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Abstract

A family of Riemannian submersion metrics on the real Grassmann manifold, pa-

rameterized by smooth maps from the Stiefel manifold to the manifold of symmetric

positive definite matrices that satisfy an invariance property, is investigated. These

maps are strongly related to a known family of metrics on the Stiefel manifold. En-

dowed with metrics from these families, the Stiefel manifold becomes a Riemannian

submersion over the Grassmann manifold. An explicit formula for the projection onto

the horizontal bundle is derived and horizontal lifts are investigated. This leads to

explicit expressions for Riemannian gradients and Hessians of smooth functions on the

Grassmann manifold. The formulas are applied to the optimization of a well-known

cost on the Grassmann manifold, the generalized Rayleigh quotient. Based on an es-

timate of the condition number of the Riemannian Hessian at a critical point of the

cost, a construction of certain Riemannian metrics adapted to the cost is proposed.

This gives rise to Riemannian preconditioning schemes. In addition, all those differ-

ential geometric quantities are explicitly derived to implement a geometric conjugate

gradient algorithm on the Grassmann manifold endowed with a submersion metric.

Keywords: Grassmann manifolds, Stiefel manifolds, Riemannian submersions,

Riemannian preconditioning, Rayleigh quotient optimization
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1 Introduction

The manifold of all k-dimensional subspaces of ❘n, known as Grassmann manifold, plays
an important role in applications across several areas. Indeed, this manifold has been used
to encode problems from computer vision [30], signal processing [16], machine learning [13],
quantum computing [11], and discrete geometry [7]. However, one of the best known ap-
plications is probably related to the real symmetric eigenvalue problem, or, to be more
precise, related to the computation of an invariant subspace of a real symmetric matrix.
This problem can be tackled by minimizing the generalized Rayleigh quotient which in-
duces a smooth function on the Grassmann manifold. Historically, algorithms based on
(generalized) Rayleigh quotients were not necessarily formulated via differential geometric
tools, see e.g. [27] or [19]. However, some of the algorithms that have been developed for
computing invariant subspaces of a symmetric matrix rely on optimizing the generalized
Rayleigh quotient on the Grassmann manifold using, among others, Riemannian Newton
methods, Riemannian steepest descent methods, Riemannian conjugate gradients methods
or Riemannian trust-region methods. Without being exhaustive, we refer to [1, 10, 14] for
more details. Also, very recently, a gradient descent method and a conjugate gradient
method for solving the symmetric invariant subspace problem using a retraction involving
the polar-decomposition has been studied in [2]. An essential ingredient for a Riemannian
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optimization method is the choice of a Riemannian metric. In general, this choice influ-
ences the performance of the optimization algorithm, see e.g [1, Thm. 4.5.6] and [24, 29].
Moreover, choosing a metric that is adapted to the cost so that the performance of the
Riemannian optimization algorithms is improved, is known as Riemannian preconditioning,
see e.g [24, 29]. In particular, Riemannian preconditioning is of interest in the context of
symmetric eigenvalue problems, as highlighted in the recent work [28].

Motivated by the impact of the choice of a Riemannian metric on the performance
of Riemannian optimization algorithms, we study a family of submersion metrics on the
Grassmann manifold. In particular, specific Riemannian metrics in this family are con-
structed that can be viewed as a preconditioning scheme for generalized Rayleigh quotient
optimization. Nevertheless, the focus of this paper is mainly on differential geometric
aspects.

This paper is structured as follows: After the introduction, some notations used through-
out this text are listed in Section 2. Then, in Section 3, we first revisit a family of Rieman-
nian metrics from [29] on the Stiefel manifold Stn,k. This family of metrics is parameterized
by smooth maps from Stn,k taking values in the manifold of symmetric positive definite
(n× n)-matrices SPD(n). We include detailed proofs for the readers convenience.

In Section 4, we study the Grassmann manifold considered from two perspectives: as a
quotient of the Stiefel manifold by the orthogonal group, i.e. Stn,k/O(k), and as an embed-
ded submanifold Grn,k of the real symmetric matrices ❘n×n

sym given by projection matrices.
We show that the metrics on the Stiefel manifolds considered in Section 3 induce a family
of metrics on the Grassmann manifold provided that the above map satisfies a certain
invariance property. In other words, the Stiefel manifold becomes a Riemannian submer-
sion over the Grassmann manifold identified with Stn,k/O(k) as well as Grn,k. For both
identifications, explicit expressions for Riemannian gradients and Riemannian Hessians of
smooth functions are derived. In order to obtain these expressions, a specific horizontal
bundle on Stn,k → Stn,k/O(k) given as the orthogonal complement of the vertical bundle
with respect to the Riemannian metric under consideration is studied. In particular, an
explicit expression for the projection onto the horizontal bundle is obtained.

In Section 5, we consider an application of the metrics investigated in Section 4 to
an optimization problem on the Grassmann manifold: the computation of an invariant
subspace of a symmetric matrix by optimizing the generalized Rayleigh quotient.

Motivated by the work on Riemannian preconditioning [29] and, in particular [25,
Sec. 6], we construct a metric on the Grassmann manifold considered as the quotient
Stn,k/O(k). This metric belongs to the family introduced in Section 4, which is adapted to
the cost, i.e. the generalized Rayleigh quotient. Our construction is based on an estimate
of the condition number of the Riemannian Hessian of the cost at a critical point with
respect to an arbitrary submersion metric from Section 4.

We then continue by considering the geometric conjugate gradient algorithm from [1,
Alg. 13] applied to the generalized Rayleigh quotient leading to Algorithm 1 in Section 5.
By using a retraction based on the polar decomposition and a suitable vector transport,
this algorithm induces an algorithm on Stn,k/O(k) equipped with the submersion metric
that is constructed before.

A detailed study of the convergence of Algorithm 1 is out of the scope of this text.
Nevertheless, we perform a numerical experiment in Section 5.4.5 that suggest the perfor-
mance of the proposed algorithm may benefit by choosing properly designed submersion
metrics on the Grassmann manifold.
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2 Notations

These are some of the notations used throughout the paper.

TpM tangent space of a manifold M at the point p ∈M

NpM normal space of a manifold M at the point p ∈M

TM tangent bundle of M

T ∗M cotangent bundle of M

LV f Lie derivative of the function f relative to the vector field V

∇LC Levi-Civita covariant derivative

Γ∞
(
End(TM)

)
smooth endomorphisms of the tangent bundle of M

Γ∞
(
S2(T ∗M)

)
smooth sections of the symmetric 2-tensor bundle over M

‖.‖F Frobenius norm

❘
n×n
sym manifold of symmetric matrices of order n

λmax(B) maximal eigenvalue of B ∈ ❘n×n
sym

λmin(B) minimal eigenvalue of B ∈ ❘n×n
sym

κ condition number of a linear operator or a symmetric matrix

sym(C) for a square matrix C, sym(C) := 1
2(C + C⊤)

skew(C) for a square matrix C, skew(C) := 1
2(C − C⊤)

SPD(n) manifold of symmetric positive definite matrices of order n

Stn,k Stiefel manifold, Stn,k = {X ∈ ❘n×k | X⊤X = Ik}

〈·, ·〉M Riemannian metric on Stn,k dependent on a smooth map

Stn,k ∋ X 7→MX ∈ SPD(n)

PX orthogonal projection from ❘
n×k onto TXStn,k

O(k) orthogonal group, O(k) = {Θ ∈ ❘k×k | Θ⊤Θ = Ik}

so(k) Lie algebra of O(k), so(k) = {A ∈ ❘k×k | A⊤ = −A}

⊳ right O(k)-action on Stn,k

Stn,k/O(k) quotient representation of Grassmann manifold

〈̃·, ·〉M Riemannian metric on Stn,k/O(k)

Ver(Stn,k) vertical bundle of Stn,k

Hor(Stn,k) horizontal bundle of Stn,k

∇F gradient of F : U ⊂ ❘n×k → ❘ w.r.t. Frobenius scalar product

grad f Riemannian gradient of f = F
∣∣
Stn,k

Hess(f) Riemannian Hessian of f

Grn,k Grassmann manifold, Grn,k = {P ∈ ❘n×n | P = P 2 = P⊤, tr(P ) = k}

〈〈·, ·〉〉M Riemannian metric on Grn,k

⊗ tensor product of vector spaces or matrix Kronecker product

vec vec operator

4
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3 Revisiting Stiefel Manifolds

For 1 ≤ k ≤ n, the Stiefel manifold is defined by

Stn,k = {X ∈ ❘n×k | X⊤X = Ik} (3.1)

whose tangent space at X ∈ Stn,k can be characterized by

TXStn,k = {V ∈ ❘n×k | X⊤V = −V ⊤X}. (3.2)

Its dimension is given by
dim(Stn,k) = nk − 1

2k(k + 1). (3.3)

3.1 A Family of Metrics on Stiefel Manifolds

In this section, we adapt some results from [29]. More precisely, we recall the definition
of the family of metrics from [29] as well as the formula for orthogonal projections and
Riemannian gradients. In addition, the result from [29] on the Riemannian Hessian is
generalized. Below we focus on the Stiefel manifold Stn,k, i.e the matrix B ∈ ❘n×n in [29]
is chosen as B = In. Detailed proofs are included for the readers convenience.

Denote by SPD(n) the manifold of positive definite real symmetric matrices and fix a
smooth map

Stn,k → SPD(n), X 7→MX . (3.4)

Denote a smooth extension of this map to some open U ⊆ ❘
n×k with Stn,k ⊆ U by

the same symbol. That is U ∋ X 7→ MX ∈ SPD(n). Define the Riemannian metric
〈·, ·〉M ∈ Γ∞

(
S2(T ∗U)

)
on U for X ∈ U and V,W ∈ TXU ∼= ❘n×k point-wise by

〈·, ·〉MX : TXU × TXU ∼= ❘n×k ×❘n×k → ❘, (V,W ) 7→ 〈V,W 〉MX = tr
(
V ⊤MXW

)
. (3.5)

Clearly, for each X ∈ U , 〈·, ·〉MX is an inner product, i.e. symmetric and positive definite
by the assumption MX ∈ SPD(n) for all X ∈ U . Hence 〈·, ·〉M is indeed a Riemannian
metric on U .

Let ι : Stn,k ∋ X 7→ X ∈ U be the canonical inclusion. Then 〈·, ·〉M ∈ Γ∞
(
S2(T ∗U)

)

induces the Riemannian metric ι∗〈·, ·〉M ∈ Γ∞
(
S2(T ∗Stn,k)

)
on Stn,k.

Notation 3.1 From now on, we suppress the pull-back of 〈·, ·〉M by ι : Stn,k → U in the
notation. In other words, by abuse of notation, we denote ι∗〈·, ·〉M by 〈·, ·〉M , as well.
Explicitly, 〈·, ·〉M ∈ Γ∞

(
S2(T ∗Stn,k)

)
is given by

〈V,W 〉MX = tr
(
V ⊤MXW

)
(3.6)

for X ∈ Stn,k and V,W ∈ TXStn,k.

Remark 3.2 1. The metrics on Stn,k of the form 〈·, ·〉M include the one-parameter
family of metrics from [17], the so-called α-metrics in the Riemannian case. Indeed,
let α ∈ ❘ \ {−1} with −2α+1

α+1 > −2 to guarantee that (3.7) below takes values in
SPD(n). Then,

Stn,k 7→ SPD(n), X 7→MX = 2Ik −
2α+1
α+1 XX

⊤ (3.7)

yields a well-defined smooth map. Moreover, for X ∈ Stn,k and V,W ∈ TXStn,k, one
obtains by (3.7)

〈V,W 〉MX = tr
(
V ⊤(2Ik−

2α+1
α+1 XX

⊤)W
)
= 2 tr

(
V ⊤W

)
− 2α+1

α+1 tr(V ⊤XX⊤W ), (3.8)

in accordance with [17, Cor. 2].
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2. The metrics on Stn,k of the form 〈·, ·〉M include the metrics considered in [5]. Indeed,
define the constant map Stn,k ∋ X 7→ MX = A ∈ SPD(n), where A is some fixed
positive definite diagonal matrix. Then, 〈·, ·〉M is a metric of the form considered
in [5, Eq. (2)]. However, the scope of this reference is distinct form the objective of
the present paper.

3.2 Orthogonal Projection onto TXStn,k

For fixed X ∈ Stn,k, we now recall an explicit expression for the orthogonal projection
PX : TX❘

n×k ∼= ❘n×k → TXStn,k with respect to 〈·, ·〉MX . Following [29, p. 7] closely, we
first characterize the normal bundle of Stn,k ⊆ U with respect to 〈·, ·〉M .

Lemma 3.3 Let X ∈ Stn,k. The normal space NXStn,k of Stn,k at X with respect to

〈·, ·〉MX is given by

NXStn,k =
(
TXStn,k

)⊥
=
{
M−1

X XS | S = S⊤ ∈ ❘k×k
sym

}
. (3.9)

Proof: Let S = S⊤ ∈ ❘k×k
sym and set W =M−1

X XS. Moreover, let V ∈ TXStn,k. Then,

〈V,W 〉MX = tr
(
V ⊤MX(M−1

X XS)
)
= tr

(
V ⊤XS

)
= 0, (3.10)

where the last equality is valid due to V ⊤X ∈ so(k). Hence, the inclusion
{
M−1

X XS | S ∈
❘

k×k
sym

}
⊆ NXStn,k is proven. In addition,

{
M−1

X XS | S ∈ ❘k×k
sym

}
is a subspace of ❘n×k of

dimension k(k + 1)/2. This yields the desired result. �

Next, we define a linear map ϕX,MX
depending on the symmetric positive definite

matrix MX ∈ SPD(n) and X ∈ Stn,k. We set

ϕX,MX
: ❘k×k

sym → ❘
k×k
sym , S 7→ (X⊤M−1

X X)S + S(X⊤M−1
X X). (3.11)

Lemma 3.4 The map ϕX,MX
: ❘k×k

sym → ❘
k×k
sym defined in (3.11) is a linear isomorphism.

For T ∈ ❘k×k
sym , its inverse S = ϕ−1

X,MX
(T ) is given by the unique solution S ∈ ❘k×k

sym of the

Sylvester equation

(X⊤M−1
X X)S + S(X⊤M−1

X X) = T. (3.12)

Proof: Because X⊤M−1
X X ∈ SPD(k) is positive definite, the assertion follows by [20,

Thm. 5.2.2] �

After this preparation, we obtain a formula for the orthogonal projection which is a
reformulation of [29, Lem. 3.1].

