ∈ IB. Then there exist a constant C0
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independent of T k and hk such that

∥w − wh∥L∞(T̃ ) ≤
C0

hk

(
∥w − wh∥L2(Tk∩Ω) + hN+1

k |w|HN+1(Tk∩Ω)

+hN+r+1
k ∥w∥HN+1+r(Tk∪∆k)

)
. (A6)

Proof. Recall that Ih(w) interpolate w in Ω∪Ωh and w−wh = (w−Ih(w))+(Ih(w)−
wh). Now, for all T k, with k ∈ IB

∥w − wh∥L∞(T̃ ) ≤
∥∥w − Ih(w)

∥∥
L∞(Tk∪∆k)

+
∥∥Ih(w)− wh

∥∥
L∞(Tk∪∆k)

≤
∥∥w − Ih(w)

∥∥
L∞(Tk∪∆k)

+
CJ

hk

∥∥Ih(w)− wh

∥∥
L2(Tk∩Ω)

, (A7)

using the inequality (A3). Consider the mapping Θk from T k ∪∆k to a unit element
̂T k ∪∆k, where Θk(x, y) = (x, y)/hk. Setting Θk(T

k ∪∆k) = ̂T k ∪∆k, we note that

HN+1+r ̂
(
T k ∪∆k

)
is continuously embedded in WN

∞
̂

(
T k ∪∆k

)
, i.e., there exists a

constant Ce depending only on ̂T k ∪∆k such that [1]

∥v̂∥
WN

∞

̂(Tk∪∆k)
≤ Ce∥v̂∥

HN+1+r ̂(Tk∪∆k)
, ∀v̂ ∈ HN+1+r ̂

(
T k ∪∆k

)
. (A8)

On the other hand, consider ŵ and Î(ŵ) the transformations under Θk in ̂T k ∪∆k

of w and Ih(w), respectively. Notice that Î(ŵ) is a PN -interpolate of ŵ in ̂T k ∪∆k.

Then, there exists a constant ĈTh
depending on ̂T k ∪∆k such that

∥∥w − Ih(w)
∥∥
L∞(Tk∪∆k)

=
∥∥∥ŵ − Î(ŵ)

∥∥∥
L∞( ̂Tk∪∆k)

≤ ĈTh
Ce∥ŵ∥

HN+1+r ̂(Tk∪∆k)
,

using (A8). Thus, applying standard transformations to functions in fractional Sobolev
spaces, we may write for suitable mesh-independent constants C∆

0 [29]

∥∥w − Ih(w)
∥∥
L∞(Tk∪∆k)

≤ C∆
0 hN+r

k ∥w∥HN+1+r(Tk∪∆k) . (A9)

Note that

∥∥Ih(w)− wh

∥∥
L2(Tk∩Ω)

≤
∥∥Ih(w)− w

∥∥
L2(Tk∩Ω)

+∥w − wh∥L2(Tk∩Ω) . (A10)

Now, following the proof of Theorem 4.4.4 in [7], we get

∥∥Ih(w)− w
∥∥
L2(Tk∩Ω)

≤ CLh
N+1
k |w|HN+1(Tk∩Ω) , (A11)

with CL a mesh-independent constant.
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Finally, combining (A7), (A9), (A10) and (A11), we get

∥w − wh∥L∞(T̃ ) ≤ C∆
0 hN+r

k ∥w∥HN+1+r(Tk∪∆k) + CJh
−1
k

(
CLh

N+1
k |w|HN+1(Tk∩Ω)

+∥w − wh∥L2(Tk∩Ω)

)

and (A6) follows with C0 = max{CJ , CJCL, C
∆
0 }.

Appendix B Upper bounds estimates

In what follows we derive upper bounds for bih, with i = 1, 2, 3, 4, 5, given by (81),
(84), (85), (86), (89), respectively, used in Theorem 4.2 and for b6h (119), used in
Theorem 4.6.

Estimate for b1h(u − uh, z) defined by (81)

Using the Cauchy-Schwarz inequality and applying the trace theorem, there exists a
constant Ct depending only on Ω ([1], Theorem 1) such that

b1h(u− uh, z) ≤∥u− uh∥L2(∂Ω)∥∇z∥L2(∂Ω) ≤ Ct∥u− uh∥L2(∂Ω)∥z∥H2(Ω) .

