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Abstract

An arrangement of pseudolines is a finite collection of bi-infinite simple curves

where each pair intersects exactly once. Using the correspondence between rhombic

tilings of 2-dimensional zonotopes and pseudoline arrangements, we enumerate the

subset of arrangements of n pseudolines that include extreme pseudolines. Addition-

ally, we derive a recursive formula for counting shellable arrangements of pseudolines

and establish bounds along with asymptotic results.

1 Introduction

Pseudoline arrangements were introduced by Friedrich Levi in the 1920s as a natu-
ral generalization of line arrangements, allowing more flexibility as the curves are not
restricted to being straight. The set A(n) of non-isomorphic arrangements of n pseu-
dolines is a subject of interest in both Discrete Geometry and Combinatorics due to its
connections to various combinatorial structures, such as commutation classes of reduced
words for the longest permutation in the symmetric group, oriented matroids of rank 3
or rhombic tilings of 2-dimensional zonotopes.

Although pseudoline arrangements can be interpreted in various combinatorial ways,
no known formula exists for the cardinality of A(n). The sequence A006245 of the Online
Encyclopedia of Integer Sequences (OEIS) lists all currently known values of |A(n)|, which
are available only up to n = 16. Knuth [10] was the first to establish bounds for |A(n)|,
showing that |A(n)| grows as 2Θ(n2). Since then, several authors have refined Knuth’s
bounds [3, 5, 6, 11], but there is still much to be discovered.

However, for some subsets of A(n), enumeration results exist. For instance, the number
of pseudoline arrangements that correspond to commutation classes with only one reduced
word is 4 for every n ≥ 4 [9]. There is also an enumeration for the commutation classes
that are related to Gelfand-Cetlin polytopes [2].

Recently, a new family of pseudoline arragements was introduced in [13] to compute
the degree of connectivity for the flip graph of A(n). These arrangements are known
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as shellable and their definition relies on the notion of extreme pseudolines. In this
paper we will explore the arrangements that contain these special pseudolines, as well
as the shellable arrangements. We start Section 2 with some background information
on pseudolines arrangements and their relation with rhombic tilings of 2-dimensional
zonotopes, which will be crucial for the rest of the paper. Section 3 is dedicated to the
extreme pseudolines and to their interpretation on the tilings, where we give a formula
for the number of arrangements containg extreme pseudolines in terms of the cardinality
of A(n − 1) and A(n − 2). In Section 4, using the methods from Section 3, we present
a recursive formula to compute the number of shellable arrangements, along with some
bounds and asymptotic results.

2 Definitions and background

A pseudoline is an unbounded simple curve that divides the Euclidean plane into two
connected regions. A finite collection of pseudolines is called an arrangement of pseudo-
lines if every pair of pseudolines intersects exactly once. The crossings of an arrangement
are the points in which two pseudolines intersect. Throughout this paper, every arrange-
ment is assumed to be simple, that is, no three of its curves meet at the same point. A
simple arrangement of n pseudolines partition the plane into several connected compo-
nents, called cells, where exactly 2n of them are unbounded.

Following the terminology used in [13], it will be assumed that every arrangement
is marked, meaning that one of the unbounded cells is designated as north-cell (labeled
N) and pseudolines are oriented in such a way that the north-cell is in their left half-
plane. The south-cell (labeled S) of the arrangement is the unique unbounded cell that
is separated from the north-cell by all pseudolines. The cannonical labeling of a marked
arrangement is the labeling of the pseudolines such that an oriented curve from the north-
cell to the south-cell that has all crossings on the right intersects the pseudolines in
increasing order (see Figure 1). We denote by li the pseudoline with label i.
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1 N

S

Figure 1: A marked arrangement of 5 pseudolines.