Lemma 3.5 Let X ∈ Stn,k. The orthogonal projection onto TXStn,k with respect to 〈·, ·〉MX
is given by

PX : ❘n×k → TXStn,k, V 7→ V − 2M−1
X X

(
ϕ−1
X,MX

(
sym(X⊤V )

))
. (3.13)

Proof: We first show that PX

∣∣
TXStn,k

= idTXStn,k
. To this end, let V ∈ TXStn,k. Then

X⊤V = −V ⊤X ∈ so(k) holds implying sym(X⊤V ) = 0. Because ϕX,MX
: ❘k×k

sym → ❘
k×k
sym

is a linear isomorphism, we obtain ϕ−1
X,MX

(0) = 0 leading to

PX(V ) = V − 2M−1
X X

(
ϕ−1
X,MX

(sym(X⊤V ))
)
= V. (3.14)

6
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It remains to prove PX

∣∣
NXStn,k

= 0. Let V ∈ NXStn,k. Using Lemma 3.3, we write

V =M−1
X XS with some suitable S = S⊤ ∈ ❘k×k

sym . Then,

PX(V ) =M−1
X XS − 2M−1

X X
(
ϕ−1
X,MX

(
1
2

(
X⊤M−1

X XS + SX⊤M−1
X X

)))
. (3.15)

In order to determine the symmetric matrix T = ϕ−1
X,MX

(
1
2(X

⊤M−1
X XS + SX⊤M−1

X X)
)

from (3.15), we consider the equation

(X⊤M−1
X X)T + T (X⊤M−1

X X) = 1
2(X

⊤M−1
X XS + SX⊤M−1

X X). (3.16)

Obviously, T = 1
2S is a solution, which is unique by Lemma 3.4. Plugging T = 1

2S
into (3.15) yields

PX(M−1
X XS) =M−1

X XS − 2M−1
X X

(
1
2S
)
= 0 (3.17)

as desired. �

3.3 Riemannian Gradients and Hessians

Throughout this section, let f : Stn,k → ❘ be smooth and let F : U ⊆ ❘n×k → ❘ be a
smooth extension of f , i.e. f = F

∣∣
Stn,k

. We denote the gradient of F at X ∈ U with

respect to the Frobenius scalar product by ∇F (X).

3.3.1 Riemannian Gradients

Lemma 3.6 The gradient of f : Stn,k → ❘ with respect to 〈·, ·〉M is given by

grad f(X) = PX

(
M−1

X ∇F (X)
)

=M−1
X ∇F (X)− 2M−1

X X
(
ϕ−1
X,MX

(
sym(X⊤M−1

X ∇F (X))
)) (3.18)

for all X ∈ Stn,k, where ϕ−1
X,MX

: ❘k×k
sym → ❘

k×k
sym is given by Lemma 3.4.

Proof: Obviously, the gradient of F : U → ❘ at X ∈ U with respect to 〈·, ·〉M ∈
Γ∞
(
S2(T ∗U)

)
is given by gradF (X) =M−1

X ∇F (X). In fact, one has for all V ∈ ❘n×k

〈V, gradF (X)〉MX = tr
(
V ⊤MX(M−1

X ∇F (X)
)
= tr

(
V ⊤∇F (X)

)
= DF (X)V. (3.19)

Using the well-known identity grad f(X) = PX(gradF (X)) yields the desired result be-
cause

(
Stn,k, 〈·, ·〉

M
)

is a Riemannian submanifold of
(
❘

n×k, 〈·, ·〉M
)
. �

Notation 3.7 In the sequel, we always denote by grad f ∈ Γ∞(TStn,k) the gradient of
f : Stn,k → ❘ with respect to 〈·, ·〉M , no matter how the map Stn,k ∋ X 7→MX ∈ SPD(n)
is chosen. This map will always be clear from the context.

Corollary 3.8 Let Stn,k be endowed with the metric 〈·, ·〉M defined by the constant map

Stn,k ∋ X 7→ MX = In ∈ SPD(n), i.e. with the Euclidean metric. Then the Riemannian

gradient of f : Stn,k → ❘ with respect to 〈·, ·〉M is given by

grad f(X) = ∇F (X)− 1
2XX

⊤∇F (X)− 1
2X
(
∇F (X)

)⊤
X. (3.20)

Proof: For the specific choice MX = In for all X ∈ Stn,k, the orthogonal projection from
Lemma 3.5 simplifies for V ∈ ❘n×k to

PX(V ) = V −Xsym(X⊤V ) = V − 1
2XX

⊤V − 1
2XV

⊤X, (3.21)

see also [29, Eq. (3.17)]. Combining (3.21), Lemma 3.6, and MX = In for all X ∈ Stn,k
proves (3.20) as desired. �

7
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3.3.2 Riemannian Hessians

Next we consider the Riemannian Hessian of a smooth function f : Stn,k → ❘ with re-
spect to 〈·, ·〉M . Let ∇LC denote the Levi-Civita covariant derivative on

(
Stn,k,∇

LC
)
. By

exploiting
Hess(f)

∣∣
X
(V ) = ∇LC

V grad f
∣∣
X
, X ∈ Stn,k, V ∈ TXStn,k, (3.22)

see e.g [12, Prop. 8.1] or [1, Def. 5.5.1], we derive a rather explicit expression for Hess(f) ∈
Γ∞
(
End(TStn,k)

)
, the Riemannian Hessian of f considered as a section of the endomor-

phism bundle of TStn,k.
For the rest of this subsection, for simplifying notations, we use the same capital letters

for tangent vectors and vector fields. However, the difference will be clear from the context.
As a preparation, let

∇̃LC : Γ∞(TU)× Γ∞(TU) → Γ∞(TU) (3.23)

denote the Levi-Civita covariant derivative on U defined by 〈·, ·〉M . Moreover, let V,W ∈
Γ∞
(
TStn,k

)
be vector fields on Stn,k and denote smooth extensions of V and W to U

by Ṽ , W̃ ∈ Γ∞(TU), respectively. Then, see e.g. [26, Chap. 4, Lem. 3], the Levi-Civita
covariant derivative ∇LC : Γ∞

(
TStn,k

)
× Γ∞

(
TStn,k

)
→ Γ∞

(
TStn,k

)
on the Riemannian

submanifold
(
Stn,k, 〈·, ·〉

M
)

is given by

∇LC
V W

∣∣
X

= PX

(
∇̃LC

Ṽ
W̃
∣∣
X

)
, X ∈ Stn,k. (3.24)

We now take a closer look at ∇̃LC. Let i ∈ {1, . . . , n} and j ∈ {1, . . . , k}. Denote by
Eij ∈ ❘

n×k the matrix whose entries satisfy (Eij)fℓ = δifδjℓ. Obviously, for i ∈ {1, . . . , n}
and j ∈ {1, . . . , k}, the vector fields

U ∋ X 7→ (X,Eij) ∈ TU (3.25)

denoted by Eij , as well, form a local frame of TU . Moreover, denote by Ṽ , W̃ ∈ Γ∞(TU)

vector fields on U and identify them with smooth maps Ṽ , W̃ : U → ❘
n×k. In addition, we

write W̃ab, Ṽab : U → ❘ for the smooth functions given by the (a, b)-entry of Ṽ : U → ❘
n×k

and W̃ : U → ❘
n×k, respectively, where a ∈ {1, . . . , n} and b ∈ {1, . . . , k}. Then, by

using [22, Prop. 4.6], we obtain for ∇̃LC evaluated at Ṽ , W̃ ∈ Γ∞(TU)

∇̃LC
Ṽ
W̃ =

n∑

a=1

k∑

b=1

((
L

Ṽ
W̃ab

)
+

n∑

c,f=1

k∑

d,g=1

ṼcdW̃fgΓ
(a,b)
(c,d),(f,g)

)
Eab, (3.26)

where Γ
(a,b)
(c,d),(f,g) denotes the Christoffel symbols given for a, c, f ∈ {1, . . . , n} and b, d, g ∈

{1, . . . , k} by

∇̃LC
Ecd

Efg =

n∑

a=1

k∑

b=1

Γ
(a,b)
(c,d),(f,g)Eab, (3.27)

see e.g [22, Eq. (4.8)]. Next, define the smooth map Γ: U ∋ X 7→ ΓX ∈ S((❘n×k)∗)⊗❘n×k

for X ∈ U and Ṽ , W̃ ∈ ❘n×k by

ΓX(Ṽ , W̃ ) =

n∑

a,c,f=1

k∑

b,d,g=1

ṼcdW̃fgΓ
(a,b)
(c,d),(f,g)Eab, (3.28)

where Γ
(a,b)
(c,d),(f,g) are the Christoffel symbols from (3.27). By this notation, we rewrite (3.26)

for X ∈ U
∇̃LC

Ṽ
W̃
∣∣
X

= D W̃ (X)Ṽ
∣∣
X
+ ΓX

(
Ṽ
∣∣
X
, W̃
∣∣
X

)
. (3.29)

8
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In the sequel, we denote some smooth extension of grad f ∈ Γ∞(TStn,k) to U by grad f ,
as well. Then, for X ∈ Stn,k and V ∈ TXStn,k we get

Hess(f)
∣∣
X
(V )

(3.22)
= ∇LC

V grad f
∣∣
X

(3.24),(3.29)
= PX

(
D
(
grad f

)
(X)V + ΓX

(
V, grad f(X)

))
.

(3.30)

In view of (3.30), one would need a rather explicit expression for ΓX(V,W ) in order to ob-
tain an explicit formula for Hess(f)

∣∣
X
(V ). However, our main interest in Section 5.2

is the Hessian of f at a critical point X∗ ∈ Stn,k, i.e. grad f(X∗) = 0. Note that
ΓX∗

(
V, grad f(X∗)

)
= 0 holds for all V ∈ TX∗

Stn,k because of (3.28). Hence (3.30) yields,
for a critical point X∗ ∈ Stn,k of f ,

Hess(f)
∣∣
X∗

(V ) = PX∗

(
D
(
grad f(X∗)

)
V
)
. (3.31)

So we omit a detailed investigation of ΓX(V,W ) defined in (3.28).
The next theorem gives an explicit expression for the Riemannian Hessian of f : Stn,k →

❘ with respect to 〈·, ·〉M up to an explicit expression for Γ from (3.28). Note that this
theorem generalizes [29, App. A.2], see also Corollary 3.11 below.

Theorem 3.9 Let X ∈ Stn,k, V ∈ TXStn,k, and grad f be the gradient of f from Lemma 3.6

with respect to 〈·, ·〉M , as usual. In addition, let ϕX,MX
: ❘k×k

sym → ❘
k×k
sym be the lin-

ear isomorphism defined in (3.11) and ΓX(V, grad f(X)) be given by (3.28). Using this

notation, the Riemannian Hessian of f with respect to 〈·, ·〉M , defined by the smooth

map Stn,k ∋ X 7→ MX ∈ SPD(n), considered as a section of the endomorphism bundle

End(TStn,k) → Stn,k is given by

Hess(f)
∣∣
X
(V )

= PX

(
M−1

X D(∇F )(X)V −M−1
X

(
DM(X)V

)
M−1

X ∇F (X)
)

+ PX

((
M−1

X

(
DM(X)V

)
M−1

X X −M−1
X V

)(
X⊤∇F (X)−X⊤MX grad f(X)

))

+ PX

(
ΓX(V, grad f(X))

)
.

(3.32)

Here DM(X)V denotes the tangent map of Stn,k ∋ X 7→ MX ∈ SPD(n) at X ∈ Stn,k
evaluated at V ∈ TXStn,k, as usual.

Proof: In contrast to the proof in [29, App. A.2] which relies on the Weingarten map
and where Stn,k ∋ X 7→ MX ∈ SPD(n) is assumed to be constant, we compute Hess(f)
directly by using (3.30). As a preparation, we consider the map

P : Stn,k ×❘
n×k → ❘

n×k, (X,V ) 7→ P (X,V ) = PX(V ), (3.33)

where PX : ❘n×k → TXStn,k ⊆ ❘n×k is given by Lemma 3.5. Then, by abuse of notation,
we define for some fixed but arbitrary V ∈ ❘n×k

PV : Stn,k → ❘
n×k, X 7→ PV (X) = P (X,V ) = PX(V ). (3.34)

Since, in the sequel, points in Stn,k are usually denoted by X, it will be always clear by the
context whether (3.34) or the orthogonal projection from Lemma 3.5 is meant. Using this

9
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notation, and defining η = M−1
X ∇F (X), we obtain, by plugging grad f from Lemma 3.6

into (3.30),

Hess(f)
∣∣
X
(V ) = PX

((
D
(
P(·)

(
M−1

(·) ∇F (·)
))

(X)V
)
+ ΓX(V, grad f(X))

)

= PX

(
DPη(X)V

)

+ PX

(
M−1

X D(∇F )(X)V −M−1
X

(
DM(X)V

)
M−1

X ∇F (X)
)

+ PX

(
ΓX(V, grad f(X)

)
,

(3.35)

where we used the chain-rule and exploited P 2
X = PX . In more detail, the tangent map of

P defined in (3.33) at (X,V ) ∈ Stn,k×❘
n×k evaluated at (W,Y ) ∈ T(X,V )(Stn,k×❘

n×k) ∼=

TXStn,k ×❘
n×k is given by

DP (X,V )(W,Y ) = DPV (X)W +DPX(V )Y = DPV (X)W + PX(Y ), (3.36)

where the second equality follows by the linearity of PX : ❘n×k → TXStn,k ⊆ ❘n×k. Next
we define the smooth map

g : Stn,k → Stn,k ×❘
n×k, X 7→ g(X) = (X,M−1

X ∇F (X)). (3.37)

Using
D
((
M(·)

)−1)
(X)V = −M−1

X

(
DM(X)V

)
M−1

X , (3.38)

the tangent map of g at X ∈ Stn,k becomes for V ∈ TXStn,k

D g(X)V =
(
V,M−1

X D(∇F )(X)V −M−1
X

(
DM(X)V

)
M−1

X ∇F (X)
)
. (3.39)

Combining (3.33) and (3.37), we observe that

grad f(X) = PX

(
M−1

X ∇F (X)
)
= (P ◦ g)(X) (3.40)

holds for all X ∈ Stn,k. Recalling the definition η = M−1
X ∇F (X) and using (3.40) as well

as the chain-rule, we now obtain for the Riemannian Hessian of f

Hess(f)
∣∣
X
(V ) = PX

(
D(grad f)(X)V + ΓX(V, grad f(X))

)

= PX

(
D(P ◦ g)(X)V + ΓX(V, grad f(X))

)

= PX

(
DP (g(X))

(
D g(X)V

)
+ ΓX(V, grad f(X))

)

(3.36),(3.34),(3.39)
= PX

(
DPη(X)V

)

+ PX

(
M−1

X D(∇F )(X)V −M−1
X

(
DM(X)V

)
M−1

X ∇F (X)
)

+ PX

(
ΓX(V, grad f(X))

)
,

(3.41)

where we also used the definition η =M−1
X ∇F (X) and P 2

X = PX to obtain the last equality,
i.e the second equality of (3.35) is proven.

Next we simplify the first summand of the second equality of (3.35). To this end, we first
investigate DPη(X)V . Let γ : I → Stn,k be a curve with γ(0) = X and γ̇(0) = V ∈ TXStn,k.