In order to estimate ∥u− uh∥L2(∂Ω), consider for each element T k, k ∈ IB , a local

orthogonal frame (O;x, y) whose origin O is a vertex of T k in ∂Ω, x is the abscissa
along the edge ekB and y increases from ekB to ∂Ω. Let s be the curvilinear abscissa
along (T k ∪ ∆k) ∩ ∂Ω with origin at O. Note that s can be uniquely expressed in
terms of x, for x ∈ [0, lkB ], where lkB is the length of ekB . Considering fk(x) the
y−abscissa of the points in (T k ∪ ∆k) ∩ ∂Ω, let ũh be the function of x defined by
ũh(x) = [u − uh](x, fk(x)) = [u − uh](s(x)). Since ds =

√
1 + (f ′

k)
2 dx, we have

length((T k ∪∆k) ∩ ∂Ω) ≤ CqlkB , with Cq =

√
1 +

(
h0

∥∥f ′′
k

∥∥
L∞(0,lkB)

)2
. 1 Thus,

∥u− uh∥2L2(∂Ω) =
∑

k∈IB

ˆ

(Tk∪∆k)∩∂Ω

∣∣(u− uh)(s(x))
∣∣2 ds

=
∑

k∈IB

ˆ lkB

0

∣∣ũh(x)
∣∣2√1 + (fk')2 dx ≤ Cq

∑

k∈IB

ˆ lkB

0

∣∣ũh(x)
∣∣2 dx.

(B12)

Since ũh vanishes at N + 1 different points in [0, lkB ] and uh|
Tk

∈ PN

(
T k
)
, from

standard results for one-dimensional interpolation [25] there exists a mesh independent

1Consider h0 as defined in Theorem 3.2.
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constant CL such that

∥ũh∥L2(0,lkB) ≤ CLh
N+1
k

(
ˆ lkB

0

∣∣∣ũ(N+1)
h (x)

∣∣∣
2

dx

)1/2

. (B13)

On the other hand, using Proposition A.2, there is mesh-independent constants
cj,∂Ω such that

max
x∈[0,lkB ]

∣∣∣f (j)
k (x)

∣∣∣ ≤ cj,∂Ωh
2−j
k , for j = 1, . . . , N + 1, ∀T k, k ∈ IkB . (B14)

Thus, taking into account that the derivatives of uh of order greater than N vanish
in T k ∪ ∆k, using the chain rule yields for suitable mesh-independent constants cj ,
j = 0, 1, . . . , N :

∣∣∣ũ(N+1)
h

∣∣∣ ≤ c0

∣∣∣DN+1(u)
∣∣∣+

N∑

j=1

cjh
1−j
k

∣∣∣DN+1−j(u− uh)
∣∣∣ . (B15)

Then, combining (B12), (B13) and (B15), and using the Cauchy-Schwarz inequal-
ity, for a suitable mesh-independent constant CN,0, we get

∥u− uh∥2L2(∂Ω)≤CqC
2
L

∑

k∈IB

h
2(N+1)
k

ˆ lkB

0


c0

∣∣∣DN+1(u)
∣∣∣+

N∑

j=1

cjh
1−j
k

∣∣∣DN+1−j(u−uh)
∣∣∣




2

dx

≤ CN,0

(
h2(N+1)

ˆ

∂Ω

∣∣∣DN+1(u)
∣∣∣
2

ds

+
∑

k∈IB

h
2(N+1)
k

ˆ

(Tk∪∆k)∩∂Ω

N∑

j=1

h
2(1−j)
k

∣∣∣DN+1−j(u−uh)
∣∣∣
2

ds


 . (B16)

From the trace theorem ([1], Theorem 1), we know that there exists a constant Cr

such that

∥∥∥DN+1(u)
∥∥∥
2

L2(∂Ω)
=

ˆ

∂Ω

∣∣∣DN+1(u)
∣∣∣
2

ds ≤ C2
r∥u∥2HN+1+r(Ω) . (B17)

On the other hand, using the curved triangle T k∪∆k and considering i = N+1−j

ˆ

(Tk∪∆k)∩∂Ω

N∑

j=1

h
2(1−j)
k

∣∣∣DN+1−j(u−uh)
∣∣∣
2

ds

≤Cqhk

N∑

j=1

h
2(1−j)
k

∥∥∥DN+1−j(u−uh)
∥∥∥
2

L∞(Tk∪∆k)
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=Cqhk

N∑

i=1

h
2(i−N)
k

∥∥∥Di(u− uh)
∥∥∥
2

L∞(Tk∪∆k)
. (B18)