Two arrangements are isomorphic if there is an isomorphism of the induced cell de-
compositions respecting the labellings of the pseudolines. One can check the previous
condition by examining the orders in which every pseudoline intersects the others when
traversed from left to right. For instance, the arrangements depicted in Figure 2 are not
isomorphic since in the arrangement on the left, l3 intersects l4 before l1, whereas in the
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arrangement on the right, l3 intersects l1 before l4. Given a positive integer n, we denote
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Figure 2: Non-isomorphic arrangements of 5 pseudolines.

by A(n) the set of non-isomorphic arrangements of n pseudolines. For n ≤ 8, every ar-
rangement of pseudolines is isomorphic to an arrangement of lines, meaning that we can
“stretch” the pseudolines into lines without changing the combinatorial properties of the
arrangement. In fact, it is a NP-hard problem to decide if an arrangement of pseudolines
is stretchable [14].

The set A(n) is in bijection with a variety of interesting combinatorial objects such
as commutation classes of reduced words for the longest permutation in the symmetric
group, oriented matroids of rank 3 and rhombic tilings of 2-dimensional zonotopes [4, 1, 7].
This final family of objects will be used as an alternative approach obtain and interpret
the results of this paper.

Definition 1. A 2-dimensional zonotope Z(V ) is a centrally symmetric 2n-gon defined
to be the Minkowski sum of a set of n vectors V = {v1, . . . , vn} in R

2, i.e,

Z(V ) =

{
n∑

i=1

civi : −1 ≤ ci ≤ 1, for all 1 ≤ i ≤ n

}
.

A rhombic tiling of Z(V ) is a tiling of Z(V ) made of rhombus with all edges congruent
and parallel to the edges of Z(V ). A rhombic tiling together with a distinguished vertex
of the boundary of Z(V ) is a marked zonotopal tiling.

Figure 3: Some examples of zonotopes.

Each edge of a zonotopal tiling can be labeled with an integer such that parallel edges
have the same label. For simplicity, we write only the labels of edges that are to the left
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Figure 4: A marked zonotopal tiling.

of the distinguished vertex from top to bottom, with integers from 1 to n in increasing
order (see Figure 4).

The following result states the connection between pseudoline arrangements and zono-
topal tilings.

Theorem 2.1 ([7]). Let V be a set of n pairwise non-collinear vectors in R
2. There

is a bijection between marked zonotopal tilings of Z(V ) and marked arrangements of n
pseudolines.

An intuitive way to understand the relationship between these two types of objects
is to consider an arrangement as a planar graph, consisting of its crossings and the arcs
connecting them. The corresponding zonotopal tiling represents the dual graph of the
arrangement, where a point is placed in each cell, and two points are connected if they
are separated by a single pseudoline. The distinguished vertex of the tiling is the one
that is placed in the north-cell of the arrangement. Thereby, we will call it the north-
vertex of the tiling. Conversely, if we have a marked zonotopal tiling, we can construct an
arrangement where pseudoline li intersects only the tilling’s edges that are labelled with
i. Figure 5 shows an example which describes the previous construction, and relates the
pseudoline arrangement depicted in Figure 1 with the zonotopal tiling of Figure 4.
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Figure 5: A pseudoline arrangement and its associated tiling.

Since Theorem 2.1 is independent of the choice of V , we can assume that Z(V ) has
all edges with equal length and all interior angles with π

n
radians, i.e, Z(V ) is a regular
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polygon. The set of all marked zonotopal tilings of Z(V ) will be denoted by T (n) and
it will be assumed that the north-vertex will be the top most one of the polygon, unless
otherwise stated.

The main advantage of working with a regular polygon is the use of its symmetries
to generate new tilings from previous ones. For instance, all the tilings of an octagon
are related by rotations (see Figure 6). In the following sections, we will these rotacional
symmetries to simplify the study of some subsets of T (n). It is worth noting that this
technique was already used by Tenner in [15] to compute some statistics on T (n).

Figure 6: All rhombic tilings of an octagon.

3 Extreme pseudolines

As we said in the beginning, a pseudoline divides the Euclidean plane into two half-
planes. Thus, given an arrangement A ∈ A(n) and fixing a pseudoline l, the crossings of
A not lying on l must be distributed between the two half-planes of l. However, in certain
arrangements, there is an extreme behavior defined as follows.

Definition 2. [13] Let A ∈ A(n). We say that a pseudoline l in A is extreme if all
crossings that do not lie on l belong to the same half-plane induced by l.