10
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Using the expression for PX : ❘n×k → TXStn,k from Lemma 3.5 and the definition of
Pη : Stn,k → ❘

n×k from (3.34), we compute

DPη(X)V = d
dtP

(
γ(t), η

)∣∣
t=0

= d
dt

(
η − 2M−1

γ(t)γ(t)
(
ϕ−1
γ(t),Mγ(t)

(
sym(γ(t)⊤η)

)))∣∣
t=0

= 2M−1
X

(
DM(X)V

)
M−1

X X
(
ϕ−1
X,MX

(
sym(X⊤η)

))

− 2M−1
X V

(
ϕ−1
X,MX

(
sym(X⊤η)

))

− 2M−1
X X

((
d
dtϕ

−1
γ(t),Mγ(t)

∣∣
t=0

)(
sym(X⊤η)

))

− 2M−1
X X

(
ϕ−1
X,MX

(
sym(V ⊤η)

))
,

(3.42)

where (3.38) is exploited to get the first summand of the third equality. To simplify the
third summand in (3.42) we compute

d
dtϕ

−1
γ(t),Mγ(t)

∣∣
t=0

= −ϕ−1
γ(0),Mγ(0)

◦
(

d
dtϕγ(t),Mγ(t)

∣∣
t=0

)
◦ ϕ−1

γ(0),Mγ(0)
(3.43)

by the chain rule, where we also used the well-known formula for the tangent map of the
map inv : GL(❘k×k

sym ) ∋ ϕ 7→ ϕ−1 ∈ GL(❘k×k
sym ), see e.g. [23, Cor. 4.3]. More explicitly, we

obtain for S ∈ ❘k×k
sym

d
dtϕγ(t),Mγ(t)

(S)
∣∣
t=0

= d
dt

((
γ(t)⊤M−1

γ(t)γ(t)
)
S + S

(
γ(t)⊤M−1

γ(t)γ(t)
))∣∣

t=0

=
(
V ⊤M−1

X X −X⊤
(
M−1

X

(
DM(X)V

)
M−1

X

)
X +X⊤M−1

X V
)
S

+ S
(
V ⊤M−1

X X −X⊤
(
M−1

X

(
DM(X)V

)
M−1

X

)
X +X⊤M−1

X V
)

=: ψX,MX ,V (S).

(3.44)

Obviously, ψX,MX ,V : ❘k×k
sym ∋ S 7→ ψX,MX ,V (S) ∈ ❘

k×k
sym , where ψX,MX ,V (S) is defined by

the last line of (3.44), is a linear map. Using this notation, we simplify (3.42). One obtains

DPη(X)V = 2M−1
X

(
DM(X)V

)
M−1

X X
(
ϕ−1
X,MX

(
sym(X⊤η)

))

− 2M−1
X V

(
ϕ−1
X,MX

(
sym(X⊤η)

))

+ 2M−1
X X

((
ϕ−1
X,MX

◦ ψX,MX ,V ◦ ϕ−1
X,MX

)(
sym(X⊤η)

))

− 2M−1
X X

(
ϕ−1
X,MX

(sym(V ⊤η))
)
.

(3.45)

Observe that the third and fourth summand on the right-hand side of (3.45) belong to the
normal space NXStn,k by Lemma 3.3. Indeed, they are both of the form M−1

X XS with
some symmetric matrix S ∈ ❘k×k

sym . Thus, applying the orthogonal projection PX : ❘n×k →
TXStn,k to (3.45) yields

PX

(
DPη(X)V

)

= PX

((
2M−1

X

(
DM(X)V

)
M−1

X X − 2M−1
X V

)(
ϕ−1
X,MX

(
sym(X⊤η)

))
)
.

(3.46)

11



Submersion Metrics on Grassmann Manifolds M. Schlarb et al.

Next, plugging (3.46) into (3.35) yields

Hess(f)
∣∣
X
(V )

= PX

(
M−1

X D(∇F )(X)V −M−1
X

(
DM(X)V

)
M−1

X ∇F (X)
)

+ PX

((
2M−1

X

(
DM(X)V

)
M−1

X X − 2M−1
X V

)(
ϕ−1
X,MX

(
sym(X⊤η)

))
)

+ PX

(
ΓX(V, grad f(X))

)
.

(3.47)

Let PX : ❘n×k → TXStn,k be the orthogonal projection from Lemma 3.5, as usual. We
now compute for η =M−1

X ∇F (X) ∈ ❘n×k

X⊤∇F (X)−X⊤MX grad f(X)

= X⊤MX

(
M−1

X ∇F (X)− PX

(
M−1

X ∇F (X)
))

= X⊤MX

(
M−1

X ∇F (X)−

(
M−1

X ∇F (X)− 2M−1
X X

(
ϕ−1
X,MX

(
sym(X⊤M−1

X ∇F (X))
))
))

= 2ϕ−1
X,MX

(
sym(X⊤η)

)
.

(3.48)

Plugging (3.48) into (3.47) yields the desired result. �

The next corollary provides an explicit formula for the Hessian of f at a critical point
X∗ ∈ Stn,k. This expression will be used in Section 5.2 below.

Corollary 3.10 Let X∗ ∈ Stn,k be a critical point of f . Then the Riemannian Hessian of

f at X∗ is given by

Hess(f)
∣∣
X∗

(V ) = PX∗

(
M−1

X∗
D(∇F )(X∗)V −M−1

X∗
V X⊤

∗ ∇F (X∗)
)

(3.49)

for V ∈ TX∗
Stn,k.

Proof: By exploiting grad f(X∗) = 0 and ΓX(V, 0) = 0, where ΓX(V, 0) is given by (3.28),
Theorem 3.9 yields

Hess(f)
∣∣
X∗

(V ) = PX∗

(
M−1

X∗
D(∇F )(X∗)V −M−1

X∗

(
DM(X∗)V

)
M−1

X∗
∇F (X∗)

)

+ PX∗

((
M−1

X∗

(
DM(X∗)V

)
M−1

X∗
X∗ −M−1

X∗
V
)
X⊤

∗ ∇F (X∗)
)
.

(3.50)

We next prove that (3.50) is equivalent to (3.49) by showing thatX∗X
⊤
∗ ∇F (X∗) = ∇F (X∗).

By Corollary 3.8, the gradient of f with respect to the Euclidean metric is given by

grad f(X) = ∇F (X)− 1
2XX

⊤∇F (X)− 1
2X
(
∇F (X)

)⊤
X, X ∈ Stn,k. (3.51)

Moreover, grad f(X∗) = 0 holds because X∗ ∈ Stn,k is a critical point of f . Therefore (3.51)
yields at X∗

∇F (X∗) =
1
2

(
X∗X

⊤
∗ ∇F (X∗) +X∗

(
∇F (X∗)

)⊤
X∗

)
(3.52)

Multiplying (3.52) by X∗X
⊤
∗ from the left yields, due to X⊤

∗ X∗ = Ik,

X∗X
⊤
∗ ∇F (X∗) =

1
2X∗X

⊤
∗

(
X∗X

⊤
∗ ∇F (X∗) +X∗

(
∇F (X∗)

)⊤
X∗

)
= ∇F (X∗). (3.53)

The desired result follows. �
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As a special case of Theorem 3.9, we obtain the following expression for the Riemannian
Hessian that was already derived in [29, App. A.2].

Corollary 3.11 Let Stn,k ∋ X 7→ MX = M ∈ SPD(n) be constant. The Riemannian

Hessian of f : Stn,k → ❘ with respect to 〈·, ·〉M at X ∈ Stn,k evaluated at V ∈ TXStn,k is

given by

Hess(f)
∣∣
X
(V )

= PX

(
M−1D(∇F )(X)V −M−1V

(
X⊤∇F (X)−X⊤M grad f(X)

))
.

(3.54)

Proof: Using M = MX for all X ∈ Stn,k, the Riemannian metric 〈·, ·〉M on Stn,k is
induced by the scalar product on ❘n×k given for V,W ∈ ❘n×k point-wise by 〈V,W 〉M =

tr
(
V ⊤MW

)
. By using the formula for the Christoffel symbols of ∇̃LC from [22, Cor. 5.11],

see also [29, App. A.2], for
(
Stn,k, 〈·, ·〉

M
)

with constant X 7→ MX = M , we obtain
ΓX(V,W ) = 0 for all V,W ∈ ❘n×k, where ΓX(V,W ) is given by (3.28). Moreover, the
tangent map of X 7→ MX vanishes, i.e. DM(X)V = 0 holds for all X ∈ Stn,k and V ∈
TXStn,k. Using these observations, the desired result follows from (3.32) in Theorem 3.9.�

4 Riemannian Submersion Metrics on the Grassmann Mani-

fold

Consider the O(k)-action on Stn,k via matrix multiplication from the right, i.e.

⊳ : Stn,k ×O(k) → Stn,k, (X,R) 7→ X ⊳ R = XR. (4.1)

For fixed R ∈ O(k), we write

⊳R : Stn,k → Stn,k, X 7→ X⊳R = XR. (4.2)

Remark 4.1 Obviously, (4.2) is a diffeomorphism induced by the O(k)-action (4.1). Hence
its tangent map at X ∈ Stn,k, given by

D(⊳R)(X) : TXStn,k → TXRStn,k, V 7→ V R, (4.3)

is a linear isomorphism. In particular, TXRStn,k =
(
TXStn,k

)
R holds.

The canonical projection associated with the action (4.1) is denoted by

pr: Stn,k ∋ X 7→ pr(X) ∈ Stn,k/O(k). (4.4)

Moreover, pr: Stn,k → Stn,k/O(k) is an O(k)-principal fiber bundle, see e.g. [23, Sec. 18.5].
In addition, for fixed X ∈ Stn,k, we define the map

X⊳ : O(k) → Stn,k, R 7→ X⊳R = XR. (4.5)

It is well-known that Stn,k/O(k) can be identified with the Grassmann manifold, i.e. the
manifold of all k-dimensional subspaces of ❘n, see e.g. [3, Sec. 2.4].

In the remainder of this section, Stn,k is equipped with the Riemannian metric 〈·, ·〉M ∈
Γ∞(S2(T ∗Stn,k)). Under an additional assumption (Assumption 4.3) on the map Stn,k ∋
X 7→ MX ∈ SPD(n) defining 〈·, ·〉M given by (3.6), we prove that the orthogonal comple-
ment of Ver(Stn,k) = ker(Dpr) ⊆ TStn,k gives rise to a principal connection on pr: Stn,k →
Stn,k/O(k). This principal connection is determined explicitly in Section 4.1.

13
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Afterwards, still imposing Assumption 4.3, Riemannian metrics on Stn,k/O(k) are de-
fined such that pr: Stn,k → Stn,k/O(k) is a Riemannian submersion. In addition, explicit
expressions for Riemannian gradients and Riemannian Hessians of smooth functions on
Stn,k/O(k) with respect to these metrics are considered. In Section 4.3, similar differen-
tial geometric quantities are studied on the Grassmann manifold realized by projection
matrices.

We start by the following lemma.

Lemma 4.2 Let Stn,k ∋ X 7→ MX ∈ SPD(n) be smooth such that for all X ∈ Stn,k and

R ∈ O(k)
MXR =MX (4.6)

is satisfied. Then the following assertions are fulfilled:

1. The O(k)-action defined in (4.1) is isometric.

2. Denote by pr(X) ∈ Stn,k/O(k) the equivalence class represented by X ∈ Stn,k. Then

the definition

M̌ : Stn,k/O(k) ∋ pr(X) 7→ M̌pr(X) =MX ∈ SPD(n) (4.7)

yields a well-defined smooth map.

Proof: Let R ∈ O(k), X ∈ Stn,k and V,W ∈ TXStn,k. By the assumption MX = MXR,
we obtain

〈V R,WR〉MXR = tr
(
R⊤V ⊤MXRWR

)
= tr

(
V ⊤MXW

)
= 〈V,W 〉MX (4.8)

proving (⊳R)
∗〈·, ·〉M = 〈·, ·〉M for all R ∈ O(k) as desired. It remains to prove the second

claim. Because of
M̌pr(XR) =MXR =MX = M̌pr(X), (4.9)

the map M̌ : Stn,k/O(k) → SPD(n) defined in (4.7) is well-defined. In addition, the map
M : Stn,k → SPD(n) is smooth by assumption and fulfills M = M̌ ◦ pr: Stn,k → SPD(n).
Hence M̌ is smooth by [21, Thm. 4.29] because pr: Stn,k → Stn,k/O(k) is a surjective
submersion. �

Assumption 4.3 From now on, we always assume that the map Stn,k ∋ X 7→ MX ∈
SPD(n) fulfills MX =MXR for all X ∈ Stn,k and R ∈ O(k).

4.1 A Principal Connection and the Orthogonal Projection onto the

Horizontal Bundle

In the sequel, we consider pr: Stn,k → Stn,k/O(k) as O(k)-principal fiber bundle. We recall
that its vertical bundle is given point-wise by

Ver(Stn,k)X = ker(Dpr(X)) =
{
XΨ | Ψ ∈ so(k)

}
, X ∈ Stn,k, (4.10)

see e.g. [3, Sec. 2.4], and define the horizontal bundle Hor(Stn,k) ⊆ TStn,k for X ∈ Stn,k
point-wise by

Hor(Stn,k)X =
(
Ver(Stn,k)X

)⊥
⊆ TXStn,k, (4.11)

where the orthogonal complement of Ver(Stn,k)X is taken with respect to 〈·, ·〉MX .
Before we study the orthogonal projection onto Hor(Stn,k) in detail, we state the fol-

lowing characterization.
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Lemma 4.4 Let X ∈ Stn,k be fixed. Then Hor(Stn,k)X defined in (4.11) is given by

Hor(Stn,k)X = {V ∈ TXStn,k | X⊤MXV = V ⊤MXX}. (4.12)

Proof: Let V ∈ Hor(Stn,k)X ⊆ TXStn,k. By definition, V is orthogonal to all W ∈
Ver(Stn,k)X . Using (4.10), we write W = XA for some suitable A ∈ so(k) and obtain that
V satisfies

〈XA, V 〉MX = tr
(
A⊤(X⊤MXV )

)
= 0 (4.13)

for all A ∈ so(k). Hence X⊤MXV is symmetric by (4.13), i.e. X⊤MXV = V ⊤MXX, as
desired. �

Next, we define for fixed X ∈ Stn,k and MX ∈ SPD(n) the map

φX,MX
: so(k) → so(k), A 7→ (X⊤MXX)A+A(X⊤MXX). (4.14)

Similar to Lemma 3.4, we obtain the following result.

Lemma 4.5 Let X ∈ Stn,k and MX ∈ SPD(n). Then φX,MX
: so(k) → so(k) is a linear

isomorphism. For fixed Ψ ∈ so(k), one can compute A = φ−1
X,MX

(Ψ) by solving the Sylvester

equation

(X⊤MXX)A+A(X⊤MXX) = Ψ (4.15)

for A ∈ so(k).

Proof: Similar to Lemma 3.4, the assertion follows by well-known properties of the
Sylvester equation. �

After this preparation, we state an explicit formula for the connection associated to Hor(Stn,k),
i.e an explicit formula for the orthogonal projection onto Ver(Stn,k) with respect to 〈·, ·〉M .

Proposition 4.6 Let Hor(Stn,k) = Ver(Stn,k)
⊥ ⊆ TStn,k be the horizontal bundle given

point-wise by (4.11) and let φX,MX
: so(k) → so(k) be defined in (4.14).

