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1Instituto Universitário de Lisboa (ISCTE-IUL), Business Research Unit (BRU-IUL),
Avenida das Forças Armadas, Lisbon, 1649-026, Portugal.

2University of Coimbra, CMUC, Department of Mathematics, Apartado 3008, EC Santa
Cruz, Coimbra, 3001-501, Portugal.

*Corresponding author(s). E-mail(s): luisp@mat.uc.pt;
Contributing authors: Pedro.Judice@iscte-iul.pt; zeluis@mat.uc.pt;

Abstract

The management of bank balance sheets is a major determinant of banks’ long-term performance and
sustainability. Therefore, it is one of the most critical problems in bank management. Using autore-
gressive processes for stochastic deposit flows and credit losses, and vector autoregressive processes
for interest rates, we develop a simulation-optimization method that devises balance sheet policy
functions based on state variables such as interest rates or leverage levels. Performance analysis on
an independent testing set shows that the algorithm outperforms other established methodologies,
delivering an increase in the return-to-risk ratio of up to 68% when compared to optimizing time-
independent static allocations and an increase greater than 593% when compared to equal-weight and
60/40 policies. In addition to performance, we emphasize interpretability, developing an algorithm
that allows the analysis of the parametric allocations and interpretation, and can thus be used in
practice to support banks’ senior management dynamic decisions.

Keywords: balance sheet management, economic environment simulation, dynamic model, interpretability,
bi-objective Pareto optimization, policy function.

1 Introduction

1.1 Motivation

The management of bank balance sheets is one of the most important practical problems faced today.
According to statista.com, the total value of worldwide banking assets is 180 trillion dollars, making
managing those assets one of the most critical problems for financial institutions. The task is not easy,
as banks have to carefully balance the return and the risk of failure due to liquidity or solvency-driven
events. Also, banks should optimize the balance sheet at each point in time as a function of the economic
environment. If a bank takes on too much risk, it will most likely fail when the first financial crisis hits
the door. If the bank takes little or no risk, it cannot generate enough return to pay its employees and
costs and is also destined to fail. The sweet spot is between taking no risk and excessive risks.
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The risks for the bank can be manifold. A bank is exposed to runs from creditors (liquidity risk),
such as those witnessed in 2023 in the Silicon Valley Bank. Interest rate rises penalize fixed-rate assets
(interest rate risk), as recorded during the Savings and Loan Crisis in the early eighties. Bear markets
penalize stock market investments (market risk). Spikes in defaults force banks to absorb high losses
(credit risk); the Subprime Crisis is a good illustration of credit risk. Risk-taking also entails many options,
as bank managers have to carefully select the bank strategy while also taking advantage of the economic
environment and the different prospective returns on each asset.

The balance sheet management problem is in its essence a dynamic problem, in that allocations should
adjust to the economic environment, for example interest rates. Also, the dynamics for the risk factors
for banks should include long-term features of these dynamics, such as the autocorrelations present in the
stochastic processes for default risk, liquidity risk and interest rate risk, as well as the interdependency
of wholesale and retail interest rates. Due to the number of state variables involved, the purpose of our
research is to establish a simulation-optimization method to determine balance sheet policy functions on
environment variables, assuming stochastic deposit flows, stochastic credit losses, and stochastic interest
rates.

Our research also focuses on interpretability, and we look to develop a dynamic balance sheet policy
model that weighs performance and complexity. The lack of interpretability is a major barrier hindering
the adoption of intelligent decision support systems in areas such as banking management (Doumpos,
Zopounidis, Gounopoulos, Platanakis, & Zhang, 2023; Kaya, 2019). Without the possibility of expert
validation, artificial intelligence generally lacks credibility and trust. Human oversight of the decision-
making processes is critical, at least at the command level, to risk-manage the outputs given by the
system. Interpretable models are thus a big help for their effective administration, as a model validator
will understand the model and gain confidence in the output decision of the system, even in unforeseen
circumstances. An interpretable decision model is also easier to communicate to senior management than
a black-box model, making the decision-making process more secure.

Finally, an optimal strategy should be tested on a separate testing dataset, validating the results that
have been used in the training dataset and give confidence on the methodology that is proposed.

1.2 Related literature

In this section we survey the literature on bank balance sheet management and related literature. Bank
balance sheet management is related to portfolio theory (Markowitz (1952)) and asset-liability man-
agement models from insurance and pension funds, although it has fundamental differences. First, in
classical portfolio theory and in pension fund insurance ALM, assets are marked-to-market; in contrast,
the bulk of bank assets are recorded at book value, making earnings less volatile in this setting. Sec-
ond, classical portfolio theory and pension fund and insurance ALM focus on the market risk of assets,
whereas in banking credit risk plays a much more important role. Third, the nature of liabilities is very
different. In classical portfolio theory, usually one does not consider a liability structure; in pension fund
and insurance ALM, liabilities are stable and long-dated. In contrast, in bank management liabilities are
short-term and volatile; funding liquidity risk (the risk of bank runs) plays a much more important role.
Whereas in pension fund and insurance ALM one has stable liabilities to invest in mostly liquid assets,
in bank management liabilities are short-dated and volatile and finance long-term illiquid assets (such as
mortgages and corporate loans). Fourth, whereas in classical portfolio theory and pension fund ALM one
allows for a full rebalancing of the portfolio (even if such rebalancing entails transaction costs), in bank
balance sheet management the allocations to loans have to evolve in a smooth way, since a bank cannot
immediately dispose of such assets in an immediate way.

For the sake of completeness, we briefly review some of the literature in portfolio theory, pension fund
and insurance ALM, and bank balance sheet management. We will focus more on the latter, since it is
the subject of the research we present. It will be impossible to make a thorough review on all of these
subjects, so we highlight some of the landmark papers.

Portfolio theory has its roots in Markowitz (1952), who laid the framework to be used in several
settings. Another landmark model is the consumption-investment model for and individual investor by
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Merton (1969). Campbell and Viceira (2002) contains several examples of applications of portfolio theory
to the individual investor case. In the pension fund and ALM case, Ziemba and Mulvey (1998) is a
comprehensive collection of research papers in this field. Some landmark models include G.C. Boender
(1997), Cariño et al. (1994), Consigli and Dempster (1998), Hibiki (2006), Kouwenberg (2001), Mulvey
and Vladimirou (1989), Yu, Tsai, and Huang (2010), and Zenios (1995).

As we mentioned before, there are fundamental differences between the bank balance sheet manage-
ment problem and the pension fund ALM problem. As a consequence, bank balance sheet models have
their own literature that we now describe in more detail. Again, we will not be able to list all the papers
in this very rich area, but we will highlight some of the output in this area. We distribute our review
between static and dynamic models. Static models assume constant policies within a certain time horizon,
whereas dynamic policies change as a function of the evolving state variables.