In the arrangement ilustrated in Figure 1, l1 is an extreme pseudoline since all the
crossings not lying in l1 are below it. In fact, it is the only extreme pseudoline of the
arrangement. Figure 7 depicts an arrangement with two extreme pseudolines: l2 and l3.

4

3

2

1

Figure 7: A pseudoline arrangement with two extremes.

The interpertation of an extreme pseudoline in the language of tilings is as follows.
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Definition 3. Given T ∈ T (n), denote by Ti the strip formed by the rhombus that
contain some edge with label i. Then, the strip Ti is extreme if all rhombus lie above Ti

or all rhombus lie below Ti.

Note that the crossings of an arrangement are encoded by the rhombus on its cor-
responding tiling. Thus, li is an extreme pseudoline of A ∈ A(n) if and only if Ti is
an extreme strip of the tiling T ∈ T (n) associated to the dual graph of A. In Figure 8
is depicted the arrangement of Figure 1 and its corresponding tiling with the extremes
emphasized on both objects. In this section we will focus on the arrangements that con-
tain at least one extreme pseudoline. Due to the symmetries mencioned in the previous
section, we will choose to do this study using the tilings.
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Figure 8: An arrangement and its corresponding tiling with their extremes emphasized.

Let ET (n) := {T ∈ T (n) : T contains extreme strips}. This set can be writen as

ET (n) =
n⋃

i=1

ETi(n), (1)

where ETi(n) := {T ∈ T (n) : Ti is extreme in T}, with i ∈ [n] := {1, . . . , n}. We have
the following.

Lemma 3.1. Given n ≥ 1, there is a bijection between ET1(n) and ETi(n) for all i ∈ [n].

Proof. Define the following map:

f : ET1(n) −→ ETi(n)

T 7−→ f(T ) = T ′,

where T ′ is obtained from T by a counter-clockwise rotation of (i − 1)π
n
radians with

respect to the center of the polygon. To prove that f is well-defined, just see that the
strip T1 in T is identified with the strip T ′

i in T ′. Since T1 was an extreme strip in T , we
have that T ′

i is an extreme strip in T ′, and so T ′ ∈ ETi(n). The inverse of f can be given
by

g : ETi(n) −→ ET1(n)

T 7−→ g(T ) = T ′′,
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where T ′′ is obtained from T by a clockwise rotation of (i− 1)π
n
radians, proving that f

is bijective.

The previous argument could not be used for every zonotope because we are not
guarantee to have rotational symmetry. Hidden in a rotation is a shift of the north-
vertex. More precisely, rotating a tiling by iπ

n
radians counterclockwise has the same

effect as shifting the north-vertex i vertices to the right. Figure 9 ilustrates the previous
situation: T ′ is obtained from T by changing the north-vertex one vertex to the right,
and T ′′ is obtained from T by a rotation of π

5
radians. Although T ′ and T ′′ are diferent

rhombic tilings of a 10-gon, they are equivalent as marked zonotopal tilings. If we were
working with arrangements, this procedure would be equivalent to shift the inicial choice
for the north-cell.

1

2

3

T

4

5

12

3

T ′

4

5

5

1

2

3

T ′′

4

5

Figure 9: Rotation a tiling and shifting the north-vertex

As we saw in Figure 7, an arrangement can have more than one extreme pseudoline
and so, a tiling can also have more than one extreme strip. In the following Lemma, we
will see that these objects cannot have more than two extremes.

Proposition 3.2. Let T ∈ T (n) with n > 3. Then, T contains at most 2 extreme strips.

Proof. Every tiling that contains an extreme strip can be obtained by rotating a tiling
T ′ ∈ ET1(n). Since rotations do not change the number of extreme strips, we can assume
that T ∈ ET1(n). Thus, T must correspond to one of the cases shown in Figure 10. If
Ti is another extreme strip of T , then i = 2 or i = n, otherwise the rhombus with labels
{1, i−1} and {1, i+1} would lie on different sides of the strip Ti. Since each extreme strip
must contain n+1 edges of the polygon’s border and two distinct strips share exactly one
rhombus, it is impossible for T1, T2 and Tn to be extreme strips of T simultaneously.