1. For X ∈ Stn,k and V ∈ TXStn,k, the connection P ∈ Γ∞
(
End(TStn,k)

)
associated to

Hor(Stn,k), i.e. P
∣∣
Ver(Stn,k)

= idVer(Stn,k) and P
∣∣
Hor(Stn,k)

= 0, is given point-wise by

P
∣∣
X
(V ) = 2X

(
φ−1
X,MX

(
skew

(
X⊤MXV

)))
. (4.16)

2. The connection one-form ω ∈ Γ∞(T ∗Stn,k)⊗ so(k) corresponding to P is given by

ω
∣∣
X
(V ) = 2φ−1

X,MX

(
skew

(
X⊤MXV

))
, X ∈ Stn,k, V ∈ TXStn,k. (4.17)

For R ∈ O(k), X ∈ Stn,k, and V ∈ TXStn,k, the equivariance property

(
(⊳R)

∗ω
)∣∣

X
(V ) = AdR⊤

(
ω
∣∣
X
(V )

)
(4.18)

is fulfilled. In particular, P is a principal connection on pr: Stn,k → Stn,k/O(k).

Proof: Let V ∈ TXStn,k. By Lemma 4.4, V ∈ Hor(Stn,k)X is satisfied iff

0 = X⊤MXV − V ⊤MXX (4.19)
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holds. The next part of this proof is partially inspired by the proof of [29, Lem. 3.1].
Equation (4.10) justifies the following Ansatz. We write for V ∈ TXStn,k

V ver = P
∣∣
X
(V ) = XAV , (4.20)

where AV ∈ so(k) is some skew-symmetric matrix depending on V that still needs to
be determined. Exploiting TXStn,k = Ver(Stn,k)X ⊕ Hor(Stn,k)X , we decompose V =
V ver + V hor, where V hor ∈ Hor(Stn,k)X is uniquely determined by

V hor (4.20)
= V − V ver = V − P

∣∣
X
(V ) = V −XAV . (4.21)

Plugging (4.21) into (4.19) yields

0 = X⊤MXV
hor − (V hor)⊤MXX

= X⊤MXV −X⊤MXXAV −
(
V ⊤MXX −A⊤

VX
⊤MXX

)
.

(4.22)

Since A⊤
V = −AV , (4.22) is equivalent to

(X⊤MXX)AV +AV (X
⊤MXX) = X⊤MXV − V ⊤MXX. (4.23)

Using Lemma 4.5, the unique solution of (4.23) is given by

AV = φ−1
X,MX

(
X⊤MXV − V ⊤MXX

)
= 2φ−1

X,MX

(
skew

(
X⊤MXV

))
. (4.24)

Plugging (4.24) into (4.20) yields

P
∣∣
X
(V ) = X

(
2φ−1

X,MX

(
skew

(
X⊤MXV

)))
(4.25)

being equivalent to (4.16).
It remains to prove Claim 2. Obviously, ω defined in (4.17) is a smooth one-form

on Stn,k taking values in so(k). Next, for Ψ ∈ so(k), let ΨStn,k
∈ Γ∞(TStn,k) be the

fundamental vector field associated with the action ⊳ : Stn,k×O(k) → Stn,k defined in (4.1).
Point-wise, that is for X ∈ Stn,k,

ΨStn,k
(X) = d

dt(X ⊳ exp(tΨ))
∣∣
t=0

= XΨ. (4.26)

By this notation, we obtain for V ∈ TXStn,k, by exploiting the definition of ω in (4.17)
and P in (4.16)

(
ω
∣∣
X
(V )

)
Stn,k

(X) = d
dt

(
X ⊳ exp

(
tω
∣∣
X
(V )

))∣∣
t=0

= X
(
ω
∣∣
X
(V )

)
= P

∣∣
X
(V ). (4.27)

Thus ω ∈ Γ∞(T ∗Stn,k) ⊗ so(k) is the connection one-form associated to P, see e.g. [23,
Eq. (19.1)]. To prove that ω satisfies the equivariance property, we first compute for
R ∈ O(k)

(
(⊳R)

∗ω
)∣∣

X
(V ) = ω

∣∣
XR

(V R) = 2φ−1
XR,MX

(
skew

(
R⊤X⊤MXV R

))
, (4.28)

where the last equality follows by Assumption (4.3), i.e. MX =MXR. To simplify the last
equality of (4.28), we write AR = φ−1

XR,MX

(
skew

(
R⊤X⊤MXV R

))
. By Lemma 4.5, AR is

the unique solution of the Sylvester equation

(R⊤X⊤MXXR)AR +AR(R
⊤X⊤MXXR) =

1
2R

⊤
(
X⊤MXV − V ⊤MXX

)
R (4.29)
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which is clearly equivalent to

(X⊤MXX)(RARR
⊤) + (RARR

⊤)(X⊤MXX) = 1
2

(
X⊤MXV − V ⊤MXX

)
. (4.30)

Denote by A = φ−1
X,MX

(
1
2

(
X⊤MXV − V ⊤MXX

))
the solution of

(X⊤MXX)A+A(X⊤MXX) = 1
2

(
X⊤MXV − V ⊤MXX

)
, (4.31)

as usual. Then AR = R⊤AR is a solution of (4.30) because of (4.31) which is unique by
Lemma 4.5. Hence

AR = R⊤AR = R⊤
(
φ−1
X,MX

(
skew(X⊤MXV )

))
R (4.32)

is shown. The desired result follows by the definition of ω. �

Corollary 4.7 Let X ∈ Stn,k. The orthogonal projection onto Hor(Stn,k)X with respect to

〈·, ·〉M ∈ Γ∞
(
S2(T ∗Stn,k)

)
is given by

P
hor
X : TXStn,k → Hor(Stn,k)X , V 7→ V − 2X

(
φ−1
X,MX

(
skew(X⊤MXV )

))
. (4.33)

Proof: Using Hor(Stn,k) =
(
Ver(Stn,k)

)⊥
, the assertion follows by P

hor
X = idTXStn,k

−P
∣∣
X

and Proposition 4.6, Claim 1. �

Notation 4.8 Let V ∈ Γ∞
(
T (Stn,k/O(k))

)
be a vector field. Then the horizontal lift of

V with respect to the connection P from Proposition 4.6 is denoted by V ∈ Γ∞(TStn,k).
Analogously, the horizontal lift of V̌ ∈ Tpr(X)(Stn,k/O(k)) with respect to P from Proposi-

tion 4.6 at X ∈ Stn,k is defined by V̌
∣∣
X

=
(
Dpr(X)

∣∣
Hor(Stn,k)X

)−1
V̌ .

Lemma 4.9 Let pr: Stn,k → Stn,k/O(k) be equipped with the principal connection P from

Proposition 4.6 associated with the horizontal bundle Hor(Stn,k) ⊆ TStn,k defined in (4.11).
Moreover, let X ∈ Stn,k and R ∈ O(k). Then, the following assertions are fulfilled:

1. The orthogonal projection P
hor ∈ Γ∞

(
End(TStn,k) from Corollary 4.7 fulfills, for all

V ∈ TXStn,k,
P
hor
∣∣
XR

(V R) =
(
P
hor
∣∣
X
(V )

)
R. (4.34)

2. Hor(Stn,k)XR =
(
Hor(Stn,k)X

)
R.

3. The horizontal lift V̌
∣∣
X

of V̌ ∈ Tpr(X)(Stn,k/O(k)) at X ∈ Stn,k is related to the

horizontal lift V̌
∣∣
XR

at XR ∈ Stn,k by

V̌
∣∣
XR

=
(
V̌
∣∣
X

)
R. (4.35)

Proof: First, recall from Remark 4.1 that V R ∈ TXRStn,k for all V ∈ TXStn,k. Hence it
makes sense to consider P

∣∣
XR

(V R). Using Proposition 4.6, we can express the connection

P ∈ Γ∞
(
End(TStn,k)

)
by

P
∣∣
X
(V ) = 2X

(
φ−1
X,MX

(
skew

(
X⊤MXV

)))
= Xω

∣∣
X
(V ), (4.36)
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where ω ∈ Γ∞(T ∗Stn,k)⊗ so(k) denotes the connection one-form associated with P. Using
the O(k)-equivariance of ω, see Proposition 4.6, Claim 2, we obtain

P
∣∣
XR

(V R) = (XR)
(
ω
∣∣
XR

(V R)
)
= (XR)

(
R⊤ω

∣∣
X
(V )R

)
=
(
Xω
∣∣
X
(V )

)
R =

(
P
∣∣
X
(V )

)
R.

(4.37)
Since P

hor = idTStn,k
−P, Claim 1 follows from (4.37).

Next, using Claim 1, we observe

Hor(Stn,k)XR = im(Phor
XR) =

(
im(Phor

X )
)
R =

(
Hor(Stn,k)X

)
R (4.38)

showing Claim 2.
It remains to prove Claim 3. Following [6, Ex. 9.25], let V̌ ∈ Tpr(X)(Stn,k) and let

c : I → Stn,k be a smooth curve satisfying c(0) = X and ċ(0) = V̌
∣∣
X

. Next define

c2 : ❘ → Stn,k by c2(t) = c(t)R. Obviously, c2(0) = XR and ċ2(0) =
(
V̌
∣∣
X

)
R holds. In

addition, č : ❘ ∋ t 7→ pr(c(t)) ∈ Stn,k/O(k) is a smooth curve on Stn,k/O(k) fulfilling
č(t) = pr(c(t)) = pr

(
c(t)R

)
= pr(c2(t)) for all t ∈ ❘. Thus,

V̌ = Dpr(X)V̌
∣∣
X

= d
dt pr(c(t))

∣∣
t=0

= d
dt pr(c2(t))

∣∣
t=0

= Dpr(XR)
(
V̌
∣∣
X

)
R. (4.39)

Since
(
V̌
∣∣
X

)
R ∈ Hor(Stn,k)XR by Claim 2 and V̌ = Dpr(XR)

(
V̌
∣∣
X

)
R by (4.39), the

desired result follows by uniqueness of horizontal lifts. �

4.2 The Grassmann Manifold as Riemannian Quotient Manifold

In this subsection, we endow Stn,k/O(k) with a metric such that pr: Stn,k → Stn,k/O(k)
becomes a Riemannian submersion. Moreover, Riemannian gradients and Riemannian
Hessians of smooth functions on Stn,k/O(k) with respect to that metric are expressed in
terms of horizontal lifts.

4.2.1 A Riemannian Metric

We start with the next lemma which defines the desired metric on Stn,k/O(k).

Lemma 4.10 Let Stn,k ∋ X 7→ MX ∈ SPD(n) be smooth such that MX = MXR holds

for all X ∈ Stn,k and R ∈ O(k). Denote the associated metric on Stn,k by 〈·, ·〉M ,

as usual. Defining for all pr(X) ∈ Stn,k/O(k) represented by X ∈ Stn,k and V̌ , W̌ ∈
Tpr(X)(Stn,k/O(k)) point-wise

˜〈
V̌ , W̌

〉M
pr(X)

=
〈
V̌
∣∣
X
, W̌
∣∣
X

〉M
X

= tr
((
V̌
∣∣
X

)⊤
MXW̌

∣∣
X

)
(4.40)

yields the well-defined metric 〈̃·, ·〉M ∈ Γ∞
(
S2(T ∗(Stn,k/O(k)))

)
on Stn,k/O(k). Moreover,

the canonical projection pr:
(
Stn,k, 〈·, ·〉

M
)
→
(
Stn,k/O(k), 〈̃·, ·〉M

)
is a Riemannian sub-

mersion.

Proof: By Lemma 4.2, Claim 1, the action (4.1) is isometric with respect to 〈·, ·〉M ∈
Γ∞(S2(T ∗Stn,k)). Thus [6, Thm. 9.34] yields the desired result. �
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4.2.2 Riemannian Gradients and Riemannian Hessians

For a smooth function f̌ : Stn,k/O(k) → ❘, we now express its Riemannian gradient and

Riemannian Hessian with respect to 〈̃·, ·〉M in terms of horizontal lifts on Stn,k. To this
end, denote its pull-back to Stn,k via the canonical projection pr: Stn,k → Stn,k/O(k) by

f = pr∗ f̌ = f̌ ◦ pr: Stn,k → ❘. (4.41)

Combining some well-known results from the literature on the so-called Riemannian quo-
tient manifolds, see e.g. [6, Chap. 9], with the formulas from Section 3.3, the horizon-
tal lift with respect to the connection P from Proposition 4.6 of the gradient grad f̌ ∈

Γ∞
(
T (Stn,k/O(k))

)
of f̌ : Stn,k/O(k) → ❘ with respect to 〈̃·, ·〉M ∈Γ∞

(
S2(T ∗(Stn,k/O(k))

)

can be expressed in terms of the gradient of f = f̌ ◦ pr: Stn,k → ❘ with respect to
〈·, ·〉M ∈ Γ∞

(
S2(T ∗Stn,k)

)
.

Before that, we state the following two lemmas concerning Riemannian gradients
and Riemannian Hessians of smooth functions in the context of Riemannian submersions
slightly generalizing [6, Prop. 9.38] and [6, Prop. 9.44], respectively. These lemmas will
be needed in Section 4.3.2 below, as well.

We start with the following lemma adapted from [6, Prop. 9.38] and [26, Chap. 7,
Lem. 34].

Lemma 4.11 Let π : E → N be a Riemannian submersion, where the Riemannian metrics

on E and N are both denoted by 〈·, ·〉. Moreover, let g : N → ❘ be a smooth function.

Denote by π∗g = g ◦ π : E → ❘ the pull-back of g by π. Then, the gradient grad(π∗g) of

π∗g is horizontal, i.e. grad(π∗g) ∈ Γ∞(Hor(E)). Moreover, grad(π∗g) is π-related to the

gradient grad g of g, i.e.

Dπ ◦ grad(π∗g) = (grad g) ◦ π. (4.42)

In particular, the horizontal lift of grad g ∈ Γ∞(TN) is given by grad g = grad(π∗g) ∈
Γ∞(Hor(E)).

Proof: To show that grad(π∗g) is horizontal, let p ∈ E and v ∈ Ver(E)p be any arbitrary
vertical vector. Then

〈
grad(π∗g), v

〉
p
= D(g ◦ π)(p)v = D g(π(p)) ◦Dπ(p)v = 0, (4.43)

where the last equality holds due to Dπ(p)v = 0 since v is vertical. Thus grad(π∗g) is
indeed horizontal by (4.43). To prove that Dπ ◦ grad(π∗g) = (grad g) ◦ π, let v ∈ Hor(E)p.
Using the chain-rule and exploiting that π : E → N is a Riemannian submersion, we
compute

〈
Dπ(p) grad(π∗g)(p),Dπ(p)v

〉
π(p)

=
〈
grad(π∗g)(p), v

〉
p

= D(g ◦ π)(p)v

= D g(π(p)) ◦Dπ(p)v

=
〈
(grad g)(π(p)),Dπ(p)v

〉
π(p)

.

(4.44)

Comparing the left-hand side of the first equality in (4.44) with the last equality in (4.44)
yields (4.42). Moreover, because grad(π∗g) is horizontal, we also obtain grad g = grad(π∗g)
by (4.42). �

Next, we consider the Riemannian Hessian leading to the following lemma whose proof is
adapted from [6, Prop. 9.44].
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Lemma 4.12 Let π : E → N be a Riemannian submersion and let g : N → ❘ be a smooth

function whose pullback by π is denote by π∗g = g ◦ π : E → ❘ as usual. Moreover, for

p ∈ E and v ∈ Tπ(p)N , let v
∣∣
p
= (Dπ(p)

∣∣
Hor(P )p

)−1v be the horizontal lift of v at p. Then

the Hessian of g at x = π(p) ∈ N fulfills

Hess(g)
∣∣
x
(v)
∣∣
p
= P

hor
p

(
Hess(π∗g)

∣∣
p

(
v
∣∣
p

)
, (4.45)

where P
hor : TP → Hor(P ) denotes the orthogonal projection onto the horizontal bundle.