We start with static models. Kosmidou and Zopounidis (2004) used goal programming to deter-
mine optimal strategies, while assessing the sensitivity of the solution to different interest rate scenarios.
Schmaltz, Pokutta, Heidorn, and Andrae (2014) optimize a balance sheet assuming compliance with
Basel III capital requirements. Júdice and Zhu (2021) optimize balance sheets using duality, and making
the link between optimal balance sheet and shadow prices of interest and credit risk. The approach of
static balance sheets is further developed for more general risk measures in Maier-Paape, Júdice, Platen,
and Zhu (2023). Júdice, Pinto, and Santos (2021) conducted static optimization for a long-term hori-
zon. We also highlight Yan, Zhang, and Wang (2020), who used robust optimization for credit portfolios,
and Sirignano, Tsoukalas, and Giesecke (2016), who conducted the optimization for large-scale credit
portfolios.

Concerning dynamic optimization, i.e., optimizing balance sheet strategies that change over time, we
start by referring the landmark model of Kusy and Ziemba (1986), which is a stochastic programming
approach, using a three-period, two-point distribution of the joint evolution of interest rates and liquidity
flows, although it does not consider credit risk. Oğuzsoy and Güven (1997) is also a stochastic program-
ming model, assuming a random variable with three outcomes for outstanding deposits, although it does
not specify interest rate and credit risk processes. Ha laj (2016) posits a dynamic model with liquidity risk,
but assumes that interest rates are deterministic, and implements the model over a two-period horizon.
We also highlight Mukuddem-Petersen and Petersen (2006), who use continuous dynamic programming,
which comes with the cost that the setting has to be simplified. Specifically, the authors do not account
for stochastic liquidity flows (liquidity risk) and assume independent lognormal returns for loans, whereas
the returns for loans tend to be autocorrelated.

As a summary, most of the research on dynamic balance sheet strategies falls into the realm of
stochastic or dynamic programming. To devise optimal balance sheet policies, the methods typically
sacrifice the distributional assumptions of the risk factors, due to the increase in complexity from dynamic
programs with high dimensions (the curse of dimensionality). Also, except for Mukuddem-Petersen and
Petersen (2006), the dynamic policy functions are more difficult to interpret, since they do not give a
parametric description between the state variables and the optimal strategy.

1.3 Contributions

In this section, we highlight the contributions of our research and how they improve the state of the art
in bank balance sheet management.

First, using simulation optimization, we devise an interpretable policy function in a setting that
encompasses interest rate, credit, and liquidity risk. Mukuddem-Petersen and Petersen (2006) has devised
an intepretable policy function in a simplified setting that overlooks liquidity risk and assumes lognor-
mal returns for loans. Our approach relies on improved distributional processes for credit risk, taking
into account autocorrelations, the dependencies between retail and market interest rates via an autore-
gressive process, and a stochastic process for liquidity risk that includes autocorrelation. Compared to
the stochastic programming approaches, such as Kusy and Ziemba (1986) or Oğuzsoy and Güven (1997),
our parametric approach allows us to identify the relationship between the policy values and the state
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variables. Having a parsimonious relation between the state variables and the policy function mitigates
the risk of overfitting, as validated in our tests.

Second, as mentioned before, we emphasize the difference of the bank balance sheet setting and the
classical portfolio, pension fund, and insurance ALM. We highlighted the differences in the previous
section. As a consequence, our model differs significantly from these settings, since it has the features
that are inherent to bank management.

Third, compared to previous dynamic models in bank ALM, we use improved distributional assump-
tions. As we highlighted in the literature review, settings such as Kusy and Ziemba (1986) and Oğuzsoy
and Güven (1997) use point distributions. Ha laj (2016) does not consider stochastic interest rates and his
model is developed over two periods. Mukuddem-Petersen and Petersen (2006) uses a continuous time
setting, so has to engage in simplification such as assuming that deposit funds are fully invested in cash,
the optimization focusing on the securities part and not on the loan allocation, and not specifying dynam-
ics for the deposit outflows or interest rates. Ha laj (2016) uses a two-period model and does not assume
stochasticicty in the interest rates. The dynamic model we present is based on stochastic processes for
credit losses, market and deposit interest rates, and liquidity outflows. All these processes account for
autocorrelation.

Fourth, compared to previous dynamic approaches we cited in the literature, we test the results in a
separate dataset, allowing us to validate the approach. To the best of our knowledge, out-of-sample testing
has been conducted for static models (Coelho, Santos, and Júdice (2023)), but not for dynamic balance
sheet models. This validation is important, as overfitting in the training phase often leads to poor results
in separate testing datasets (Bailey, Borwein, López de Prado, and Zhu (2014)). We use a testing dataset
to evaluate the method and test it against several established allocation methodologies, and confirm the
superior performance of the model, of 42% against a static optimization method and more than 1200%
against equal-weight and 60/40 heuristic allocations, if the bank starts with a leverage ratio of 5%. If
the bank starts with a higher leverage ratio of 15%, the dynamic optimization model outperforms the
static optimization model by 68% and the tested heuristic models by more than 593%. As we will see in
Sections 3.5 and 3.6, these striking differences stem from the fact that, in a leveraged setting, the amount
of capital to absorb losses is low, thus penalizing strategies that overweigh risky assets.

1.4 Organization

We organize the paper as follows. Section 2 describes the proposed methodology; we present the dynamic
balance sheet model and briefly overview the economic risk factors generator and the balance sheet model.
Section 3 is devoted to numerical experiments, including hyperparameter optimization and training of the
tuned dynamic allocation model. This section also presents the simulated trajectories that comprise our
dataset. Still in Section 3, we examine the performance of our model through a series of computational
tests and compare the model results to alternative policies using a testing dataset. Section 4 concludes.

2 Proposed methodology

As illustrated in Fig. 1, we formulate a bi-objective policy function optimization model that makes the
trade-off between return and risk. The optimization framework relies on a bank balance sheet simulator,
which computes the return and risk metrics for a given dynamic balance sheet model, over a multi-annual
period. We assume that the bank can allocate assets across cash, loans, (10-year) bonds, and stocks, i.e.,
α = (αcash, αloans, αbonds, αstocks), where α is a policy function of state variables. The bank balance
sheet simulator is fed by a scenario generator for the relevant risk factors and formed by a suitable set of
equations and regulatory restrictions governing the bank’s dynamics.