From the proof of the previous lemma, we conclude that if T ∈ ET1(n) contains
another extreme strip Ti besides T1, then i = 2 or i = n. The fact that every tiling
containing extreme strips can be obtained from a tiling T ′ ∈ ET1(n) using rotations
implies the following.
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Corollary 3.3. Let i, j ∈ [n] and T ∈ T (n). If Ti and Tj are extreme strips, then
|i− j| = 1 or i, j ∈ {1, n}.

Using the principle of inclusion-exclusion,

|ET (n)| =
∑

φ 6=A⊆[n]

(−1)|A|+1

∣∣∣∣∣
⋂

i∈A
ETi(n)

∣∣∣∣∣ . (2)

From Proposition 3.2 and Corollary 3.3, equation (2) can be simplified to

|ET (n)| =
n∑

i=1

|ETi(n)| − |ET1(n) ∩ ETn(n)| −
n−1∑

i=1

|ETi(n) ∩ ETi+1(n)|. (3)

Similiar to Lemma 3.1, we have a relation between the sets ET1(n)∩ETn(n) and ETi(n)∩
ETi+1(n), for i ∈ [n− 1].

Lemma 3.4. There is a bijection between ET1(n) ∩ ETn(n) and ETi(n) ∩ ETi+1(n), for
all i ∈ [n− 1].

Proof. A tiling T ∈ ET1(n) ∩ ETn(n) has one of the forms shown in Figure 11. Using
similiar arguments as in Lemma 3.1, we have the result.

Before stating the main result of this section, we need the following enumeration
results.

Proposition 3.5. Let n ≥ 3. Then, |ET1(n)| = 2|T (n− 1)|.

Proof. Suppose that T ∈ ET1(n). We have two possibilities for T : either the strip contains
the entire left border of the polygon, or it contains the entire right border (see Figure 10).
In both cases, we have a centrally symmetric 2(n − 1)-gon contained in T which can be

1

2

3

n− 2

n− 1
n

T ′ ∈ T (n− 1)

1

2

3

n− 2

n− 1
n

T ′ ∈ T (n− 1)

Figure 10: Possible forms for a tiling in ET1(n).

tilled in |T (n− 1)| ways. Hence |ET1(n)| = 2|T (n− 1)|.
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1
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n− 1
n

T ′ ∈ T (n− 2)

1

2

3

n− 2

n− 1
n

T ′ ∈ T (n− 2)

Figure 11: Possible forms for a tiling in ET1(n) ∩ ETn(n).

Proposition 3.6. Let n ≥ 4. Then, |ET1(n) ∩ ETn(n)| = 2|T (n− 2)|.

Proof. Suppose that T ∈ ET1(n)∩ETn(n). Since each extreme strip contains n+1 edges
of the border of the tiling, then T must correspond to one of the cases shown in Figure
11. In both cases, we have a centrally symmetric 2(n− 2)-gon contained in T which can
be tiled in |T (n− 2)| ways. Hence |ET1(n) ∩ ETn(n)| = 2|T (n− 2)|.

Joining all the information, we have the following enumeration for ET (n).

Theorem 3.7. For n ≥ 4, we have |ET (n)| = 2n(|T (n− 1)| − |T (n− 2)|).

Proof. From Lemmas 3.1 and 3.5,

|ETi(n)| = |ET1(n)| = 2|T (n− 1)|,

for all n ≥ 3, and from Lemmas 3.4 and 3.6,

|ETi(n) ∩ ETi+1(n)| = |ET1(n) ∩ ETn(n)| = 2|T (n− 2)|,

for all n ≥ 4. Hence, from (3) we have the result.

To convert the previous result into the language of arrangements, just note that ET (n)
is in bijection with the set EA(n) := {A ∈ A(n) : A contains extreme pseudolines}.
Since |T (n)| = |A(n)|, we have

|EA(n)| = 2n(|A(n− 1)| − |A(n− 2)|),

for all n ≥ 4. As consequence of Theorem 3.7, we get a new way to express the cardinality
of T (n).