Proof: Let V,W ∈ Γ∞(TN) be vector fields and denote their horizontal lift by V ,W ∈
Γ∞(Hor(E)), respectively. Moreover, by a slight abuse of notation, denote by ∇LC the
Levi-Civita covariant derivative on N and E, repsectively. Then

∇LC
V W = P

hor
(
∇VW

)
(4.46)

holds by [26, Chap. 7, Lem. 45]. Recalling that for x ∈ N and v ∈ TxN , the Riemannian
Hessian of g is given by Hess(g)

∣∣
x
(v) = ∇LC

v grad g
∣∣
x
, see e.g. [12, Prop. 8.1], one obtains

by (4.46)

Hess(g)
∣∣
x
(v)
∣∣
p
= ∇LC

v grad g
∣∣
x

∣∣
p

(4.46)
= P

hor
p

(
∇LC

v
∣∣
p

grad g
∣∣
p

)

= P
hor
p

(
∇LC

v
∣∣
p

grad(π∗g)
∣∣
p

)

= P
hor
p

(
Hess(π∗g)

∣∣
p
(v
∣∣
p
)
)
,

(4.47)

where the third equality follows by Lemma 4.11. This yields the desired result. �

We now apply Lemma 4.11 as well as Lemma 4.12 to the specific Riemannian submersion
pr: Stn,k → Stn,k/O(k), i.e. in the situation where π = pr, E = Stn,k with metric 〈·, ·〉M

and N = Stn,k/O(k) with metric 〈̃·, ·〉M as well as g = f̌ : Stn,k/O(k) → ❘.

Proposition 4.13 Let f̌ : Stn,k/O(k) → ❘ and f = f̌ ◦ pr: Stn,k → ❘. Denote the

gradient of f with respect to 〈·, ·〉M by grad f ∈ Γ∞(TStn,k), as usual. Moreover, let

F : U → ❘ be some smooth extension of f , where U ⊆ ❘n×k is open. Then the horizontal

lift grad f̌ ∈ Γ∞
(
Hor(Stn,k)

)
with respect to the connection P from Proposition 4.6, of the

gradient grad f̌ ∈ Γ∞
(
T (Stn,k/O(k)

)
with respect to 〈̃·, ·〉M satisfies, for all X ∈ Stn,k,

grad f̌(pr(X))
∣∣
X

= grad f(X) = PX

(
M−1

X ∇F (X)
)
. (4.48)

Proof: Because the canonical projection pr:
(
Stn,k, 〈·, ·〉

M
)
→
(
Stn,k/O(k), 〈̃·, ·〉M

)
is a

Riemannian submersion, the first equality of (4.48) follows by Lemma 4.11. The second
equality of (4.48) holds due to Lemma 3.6 . �

Next we consider the Riemannian Hessian of f̌ : Stn,k/O(k) → ❘ with respect to 〈̃·, ·〉M .

Proposition 4.14 Let f̌ : Stn,k/O(k) → ❘ and f = pr∗ f̌ = f̌ ◦ pr: Stn,k → ❘. The

Riemannian Hessian Hess(f̌) ∈ Γ∞
(
End(T (Stn,k/O(k)))

)
with respect to 〈̃·, ·〉M satisfies

for all X ∈ Stn,k and V̌ ∈ Tpr(X)(Stn,k/O(k))

Hess(f̌)
∣∣
pr(X)

(V̌ )
∣∣
X

= P
hor
X

(
Hess(f)

∣∣
X

(
V̌
∣∣
X

))
, (4.49)
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where Hess(f) ∈ Γ∞
(
End(TStn,k)

)
denotes the Riemannian Hessian of f with respect

to 〈·, ·〉M from Theorem 3.9 and P
hor
X : TXStn,k → Hor(Stn,k)X denotes the orthogonal

projection onto the horizontal bundle given by Corollary 4.7.

Proof: This is a consequence of Lemma 4.12. �

The Hessian of f̌ at a critical point pr(X∗) ∈ Stn,k/O(k) is of our main interest.

Corollary 4.15 Let pr(X∗) ∈ Stn,k/O(k) be a critical point of f̌ : Stn,k/O(k) → ❘ which

is represented by X∗ ∈ Stn,k and let V ∈ Hor(Stn,k)X∗
. Using the notation from Proposi-

tion 4.14

Hess(f̌)
∣∣
pr(X∗)

(Dpr(X∗)V )
∣∣
X∗

= P
hor
X∗

(
PX∗

(
M−1

X∗
D(∇F )(X∗)V −M−1

X∗
V X⊤

∗ ∇F (X∗)
)) (4.50)

is satisfied.

Proof: Let pr(X∗) ∈ Stn,k/O(k) be a critical point of f̌ . Then all X ∈ Stn,k fulfill-
ing pr(X) = pr(X∗) are critical points of f = f̌ ◦ pr: Stn,k → ❘. Moreover, let V ∈

Hor(Stn,k)X∗
. Then V̌ = Dpr(X∗)V fulfills V = V̌

∣∣
X∗

because Dpr(X∗)
∣∣
Hor(Stn,k)X∗

→

Tpr(X∗)(Stn,k/O(k)) is a linear isomorphism. Hence the desired result follows by Proposi-
tion 4.14 combined with Corollary 3.10. �

4.3 The Grassmann Manifold realized by Projection Matrices

In the sequel, we identify the Grassmann manifold with the following embedded submani-
fold [14, Thm. 2.1]

Grn,k = {P ∈ ❘n×n | P = P 2 = P⊤, tr(P ) = k} ⊆ ❘n×n
sym . (4.51)

Moreover, see e.g. [14, Thm. 2.1], the tangent space of Grn,k at P ∈ Grn,k can be parame-
terized by

TPGrn,k = {[P,Ω] | Ω ∈ so(n)} ⊆ ❘n×n
sym . (4.52)

Define
π : Stn,k → Grn,k, X 7→ XX⊤. (4.53)

Clearly, π is surjective. Its tangent map at X ∈ Stn,k reads

Dπ(X) : TXStn,k → TXX⊤Grn,k, V 7→ V X⊤ +XV ⊤. (4.54)

Using (4.54), one can show that π is indeed a surjective submersion, see e.g. [3, Sec. 2.4].
Moreover, by [3, Sec. 2.4], the vertical bundle ker(Dπ) ⊆ TStn,k associated to π : Stn,k →
Grn,k coincides with the vertical bundle Ver(Stn,k) associated to the surjective submer-
sion pr: Stn,k → Stn,k/O(k). Thus, both vertical bundles are denoted by Ver(Stn,k) =
ker(Dπ) = ker(Dpr) in the sequel. Note that pr: Stn,k → Stn,k/O(k) and π : Stn,k → Grn,k
are related by the following commutative diagram

Stn,k

Stn,k/O(k) Grn,k

pr

φ

π

(4.55)
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where
φ : Stn,k/O(k) → Grn,k, pr(X) 7→ XX⊤ (4.56)

is a diffeomorphism, see Lemma 4.19 below. Since (4.53) is a surjective submersion, the
restriction of Dπ(X) to Hor(Stn,k)X characterized in Lemma 4.4 yields the linear isomor-
phism

Dπ(X)
∣∣
Hor(Stn,k)X

: Hor(Stn,k)X → TXX⊤Grn,k, V 7→ V X⊤ +XV ⊤. (4.57)

An explicit expression for the inverse of (4.57) is of interest.

Lemma 4.16 Let X ∈ Stn,k. The inverse
(
Dπ(X)

∣∣
Hor(Stn,k)X

)−1
:TXX⊤Grn,k→Hor(Stn,k)X

of (4.57), is given by

(
Dπ(X)

∣∣
Hor(Stn,k)X

)−1
(Z) = ZX − 2X

(
φ−1
X,MX

(
skew(X⊤MXZX)

))
, (4.58)

where Z ∈ TXX⊤Grn,k and φX,MX
: so(k) → so(k) denotes the map from Lemma 4.5, as

usual.

Proof: Let Z ∈ TXX⊤Grn,k and write V =
(
Dπ(X)

∣∣
Hor(Stn,k)X

)−1
(Z) ∈ Hor(Stn,k)X .

Then V ∈ TXStn,k is uniquely characterized by the following two conditions

Z = Dπ(X)V = V X⊤ +XV ⊤, (4.59)

X⊤MXV = V ⊤MXX, (4.60)

where (4.60) ensures that V ∈ Hor(Stn,k)X due to Lemma 4.4. Multiplying (4.59) by X
from the right, we get

V = ZX −XV ⊤X = ZX −XAZ , (4.61)

where AZ = V ⊤X ∈ so(k) is some skew-symmetric matrix. Plugging (4.61) into (4.60)
leads to

X⊤MX(ZX −XAZ) = (X⊤Z⊤ −A⊤
ZX

⊤)MXX (4.62)

Using A⊤
Z = −AZ , (4.62) is equivalent to

(X⊤MXX)AZ +AZ(X
⊤MXX) = X⊤MXZX −X⊤Z⊤MXX. (4.63)

By Lemma 4.5, the solution of (4.63) is unique. Moreover, using again Lemma 4.5, AZ =
φ−1
X,MX

(
2 skew(X⊤MXZX)

)
. Plugging AZ into (4.61) yields (4.58) as desired.

Note that for Z ∈ TXX⊤Grn,k, V = ZX −XAZ is indeed an element in TXStn,k. To
verify this, using (4.52), we write Z = [XX⊤,Ω] for some suitable Ω ∈ so(n) implying
X⊤ZX = X⊤(XX⊤Ω− ΩXX⊤)X = 0. Thus we obtain

X⊤V = X⊤(ZX −XAZ) = AZ = −A⊤
Z = V ⊤X (4.64)

showing V ∈ TXStn,k. In addition, it is straightforward to verify that V satisfies in-
deed (4.59) and (4.60). This yields the desired result. �

The inverse of (4.57) satisfies the following equivariance property that will by useful in the
sequel.

Lemma 4.17 Let X ∈ Stn,k, R ∈ O(k) and Z ∈ TXX⊤Grn,k and assume that Stn,k ∋
X 7→MX ∈ SPD(n) satisfies Assumption 4.3, i.e. MX =MXR. Then

(
Dπ(XR)

∣∣
Hor(Stn,k)XR

)−1
(Z) =

((
Dπ(X)

∣∣
Hor(Stn,k)X

)−1
(Z)
)
R (4.65)

holds.
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Proof: We write V =
(
Dπ(XR)

∣∣
Hor(Stn,k)XR

)−1
(Z). By Lemma 4.16, V ∈ Hor(Stn,k)XR

is given by

V = Z(XR)− 2(XR)
(
φ−1
XR,MXR

(
skew((XR)⊤MXZ(XR))

))
. (4.66)

Analogously to the proof of Proposition 4.6, Claim 2, one shows that

φ−1
XR,MXR

(
skew((XR)⊤MXZ(XR)

)
= R⊤

(
φ−1
X,MX

(
skew(X⊤MXZX

))
R. (4.67)

By plugging (4.67) into (4.66), we obtain

V =
(
ZX − 2X

(
φ−1
X,MX

(
skew(X⊤MXZX

)))
R. (4.68)

This yields the desired result. �

4.3.1 A Riemannian Metric

We now define a Riemannian metric on Grn,k such that π : Stn,k → Grn,k becomes a
Riemannian submersion.

Lemma 4.18 Let X ∈ Stn,k and Stn,k ∋ X 7→ MX ∈ SPD(n) be a smooth map sat-

isfying Assumption 4.3. Moreover, let Z1, Z2 ∈ TXX⊤Grn,k and write for i ∈ {1, 2}
AZi = 2φ−1

X,MX

(
skew(X⊤MXZiX)

)
. Using this notation, we define point-wise

〈〈Z1, Z2〉〉
M
XX⊤

= tr
(((

Dπ(X)
∣∣
Hor(Stn,k)X

)−1
(Z1)

)⊤
MX

(
Dπ(X)

∣∣
Hor(Stn,k)X

)−1
(Z2)

))

= tr
((
Z1X −XAZ1

)⊤
MX

(
Z2 −XAZ2

))
.

(4.69)

Then the following assertions are fulfilled:

1. 〈〈·, ·〉〉M ∈ Γ∞
(
S2(T ∗Grn,k)

)
given point-wise by (4.69) is a well-defined Riemannian

metric on Grn,k.

2. If Stn,k is equipped with the metric 〈·, ·〉M and Grn,k is equipped with the metric

〈〈·, ·〉〉M , the map π : Stn,k ∋ X 7→ XX⊤ ∈ Grn,k is a Riemannian submersion.

Proof: Using Lemma 4.17 and Assumption 4.3, one can directly verify that 〈〈·, ·〉〉M is
well-defined. Indeed, let R ∈ O(k). Calculating

〈〈Z1, Z2〉〉
M
(XR)(XR)⊤

= tr
(((

Dπ(XR)
∣∣
Hor(Stn,k)XR

)−1
(Z1)

)⊤
MXR

(
Dπ(XR)

∣∣
Hor(Stn,k)XR

)−1
(Z2)

))

(4.65)
= tr

(
R⊤
(((

Dπ(X)
∣∣
Hor(Stn,k)X

)−1
(Z1)

)⊤
MX

((
Dπ(X)

∣∣
Hor(Stn,k)X

)−1
(Z2)

)
R
)

= 〈〈Z1, Z2〉〉XX⊤

(4.70)

shows that 〈〈·, ·〉〉M is well-defined. Hence 〈〈·, ·〉〉M ∈ Γ∞
(
S2(T ∗Grn,k)

)
holds and 〈〈·, ·〉〉M is

positive definite by construction. This proves Claim 1.
Now, Claim 2 is an immediate consequence of the definition of 〈〈·, ·〉〉M . �
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Next we relate Grn,k equipped with 〈〈·, ·〉〉M to Stn,k/O(k) equipped with 〈̃·, ·〉M .

Lemma 4.19 The map φ : Stn,k/O(k) ∋ pr(X) 7→ XX⊤ ∈ Grn,k from (4.56) is a diffeo-

morphism. Moreover, it is an isometry if Grn,k is equipped with 〈〈·, ·〉〉M and Stn,k/O(k) is

endowed with 〈̃·, ·〉M .