In the following sections, we go through the four modules of our methodology: scenario generator
that describes the economic environment, bank balance sheet simulator, dynamic bank policy model, and
return and risk metrics.
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Multi-objective
Optimization

Bank Balance
Sheet Simulator

Policy function

Scenario
Generator

ωR
t = (rt, ft, dt, yt, λt, St, divt, Dt)

rt - loan rate
ft - cash rate
dt - deposit rate
yt - 10-year bond yield
λt - charge-offs
St - stock prices
divt - stocks dividend yield
Dt - volume of deposits

ωB
t = (Lt, It, I

T
t , et, divt, Et, DivRt )

Lt - volume of total loans
It - income from legacy loans
ITt - total income
et - earnings
divt - dividends distributed to shareholders
Et - shareholders’ capital
DivRt - accumulated dividends

wR
t

max Return

min Risk

Return, Risk

α := α(ωB
t , ωR

t ) = (αcash, αloans, αbonds, αstocks)

Fig. 1 Schematic representation of the proposed balance sheet model. The goal is to find the policy function α := α(ωB
t , ωR

t )
that maximizes return while minimizing risk. A bank balance sheet simulator, guided by an economic scenario generator
and the policy function α, determines the return and risk metrics. The bank allocates assets to cash, loans, bonds, and
stocks. The random variables wR

t and wB
t encapsulate the risk factors and the bank balance sheet evolution.

2.1 Risk factor scenario generator

The scenario generation for the exogenous risk factors (interest rates, stock prices, deposit volume dynam-
ics, and credit losses) that describe the economic environment is based on the work of Costa, Faias, Júdice,
and Mota (2020), who adapted the model presented by Birge and Júdice (2013) to include stochastic
deposit volumes.

Risk factors Parameter Description Model

Liquidity risk Dt volume of deposits Dt+1 = c+ aDt + bmt + ϵt

rt Interest rate on new loans

ft interest rate on cash X∗

t+1 = AX∗

t + bmt + ϵt+1,
Interest rate risk

dt deposit rate with X∗

t = (r∗t , f
∗

t , d
∗

t , y
∗

t )

yt 10-year bond yield

Credit risk λt charge-offs/credit losses λ∗t+1 = c+ aλ∗t + bmt + ϵt+1

St stock prices S∗

t+1 = c+ aδ∗t + ϵSt+1

Market risk
divt stock dividends yields δ∗t+1 = c+ aδ∗t + ϵδt+1

Table 1 Risk factors variables and respective models: deposit volumes, interest rates, credit losses, and stock prices.
Here, c, b, a, and A represent parameters, mt momentum terms, and ϵt residuals, that are specific to each stochastic

process. We set r∗t = g(rt)− ĝ(rt), where the hat denotes the long-term mean and g(x) = ln(x), for 0 < x < 1, and
g(x) = x− 1, for x ≥ 1. We define similarly f∗

t , d
∗

t , and y∗t . We also set λ∗

t = N−1(λt), with N−1 the inverse of the
standard normal cumulative distribution, S∗

t = ln((St + divt)/St−1), and δ∗t = ln(divt/St), with divt the dividends from
stock market investments at time t. The interest rate model was calibrated using US public data from FRED (Federal
Reserve Economic Data), from 1971 to 2016. The data for credit risk is also taken from the FRED database, starts at 1985
and ends at 2016. We used stock market data from the Robert Shiller Irrational Exuberance Database, from 1946 to 2016.

The generation of scenarios uses vector autoregressive processes, which confer realism to the framework
and will be utilized for the long-term assessment of state-dependent bank policies. The risk factors, the
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corresponding models, and the variables used throughout this work are listed in Table 1. We now describe
the risk factors in more detail. The scenario generator consists of four modules: liquidity risk, interest
rate risk, credit risk, and market risk for stock positions.

The liquidity risk module is taken from Costa et al. (2020), who calibrate a panel data model to a
sample of different banks. The model has an autoregressive component, and also includes a momentum
variable mt that accounts for the persistence in increases and decreases in deposits. The interest rate risk
model is based on the work of Birge and Júdice (2013) and was further improved by Costa et al. (2020).
It consists of a vector autoregressive process that captures the dependencies between market and retail
rates, and also has a momentum component. The credit risk model was also devised by Birge and Júdice
(2013), and accounts for autocorrelation and momentum in credit losses. The stock price model is based
on a vector autoregressive process for stock prices and dividends, inspired on the work by Campbell and
Viceira (2002). The reader can refer to the articles above for the rationale and tests associated with these
models.

We simulate K trajectories for each of the eight risk factors described in Table 1. Let us further
assume that the initial period for the bank is t0 = 1 and that the bank has to manage its allocation
decisions within the time frame t = t0, . . . , T . The risk factors are encapsulated in a random variable
ωR ∈ R8×K×T , representing the economic environment that will feed the bank balance sheet simulator.
By

ωR
t = (Dt, rt, ft, dt, yt, λt, St, divt) (1)

we denote the realization of the risk factors trajectories ωR at time t.

2.2 Balance sheet simulator

The simulation model for the balance sheet generalizes the balance sheet simulators of Birge and Júdice
(2014) and Júdice et al. (2021) to state-dependent policies, and is summarized in Table 2. The state

State variables Parameter Description Equation

Lt volume of total loans Lt+1 = (Lt + αloans)(1− p− λt+1)

Loans
income obtained

It
from legacy loans

It+1 = (It + rtαloans)(1− p− λt+1)

ITt+1
= It + rtαloans + αcashft − dtDt

ITt
total income from

−λt+1(Lt + Lnew
t ) + αstocksS

∗

t+1

Income

balance sheet at time t
+αbonds(yt +Dur(yt)m

y
t+1

)

et earnings at time t et+1 = ITt+1
− ct+1

dividends distributed to
Divt

bank shareholders at time t
Divt+1 = max(Rpet+1, 0)

amount of shareholder

Earnings
Et

capital
Et+1 = max(Et + et+1 −Divt+1, 0)

DivRt accumulated dividends DivRt+1
= (1 + ft)DivRt +Divt+1

Table 2 Bank state variables and equations used to simulate the performance of a bank’s policy α. We also define the
equation αcash + (Lt + αloans) + αbonds + αstocks = Et +Dt, which states that assets equal liabilities. In the total loans
Lt and income It equations, p = 0.1 is the amortization ratio. In the total income ITt equation, we have
Dur(yt) = 1/yt(yt + 1)10 − 1/yt, which is the modified duration for bonds, and in the earnings et equation, we have
ct+1 = c(Et +Dt), which computes operating costs with c = 0.015. In the distributed dividends Divt equation, Rp = 0.5
is the dividend payout ratio.

variables are loans (with dynamics for volume of total loans Lt and income from legacy loans It), income
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(with dynamics for total income from balance sheet ITt , earnings et, and dividends distributed to share-
holders Divt), and accumulated wealth (with dynamics for shareholders’ capital Et and accumulated
dividends DivRt ). We introduce a state-dependent policy function α = (αcash, αloans, αbonds, αstocks)
that determines the proportions of funds allocated to the different asset classes.