Corollary 3.8. For n ≥ 4, |T (n)| = 1 +
n+1∑

i=4

|ET (i)|
2i

.
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Proof. From the previous theorem, |ET (n+ 1)| = 2(n+ 1)(|T (n)| − |T (n− 1)|), that is

|ET (n+ 1)|
2(n+ 1)

= |T (n)| − |T (n− 1)|.

But then,

n+1∑

i=4

|ET (i)|
2i

=
n∑

i=3

(|T (i)| − |T (i− 1)|) = T (n)− T (2).

Since |T (2)| = 1, we have the result.

Not every tiling contains extremes strips. Figure 12 illustrates the only examples in
T (5), out of the 62 possible tilings, that do not contain extremes. Using the formula
obtained for |ET (n)| and the available values for |T (n)|, we have computed |ET (n)| up
to n = 17. The conclusion that we took is that ET (n) is a very small part of T (n) (for
n = 16, the set ET (n) corresponds to aproximately 0.6% of T (n)). This is not a surprise
because of the rapidly grow of T (n) and the fact that |ET (n)| ≤ 2n|T (n− 1)|. Based on
these observations, we end this section with the following conjecture.

Conjecture 3.9. We have |ET (n)| = o(|T (n)|), that is, lim
n→∞

|ET (n)|
|T (n)| = 0.

1

2

3

4

5
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2

3

4

5

Figure 12: The only rhombic tilings of a 10-gon that do not contain extreme strips.

4 Counting shellable arrangements

A common method for generating new arrangements from existing ones is by adding
pseudolines. According to Levi’s Extension Lemma [12], if two points do not lie on the
same pseudoline, it is always possible to add a new pseudoline to the arrangement that
passes through those points. The inverse operation can also be performed by removing a
pseudoline from an arrangement to form a new one. For A ∈ A(n) and a pseudoline l, we
denote the arrangement obtained by removing l from A as A− l ∈ A(n− 1).
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Definition 4. [13] Let A ∈ A(n). We say that A is shellable if it contains an extreme
pseudoline l and A− l is shellable or empty.

A shellable arrangement A ∈ A(n) can be interpreted as a chain of arrangements
A = An ⊇ An−1 ⊇ · · · ⊇ A0 = φ, where Aj ∈ A(j) for all j ∈ [n], and we transition from
Aj to Aj−1 by removing an extreme pseudoline. The arrangement depicted in Figure 1
is shellable, which we can see by removing l1, l3, l4, l5 and l2 in this order (see Figure
13). The sequence obtained by iteratively removing extreme pseudolines from a shellable
arrangement is called a shellable sequence [13], and we will denote it as a word s = i1 · · · in,
where lij is the j-th pseudoline to be removed. Shellable arrangements were introduced
in [13] to compute the degree of connectivity of the flip graph, a graph structure defined
on A(n) where two arrangements are connected by an edge if they differ by a single flip
(see [8, 7] for more details on this topic).

This section is dedicated to enumerate the shellable arrangements. Given the fact
that they always contain some extreme pseudoline, the methods we use will be analo-
gous to those in the previous section. We start by giving an interpertation of shellable
arrangements in the context of tilings.

Definition 5. Let T ∈ T (n). A tiling T is shellable if it contains an extreme strip Ti and
T − Ti is shellable or empty, where T − Ti is the tiling obtained from T by shrinking Ti

down to a path. The set of shellable tilings is denoted by ST (n).

Figure 13 illustrates the shrinking process of a shellable tiling, where strips are se-
quentially shrunk. Removing a pseudoline li from an arrangement A ∈ A(n) is equivalent

5
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4
3
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5
4

2

5

2
2

1

2

3

4

5

2

3

4

5

2

4

5

2

5

8

2

5
8

Figure 13: Shrinking process of a shellable tiling.

to shrink the strip Ti of the tiling T ∈ T (n) corresponding to the dual of A. Thus, A is
shellable if and only if T is shellable. Additionally, it makes sense for a tiling to have a
shellable sequence, defined by the order in which the strips are iteratively shrunk.

Analogous to ET (n), the set ST (n) can be writen as

ST (n) =
n⋃

i=1

STi(n),
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where STi(n) = {T ∈ ST (n) : Ti is an extreme strip}. We also have the following.