Now, using Lemmas A.3 with w = u and wh = uh, we get

∥∥∥Di(u− uh)
∥∥∥
L∞(Tk∪∆k)

≤ Cih
−i
k

(∥∥∇(u− uh)
∥∥
L2(Tk∩Ω)

+ hN
k |u|HN+1(Tk∩Ω)

+hN+r
k ∥u∥HN+r+1(Tk∪∆k)

)
. (B19)

From (B16), combining (B18) and (B19), and applying the Cauchy-Schwarz
inequality, we obtain

∑

k∈IB

h
2(N+1)
k

ˆ

(Tk∪∆k)∩∂Ω

N∑

j=1

h
2(1−j)
k

∣∣∣DN+1−j(u− uh)
∣∣∣
2

ds

≤
∑

k∈IB

h
2(N+1)
k Cqhk

N∑

i=1

h
2(i−N)
k

∥∥∥Di(u− uh)
∥∥∥
2

L∞(Tk∪∆k)

≤
∑

k∈IB

h
2(N+1)
k Cqhk

N∑

i=1

h
2(i−N)
k C2

i h
−2i
k

(∥∥∇(u− uh)
∥∥
L2(Tk∩Ω)

+ hN
k |u|HN+1(Tk∩Ω)

+hN+r
k ∥u∥HN+r+1(Tk∪∆k)

)2

≤
∑

k∈IB

h3
k3Cq

N∑

i=1

C2
i

(∥∥∇(u− uh)
∥∥2
L2(Tk∩Ω)

+ h2N
k |u|2HN+1(Tk∩Ω)

+h2N+2r
k ∥u∥2HN+r+1(Tk∪∆k)

)
.

Recalling that r = 1/2 + ϵ, h < 1 and taking into account Theorem 4.1, the
definition of the semi norm |·|HN+1(Ω) and the definition of the norm ∥·∥HN+1+r(Ω), we
infer that for a suitable mesh independent constant CN,1 it holds

∑

k∈IB

h
2(N+1)
k

ˆ

(Tk∪∆k)∩∂Ω

N∑

j=1

h
2(1−j)
k

∣∣∣DN+1−j(u− uh)
∣∣∣
2

ds

≤h33Cq

N∑

i=1

C2
i

(
C2h2N |u|2HN+1(Ω) + h2N

k |u|2HN+1(Ω) + h2N+2r
k ∥u∥2HN+r+1(Ω)

)

≤CN,1h
2(N+1)∥u∥2HN+r+1(Ω) . (B20)

Finally, combining (B17) and (B20) in (B16), we get

∥u− uh∥2L2(∂Ω) ≤ CN,0

(
h2(N+1)C2

r∥u∥
2
HN+1+r(Ω) + CN,1h

2(N+1)∥u∥2HN+r+1(Ω)

)
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≤ C2
N,2h

2(N+1)∥u∥2HN+1+r(Ω) ,

where C2
N,2 = CN,0(C

2
r + CN,1). Thus

∥u− uh∥L2(∂Ω) ≤ CN,2h
N+1∥u∥HN+1+r(Ω) . (B21)

Then,

b1h(u− uh, z) ≤ Cb1h
N+1∥u∥HN+1+r(Ω)∥z∥H2(Ω) ,

where Cb1 = CtCN,2.

Estimate for b2h(u − uh,Πh(z)) defined by (84)

Since Πh(z) is piecewise linear,∇hΠh(z) is constant in T k∪∆k. Recalling that Πh(z) =
0 on ∂Ωh, by the Mean Value Theorem and Proposition A.1, we get for P1 ∈ ∂Ωh,

∣∣Πh(z)(P )
∣∣ ≤ length(PP1)

∣∣∣∇
(
Πh(z)|Tk

)∣∣∣

≤ C∂Ωh
2
k

∣∣∣∇
(
Πh(z)|Tk

)∣∣∣ , ∀P ∈ ∆k, T
k, k ∈ IB . (B22)

Using the Cauchy-Schwarz inequality, the inequality above and noticing that
area(∆k) ≤ C∂Ωh

3
k, we may write

b2h(u− uh,Πh(z)) =
∑

k∈IB

ˆ

∆k

(
−∆(u− uh) + c(u− uh)

)
Πh(z) dx

≤
(
1 +∥c∥L∞(Ω\Ωh)

) ∑

k∈IB

(∥∥∆(u− uh)
∥∥
L2(∆k)

+∥u− uh∥L2(∆k)

)