Given the policy function α = (αcash, αloans, αbonds, αstocks), with values between 0 and 1, we allocate
the proportions to absolute values (dollar or euro) based on the available funding; we define αcash =
αcash(Et + Dt), αbonds = αbonds(Et + Dt), αstocks = αstocks(Et + Dt), and αloans = max(αloans(Et +
Dt) − Lt, 0). The most important equation is the one for Et,

Et+1 = max(Et + et+1 −Divt+1, 0), (2)

which describes the capital position of the bank. Here, we set the initial capital at E0 = 0.05D0, with D0

the initial volume of deposits. We also assume that a bank needs to be compliant with a Tier 1 capital
ratio limit of at least 10%. The balance sheet evolution is encapsulated again by a random variable or a
path ωB , where ωB

t is the realization of the balance sheet at time t under path ωB . Specifically,

ωB
t =

(
Lt, It, I

T
t , et, divt, Et, DivRt

)
. (3)

For a given time t, the policy function α will depend solely on the information available at time t,
i.e., it will disregard the information prior to time t. Therefore, it is a Markov decision. Specifically,

α = α(ωR
t , ω

B
t ), (4)

i.e., it will depend on the realizations of the risk factors ωR and the balance sheet state variables ωB

at time t. The model used to parameterize the policy function α = α(ωR
t , ω

B
t ) is described in the next

section.

2.3 Dynamic policy model

We now address the bank policy function that depends on the environment variables. As we will see
later in the paper, in order to solve this problem we will need to resort to sophisticated optimization
algorithms. Given the high dimensionality of the problem, both in the risk factors ωR

t and balance sheet
state variables ωB

t , it is undesirable to posit the policy function α as a function of all the environment
variables (ωR

t , ω
B
t ), as this may lead to overfitting and a lack of interpretability. Therefore, we need

to restrict the number of variables to be included in the policy function. We propose the following six
variables to reflect the state of the bank balance sheet: loan rate (x1), bond yield (x2), cash rate (x3),
charge-offs (x4), a leverage ratio Et/Dt, which we call (x5), and the loan allocation as a percentage of
the total funding Lt/(Et + Dt), also denoted (x6).

In principle, one would anticipate that many of these variables would be highly relevant for balance
sheet decisions. For example, the interest rate environment heavily influences banks’ net interest margin.
Therefore, one would anticipate that the interest rates on loans, bonds, or cash can affect the policy
decision. One could also expect that the credit risk environment, dictated by the charge-off rate, could
be an important variable when considering how much to allocate to credit. Other balance sheet variables,
such as the loan allocation or the bank’s leverage, should also be relevant. In particular, banks with lower
leverage should be able to take on more risk. In any case, the variable selection algorithm we present
below will dictate the most relevant variables for the problem.

As illustrated in Fig. 2, the proposed policy function model can be represented as a neural network
architecture. A critical aspect of adopting intelligent decision support models is the possibility of ana-
lyzing results and the interpretation by financial decision-makers. To meet this demand, we drive the
investigation toward parsimonious neural networks. The neural network is shallow, with one input layer
(blue neurons) and one activation layer with activation function σ (orange neurons). A normalization
step of the output of the activation layer gives the allocation vector α (represented in yellow).
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Multi-objective
Optimization

Bank Balance
Sheet Simulator

Dynamic balance sheet model

Scenario
Generator

W, b

max
W, b

Return

min
W, b

Risk

s.t. βj
j=1,...,4

=
∑

6

i=1
w

j
i (γixi) + bj

W∈R4,6, b∈R4, γ∈{0,1}6

Return, Risk

x1

x2

x3

x4

x5

x6

β1

β3

β2

β4

αcash =
σ(β1)

∑
4

j=1
σ(βj)

αstocks

αbonds

αloans

σ ={ReLu, Exp, Sigmoid}

W b

γ

loan rate

bond yield

charge-offs

cash rate

leverage ratio

loans

Fig. 2 Detailed representation of the dynamic policy model α = (αcash, αloans, αbonds, αstocks). The weights W and the
biases b are the learnable parameters of the model. The tunable hyperparameters are γ and σ. The binary hyperparameter
γ, with elements in {0, 1}6, determines which variables {xi}

6
i=1

are included in the model. For example, γ = (0, 0, 1, 0, 1, 0)
selects the variables x3 (cash rate) and x5 (leverage ratio). The hyperparameter σ represents three possible activation
functions, ReLU(x) = max(0, x), Exp(x) = ex, and Sigmoid(x) = (1 + e−x)−1.

Let us see how the neural network policy function works. In blue, represented by {xi}
6
i=1, we find the

initial layer formed by six neurons associated with the six variables considered. All neurons in the input
layer send weighted-adjusted information to the four neurons βj , j = 1, . . . , 4, in the activation layer
(orange circles). That is, for the neuron βj , as shown in orange on the left gray block of Fig. 2, we get

βj =

6∑

i=1

wj
i (γixi) + bj , j = 1, . . . , 4, (5)

where wj
i ∈ R are the weights, bj ∈ R the bias, and γi ∈ {0, 1} a binary hyperparameter that indicates

whether or not to include the variable xi in the model. For instance, γ = (0, 0, 1, 0, 1, 0) selects the variables
x3 (cash rate) and x5 (leverage ratio). The hyperparameter γ allows for 63 distinct model configurations,
representing all possible combinations with a number of variables between one and six. The weight wj

i

value conveys information about the influence of the input variable xi on neuron βj , with a value near
zero suggesting that this variable xi is not as important as a variable with a larger weight. The bias b is
an additional parameter that adds flexibility to the neural network allowing, e.g., to change the location
of the activation function by shifting the argument, similarly to the role played by the intercept in a
linear regression model.

Last, to get normalized allocations that sum to one, we divide the value of the output of the activation
layer by the sum of the value of the four activation neurons. For instance, as shown in yellow in Fig. 2,
for the allocation to cash we get

αcash =
σ(β1)

∑4

j=1
σ(βj)

, (6)

with βj , j = 1, . . . , 4, given by (5) and σ the hyperparameter representing one of three possible activation
functions:

ReLu(x) = max(0, x), Exp(x) = ex, and Sigmoid(x) =
1

1 + e−x
.

The activation function σ adds non-linearity to the model.
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2.4 Risk and return metrics

Given a trajectory ωR for the risk factors in Table 1, one can simulate the evolution of the balance sheet
given the equations described in Table 2 and a policy function α defined by the dynamic model proposed
in the previous section. The return of the policy α on a trajectory ωR is given by the bank’s capital plus
accumulated dividends at time T , that is,

Ret(ωR) =

(
ET + DivRT

E0

) 1

T

− 1, (7)

where T the number of years in the simulation. The return for a given policy function α takes the
expectation of the random variable Ret(ωR) over its possible realizations, so that

Return = E(Ret(ωR)). (8)

Given a policy function α, we also need to evaluate its risk. First, we use a random variable f(ωR)
which indicates if the bank enters into a failure or default under the risk factor trajectory ωR and the
policy α. This variable is defined by f(ωR) = 1 if the bank runs out of liquid assets or reaches the tier
1 limit ratio, and f(ωR) = 0 otherwise. Risk for a policy function α is defined as the probability of the
bank failing, i.e., averaging the random variable f over the possible realizations of ωR under the policy
function α:

Risk = E(f(ωR)). (9)

Let us justify the choice for this risk indicator in comparison to alternatives. First, it has a clear
advantage that it can simultaneously encapsulate events of bank failure due to solvency shocks (such as
a sudden an increase in interest rates or spikes in defaults), and liquidity shocks (due to the absence of
liquid assets to withstand deposit withdrawals).