Lemma 4.1. Let n ≥ 1.

1. There is a bijection between ST1(n) and STi(n) for all i ∈ [n].

2. There is a bijection between ST1(n)∩STn(n) and STi(n)∩STi+1(n) for all i ∈ [n−1].

Proof. Just note that rotating a tiling does not affect the shellable property. Using the
same aproach as in Lemmas 3.1 and 3.4 we have the result.

Proposition 4.2.

1. |ST1(n)| = 2|ST (n− 1)|, for all n ≥ 3,

2. |ST1(n) ∩ STn(n)| = 2|ST (n− 2)|, for all n ≥ 4.

Proof. Suppose that T ∈ ST1(n). Then, T must correspond to one of the cases of Figure
10. In both cases we have a centrally symmetric 2(n − 1)-gon contained in T that will
correspond to a tiling T ′ ∈ T (n− 1). Since T is shellable, it admits a shellable sequence
s = i1 · · · in. If ij = 1 for some j ∈ [n], then i1 · · · îj · · · in (ij omitted) is a shellable
sequence for T ′, and so T ′ ∈ ST (n− 1). Conversely, if T ′ ∈ ST (n− 1) and s′ = i1 · · · in−1

is a shellable sequence of T ′, then the concatenation 1 · s′ is a shellable sequence for T .
Therefore, T ∈ ST1(n) if and only if T ′ ∈ ST (n−1), implying that |ST1(n)| = 2|ST (n−1)|.

For statement 2, if T ∈ ST1(n) ∩ STn(n) then T must correspond to one of the
cases of Figure 11. In both cases we have a centrally symmetric 2(n − 2)-gon contained
in T that will correspond to a tiling T ′ ∈ T (n − 2). Using similiar arguments as in
statement 1, T ∈ ST1(n) ∩ STn(n) if and only if T ′ ∈ ST (n − 2), and we obtain that
|ST1(n) ∩ STn(n)| = 2|ST (n− 2)|.

The previous two results give us a recursion formula to compute the number of shellable
tilings.

Theorem 4.3. For n ≥ 4, we have that |ST (n)| = 2n(|ST (n− 1)| − |ST (n− 2)|).

Proof. Using the principle of inclusion-exclusion,

|ST (n)| =
∑

φ 6=A⊆[n]

(−1)|A|+1

∣∣∣∣∣
⋂

i∈A
STi(n)

∣∣∣∣∣ . (4)

Using Proposition 3.2 and Corollary 3.3, we can simplify (4) to

|ST (n)| =
n∑

i=1

|STi(n)| − |ST1(n)− STn(n)| −
n−1∑

i=1

|STi(n) ∩ STi+1(n)|.

Then, from Lemma 4.1 and Proposition 4.2 the result follows.
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Since shellable tilings are in bijection with shellable arrangements, the number of
shellable arrangements follows the same recursive formula as stated in the previous theo-
rem.

The sequence sn = |ST (n)| is not listed in the OEIS. It satisfies a second order linear
recurrence with polynomial coefficients with initial values s2 = 1 and s3 = 2, for which a
closed formula seems dificult to obtain. Using the sequence of ratios of consecutive terms,
one can express sn in another way.

Proposition 4.4. For n ≥ 4,

sn =
2nn!

24

n∏

i=4

(
1− 1

ri−1

)
,

where rn = sn
sn−1

for all n ≥ 4.

Proof. Dividing both sides of the recursion obtained in Theorem 4.3 by sn−1,

sn

sn−1

= 2n

(
1− sn−2

sn−1

)
⇔ rn = 2n

(
1− 1

rn−1

)
.

We have that rn satisfies a first order non-linear recursion with initial value r3 =
s3
s2

= 2.
Since

sn = s2
s3

s2

s4

s3
· · · sn

sn−1

= s2r3

n∏

i=4

ri,

using the recurrence relation for rn and values for s2 and r3,

sn = 2
n∏

i=4

2i

(
1− 1

ri−1

)
=

2nn!

24

n∏

i=4

(
1− 1

ri−1

)
.