×
∥∥Πh(z)

∥∥
L2(∆k)

≤ Cc

∑

k∈IB

C
1/2
∂Ω h

3/2
k

(∥∥∆(u− uh)
∥∥
L∞(∆k)

+∥u− uh∥L∞(∆k)

)

× C
1/2
∂Ω h

3/2
k

∥∥Πh(z)
∥∥
L∞(∆k)

≤ Cc

∑

k∈IB

C
1/2
∂Ω h

3/2
k

(∥∥∆(u− uh)
∥∥
L∞(Tk∪∆k)

+∥u− uh∥L∞(Tk∪∆k)

)

× C
3/2
∂Ω h

7/2
k

∥∥∇Πh(z)
∥∥
L∞(Tk∪∆k)

,

where Cc = 1 +∥c∥L∞(Ω\Ωh)
. From Lemma A.1, we obtain

b2h(u− uh,Πh(z)) ≤ CcC
2
∂ΩCJ

∑

k∈IB

h4
k

(∥∥∆(u− uh)
∥∥
L∞(Tk∪∆k)

+∥u− uh∥L∞(Tk∪∆k)

)

×
∥∥∇Πh(z)

∥∥
L2(Tk∩∆k)

.
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Now, considering Lemma A.3 with j = 2 and Lemma A.4, applying the Cauchy-
Schwarz inequality and recalling that hk ≤ h, we get

b2h(u− uh,Πh(z)) ≤ CcC
2
∂ΩCJ

∑

k∈IB

(
h2
kC2

(∥∥∇(u− uh)
∥∥
L2(Tk∩Ω)

+ hN
k |u|HN+1(Tk∩Ω)

+hN+r
k ∥u∥HN+1+r(Tk∪∆k)

)
+ h3

kC0

(
∥u− uh∥L2(Tk∩Ω)

+hN+1
k |u|HN+1(Tk∩Ω) + hN+1+r

k ∥u∥HN+1+r(Tk∪∆k)

))∥∥∇Πh(z)
∥∥
L2(Tk)

≤ CcC
2
∂ΩCJ(C0 + C2)h

2
(√

2∥u− uh∥H1(Th)
+ 2hN |u|HN+1(Ωh)

+2hN+r∥u∥HN+1+r(Ω)

)∥∥∇Πh(z)
∥∥
L2(Ωh)

.

Applying Theorem 4.1 and since h < 1, we may write

b2h(u− uh,Πh(z)) ≤ CcC
2
∂ΩCJ(C0 + C2)(

√
2C + 4)hN+2∥u∥HN+1+r(Ω)

∥∥∇Πh(z)
∥∥
L2(Ωh)

= C̃21h
N+2∥u∥HN+1+r(Ω)

∥∥∇Πh(z)
∥∥
L2(Ωh)

,

where C̃21 = CcC
2
∂ΩCJ(C0 + C2)(

√
2C + 4). On the other hand, from Lemma A.2 we

have

∥∥∇(z −Πh(z))
∥∥
L2(Ωh)

≤
∥∥∇(z −Πh(z))

∥∥
L2(Ω)

≤ CΩh|z|H2(Ω) .

Then, using the Cauchy-Schwarz inequality, we get

∥∥∇Πh(z)
∥∥2
L2(Ω)

=
∥∥∇(z − z +Πh(z))

∥∥2
L2(Ω)

≤ 2
∥∥∇(z −Πh(z))

∥∥2
L2(Ω)

+ 2∥∇z∥2L2(Ω)

≤ 2C2
Ωh

2|z|2H2(Ω) + 2∥z∥2H2(Ω)

≤ (2 + 2C2
Ωh

2
0)∥z∥2H2(Ω) = C̃2

Ω∥z∥2H2(Ω) , (B23)

with C̃Ω =
√

2 + 2C2
Ωh

2
0. Thus, we derive for Cb2 = C̃21C̃Ω

b2h(u− uh,Πh(z)) ≤ Cb2h
N+2∥u∥HN+1+r(Ω)∥z∥H2(Ω) .