Proof: We first prove that φ : Stn,k/O(k) ∋ pr(X) 7→ XX⊤ ∈ Grn,k, is a diffeomor-
phism. To this end, we recall that the diagram (4.55) is commutative, i.e π = φ ◦ pr
holds. This yields that φ is well-defined and hence smooth by [21, Thm. 4.29] since
pr: Stn,k → Stn,k/O(k) is a surjective submersion and π : Stn,k → Grn,k is smooth. More-
over, φ is clearly bijective. Exploiting again π = φ ◦ pr, we obtain for X ∈ Stn,k by the
chain-rule

Dφ(pr(X)) ◦Dpr(X) = Dπ(X). (4.71)

Restricting (4.71) to Hor(Stn,k)X given by Lemma 4.4, we conclude

Dφ(pr(X)) = Dπ(X)
∣∣
Hor(Stn,k)

◦
(
Dpr(X)

∣∣
Hor(Stn,k)

)−1
. (4.72)

Hence, the linear map Dφ(pr(X)) is a linear isomorphism because it is a composition of
linear isomorphisms. Thus φ : Stn,k/O(k) → Grn,k is local diffeomorphism around each
pr(X) ∈ Stn,k/O(k). Since, in addition, φ is bijective, φ is in fact a diffeomorphism.

It remains to show that φ is even an isometry. Indeed, exploiting that pr: Stn,k →
Stn,k/O(k) and π : Stn,k → Grn,k are Riemannian submersions, the linear map Dφ(pr(X))
is not only a linear isomorphism but even a linear isometry because it is a composition of
linear isometries by (4.72). This yields the desired result. �

4.3.2 Riemannian Gradients and Riemannian Hessians

We now derive formulas for gradients and Hessians of smooth functions on Grn,k with
respect to the metric 〈〈·, ·〉〉M . To this end, we apply Lemma 4.11 as well as Lemma 4.12
to the Riemannian submersion π : Stn,k → Grn,k, where Stn,k and Grn,k are equipped with
〈·, ·〉M and 〈〈·, ·〉〉M , respectively. Before that, we state the following auxiliary result.

Lemma 4.20 Let g : Grn,k → ❘ be smooth and let G : U → ❘ be some smooth extension

of g to an open subset U ⊆ ❘n×n
sym containing Grn,k whose gradient at P ∈ U with respect to

the Frobenius scalar product is denoted by ∇G(P ), as usual. Moreover, define π : ❘n×k ∋
X 7→ XX⊤ ∈ ❘n×n

sym and set U = π−1(U). Then

F : U → ❘, X 7→ (G ◦ π)(X) = G(XX⊤) (4.73)

is a smooth extension of the pull-back f = π∗g = g ◦ π : Stn,k → ❘ to the open subset

U ⊆ ❘n×k containing Stn,k. The gradient of F at X ∈ U with respect to the Frobenius

scalar product reads as

∇F (X) = 2∇G(XX⊤)X. (4.74)

Proof: Obviously, π : ❘n×k ∋ X 7→ XX⊤ ∈ ❘
n×n
sym is a smooth, and, in particular,

continuous map. Thus U = π−1(U) ⊆ ❘n×k is an open subset of ❘n×k being the preimage
of the open U ⊆ ❘n×n

sym under the continuous map π. In addition, π
∣∣
Stn,k

= π is clearly

satisfied. Thus F = G ◦ π : U → ❘ is a smooth extension of f = π∗g = g ◦ π : Stn,k → ❘.
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Next, we compute the tangent map of F at X ∈ U evaluated at V ∈ TXU ∼= ❘n×k. It is
given by

DF (X)V = DG(π(X)) ◦Dπ(X)V

= tr
((

∇G(XX⊤)
)⊤(

V X⊤ +XV ⊤
))

= 2 tr
((

∇G(XX⊤)X
)⊤
V
)
,

(4.75)

where we exploited ∇G(XX⊤) =
(
∇G(XX⊤)

)⊤
to obtain the last equality. Consequently,

the gradient of F at X ∈ U with respect to the Frobenius scalar product is given by (4.74)
as desired. �

After this preparation, we are in the position to determine the gradient of a smooth
g : Grn,k → ❘ with respect to 〈〈·, ·〉〉M . To this end, Lemma 4.11 is used in the situa-
tion E = Stn,k with metric 〈·, ·〉M and N = Grn,k with metric 〈〈·, ·〉〉M . Combined with
Lemma 4.20, this leads to the following proposition.

Proposition 4.21 Let g : Grn,k → ❘ be smooth and let G : U → ❘ be some smooth exten-

sion to an open U ⊆ ❘n×n
sym . Moreover, let X ∈ Stn,k and denote by PX : ❘n×k → TXStn,k

the orthogonal projection with respect to 〈·, ·〉M from Lemma 3.5. Then, the gradient of

π∗g = g ◦ π : Stn,k → ❘ at X ∈ Stn,k with respect to 〈·, ·〉M reads as

grad(π∗g)(X) = 2PX

(
M−1

X ∇G(XX⊤)X
)

(4.76)

and the gradient of g with respect to 〈〈·, ·〉〉M at XX⊤ ∈ Grn,k is given by

grad g(XX⊤)

= 2
((
PX

(
M−1

X ∇G(XX⊤)X
))
X⊤ +X

(
PX

(
M−1

X ∇G(XX⊤)X
))⊤)

.
(4.77)

Proof: As in Lemma 4.20, consider the smooth map π : ❘n×k ∋ X 7→ XX⊤ ∈ ❘n×n
sym .

Then F = G ◦ π : U → ❘ is a smooth extension of f = π∗g to the open subset U =
π−1(U) ⊆ ❘

n×k whose gradient at X ∈ U reads as ∇F (X) = 2∇G(XX⊤)X. Because
π : Stn,k → Grn,k is a Riemannian submersion, according to Lemma 4.11, the gradient of
g at XX⊤ ∈ Grn,k is given by

grad g(XX⊤) = grad g(π(X))
(4.42)
= Dπ(X) grad(π∗g)(X) = Dπ(X) grad f(X). (4.78)

Next, using ∇F (X) = 2∇G(XX⊤)X and Lemma 3.6, we obtain for the gradient of f =
π∗g : Stn,k → ❘

grad f(X) = PX

(
M−1

X ∇F (X)
)
= 2PX

(
M−1

X ∇G(XX⊤)X
)
, (4.79)

showing (4.76). Plugging (4.79) into (4.78) and using the formula for Dπ(X) from (4.54)
yields (4.77) as desired. �

Next, we derive a formula for the Riemannian Hessian of g : Grn,k → ❘ with respect
to 〈〈·, ·〉〉M by using Lemma 4.20 and Theorem 3.9. In addition, Lemma 4.12 is applied, as
well, where E = Stn,k is equipped with 〈·, ·〉M and N = Grn,k is endowed with 〈〈·, ·〉〉M .
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Proposition 4.22 Let g : Grn,k → ❘ be smooth and let G : U → ❘ be some smooth

extension to an open subset U ⊆ ❘
n×n
sym containing Grn,k. Moreover, let X ∈ Stn,k and

PX : ❘n×k → TXStn,k be the orthogonal projection with respect to 〈·, ·〉M from Lemma 3.5.

Then, the Riemannian Hessian of g with respect to 〈〈·, ·〉〉M at XX⊤ ∈ Grn,k evaluated at

Z ∈ TXX⊤Grn,k reads as

Hess(g)
∣∣
XX⊤(Z) = Dπ(X) ◦Hess(π∗g)

∣∣
X
◦
(
Dπ
∣∣
Hor(Stn,k)X

)−1
(Z), (4.80)

where
(
Dπ
∣∣
Hor(Stn,k)X

)−1
: TXX⊤Grn,k → Hor(Stn,k)X is given explicitly by Lemma 4.16.

Moreover, Hess(π∗g)
∣∣
X
: TXStn,k → TXStn,k is the Riemannian Hessian with respect to

〈·, ·〉M of the pull-back π∗g = g ◦ π : Stn,k → ❘ which is given by

Hess(π∗g)
∣∣
X
(V )

= 2PX

(
M−1

X

(
D(∇G)(XX⊤)(V −XX⊤V ) +∇G(XX⊤)V

)

−M−1
X

(
DM(X)V

)
M−1

X ∇G(XX⊤)X

)

+ PX

((
M−1

X

(
DM(X)V

)
M−1

X X −M−1
X V

)(
2X⊤∇G(XX⊤)X −X⊤MX grad(π∗g)(X)

))

+ PX

(
ΓX(V, grad(π∗g)(X))

)

(4.81)

where grad(π∗g)(X) is given by (4.76) from Proposition 4.21 and ΓX(V, grad(π∗f)(X)) is

given by (3.28).

Proof: Because of π(X) = XX⊤, the Riemannian Hessian of g satisfies by Lemma 4.12,

(
Dπ(X)

∣∣
Hor(Stn,k)X

)−1
(
Hess(g)

∣∣
XX⊤(Z)

)

= P
hor
X

(
Hess(π∗g)

∣∣
X

((
Dπ(X)

∣∣
Hor(Stn,k)X

)−1
(Z)
)
.

(4.82)

Using Dπ(X)V = Dπ(X)
(
PX(V ) + P

hor
X (V )

)
= Dπ(X)Phor

X (V ) because of imPX =
ker(Dπ(X)), applying Dπ(X) to both sides of (4.82) yields

Hess(g)
∣∣
XX⊤(Z) = Dπ(X)

(
Hess(π∗g)

∣∣
X

((
Dπ(X)

∣∣
Hor(Stn,k)X

)−1
(Z)
))

(4.83)

showing (4.80). It remains to prove (4.81). To this end, we rely on Lemma 4.20. Define
again π : ❘n×k ∋ X 7→ XX⊤ ∈ ❘n×n

sym . Then F = G ◦ π : U → ❘ is a smooth extension of

f = π∗g to the open subset U = π−1(U) ⊆ ❘n×k. Moreover, the gradient of F at X ∈ U
with respect to the Frobenius scalar product reads as

∇F (X) = 2∇G(XX⊤)X = 2∇G(π(X))X (4.84)

according to Lemma 4.20. Using the chain-rule, we obtain for the tangent map of (4.84)
at X ∈ Stn,k evaluated at V ∈ TXStn,k

D(∇F (X))V = 2
(
D(∇G)(XX⊤)(V X⊤ +XV ⊤)

)
X + 2∇G(XX⊤)V

= 2
(
D(∇G)(XX⊤)(V −XX⊤V ) +∇G(XX⊤)V

)
.

(4.85)

Plugging (4.84) and (4.85) into (3.32) from Theorem 3.9 yields the desired result. �
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5 An Application to Optimization

In this section, we illustrate an application of the submersion metric on Stn,k/O(k) inves-
tigated in Section 4 in the context of Riemannian optimization. To be more precise, we
consider the so-called generalized Rayleigh quotient associated with a symmetric matrix
A ∈ ❘n×n

sym , defined in (5.1) below. This cost induces a smooth function on the Grassmann
manifold whose critical points are closely related to invariant subspaces of A. Indeed, as
already pointed out in the introduction, some of the algorithms for computing invariant
subspaces of a symmetric matrix that have been developed rely on optimizing the general-
ized Rayleigh quotient on the Grassmann manifold by means of a Riemannian optimization
method. An important ingredient for such a method is the choice of a Riemannian met-
ric which, in general, influences its performance. This fact gives rise to the notion of
Riemannian preconditioning, see e.g [24,29].

In the remainder of this section, we consider Riemannian submersion metrics on the
quotient manifold Stn,k/O(k) from Section 4 adapted to the generalized Rayleigh quotient.
Based on the analysis of the Hessian at a critical point in Section 5.1 and using heuristic
arguments, we propose a construction of a submersion metric that yields a Riemannian
preconditioning scheme for the generalized Rayleigh quotient. Afterwards, this metric is
used when a geometric conjugate gradient (CG) algorithm is adapted from [1, Alg. 13] to
minimize the generalized Rayleigh quotient.

5.1 The Generalized Rayleigh Quotient

Let A = A⊤ ∈ ❘n×n. For simplicity, we assume in addition that A is positive definite.
The generalized Rayleigh quotient, see e.g. [15, Sec. 1.3], is defined by

f : Stn,k → ❘, X 7→ 1
2 tr

(
X⊤AX

)
, (5.1)

where the factor 1
2 is introduced for convenience. Obviously, the map

F : ❘n×k → ❘, X 7→ 1
2 tr(X

⊤AX). (5.2)

is a smooth extension of (5.1). Clearly, one has

∇F (X) = AX and D(∇F )(X)V = AV (5.3)

By Corollary 3.8 combined with (5.3), the gradient of the generalized Rayleigh quotient
at X ∈ Stn,k with respect to the Euclidean metric is given by the well-known formula
grad f(X) = AX −XX⊤AX. Consequently, X∗ ∈ Stn,k is a critical point of (5.1) iff

AX∗ = X∗(X
⊤
∗ AX∗) (5.4)

is satisfied. In particular, X∗ spans an invariant subspace of A. Furthermore, see e.g. [21,
Thm. 4.29] or [1, Prop. 3.4.5], by the invariance f

(
X ⊳ R

)
= f(XR) = f(X), where

⊳ : Stn,k × O(k) → Stn,k is given by (4.1), the generalized Rayleigh quotient induces the
smooth map

f̌ : Stn,k/O(k) → ❘, pr(X) 7→ tr(X⊤AX), (5.5)

where pr(X) ∈ Stn,k/O(k) is represented by X ∈ Stn,k. In particular, f = f̌ ◦pr is satisfied.
Using the formulas listed above, an explicit expression for the Riemannian gradient

and Riemannian Hessian of the generalized Rayleigh quotient (5.1) with respect to 〈·, ·〉M

can be obtained by using the results of Section 3.3. In addition, relying on Section 4.2.2,

the Riemannian Hessian of f̌ defined in (5.5) with respect to 〈̃·, ·〉M can be expressed in
terms of horizontal lifts on Stn,k.
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5.2 The Hessian of the Generalized Rayleigh Quotient at a Critical Point

By [1, Thm. 4.5.6], the speed of local linear convergence of the accelerated line search
algorithm [1, Alg. 1] to a non-degenerated local minimum depends on the condition number
of the Riemannian Hessian of the cost at the local minimum. Moreover, in the context of
Riemannian preconditioning, see e.g. [24, 25, 29], one tries to select a Riemannian metric
such that the Riemannian Hessian of the cost at a critical point is well-conditioned.

Motivated by that fact, we now consider an estimate for the minimal and maximal eigen-
value of Hess(f̌)

∣∣
pr(X∗)

. They are denoted by λmin

(
Hess(f̌)

∣∣
pr(X∗)

)
and λmax

(
Hess(f̌)

∣∣
pr(X∗)

)
,

respectively. Similarly, the minimal and maximal eigenvalue of a symmetric matrix B =
B⊤ ∈ ❘n×n

sym are denoted by λmin(B) and λmax(B), respectively. Using this notation, we
obtain the following proposition whose proof generalizes ideas from [25, Thm. 6.1].

Proposition 5.1 Let Stn,k/O(k) be endowed with the Riemannian metric 〈̃·, ·〉M defined

by an arbitrary smooth map Stn,k ∋ X 7→ MX ∈ SPD(n) fulfilling MXR = MX for all

X ∈ Stn,k and R ∈ O(k). Let pr(X∗) ∈ Stn,k/O(k) be a critical point of (5.5) represented

by X∗ ∈ Stn,k, i.e. AX∗ = X∗(X
⊤
∗ AX∗). Then,

λmin

(
Hess(f̌)

∣∣
pr(X∗)

)
≥ λmin

(
(Ik ⊗M

−1/2
X∗

)
(
Ik ⊗A− (X⊤

∗ AX∗)⊗ In
)
(Ik ⊗M

−1/2
X∗

)
)

(5.6)

and

λmax

(
Hess(f̌)

∣∣
pr(X∗)

)
≤ λmax

(
(Ik⊗M

−1/2
X∗

)
(
Ik⊗A− (X⊤

∗ AX∗)⊗ In
)
(Ik⊗M

−1/2
X∗

)
)

(5.7)

is satisfied, where ⊗ denotes the Kronecker product.