Second, it is a long-term measure. For the horizon we consider, which is typically a period of 10 years
or more, we are interested in the long-term sustainability of the bank, and not so much on the year-
on-year changes. Therefore, we chose this measure in comparison to other measures such as the yearly
standard deviation of returns. The long-term nature of the risk indicator also means that it will include
events such as the bank not generating enough income to cover its operating costs. Over the course of one
year, this may not be so problematic. However, this problem compounds over the course of many years, as
a sequence of many years of negative return on equity increases the likelihood of the failure of the bank.

Third and finally, similar measures have been proposed in the context of pension fund ALM. For
example, C. Boender, van Aalst, and Heemskerk (1998) reports the use of the probability of underfunding
as a risk measure in this context.

These risk and return metrics give rise to a non-continuous and non-differentiable multi-objective
optimization problem, and we solve it using the concept of non-dominated Pareto solutions and an efficient
multi-objective optimization algorithm, the NSGAII (Non-dominant Sorting Genetic Algorithm II) (Deb,
Pratap, Agarwal, & Meyarivan, 2002).

3 Numerical experiments

In this section, we assess the effectiveness of our dynamic bank policy model using a training-validation-
testing scheme. It consists of four stages: first, use the scenario generator in Table 1 to generate a
comprehensive dataset simulating diverse economic scenarios; second, tune the hyperparameters γ (vari-
able selection) and σ (activation function); third, train the tuned model followed by results analysis
and interpretation; and finally, test and compare the model’s performance against other established
methodologies.
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3.1 Dataset generation

To build a robust dataset representing diverse economic environments, we fed the scenario generator with
four initial points that cover several decades (1985, 1995, 2005, and 2015), generating 128.000 risk factor
trajectories with a time frame of 10 years, 32.000 from each initial point. To further reduce the dependency
on the initial conditions and increase variety in the trajectories, we let the simulations run for 10 years,
considering only the 10 years afterward. Some of the generated trajectories shown in Fig. 3 illustrate the
dataset diversity. For subsequent analysis, we randomly split the dataset into 50% for training, 25% for
validation, and 25% for testing.

Fig. 3 Some examples of the interest rate (loan rate, cash rate, deposit rate and 10-year bond yield), charge-offs, S&P
dividend yield and total return, and bank’s deposits (annual growth rate) data used for the numerical experiments. The
full dataset consists of 128.000 risk factor trajectories with a time frame of 10 years, split into 50% for training, 25% for
validation, and 25% for testing.

3.2 Hyperparameter optimization

We resort to grid search for optimizing the hyperparameters γ (variable selection) and σ (activation
function). This exhaustive method evaluates all possible hyperparameter combinations, enabling us to
find the one that yields the best model performance.
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Given 63 configurations for γ and three for σ, the total number of configurations explored by grid search
is 189. Each grid search iteration involves two stages: training the model defined by the corresponding
hyperparameter combination in the training set and assessing the model’s performance in the validation
set. Considering the inherent trade-off between return and risk, we rank the models based on their average
return-to-risk ratio, thus associating each model with a single performance measure. We assume that a
higher return-to-risk ratio indicates a more favorable model, as it implies a higher return for the same
level of risk. Algorithm 1 describes the main steps of the grid search optimization.

Algorithm 1 Grid search algorithm for hyperparameter optimization.

1: find optimal hyperparameter combination in: training set, validation set out: γ∗, σ∗

2: // search all 189 hyperparameter combinations.
3: for i = 1 to 189 do

4: Define modeli associated with the ith hyperparameter combination.
5: Train modeli in the training set using the concept of Pareto front and the multi-objective optimization

algorithm NSGAII. We obtain a set of Pareto points where each point corresponds to a given policy.
6: // search all N i Pareto front points/policies of modeli.
7: for n = 1 to N i do

8: Apply policyin (nth policy of the Pareto front of modeli) to the validation set.
9: Calculate the return and risk of policyin in the validation set.

10: end for

11: Calculate the average return-to-risk ratio of modeli in the validation set.
12: end for

13: Find the modeli with the highest average return-to-risk ratio.
14: Return the associated hyperparameter combination (γ∗, σ∗).

Fig. 4 Average return-to-risk ratio (higher is better) obtained during hyperparameters tuning (variable selection and
activation function). According to the return-to-risk ratio results, the ReLu activation with the variables cash rate and
leverage ratio (highlighted with a red dot) emerged as the best combination.

As Fig. 4 shows, the ReLu activation with the variables cash rate and leverage ratio (highlighted with
a red dot) yields the best performance. This finding led us to choose this model configuration for further
analysis. The phenomena of underfitting and overfitting explains why a two-variable model performs
better than those with fewer or more variables. Beyond performance, this two-variable configuration leads
to a readily interpretable model due to its parsimonious number of variables. This interpretability will
allow valuable insights into the model’s decision-making process.
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As shown in Fig. 5, after hyperparameter tuning, the policy function depends only on the two selected
variables: cash rate and the bank’s leverage ratio. The reduced number of variables makes analyzing their
impact on the policy easier. For example, ignoring the normalization factor, the allocation to stocks,
αstocks, is obtained as follows:

αstocks = max(0, β4) = max(0, w4
1x1 + w4

2x2 + b4),

with x1 as the cash rates and x2 as the bank’s leverage ratio. The weights reflect the variables’ importance.
If, for example, w4

1 is zero and w4
2 is positive, the allocation to stocks is unaffected by cash rates and

increases with the bank’s leverage ratio. The bias b4 shifts the activation function horizontally, controlling
where it is triggered. If b4 is positive (negative), the ReLu function shifts to the left (right), expanding
(contracting) the range of values w4

2x2 that trigger the allocation to stocks.

Policy function architecture

x1

x2

β1 = w1

1
x1 + w1

2
x2 + b1

β3 = w3

1
x1 + w3

2
x2 + b3

β2 = w2

1
x1 + w2

2
x2 + b2

β4 = w4

1
x1 + w4

2
x2 + b4

cash rate

leverage ratio

αcash =
max{0, β1}

∑
4

i=1
max{0, βi}

αstocks =
max{0, β2}

∑
4

i=1
max{0, βi}

αloans =
max{0, β3}

∑
4

i=1
max{0, βi}

αbonds =
max{0, β4}

∑
4

i=1
max{0, βi}

Fig. 5 Final architecture of the policy function after hyperparameter tuning. This tuned model relies on the variables cash
rate and bank’s leverage, denoted by x1 and x2, and on the ReLu activation function, ReLu(x) = max{0, x}.