Estimate for b3h(u − uh,Πh(z)) defined by (85)

We know that ∇Πh(z) is constant on each element. Then,
∥∥∇Πh(z)

∥∥
L∞(Tk∪∆k)

=
∥∥∇Πh(z)

∥∥
L∞(Tk)

. Let w|
Tk

=
∣∣∣[∇h(u− uh)]|

Tk

∣∣∣, ∀T k, k ∈ IB . Thus, recalling (B22),
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we get

b3h(u− uh,Πh(z)) ≤
∑

k∈IB

ˆ

(Tk∪∆k)∩∂Ω

w|
Tk

∣∣Πh(z)
∣∣ ds

≤
∑

k∈IB

C∂Ωh
2
k

∥∥∇Πh(z)
∥∥
L∞(Tk)

ˆ

(Tk∪∆k)∩∂Ω

w|
Tk

ds.

Applying Lemma A.1, we obtain

b3h(u− uh,Πh(z)) ≤
∑

k∈IB

C∂ΩCJhk

∥∥∇Πh(z)
∥∥
L2(Tk)

ˆ

(Tk∪∆k)∩∂Ω

w|
Tk

ds.

Now, consider the master triangle T̂ with vertices (0, 0), (0, 1), (1, 0) in the reference

frame (Ô, x̂, ŷ), where the origin Ô is one of the vertices of T k belonging to ∂Ω. Denote
the transformation of (T k ∪∆k) ∩ ∂Ω under the affine mapping Fk from T k to T̂ by

∂T̂ . Taking into account that length(T k ∪∆k) ∩ ∂Ω) =
´ lkB

0

√
1 +

(
f ′
k

)2
dx ≤ Cqhk,

where Cq =

√
1 +

(
h0

∥∥f ′′
k

∥∥
L∞(0,lkB)

)2
, and length(∂T̂ ) = 1, we have

b3h(u− uh,Πh(z)) ≤
∑

k∈IB

C∂ΩCJCqh
2
k

∥∥∇Πh(z)
∥∥
L2(Tk)

ˆ

∂T̂

ŵ dŝ,

where ŵ is the transformation of w|
Tk

under the mapping Fk.

We apply the Trace Theorem to the transformation ̂T k ∪∆k of T k ∪∆k under Fk.
Since ∂Ω is smooth and h is sufficiently small, there exists a constant Ĉt independent
of T k such that

ˆ

∂T̂

ŵ dŝ ≤ Ĉt

(
ˆ

̂Tk∪∆k

(
ŵ2 +

∣∣∣∇̂ŵ
∣∣∣
2
)
dŝ

)1/2

,

where ∇̂ is the gradient operator for functions defined in ̂T k ∪∆k.
Now, moving back to T k∪∆k, we get for a suitable mesh-independent constant C̃3

b3h(u− uh,Πh(z))≤C∂ΩCJCqĈt

∑

k∈IB

h2
k

∥∥∇Πh(z)
∥∥
L2(Tk)

(̂

̂Tk∪∆k

(
ŵ2+

∣∣∣∇̂ŵ
∣∣∣
2
)
dŝ

)1/2

≤ C̃3

∑

k∈IB

hk

∥∥∇Πh(z)
∥∥
L2(Tk)

(̂

Tk∪∆k

(
w2

|
Tk

+h2
k

∣∣∣∇w|
Tk

∣∣∣
2
)
ds

)1/2

.
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Applying the Cauchy-Schwarz inequality, we have

b3h(u− uh,Πh(z)) ≤ C̃3h
∥∥∇hΠh(z)

∥∥
L2(Ωh)


∑

k∈IB

∥∥∇(u− uh)
∥∥2
L2(Tk∪∆k)

+h2
k

∥∥∥D2(u− uh)
∥∥∥
2

L2(Tk∪∆k)

)1/2

.

Note that

∥∥∥D2(u− uh)
∥∥∥
L2(Tk∪∆k)

≤
√

area(T k ∪∆k)
∥∥∥D2(u− uh)

∥∥∥
L∞(Tk∪∆k)

.

Now, observe that area(T k ∪∆k) ≤ area(T k) + C∂Ωh
3
k ≤ h2

k(1/2 + C∂Ωh0). Applying
Lemma A.3, the Cauchy-Schwarz inequality and Theorem 4.1, we get

∑

k∈IB

(∥∥∇(u− uh)
∥∥2
L2(Tk∪∆k)

+ h2
k

∥∥∥D2(u− uh)
∥∥∥
2

L2(Tk∪∆k)

)

≤
∑

k∈IB

(
h2
k(1/2 + C∂Ωh0)

∥∥∇(u− uh)
∥∥2
L∞(Tk∪∆k)

+ h2
k

(
h2
k(1/2 + C∂Ωh0)

)

×
∥∥∥D2(uh − u)

∥∥∥
2

L∞(Tk∪∆k)

)