Proof: Let V ∈ Hor
(
Stn,k

)
X∗

. Since pr(X∗) ∈ Stn,k/O(k) is a critical point of f̌ , X∗ ∈
Stn,k is a critical point of f . Thus we obtain, by using (5.3) and Corollary 4.15,

Hess(f̌)
∣∣
pr(X∗)

(Dpr(X∗)V ) = P
hor
X∗

(
PX∗

(
M−1

X∗
AV −M−1

X∗
V (X⊤

∗ AX∗)
))
. (5.8)

Since Hess(f̌)
∣∣
pr(X∗)

is self-adjoint with respect to 〈̃·, ·〉Mpr(X∗)
, we compute λmin

(
Hess(f̌)

∣∣
pr(X∗)

)

by minimizing the associated Rayleigh quotient, i.e.

λmin

(
Hess(f̌)

∣∣
pr(X∗)

)
= min

V̌ ∈Tpr(X∗)Grn,k

˜〈
V̌ ,Hess(f̌)

∣∣
pr(X∗)

(V̌ )
〉M
pr(X∗)

˜〈V̌ ,V̌ 〉Mpr(X∗)

= min
V̌ ∈Tpr(X∗)Grn,k

〈
V̌
∣∣
X∗

,Hess(f̌)
∣∣
pr(X∗)

(Dpr(X∗)V̌
∣∣
X∗

)
∣∣
X∗

〉M
X∗〈

V̌
∣∣
X∗

,V̌
∣∣
X∗

〉M
X∗

,

(5.9)

where the second equality holds since Dpr(X∗)
∣∣
Hor(Stn,k)X∗

: Hor(Stn,k)X∗
→ Tpr(X∗)(Stn,k/O(k))

is an isometry. Using 〈
V,Phor

X∗

(
PX∗

(W )
)〉M

X∗
=
〈
V,W

〉M
X∗
, (5.10)

for all V ∈ Hor(Stn,k)X∗
and W ∈ TX∗

❘
n×k ∼= ❘n×k, as well as Dpr(X∗)(Hor(Stn,k)X∗

) =
Tpr(X∗)(Stn,k/O(k)), we obtain by plugging (5.8) into (5.9)

λmin

(
Hess(f̌)

∣∣
pr(X∗)

)
= min

0 6=V ∈Hor(Stn,k)X∗

tr
(
V ⊤MX∗

(
M−1

X∗
AV−M−1

X∗
V (X⊤

∗ AX∗)
))

tr(V ⊤MX∗
V )

= min
0 6=V ∈Hor(Stn,k)X∗

tr
(
V ⊤

(
AV−V (X⊤

∗ AX∗)
))

tr(V ⊤MX∗
V )

.

(5.11)
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To simplify (5.11), we use the so-called vec operator

vec : ❘n×k → ❘
nk, (5.12)

see e.g. [4, Sec. 7.1]. Moreover, using properties of the Kronecker product, see e.g. [4,
Sec. 7.1], we obtain

vec(AV ) = vec(AV Ik) = (I⊤k ⊗ A)vec(V ) = (Ik ⊗ A)vec(V ) (5.13)

and
vec(V (X⊤

∗ AX∗)) = vec(InV (X⊤
∗ AX∗)) = ((X⊤

∗ AX∗)⊗ In)vec(V ) (5.14)

as well as
vec(MX∗

V ) = vec(MX∗
V Ik) = (Ik ⊗MX∗

)vec(V ). (5.15)

Using tr(V ⊤W ) = vec(V )⊤vec(W ) for all V,W ∈ ❘
n×k and plugging (5.13), (5.14),

and (5.15) into (5.11) yields

λmin

(
Hess(f̌)

∣∣
pr(X∗)

)
= min

0 6=V ∈Hor(Stn,k)X∗

vec(V )⊤vec
(
AV−V (X⊤

∗ AX∗)
)

vec(V )⊤vec(MX∗
V )

= min
0 6=V ∈Hor(Stn,k)X∗

vec(V )⊤
(
Ik⊗A−(X⊤

∗ AX∗)⊗In
)
vec(V )

vec(V )⊤(Ik⊗MX∗
)vec(V )

≥ min
0 6=V ∈❘n×k

vec(V )⊤
(
Ik⊗A−(X⊤

∗ AX∗)⊗In
)
vec(V )

vec(V )⊤(Ik⊗MX∗
)vec(V )

v=vec(V )
= min

0 6=v∈❘nk

v⊤
(
Ik⊗A−(X⊤

∗ AX∗)⊗In
)
v)

v⊤(Ik⊗MX∗
)v

= min
0 6=v∈❘nk

v⊤(Ik⊗MX∗
)−1/2

(
Ik⊗A−(X⊤

∗ AX∗)⊗In)
)
(Ik⊗MX∗

)−1/2v

v⊤v

= λmin

(
(Ik ⊗M

−1/2
X∗

)
(
Ik ⊗ A− (X⊤

∗ AX∗)⊗ In
)
(Ik ⊗M

−1/2
X∗

)
)

(5.16)

showing (5.6). An analogous argument shows

λmax

(
Hess(f̌)

∣∣
pr(X∗)

)
= max

0 6=V ∈Hor(Stn,k)X∗

〈
V,Hess(f̌)

∣∣
pr(X∗)

(Dpr(X∗)V )
∣∣
X∗

〉M
X∗

〈V,V 〉MX∗

≤ λmax

(
(Ik ⊗M

−1/2
X∗

)
(
Ik ⊗ A− (X⊤

∗ AX∗)⊗ In
)
(Ik ⊗M

−1/2
X∗

)
)

(5.17)

as desired. �

If pr(X∗) is a local non-degenerated minimum of f̌ , we can also estimate the condition
number of Hess(f̌)

∣∣
pr(X∗)

which is denoted by κ
(
Hess(f̌)

∣∣
pr(X∗)

)
and defined as

κ
(
Hess(f̌)

∣∣
pr(X∗)

)
=

∣∣λmax

(
Hess(f̌)

∣∣
pr(X∗)

)∣∣
∣∣λmin

(
Hess(f̌)

∣∣
pr(X∗)

)∣∣ . (5.18)

In the sequel, the condition number of a symmetric invertible matrix B ∈ ❘
nk×nk is

denoted by κ(B), as well.
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Corollary 5.2 Let pr(X∗) ∈ Stn,k/O(k) be a local non-degenerated minimum of the gen-

eralized Rayleigh quotient f̌ . Then

κ
(
Hess(f̌)

∣∣
pr(X∗)

)
≥ κ

(
(Ik ⊗M

−1/2
X∗

)
(
Ik ⊗ A− (X⊤

∗ AX∗)⊗ In
)
(Ik ⊗M

−1/2
X∗

)
)

(5.19)

is satisfied.

Proof: Because pr(X∗) is a non-degenerated local minimum of f̌ , all eigenvalues of
Hess(f̌)

∣∣
pr(X∗)

are positive. Thus, by using the estimates from Proposition 5.1, we ob-

tain

κ
(
Hess(f̌)

∣∣
pr(X∗)

)
=

∣∣λmax

(
Hess(f̌)

∣∣
pr(X∗)

)∣∣
∣∣λmin

(
Hess(f̌)

∣∣
pr(X∗)

)∣∣

≥

∣∣λmax

(
(Ik⊗M

−1/2
X∗

)
(
Ik⊗A−(X⊤

∗ AX∗)⊗In
)
(Ik⊗M

−1/2
X∗

)
)∣∣∣∣λmin

(
(Ik⊗M

−1/2
X∗

)
(
Ik⊗A−(X⊤

∗ AX∗)⊗In
)
(Ik⊗M

−1/2
X∗

)
)∣∣

= κ
(
(Ik ⊗M

−1/2
X∗

)
(
Ik ⊗ A− (X⊤

∗ AX∗)⊗ In
)
(Ik ⊗M

−1/2
X∗

)
)

(5.20)

as desired. �

5.3 A Specific Riemannian Submersion Metric

Based on Corollary 5.2, we now construct of a metric adapted to the generalized Rayleigh
quotient which is strongly motivated by the preconditioning scheme proposed in [25, Sec. 6].
Inspired by this reference, our aim is to define the Riemannian metric 〈·, ·〉M such that,
heuristically, MX∗

fulfills

(Ik ⊗M
−1/2
X∗

)
(
Ik ⊗ A− (X⊤

∗ AX∗)⊗ In
)
(Ik ⊗M

−1/2
X∗

) ≈ Ink (5.21)

approximately. In fact, if (5.21) was satisfied exactly, we would obtain κ
(
Hess(f)

∣∣
pr(X∗)

)
=

1 by Corollary 5.2. However, in general, we cannot expect to find some MX∗
∈ SPD(n)

such that (5.21) is satisfied. Hence we propose the following heuristic construction. Clearly,
if (5.21) was an equality, it would be equivalent to

Ik ⊗ A− (X⊤
∗ AX∗)⊗ In = Ik ⊗MX∗

. (5.22)

In case that a solution of (5.22) does not exist, we consider the associated least-square
problem.

Lemma 5.3 Using the notation introduced above, and writing M = MX∗
for short, the

unique solution of the optimization problem

min
M∈❘n×n

sym

∥∥Ik ⊗M −
(
Ik ⊗ A− (X⊤

∗ AX∗)⊗ In
)∥∥2

F
(5.23)

is given by

M∗ = A− 1
k tr(X

⊤
∗ AX∗)In. (5.24)

Proof: Set B = Ik ⊗ A− (X⊤
∗ AX∗)⊗ In and define ℓ : ❘n×n

sym → ❘ by

ℓ(M) = ‖Ik ⊗M −B‖2F = tr
(
Ik ⊗ (M2)− 2(Ik ⊗M)B +B2

)
, (5.25)
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where we exploited that M and B are both symmetric. The tangent map of ℓ at M ∈ ❘n×n
sym

evaluated at V ∈ TM❘
n×n
sym

∼= ❘n×n
sym is given by

D ℓ(M)V = tr
(
Ik ⊗ (2MV )− 2(Ik ⊗ V )B

)

= tr
(
Ik ⊗ (2MV )− 2 tr

((
Ik ⊗ A− (X⊤

∗ AX∗)⊗ In
)
(Ik ⊗ V )

))

= 2 tr(Ik) tr(MV )− 2 tr(Ik) tr(AV ) + 2 tr(X⊤
∗ AX∗) tr(InV )

= 2 tr
((
kM − kA+ tr(X⊤

∗ AX∗)In
)
V
)
,

(5.26)

where we exploited well-known properties of the Kronecker product, see e.g. [4, Sec. 7.1].
Because of (5.26), the gradient of ℓ with respect to the Frobenius scalar product is given
by

∇ℓ(M) = 2
(
kM − kA+ tr(X⊤

∗ AX∗)In
)
, M ∈ ❘n×n

sym . (5.27)

In particular, M∗ ∈ ❘
n×n
sym is a critical point of ℓ iff ∇ℓ(M∗) = 0, i.e. M∗ given by (5.24) is

a critical point of ℓ. It remains to show that M∗ is the unique minimum of ℓ. To this end,
compute for V,W ∈ ❘n×n

sym the second derivative of ℓ at M ∈ ❘n×n
sym . We have

D2 ℓ(M)(V,W ) = d
dt D ℓ(M + tW )V

∣∣
t=0

(5.26)
= 2 tr

((
kWV

))
= 2k tr

(
V ⊤W

)
. (5.28)

Hence M∗ ∈ ❘
n×n
sym given by (5.24) is indeed the unique solution of the minimization

problem because the map D2 ℓ(M) ∈ S2
(
(❘n×n

sym )∗
)

is positive definite for all M ∈ ❘n×n
sym

by (5.28). �

Inspired by [25, Sec. 6] and using Lemma 5.3, our aim is now to construct a metric

〈̃·, ·〉M ∈ Γ∞
(
S2(T ∗(Stn,k/O(k)))

)
by defining a map Stn,k ∋ X 7→ MX ∈ SPD(n) sat-

isfying Assumption 4.3 such that MX∗
≈ A− 1

k tr(X
⊤
∗ AX∗)In holds at a non-degenerated

local minimum pr(X∗) ∈ Stn,k/O(k) represented by X∗ ∈ Stn,k. As in [25, Sec. 6], let

M̂ ∈ ❘n×n
sym be some symmetric matrix approximating A, see Remark 5.5, Item 1 below for

some specific choices, and define

Stn,k → SPD(n), X 7→MX = M̂ − χ
(
1
k tr(X

⊤AX)
)
In, (5.29)

where χ : ❘ → ❘ is a smooth map which fulfills χ(x) < λmin(M̂) for all x ∈ ❘ and

approximates the map x 7→ min
(
x, λmin(M̂)

)
smoothly. A specific construction for such a

map χ is given in Remark 5.5, Item 2 below.
The next lemma shows that the construction proposed above leads indeed to a well-

defined metric on Stn,k/O(k).

Lemma 5.4 Let M̂ ∈ ❘n×n
sym be some symmetric matrix and let χ : ❘ → ❘ be a smooth

function fulfilling χ(x) < λmin(M̂) for all x ∈ ❘. Then, Stn,k ∋ X 7→MX ∈ SPD(n) given

by (5.29) is well-defined and smooth. Moreover, it satisfies Assumption 4.3. In particular,

it defines the submersion metric 〈̃·, ·〉M ∈ Γ∞
(
S2(T ∗(Stn,k/O(k)))

)
on Stn,k/O(k).

Proof: Obviously, (5.29) yields a smooth map Stn,k → ❘
n×n
sym . Moreover, by the assump-

tion χ(x) < λmin(M̂) for all x ∈ ❘, we obtain for each X ∈ Stn,k

λmin(MX) = λmin(M̂)− χ
(
1
k tr(X

⊤AX)
)
> 0 (5.30)

proving that MX ∈ SPD(n). Moreover, let R ∈ O(k). Then, the invariance property

follows by MXR = M̂ − χ
(
1
k tr((XR)

⊤A(XR))
)
In = M̂ − χ

(
1
k tr(X

⊤AX)
)
In = MX as

desired. �
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As Lemma 5.4 reveals, the map (5.29) yields a well-defined metric on Stn,k/O(k). The next

remark comments on some specific choices for M̂ and χ involved in the definition of (5.29).

Remark 5.5 1. By Lemma 5.4, in principle, M̂ can be an arbitrary symmetric matrix.
However, in view of the discussion prior to (5.29), we propose to construct M̂ ∈ ❘n×n

sym

by using some preconditioning scheme for A, see e.g. [31], such that for all a ∈ ❘

with a < λmin(M) and B ∈ ❘n×k, matrix products of the form (M̂ + aIn)
−1B and

(M̂ + aIn)B can be computed efficiently.