Being sn = |ST (n)|, we have that sn > 0 for all n. But then, rn must also be positive,
implying that 0 < 1− 1

rn−1

< 1. Therefore, rn < 2n and sn < 2nn!
24

for all n. However, these
upper bounds are not very acurate, as we can see in Table 1 for the case of rn. Notice
that rn seems to be between 2(n− 1) and 2n− 1 for n ≥ 6. The next result confirms this
claim.

n 3 4 5 6 7 8 16 32 64 128
rn 2 4 7.5 10.4 ≈12.65 ≈14.74 ≈30.89 ≈62.95 ≈126.98 ≈254.99

Table 1: Some values of rn

Proposition 4.5. Let rn be as in the Proposition 4.4. Then, 2(n− 1) < rn < 2n− 1 for
all n ≥ 6.
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Proof. We use induction on n to prove both inequalities. For n = 6, we have rn = 10.4
which satisfies the claim. Suppose that 2(n − 1) < rn < 2n − 1 for some n ≥ 6. We
want to prove that 2n < rn+1 < 2(n+1)− 1. For the first inequality, using the recurence
relation and the induction hypothesis,

rn+1 = 2(n+ 1)− 2(n+ 1)

rn
> 2(n+ 1)− 2(n+ 1)

2(n− 1)
= 2(n+ 1)− n+ 1

n− 1
.

Since n ≥ 6 and the sequence n+1
n−1

is decreasing, we have n+1
n−1

≤ 6+1
6−1

= 7
5
for all n ≥ 6.

Hence,

rn+1 ≥ 2(n+ 1)− 7

5
= 2n+

3

5
> 2n.

For the second inequality, using again the recurrence relation and the induction hypoth-
esis,

rn+1 = 2(n+ 1)− 2(n+ 1)

rn
< 2(n+ 1)− 2(n+ 1)

2n− 1
.

Since 2(n+ 1) > 2n− 1, we have 2(n+1)
2n−1

> 1, and so rn+1 < 2(n+ 1)− 1.

As a consequence, we obtain better bounds for sn.

Corollary 4.6. For all n we have
5

64

2nn!

n
< sn <

4

63

(2n)!

2nn!
.

Proof. Since sn = 2
n∏

i=4

rn, from the previous result and the values for r4 and r5,

60
n−1∏

i=5

2i < sn < 60
n∏

i=6

(2i− 1).

Then,

60

2 · 4 · 6 · 8 · 2n

n∏

i=1

2i < sn <
60

1 · 3 · 5 · 7 · 9

n∏

i=1

(2i− 1),

which simply to

5

64n

n∏

i=1

2i < sn <
4

63

n∏

i=1

(2i− 1).

Recall that
n∏

i=1

2i = 2nn! and
n∏

i=1

(2i− 1) =
(2n)!

2nn!
. Aplying these identities to our inequal-

ities, we have the result.
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To give some motivation before stating our last result, we need to return to the defi-
nition of a shellable sequence. A tiling is shellable if the empty tiling can be obtained by
iteratively shrinking extreme strips. In each step of this process we have two cases: or all
rhombus are above the strip that will be shrunk, or all are below it. All this information
can be recorded in a signed permutation, that is, a permutation w = (w(1), . . . , w(n)) such
that w(i) ∈ {±1, . . . ,±n} for all i ∈ [n] and |w(i)| 6= |w(j)| for all i 6= j. Given a shellable
sequence s = i1 · · · in of T , associate to s the signed permutation ws = (ws(1), . . . , ws(n))
where ws(j) = ij if all rhombus were above Tij before shrinking it, or ws(j) = −ij other-
wise. We have the following.

Proposition 4.7. Given n ≥ 2 and a signed permutation w = (w(1), w(2), . . . , w(n)),
there is at most one shellable tiling with a shellable sequence associated to w.