≤
∑

k∈IB

3(C2
1 + C2

2 )(1/2 + C∂Ωh0)
(∥∥∇(u− uh)

∥∥2
L2(Tk∩Ω)

+ h2N
k |u|2HN+1(Tk∩Ω)

+h2N+2r
k ∥u∥2HN+r+1(Tk∪∆k)

)
≤ C

2

3h
2N∥u∥2HN+r+1(Ω) ,

with C
2

3 = 3(C2
1 + C2

2 )(1/2 + C∂Ωh0)(C2 + 2). Thus, using (B23)

b3h(u− uh,Πh(z)) ≤ Cb3h
N+1∥u∥HN+1+r(Ω)∥z∥H2(Ω) ,

with Cb3 = C̃3C̃ΩC3.

Estimate for b4h(u − uh, eh(z)) defined by (86)

Using the Cauchy-Schwarz inequality and attending the fact that area(∆k) ≤ CΩh
3
k,

we obtain

b4h(u− uh, eh(z)) = â∆h(u− uh, z −Πh(z))

=
∑

k∈IB

ˆ

∆k

∇(u− uh) · ∇(z −Πh(z)) + c(u− uh)(z −Πh(z)) dx

≤ Cc

∑

k∈IB

C
1/2
∂Ω h

3/2
k

∥∥∇(u− uh)
∥∥
L∞(Tk∪∆k)

∥∥∇(z −Πh(z))
∥∥
L2(Tk∪∆k)
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+ C
1/2
∂Ω h

3/2
k ∥u− uh∥L∞(Tk∪∆k)

∥∥z −Πh(z)
∥∥
L2(Tk∪∆k)

,

with Cc = 1 +∥c∥L∞(Ω\Ωh)
. Now, applying Lemma A.3 with j = 1 and Lemma A.4,

the Cauchy-Schwarz inequality and using Theorem 4.1, we arrive at

b4h(u− uh, eh(z)) ≤ CcC
1/2
∂Ω (C1 + C0)h

1/2
(∥∥z −Πh(z)

∥∥
L2(Ω)

+
∥∥∇(z −Πh(z))

∥∥
L2(Ω)

)

×
(
∥u− uh∥L2(Ωh)

+
∥∥∇h(u− uh)

∥∥
L2(Ωh)

+ 2hN |u|HN+1(Ωh)

+2hN+r∥u∥HN+r+1(Ω)

)

≤ CcC
1/2
∂Ω (C1 + C0)h

1/2
(∥∥z −Πh(z)

∥∥
L2(Ω)

+
∥∥∇(z −Πh(z))

∥∥
L2(Ω)

)

×
(
(2 +

√
2C)hN |u|HN+1(Ω) + 2hN+r∥u∥HN+r+1(Ω)

)

≤ CcC
1/2
∂Ω (C1 + C0)(4 +

√
2C)hN+1/2

(∥∥z −Πh(z)
∥∥
L2(Ω)

+
∥∥∇(z −Πh(z))

∥∥
L2(Ω)

)
∥u∥HN+r+1(Ω) .

Considering Lemma A.2 with j = 0, 1 we get

b4h(u− uh, eh(z)) ≤ Cb4h
N+3/2∥u∥HN+r+1(Ω)∥z∥H2(Ω) ,

where Cb4 = 2CcC
1/2
∂Ω (C1 + C0)(4 +

√
2C)CΩ.

Estimate for b5h(u − uh, z) defined by (89)

Attending to the definition of jump and average along a boundary edge, we may write

b5h(u− uh, z) = −
ˆ

∂Ωh

(u− uh)
∂z

∂n
ds

= −
∑

e∈∂Ωh

ˆ

e

Ju− uhK · ∇(z −Πh(z) + Πh(z)) ds

≤

∣∣∣∣∣∣
∑

e∈∂Ωh

ˆ

e

Ju− uhK · ∇(z −Πh(z) + Πh(z)) ds

∣∣∣∣∣∣
.