3.3 Model training and results analysis

This section focuses on training and analyzing the tuned dynamic policy model. We establish logical
relationships between the variables (cash rate and leverage ratio) and the allocations from the policy
function, by looking in detail at the values of the neural network weights w and biases b. For training,
we use the full training dataset and the concept of Pareto front. Let NP be the number of points in the
optimal Pareto front. The parameters ω and b will vary within the Pareto front, so we will have NP

different realizations within the front. The allocation α dictated by the policy function will also vary for
each time t and scenario ωR.

In Fig. 6, on the top left, we depict the risk and the return associated with the Pareto front. In Fig. 6,
on the top right, we give the Pareto allocations obtained by averaging over the paths and over the years.
As we can readily observe, the Pareto front is increasing in return and risk. As expected, for a higher
level of return and risk, there is a higher allocation to stocks and a lower allocation to cash. Also, notice
that, for all policies in the front, the balance sheet allocates a significant amount to liquid assets (cash
and stocks) to hedge severe decreases in deposit volumes, thus mitigating liquidity risk. As we observed
before, running out of liquid assets is one event that dictates the bank’s failure.

Averaging over the trajectories, we show, on the bottom left of Fig. 6, the average annual asset
allocations for the minimum risk policy function. The minimum risk policy holds significant cash and
other assets necessary to generate a return to compensate for operating costs and avoid default. Similarly,
on the bottom right of Fig. 6, we show the average time evolution of the maximum return policy. We
observe that this policy will allocate significantly to riskier assets such as loans or stocks. The varying
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Fig. 6 Top row, on the left: training Pareto front obtained with the tuned dynamic model. Top row, on the right: Pareto
optimal asset allocation. The allocations are obtained by averaging the dynamic allocations over the paths and over the
years. Bottom row, from left to right: average asset allocation obtained with the minimum risk and maximum return Pareto
solutions. The average is over the total number of paths. The horizontal axis denotes the year in the simulation horizon of
10 years.

average proportions show the dynamic nature of the policy algorithm. This adaptability allows the model
to construct an optimized strategy over time, gradually increasing exposure to riskier assets (stocks) as
returns increase and the bank’s capital position improves.

In Fig. 7 and 8, we show, for each Pareto point, the weights w and the biases b associated with the
four neurons βi = wi

1x1 + wi
2x2 + bi, i = 1, . . . , 4, in the activation layer, where x1 is the cash rate and

x2 the bank’s leverage ratio. We recall that βi, i = 1, . . . , 4, are associated to the allocation to cash,
loans, bonds, and stocks, respectively (see Fig. 5). The values for w and b are highly interpretable. Let
us start by looking at the graph of β1, the neuron associated with the cash position (Fig. 7, on the left).
This neuron exhibits a positive sensitivity w1

1 to cash rates and a negative sensitivity w1
2 to leverage

ratio. This result is highly intuitive. When cash rates increase, there is an incentive to increase the cash
allocation. The fact that the sensitivity is negative to the capital position in the bank stems from the fact
that, when capital is higher, the bank invests more in stocks, as we will see below. The bias b1 is always
positive, causing the ReLu activation function, αcash = max{0, w1

1x1 + w1
2x2 + b1}, to shift to the left

and increasing the neuron output.
Looking into the neuron β2 for the loan position (Fig. 7, on the right), we observe that b2 is positive,

shifting the activation function, αloans = max{0, w2
1x1 + w2

2x2 + b2}, to the left and increasing the
neuron output. It is also relatively high, suggesting that loan allocation is significant independently of the
economic environment. This finding is intuitive when we consider that loans, here classified at book value,
tend to be less risky than bonds and stocks (whose market price variations impact the bank’s capital

13



Fig. 7 Left to right and top to bottom: for each one of the 70 Pareto points, we show the weights w and biases b associated
with the neurons β1 and β2. Each neuron is defined by the formula βi = wi

1
x1 + wi

2
x2 + bi, i = 1, . . . , 4, where x1 is

the cash rate and x2 is leverage ratio. These neurons are directly related to the allocations αcash = max{0, β1}/β̂ and

αloans = max{0, β2}/β̂, with β̂ =
∑

4
i=1

max{0, βi}.

position) and deliver higher returns than cash. We also observe a negative sensitivity to the cash rate
w2

1, revealing an incentive to increase loan allocation when interest rates are lower. In a low-interest-rate
scenario, the narrow net interest margin between cash rates and rates paid on deposits generates limited
income. This income is far from fulfilling the bank’s operating costs, and the dynamic model looks to
generate more return by increasing allocation to loans (and also to stocks, as we will see next).

Fig. 8 Left to right and top to bottom: for each one of the 70 Pareto points, we show the weights w and biases b associated
with the neurons β3 and β4. Each neuron is defined by the formula βi = wi

1
x1 + wi

2
x2 + bi, i = 1, . . . , 4, where x1 is

the cash rate and x2 is leverage ratio. These neurons are directly related to the allocations αbonds = max{0, β3}/β̂ and

αstocks = max{0, β4}/β̂, with β̂ =
∑

4
i=1

max{0, βi}.

The neuron β3 (Fig. 8, on the left) for bonds is conditioned by a very negative bias, which in practice
will mean that the allocation will be zero in most cases, as we will see in the following sections. Unlike
loans, the fluctuations in bond prices impact the bank’s capital position and thus generate more risk,
while not generating enough return for the price fluctuations. When generating return through liquid
assets, the optimizer prefers the investment in stocks to bonds.

Finally, we analyze the neuron β4 (Fig. 8, on the right) concerning the allocation to stocks. The model
shows a negative sensitivity to interest rates, indicating the model’s preference to increase the allocation
to stocks and decrease the cash allocation under the low-interest rate regimes. Under low interest rates, to
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avert default, the bank needs to increase the exposure to stocks to generate enough return to compensate
for operating costs. Also, the allocation to stocks is highly dependent on the leverage ratio. Banks with
higher leverage can allocate more to riskier asset classes, such as stocks.

In summary, the dynamic model interpretability analysis reveals the following balance sheet strategy:

❼ Consistently high allocation to loans, the asset with the better risk-return trade-off.
❼ Increased cash allocation in periods of high interest rates and increased exposure to loans and stocks

in periods of low interest rates.
❼ Increased exposure to stocks when the bank capital buffers are high.

In Figure 9 we illustrate the dynamic nature of the model by showing two examples of how the model
reacts under two different economic scenarios, by comparing the behavior under these two scenarios. The
dotted line corresponds to an economic scenario of decreasing interest rates and higher leverage ratios.
Under this scenario, the bank will have a higher exposure to stocks and loans, and a lower allocation
to cash. The full line corresponds to a scenario of increasing interest rates and low leverage ratios. We
observe the opposite behavior of the model in this case: lower allocations to stocks and loans, and higher
allocations to cash.