Proof. We proceed by induction on n. For n = 2 the result is true since |T (2)| = 1. Let
w = (w(1), w(2), . . . , w(n)) be a signed permutation and suppose that there is T, T ′ ∈
ST (n) where both have shellable sequences associated to w. Without lost of generality
assume that w(1) = 1. Since w(1) is related to the first strip to be shrunk, we have that
T1 is an extreme strip on both tilings. The fact that w(1) > 0 implies that T and T ′ are
of the form of the right tiling of Figure 10. If we shrink the strip T1 from both tilings
we obtain two tilings T 1, T 2 ∈ T (n− 1) which will have shellable sequences associated to
the signed permutation (w(2), w(3), . . . , w(n)). Using the induction hypothesis, T 1 = T 2

implying that T = T ′.

A direct consequence of this result is that the number of shellable tilings is at most
the number of signed permutations, that is, 2nn!. Our final result shows how sn is related
to 2nn! in the limit.

Theorem 4.8. There is a constant c > 0 such that sn ∼ 2nn!
c
√
n
.

Proof. We just need to prove that lim
n→∞

sn
2nn!√

n

= L for some L 6= 0. The first step is to show

that the previous limit exist. From Proposition 4.4,

lim
n→∞

sn
2nn!√

n

= lim
n→∞

1

24

√
n

n∏

i=4

(
1− 1

ri−1

)
. (5)

Let xn = 1
24

√
n
∏n

i=4

(
1− 1

ri−1

)
for n ≥ 4. Then,

xn

xn+1

=

√
n

n+ 1

1(
1− 1

rn

) . (6)

Since rn < 2n for all n ≥ 3, from (6) we get

xn

xn+1

>

√
n

n+ 1

1(
1− 1

2n

) =

√
n

n+ 1

2n

2n− 1
. (7)
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Squaring both sides of (7) yields
(

xn

xn+1

)2

>
n

n+ 1

4n2

4n2 − 4n+ 1
=

4n3

4n3 − 3n+ 1
,

and we have
4n3

4n3 − 3n+ 1
> 1 for all n ≥ 4. But then,

xn

xn+1

> 1 implying that (xn) is a

decreasing sequence. Since xn > 0, the limit (5) exists.
To prove that L 6= 0, from Proposition 4.5 we have rn > 2(n− 1) for all n ≥ 6. Using

the values of Table 1,
6∏

i=4

(
1− 1

ri−1

)
=

13

40
, and from (5),

lim
n→∞

sn
2nn!√

n

> lim
n→∞

13

960

√
n

n∏

i=7

(
1− 1

2(i− 2)

)
= lim

n→∞

13

960

√
n

n∏

i=7

2(i− 2)− 1

2(i− 2)
.

The previous product can be written as
n−2∏

i=5

2i− 1

2i
. Multiplying and dividing by the

missing terms for the product to go from 1 to n, we get

lim
n→∞

13

960

√
n

n∏

i=7

2(i− 2)− 1

2(i− 2)
= lim

n→∞

26

525

4n(n− 1)

(2n− 1)(2(n− 1)− 1)

√
n

n∏

i=1

2i− 1

2i
(8)

= lim
n→∞

26

525

4n2 − 4n

4n2 − 8n+ 3

√
n(2n)!

22n(n!)2
. (9)

Using Stirling’s aproximation n! ∼
√
2πn

(
n
e

)n
and the fact that lim

n→∞

4n2 − 4n

4n2 − 8n+ 3
= 1,

we have

(9) = lim
n→∞

26

525

√
n
√
2π2n

(
2n
e

)2n

22n2πn
(
n
e

)2n = lim
n→∞

26

525

2
√
πn22n

(
n
e

)2n

22n2πn
(
n
e

)2n =
26

525

√
π

π
. (10)

Therefore, L ≥ 26
525

√
π

π
> 0 and c = 1

L
.

Noticing that 26
525

√
π

π
≈ 0.028, the constant c in the previous theorem satisfy c < 36.

To obtain a lower bound for c, we may useu Proposition 4.6 to get

L = lim
n→∞

sn
2nn!√

n

< lim
n→∞

4

63

(2n)!
2nn!
2nn!√

n

= lim
n→∞

4

63

√
n(2n)!

22n(n!)2
=

4

63

√
π

π
≈ 0.036,

and so c > 27. Based on computacional data, we found that c ≈ 34.3.
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