Thus, applying the Cauchy-Schwarz inequality we get

b5h(u− uh, z) ≤
∑

e∈∂Ωh

∥∥∥h−1/2
e Ju− uhK

∥∥∥
L2(e)

∥∥∥h1/2
e ∇(z −Πh(z) + Πh(z))

∥∥∥
L2(e)

≤
∑

e∈∂Ωh

∥∥∥h−1/2
e Ju− uhK

∥∥∥
L2(e)

∥∥∥h1/2
e ∇(z −Πh(z))

∥∥∥
L2(e)

(B24)

+
∑

e∈∂Ωh

∥∥∥h−1/2
e Ju− uhK

∥∥∥
L2(e)

∥∥∥h1/2
e ∇Πh(z)

∥∥∥
L2(e)

. (B25)
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Now, following similar arguments as in Subsection 3.1, using Theorem 4.1 and
Lemma A.2 , we may write (B24) as follows:

∑

e∈∂Ωh

∥∥∥h−1/2
e Ju− uhK

∥∥∥
L2(e)

∥∥∥h1/2
e ∇(z −Πh(z))

∥∥∥
L2(e)

≤
∑

e∈Eh

∥∥∥h−1/2
e Ju− uhK

∥∥∥
L2(e)

∥∥∥h1/2
e ∇(z −Πh(z))

∥∥∥
L2(e)

≤


∑

e∈Eh

h−1
e

∥∥Ju− uhK
∥∥2
L2(e)




1/2
∑

e∈Eh

he

∥∥∥∥
∂eh(z)

∂n

∥∥∥∥
2

L2(e)




1/2

≤|u− uh|∗




K∑

k=1

C2
T

(∣∣eh(z)
∣∣2
H1(Tk)

+ h2
k

∣∣eh(z)
∣∣2
H2(Tk)

)



1/2

≤|||u− uh|||CT

√
2CΩh|z|H2(Ω) ≤ C ′

b5h
N+1∥u∥HN+1+r(Ω)∥z∥H2(Ω) , (B26)

with C ′
b5 =

√
2CCTCΩ.

Considering ∂∆k the boundary of ∆k, for k ∈ IB , applying Lemma A.1 and
inequality (B23), we can rewrite (B25) in the following way

∑

e∈∂Ωh

∥∥∥h−1/2
e Ju− uhK

∥∥∥
L2(e)

∥∥∥h1/2
e ∇Πh(z)

∥∥∥
L2(e)

≤


∑

e∈Eh

h−1
e

∥∥Ju− uhK
∥∥2
L2(e)




1/2
 ∑

e∈∂Ωh

he

∥∥∇Πh(z)
∥∥2
L2(e)




1/2

≤


∑

e∈Eh

h−1
e

∥∥Ju− uhK
∥∥2
L2(e)




1/2
∑

k∈IB

hk

∥∥∇Πh(z)
∥∥2
L2(∂∆k)




1/2

≤|u− uh|∗


∑

k∈IB

hkC
2
t

∥∥∇Πh(z)
∥∥2
H1(∆k)




1/2

=|u− uh|∗


∑

k∈IB

hkC
2
t

∥∥∇Πh(z)
∥∥2
L2(∆k)




1/2

≤|u− uh|∗


∑

k∈IB

h4
kC

2
t C∂Ω

∥∥∇Πh(z)
∥∥2
L∞(∆k)




1/2

=|u− uh|∗


∑

k∈IB

h4
kC

2
t C∂Ω

∥∥∇Πh(z)
∥∥2
L∞(Tk∪∆k)




1/2
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≤|u− uh|∗


∑

k∈IB

h2
kC

2
t C∂ΩC

2
J

∥∥∇Πh(z)
∥∥2
L2(Tk∩∆k)




1/2

≤CCtC
1/2
∂Ω CJh

N+1∥u∥HN+1+r(Ω)

∥∥∇Πh(z)
∥∥
L2(Ω)

≤C ′′
b5h

N+1∥u∥HN+1+r(Ω)∥z∥H2(Ω) , (B27)

with C ′′
b5 = CCtC

1/2
∂Ω CJ C̃Ω.

Thus, combining (B26) and (B27), we get

b5h(u− uh, z) ≤ Cb5h
N+1∥u∥HN+1+r(Ω)∥z∥H2(Ω) ,

where Cb5 = C ′
b5 + C ′′

b5.