In the upcoming section 3.5 Model testing, we test the dynamic model under diverse economic scenarios
and evaluate the effectiveness of this dynamic and intuitive strategy.

Fig. 9 Examples of the reaction of the model to two different economic samples/trajectories. The full line corresponds to
a trajectory of increasing interest rates and lower leverage levels, whereas the dotted line corresponds to a trajectory of
decreasing interest rates and higher leverage levels. As we can observe, the allocations determined by the model vary as a
function of the economic environment.

3.4 Static model

As stated in the introduction, most of the recent models for bank asset management use static allocations
(Brito & Júdice, 2022; Júdice et al., 2021; Júdice & Zhu, 2021; Schmaltz et al., 2014; Sirignano et al.,
2016; Yan et al., 2020), so we should compare the proposed dynamic model to a static model to highlight
the relevance of dynamic policies. In our framework, we can obtain a static model ignoring the input of
economic variables and defining the constant policy function

(αcash, αloans, αbonds, αstocks) =
1

θ̂
(θ1, θ2, θ3, θ4), θi ∈ R

+

0 , i = 1, . . . , 4, (10)

with θ̂ =
∑4

i=1
θi. The optimal static allocations are obtained by formulating the bi-objective optimization

problem of finding θi ∈ R
+

0 , i = 1, . . . , 4, that maximizes Return and minimizes Risk.
In Fig. 10, on the left, we depict the risk and return associated with the Pareto front of the static

model. Fig. 10, on the right, shows the Pareto static allocations, revealing that higher returns and risks
are associated with increased loan investments and decreased cash positions. Comparing these results
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Fig. 10 On the left: training Pareto front obtained with the static model. On the right: Pareto optimal asset allocation
for the static model, i.e., with constant allocations.

with Fig. 6, we observe that the dynamic model has superior adaptability and flexibility, achieving higher
returns at lower risks with an allocation pattern that includes greater allocation to stocks and cash,
particularly at higher returns. Overall, we also observe that both models favor loan allocation, owing to
the asset’s low volatility, here classified at book value. In contrast, bonds and stocks are considerably
more volatile, as the fluctuations in the valuations have a direct impact on capital, explaining why we
see low bond allocations that are even zero in the dynamic model. As illustrated in the following section,
the dynamic model allocates to bonds in some particularly favorable economic conditions, like a high
leverage ratio.

In the following section, we assess the performance of our dynamic model and compare it to alternative
asset allocation policy functions, namely the static model and classical heuristic strategies. We conduct
the experiments on the testing dataset, which we kept separate from the tuning and training phases to
ensure an unbiased comparison.

3.5 Model testing

To benchmark our dynamic model against the static model, we apply the dynamic and static models
calibrated to the training data to the separate test data. We emphasize that having a superior performance
in the training dataset does not guarantee a superior performance in the separate testing data set. As it
is generally known, overfitting in training often leads to poor performance out-of-sample, as evidenced
by Bailey et al. (2014).

We also evaluate the performance of the dynamic model against two traditional heuristic allocation
strategies, namely, the equal-weight policy and the 60/40 policy, which allocates 60% to higher-risk assets
and 40% to lower-risk assets. In the case of investment portfolio optimization, DeMiguel, Garlappi, and
Uppal (2007) have shown that the equal-weight strategy outperforms several optimized allocations out-
of-sample, so it is always a helpful benchmark. In our case, the 1/N allocation policy assumes a 25% asset
allocation to each asset class. In the case of pension funds’ portfolios, Chaves, Hsu, Li, and Shakernia
(2011) have shown that a 60/40 portfolio that includes 60% stocks and 40% bonds performs at least as
well as equal-weight and risk parity portfolios. In our case, the 60/40 policy assumes a 20% allocation to
cash, 30% to loans, 20% to bonds, and 30% to stocks.

The results in Fig. 11, on the left, show that the proposed dynamic model significantly outperforms
the static and heuristic policies. The dynamic model presents a 2.65 return-to-risk ratio, outperforming
the static model by 42% and the equal-weight and 60/40 strategies by more than 1000% and 5000%,
respectively. The heuristic strategies, such as the equal-weight policy, are not particularly suitable for the
amount of leverage we consider in the problem, as we consider an initial leverage ratio of 5% (considering
the ratio of initial shareholders’ capital to deposits): for such a leverage ratio, these strategies allocate
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Fig. 11 Comparison, on the testing dataset, between the proposed dynamic model, the static model, and the heuristic
policies (equal-weight and 60/40). On the left: return-to-risk ratio (higher is better). The numbers above the bars report the
outperformance of the dynamic model compared to the static, equal-weight, and 60/40 allocations. On the right: average
return (higher is better) and risk (lower is better). Here, the initial capital base is 5% of the initial deposit volume.

excessively to risky assets, exacerbating the risk under this leveraged environment, and significantly
deteriorating the return to risk ratios.

Fig. 12 From left to right: comparison, on the testing dataset, between the proposed dynamic model’s average asset
allocation at the end of the 10-year simulation period and the static model’s asset allocation.

Fig. 11, on the right, reveals that when compared to the static model, the dynamic model has a higher
return (26% vs. 25%) at significantly lower risk (10% vs. 14%), explaining the dynamic model’s superior
return-to-risk ratio. Compared to the equal-weight and 60/40 strategies, the dynamic model delivers a
considerably higher return at significantly lower risk.

In Fig. 12, we compare the asset allocation of the static model (on the right) to the average asset
allocation of the dynamic model (on the left) in the final year of simulation (year 10). This figure highlights
the dynamic model’s ability to adapt to the economic environment, as it can capitalize on timely stock
allocations to deliver the highest return.

3.6 Sensitivity to the leverage level

In Fig. 13, we analyze the impact of increasing the bank’s initial capital from 5% to 15% of initial deposits.
As seen in Fig. 13, on the left, the dynamic model significantly outperforms both the static and heuristic
models. The dynamic model presents a 4.02 return-to-risk ratio, outperforming the static model by 68%
and the equal-weight and 60/40 strategies by more than 500%. Fig. 13, on the right, reveals that a higher
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return at lower risk is behind the dynamic model’s superior performance. As expected, comparing the
results to the ones in Fig. 11, lower leverage leads to lower risk across all models.

Fig. 13 Comparison, on the testing dataset, between the proposed dynamic model, the static model, and the heuristic
strategies (equal-weight and 60/40). On the left: return-to-risk ratio (higher is better). The numbers above the bars report
the outperformance of the dynamic model compared to the static, equal-weight, and 60/40 policies. On the right: average
return (higher is better) and risk (lower is better). Here, the initial capital base is 15% of the initial deposit volume against
a baseline of 5%.