Estimate for b6h(uh,Πh(z)) defined by (119)

Following similar arguments as in (B22), we get for P1 ∈ ∂Ωh,

∣∣Πh(z)(P )
∣∣ ≤ C∂Ωh

2
k

∣∣∣∇
(
Πh(z)|Tk

)∣∣∣ , ∀P ∈ ∆k, T
k, k ∈ QB . (B28)

Using the Cauchy-Schwarz inequality, the inequality above and noticing that
area(∆k) ≤ C∂Ωh

3
k, we may write

b6h(uh,Πh(z)) =
∑

k∈QB

ˆ

∆k

(−∆uh + cuh)Πh(z) dx

≤C ′
c

∑

k∈QB

C
1/2
∂Ω h

3/2
k

(
∥∆uh∥L∞(Tk)+∥uh∥L∞(Tk)

)
C

3/2
∂Ω h

7/2
k

∥∥∇Πh(z)
∥∥
L∞(Tk)

,

where C ′
c = 1 +∥c∥L∞(Ωh\Ω). From Lemma A.1, we obtain

b6h(uh,Πh(z)) ≤ C ′
cC

2
∂ΩCJ

∑

k∈QB

h4
k

(
∥∆uh∥L∞(Tk) +∥uh∥L∞(Tk)

)∥∥∇Πh(z)
∥∥
L2(Tk∩Ω)

.

Note that by adding and subtracting the exact solution u, we get

∥∆uh∥L∞(Tk) +∥uh∥L∞(Tk) ≤
∥∥∆(u− uh)

∥∥
L∞(Tk)

+∥u− uh∥L∞(Tk) +∥∆u∥L∞(Tk)

+∥u∥L∞(Tk) .

Thus, considering the previous inequality, Lemma A.3 with j = 2 and Lemma
A.4, applying the Cauchy-Schwarz inequality, and recalling that hk ≤ h and that ũ
is the regular extension of u to Ω̃ such that ũ|Ω = u, we conclude that for a suitable
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mesh-independent constant C ′
5 it holds

b6h(uh,Πh(z)) ≤ C ′
cC

2
∂ΩCJ

∑

k∈QB

h4
k

∥∥∇Πh(z)
∥∥
L2(Tk∩Ω)

(
C
(
∥∆u∥L∞(Ω) +∥u∥L∞(Ω)

)

+
C2

h2
k

(∥∥∇(u− uh)
∥∥
L2(Tk∩Ω)

+ h2
k|u|H3(Tk∩Ω) + h2+r

k ∥ũ∥H3+r(Tk∪∆k)

)

+
C0

hk

(
∥u− uh∥L2(Tk∩Ω) + h3

k|u|H3(Tk∩Ω) + h3+r
k ∥ũ∥H3+r(Tk∪∆k)

))

≤ C ′
5

∥∥∇Πh(z)
∥∥
L2(Ω∩Ωh)

(
h7/2∥u∥W 2

∞
(Ω) + h2

(
∥u− uh∥L2(Ω∩Ωh)

+
∥∥∇(u− uh)

∥∥
L2(Ω∩Ωh)

)
+ h4|u|H3(Ω∩Ωh)

+ h4+r∥ũ∥H3+r(Ω̃)

)
.

(B29)

Now, we note that by the Sobolev embedding Theorem, there exists a constant Cs

such that
∥u∥W 2

∞
(Ω) ≤ Cs∥u∥H3+r(Ω) ≤ Cs∥ũ∥H3+r(Ω̃)

. (B30)

Considering the previous inequality and applying (112), for a suitable mesh-
independent constant, we may rewrite (B29) as follows:

b6h(uh,Πh(z)) ≤ C51

∥∥∇Πh(z)
∥∥
L2(Ω∩Ωh)

(
h7/2∥ũ∥H3+r(Ω̃) + h4

(
|ũ|H3(Ω̃)

+h1/2∥−∆ũ+ cũ∥L2(Ω̃)

)
+ h4|u|H3(Ω∩Ωh)

+ h4+r∥ũ∥H3+r(Ω̃)

)

≤ C52

∥∥∇Πh(z)
∥∥
L2(Ω∩Ωh)

(
h7/2∥ũ∥

H3+r(Ω̃)
+ h4

(
|ũ|H3(Ω̃)

+h1/2∥−∆ũ+ cũ∥L2(Ω̃)

))
. (B31)

On the other hand, considering similar arguments as in inequality (B23), we obtain

∥∥∇Πh(z)
∥∥2
L2(Ω∩Ωh)

≤ C̃2
Π∥z∥2H2(Ω) , (B32)

with C̃Π =
√

2 + 2C
′2
Ω h2

0. Thus, we derive for C̃b6 = C52C̃Π

b6h(uh,Πh(z)) ≤ C̃b6h
7/2

(
∥ũ∥H3+r(Ω̃) + h1/2

(
|ũ|H3(Ω̃) + h1/2∥−∆ũ+ cũ∥L2(Ω̃)

))

×∥z∥H2(Ω) . (B33)
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