Fig. 14 shows the dynamic model’s average asset allocation. Compared to the baseline scenario
(Fig. 12), the data reveals that the dynamic model effectively exploits the lower risk of bankruptcy asso-
ciated with lower leverage. We see a strategic increase in stock allocation (from 13% to 21%) and the
introduction of a small allocation to bonds. We highlight that the static model allocation remains con-
stant independently of the economic environment. The lower risk of bankruptcy also explains why the
60/40 strategy, more exposed to risky assets (loans and stocks), presents a significantly better return
under this low leverage scenario (Fig. 13, on the right).

Fig. 14 Yearly dynamic model’s average asset allocation (on the left) and at the end of the 10-year simulation period (on
the right). Here, the initial capital base is 15% of the initial deposit volume against a baseline of 5%.

3.7 Sensitivity to credit losses

Next, we analyze the impact of contrasting credit loss environments on the model’s performance. We
create a high and a low credit losses scenario by splitting the testing dataset in half based on the average
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value of the charge-off rates. We present the results in Fig. 15. In both scenarios, the dynamic model
significantly outperforms the static and heuristic models in the metric return-to-risk ratio (Fig. 15, on
the left). The dynamic model outperforms the static model by more than 45% and heuristic models by
more than 800%. Fig. 15, on the right, reveals that the dynamic model delivers the highest return at
the lowest risk. As expected, the models present lower risk and a better return-to-risk ratio in the lower
credit losses scenario (Fig. 15, bottom left), particularly the dynamic and static models, which are more
exposed to loans.

These results demonstrate the dynamic model’s ability to adapt to changing economic conditions, a
capability not shared by static models. Fig. 16 further illustrates this adaptability. In the high-credit
loss scenario (Fig. 16, on the left), the dynamic model recognizes the increased risk and takes mitigation
actions, reducing exposure to stocks and loans while increasing cash allocation. On the other hand, in the
favorable low-credit loss scenario (Fig. 16, on the right), the dynamic model increases stock, loan, and
bond allocation. This responsiveness to changing economic environments is one of the dynamic model’s
fundamental advantages over static models.

Fig. 15 Comparison, on the testing dataset, between the proposed dynamic model, the static model, and the heuristic
strategies (equal-weight and 60/40). On the left: return-to-risk ratio (higher is better). The numbers above the bars report
the outperformance of the dynamic model compared to the static, equal-weight, and 60/40 policies. On the right: average
return (higher is better) and risk (lower is better). Top row: high-credit loss environment. Bottom row: low-credit loss
environment. The testing dataset is split into two based on the average charge-off rate.
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Fig. 16 Comparison, on the testing dataset, of the dynamic model’s average allocations at the end of the 10-year simulation
period in two distinct scenarios. On the left, high-credit loss environment. On the right, low-credit loss environment. The
testing dataset is split into two based on the average charge-off rate.

3.8 Sensitivity to interest rates

In our last example, we analyze the impact of contrasting interest rate environments on the model’s
performance. We create a high and a low interest rates scenario by splitting the testing dataset in two
based on the average value of the interest rates: 10-year bond yield, deposit rate, loan rate, and cash rate.
The high interest rate scenario includes half of the testing scenarios with the highest average interest
rates, whereas the low interest rate scenario includes half of the testing scenarios with lowest average
interest rates.

We present the results in Fig. 17. First, we observe that the return-to-risk ratio of the dynamic
strategy is favored by high interest rates. In the high-interest rate regime, this strategy has a return-
to-risk ratio of 6.75, compared with a return to risk ratio of 1.56 in the low-interest rate regime. The
increase in profitability is expected, in line with the findings by Claessens, Coleman, and Donnelly (2018),
who document that prolonged low interest rates have a negative impact on bank profitability. In both
scenarios, the dynamic model significantly outperforms the static and heuristic models in the return-to-
risk ratio (Fig. 17, on the left). The increase in performance is very marked for the high-interest rate
environment, where the dynamic strategy yields a 106% increase in performance compared to the optimal
static policy and more than 3360% compared to the selected heuristics.

Fig. 18 further emphasizes the dynamic model’s adaptability to changing economic conditions. In
the low-interest-rate scenario (Fig. 18, left), the model strategically reduces the cash allocation while
increasing exposure to loans. Under low interest rates, net interest margins are much lower, so the optimal
dynamic strategy suggests that the bank should decrease its cash buffer to invest in assets with higher
return. Conversely, in the high-interest rate scenario (Fig. 18, on the right), the dynamic model increases
the cash allocation and decreases the allocation to loans. The increased allocation to stocks stems from
the higher accumulation of capital under the high-interest rate regime.
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Fig. 17 Comparison, on the testing dataset, between the proposed dynamic model, the static model, and the heuristic
strategies (equal-weight and 60/40). On the left: return-to-risk ratio (higher is better). The numbers above the bars report
the outperformance of the dynamic model compared to the static, equal-weight, and 60/40 allocations. On the right: average
return (higher is better) and risk (lower is better). Top row: low-interest rate environment (10-year bond yield, deposit rate,
loan rate, and cash rate). Bottom row: high-interest rate environment. The testing dataset is split into two based on the
average interest rates.

Fig. 18 Comparison, on the testing dataset, of the dynamic model’s average allocations at the end of the 10-year simulation
period in two distinct scenarios. On the left: low-interest rate environment (10-year bond yield, deposit rate, loan rate, and
cash rate). On the right: high-interest rate environment. The testing dataset is split into two based on the average interest
rates.
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4 Conclusions

This research develops a dynamic balance sheet management methodology for a bank that determines
the balance sheet policy as a function of environment variables. The methodology determines Pareto
frontiers for the optimal policy functions, based on the NSGAII, a multi-objective algorithm that does
not require derivatives, due to the non-continuity and non-differentiability of our problem.

We proceeded to develop a hyperparameter optimization algorithm based on scores of return and risk.
The algorithm created a parsimonious policy function for the asset allocation as a function of the cash
rates and bank’s leverage ratio.

The model delivers a highly interpretable model, with highly intuitive sensitivities of the allocations
with respect to the input variables. Also, environments of low interest rates, which are less profitable,
steer the allocation towards riskier assets such as loans and stocks so that the bank can generate enough
return to avoid default.

We also used a testing set with different paths to assess the validity of our results. Our testing
results confirm that the dynamic strategy has better adaptability to the economic environment, effectively
managing risk while adjusting asset allocations to capitalize on favorable economic conditions. This
adaptability translates into superior performance, achieving considerably higher return-to-risk ratios than
static strategies (42% for a low leverage ratio and 68% for a high leverage ratio) and the heuristics 1/N
(more than 593%) and 60/40 (more than 720%), and thus is suitable for use in practice.

Dynamic balance sheet modeling is a very rich field, as it can generate considerable gains for banks
as a function of the economic variables. We hope this research will help develop dynamic balance sheet
management models that can be used in practice.
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