2. We define χ = χ
λ
: ❘ → ❘ motivated by the generalized soft-plus function, see [32,

Eq. (1)]. For a fixed λ = λmin(M̂)− ǫ ∈ ❘, and some s > 0 and ǫ ≥ 0, we set

χ
λ
: ❘→ ❘, x 7→ χ

λ
(x) = −1

s log(1 + e−sx) + λ. (5.31)

In particular, because of ex > 0 for all x ∈ ❘ and log(1 + x) > 0 for all x > 0,

the inequality χ
λ
(x) < λ = λmin(M̂) − ǫ ≤ λmin(M̂) is satisfied for all x ∈ ❘, i.e.

λmin(M̂)− χ
λ
(x) > ǫ ≥ 0.

Remark 5.6 In principle, Corollary 5.2 can be used to estimate the condition number
of the Riemannian Hessian of the generalized Rayleigh quotient with respect to the met-

ric 〈̃·, ·〉M on Stn,k/O(k) associated to (5.29). However, a detailed investigation in this
direction is out of the scope of this paper.

5.4 A Geometric Conjugate Gradient Algorithm

In this section, we apply the geometric CG method from [1, Alg. 13] to the generalized
Rayleigh quotient f : Stn,k ∋ X 7→ 1

2 tr(X
⊤AX) ∈ ❘ such that a geometric CG method on

Stn,k/O(k) for minimizing f̌ : Stn,k/O(k) → ❘ is induced. Here, the Riemannian metric
〈·, ·〉M on Stn,k is defined via the smooth map Stn,k ∋ X 7→ MX ∈ SPD(n) from (5.29),
where χ = χ

λ
: ❘→ ❘ is given by Remark 5.5, Item 2. Moreover, we consider the following

choices for M̂ :

1. M̂ = A;

2. M̂ = diag(A) (known as Jaccobi preconditioning of A, see e.g. [31, Sec. 3.1]).

In addition, we consider the metric induced by the Euclidean metric on Stn,k which is given
by 〈·, ·〉M when MX = In for all X ∈ Stn,k. Note that these choices of 〈·, ·〉M on Stn,k

induce the submersion metrics 〈̃·, ·〉M on Stn,k/O(k). In the sequel, we consider specific
differential geometric quantities required to apply [1, Alg. 13] to Stn,k/O(k) endowed with

the metric 〈̃·, ·〉M . In more detail, a specific retraction and a specific vector transport on
Stn,k are studied which induce a retraction and a vector transport on Stn,k/O(k) considered
as a Riemannian quotient manifold of (Stn,k, 〈·, ·〉

M ).

Remark 5.7 We point out that the main focus of this subsection is on providing the dif-

ferential geometric ingredients required for a geometric CG method on (Stn,k/O(k), 〈̃·, ·〉M ).
Our specific choices lead to Algorithm 1 below. Studying the convergence properties of
Algorithm 1 is out of the scope of this text. Nevertheless, a numerical experiment is
performed in Section 5.4.5.
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5.4.1 Retractions and Vector Transport

To perform a geometric CG algorithm as proposed in [1, Alg. 13], a retraction as well as
an associated vector transport has to be chosen. These choices are specified in the sequel.
For the retraction, we use

R: TStn,k → Stn,k, (X,V ) 7→ (X + V )(Ik + V ⊤V )−1/2 (5.32)

based on the polar decomposition, see e.g. [1, Ex. 4.1.3]. A calculation, see also [6, Eq.(9.9)],
shows that for X ∈ Stn,k, V ∈ TXStn,k and R ∈ O(k)

RXR(V R) = (X + V )R
(
R⊤(Ik + V ⊤V )−1/2R

)
=
(
RX(V )

)
R (5.33)

is satisfied. This property leads to the following lemma.

Lemma 5.8 The map

Ř : T (Stn,k/O(k)) → Stn,k/O(k) (5.34)

defined for pr(X) ∈ Stn,k/O(k) represented by X ∈ Stn,k and V̌ ∈ Tpr(X)Stn,k/O(k) by

Řpr(X)(V̌ ) = pr
(
RX

(
V̌
∣∣
X

))
(5.35)

is a well-defined retraction on Stn,k/O(k).

Proof: Lemma 4.9, Claim 3 combined with [6, Thm. 9.32] yields the desired result. �

Next, in Proposition 5.10 below, we construct a vector-transport on Stn,k/O(k) associ-
ated with the retraction Ř : T (Stn,k/O(k)) → Stn,k/O(k) defined in (5.35) whose definition
is inspired by [1, Sec. 8.1.4]. We refer to [1, Sec. 8.1] for the notion of vector transports.
As a preparation, we need the following lemma.

Lemma 5.9 Assume that Stn,k ∋ X 7→MX ∈ SPD(n) defining the metric 〈·, ·〉M on Stn,k
satisfies Assumption 4.3, i.e MXR = MX for all X ∈ Stn,k and R ∈ O(k). Then, for

X ∈ Stn,k, V ∈ ❘n×k and R ∈ O(k), the orthogonal projection from Lemma 3.5 fulfills

PXR(V R) =
(
PX(V )

)
R. (5.36)

Proof: Recall from Lemma 3.5 that PXR : ❘n×k → TXRStn,k evaluated at V R ∈ ❘n×k

is given by

PXR(V R) = V R− 2M−1
XRXR

(
ϕ−1
XR,MXR

(
sym(R⊤X⊤V R)

))
. (5.37)

Exploiting the assumption MXR = MX , one shows analogously to the proof of Proposi-
tion 4.6, Claim 2

ϕ−1
XR,MXR

(
sym(R⊤X⊤V R)

)
= R⊤

(
ϕ−1
X,MX

(
sym(X⊤V )

))
R. (5.38)

Plugging (5.38) into (5.37) yields the desired result. �

Proposition 5.10 Let R: Stn,k → Stn,k be the retraction from (5.32) and define

τ : TStn,k ⊕ TStn,k → Hor(Stn,k)

(VX ,WX) 7→ τ
∣∣
X

(
VX ,WX

)
=
(
P
hor
RX(VX) ◦ PRX(VX)

)
(WX),

(5.39)

where the subscript X in VX ,WX indicates that VX ,WX ∈ TXStn,k. If this is clear from

the context, we write V = VX and W = WX , as usual. Using this notation, the following

assertions are fulfilled:
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1. Let X ∈ Stn,k, V,W ∈ TXStn,k and R ∈ O(k). Then

τ
∣∣
XR

(V R,WR) =
(
τ
∣∣
X
(V,W )

)
R (5.40)

is fulfilled.

2. Define

τ̌ : T (Stn,k/O(k))⊕ T (Stn,k/O(k)) → T (Stn,k/O(k)) (5.41)

point-wise for tangent vectors V̌ , W̌ ∈ Tpr(X)(Stn,k/O(k)) at pr(X) ∈ (Stn,k/O(k))
represented by X ∈ Stn,k via

τ̌
∣∣
pr(X)

(
V̌ , W̌

)
= Dpr(X)τ

∣∣
X

(
V̌
∣∣
X
, W̌
∣∣
X

)
. (5.42)

Then (5.41) is a well-defined vector transport on Stn,k/O(k). Moreover, for V̌ , W̌ ∈
Tpr(X)(Stn,k/O(k)), the horizontal lift of τ̌

(
V̌ , W̌

)
at X ∈ Stn,k is given by

τ̌(V̌ , W̌ )
∣∣
X

=
(
P
hor

RX(V̌
∣∣
X
)
◦ P

RX(V̌
∣∣
X
)

)(
W̌
∣∣
X

)
. (5.43)

Proof: We start with Claim 1. Using (5.33), i.e. RXR(V R) =
(
RX(V )

)
R, we compute

τ
∣∣
XR

(V R,WR) =
(
P
hor
RXR(V R) ◦ PRXR(V R)

)
(WR)

=
(
P
hor
(RX(V ))R

(
P(RX(V ))R(WR)

))

=
(
P
hor
(RX(V ))R

((
P(RX(V ))(W )

)
R
))

=
(
P
hor
(RX(V ))

(
P(RX(V ))(W )

))
R,

(5.44)

where the third equality follows from Lemma 5.9 and the last equality is fulfilled because
of Lemma 4.9, Claim 1.

It remains to prove Claim 2. To prove that τ̌ is well-defined, we compute for X ∈ Stn,k,
R ∈ O(k), and V̌ , W̌ ∈ Tpr(X)(Stn,k/O(k))

τ̌
∣∣
pr(XR)

(
V̌ , W̌

)
= Dpr(XR)τ

∣∣
XR

(
V̌
∣∣
XR

, W̌
∣∣
XR

)

= Dpr(XR)τ
∣∣
XR

(
(V̌
∣∣
X
)R, (W̌

∣∣
X
)R
)

= Dpr(XR)
((
τ
∣∣
X

(
V̌
∣∣
X
, W̌
∣∣
X

))
R
)

= Dpr(X)τ
∣∣
X

(
V̌
∣∣
X
, W̌
∣∣
X

)

= τ̌
∣∣
pr(X)

(
V̌ , W̌

)
,

(5.45)

where the second equality holds by Lemma 4.9, Claim 3 and the third equality relies on
Claim 1. Equation (5.45) shows that τ̌ is indeed well-defined, i.e. independent of X ∈ Stn,k
representing pr(X) ∈ Stn,k/O(k).

Inspired by the proof of [6, Thm. 9.32], we now show that τ̌ is smooth. Let pr(X0) ∈
Stn,k/O(k) and let s : U → Stn,k be a local section of pr: Stn,k → Stn,k/O(k) defined on
some open U ⊆ Stn,k/O(k) with pr(X0) ∈ U . Using pr ◦ s = idU , we obtain for pr(X) ∈ U
and V̌ , V̌ ∈ Tpr(X)U

τ̌
∣∣
pr(X)

(V̌ , W̌ ) = Dpr
(
s(pr(X))

)
τ
∣∣
s(pr(X))

(
V̌
∣∣
s(pr(X))

, W̌
∣∣
s(pr(X))

)
(5.46)
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proving that τ̌ restricted to U is smooth because it is a composition of smooth maps.
Repeating this argument for each pr(X0) ∈ Stn,k/O(k) shows that τ̌ : T (Stn,k/O(k)) ⊕
T (Stn,k/O(k)) → T (Stn,k/O(k)) is in fact a smooth map.

Now, it is straightforward to verify that τ̌ is indeed a vector transport consistent with
the retraction Ř : T (Stn,k/O(k)) → Stn,k/O(k). This yields the desired result. �

5.4.2 The Algorithm

Next, we present Algorithm 1. It is obtained by applying [1, Alg. 13] to the generalized
Rayleigh quotient on Stn,k. The Steps 2a– 2d are explained in more detail below.

Algorithm 1 Geometric CG method applied to the generalized Rayleigh Quotient

Goal: Find a minimizer of f̌ : Stn,k/O(k) → ❘.
Require: Riemannian metric defined by a smooth map Stn,k ∋ X 7→ MX ∈ SPD(n)
fulfilling Assumption 4.3.
Input: Initial point X0 ∈ Stn,k representing pr(X0) ∈ Stn,k/O(k).

1. Set η0 = − grad f(X0).

2. for k = 0, 1, . . . do

(a) Compute a step size αk ∈ ❘ and set Xk+1 = RXk
(αkηk).

(b) Compute βk+1 ∈ ❘ and set

ηk+1 = − grad f(Xk+1) + βk+1P
hor
Xk+1

(
PXk+1

(
ηk
))
. (5.47)

(c) If restart criterion is satisfied: Set ηk+1 = − grad f(Xk+1).

(d) If stopping criterion is satisfied: Break.

3. end for

Output: Iterates {Xk} in Stn,k representing iterates {pr(Xk)} in Stn,k/O(k).

Notation 5.11 From now on, besides the k appearing in Stn,k and O(k), we also denote
by k the index of the iterates of Algorithm 1. However, the meaning of k will always be
clear from the context.

In Algorithm 1, grad f(X) with respect to 〈·, ·〉M is evaluated at X ∈ Stn,k by using
Lemma 3.6. Moreover, Phor

X and PX are evaluated by using Corollary 4.7 and Lemma 3.5,
respectively. Step 2a and Step 2b are detailed in Section 5.4.3 and Section 5.4.4, re-
spectively, below. For the specific choices of Step 2c and Step 2d used in the numerical
experiment, we refer to Section 5.4.5.

5.4.3 Step-Size Computation

Motivated by [18], see also [8,16], the step size αk in Algorithm 1, Step 2a is computed by
a one-dimensional Newton-step. Given the search direction ηk ∈ Hor(Stn,k)k, we set

αk = −
d
dt(f ◦ RXk

)(tηk)
∣∣
t=0∣∣∣ d2dt2

(f ◦ RXk
)(tηk)

∣∣
t=0

∣∣∣
. (5.48)
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Here, the absolute value in the denominator of (5.48) appears to improve the global con-
vergence as in [18, Eq. (31)].

To evaluate (5.48), we rely on an expression for f ◦RXk
(tηk) obtained in [2, Sec. 5.2]. In

more detail, we write X = Xk and η = ηk ∈ TXk
Stn,k for short. Then, following [2, Sec. 5.2

and Sec. 3.2], let
η⊤η = SDβS

⊤ (5.49)

be a diagonalization of η⊤η ∈ ❘k×k
sym with Dβ = diag(β1, . . . , βk) ∈ ❘k×k and S ∈ O(k).

Next, set ηS = ηS and XS = XS. Define the diagonal matrices

Dα = diag(X⊤
S AXS), Dγ = diag(η⊤SAηS), Dζ = diag(η⊤SAXS). (5.50)

Using these definitions, and denoting for i ∈ {1, . . . , k} the diagonal entries by αi = (Dα)ii,
βi = (Dβ)ii, γi = (Dγ)ii, and ζi = (Dζ)ii, respectively, one obtains for t ∈ ❘

(f ◦ RX)(tη) = 1
2 tr

((
Ik + t2Dβ

)−1(
Dα + 2tDζ + t2Dγ

))
= 1

2

k∑

i=1

αi+2ζit+γit
2

1+βit2
(5.51)

very similar to [2, Eq. (5.3) and Eq. (5.5)], see also [2, Eq. (5.6)] for its derivative with
respect to t. Using (5.51), a straightforward computation yields

d
dt(f ◦ RX)(tη)

∣∣
t=0

= tr(Dζ) and d2

dt2
(f ◦ RX)(tη)

∣∣
t=0

= tr(Dγ −DαDβ). (5.52)

Thus, plugging (5.52) into (5.48), the step-size αk in Algorithm 1, Step 2a is computed by

αk = −
tr(Dζ)∣∣ tr

(
Dγ−DαDβ

)∣∣ . (5.53)

Moreover, the retraction from (5.32) needs to be evaluated at αkηk in Algorithm 1, Step 2a.
As in [2, Eq. (5.2)], using the diagonalization of η⊤k ηk = SDβS

⊤ from (5.49), this is done
via the formula

Xk+1 = RXk
(αkηk) = (Xk + αkηk)S

(
Ik + α2

kDβ

)−1/2
S⊤. (5.54)

5.4.4 Computation of βk+1

In Step 2b of Algorithm 1, the value of βk+1 is computed using the Polak-Ribiere formula,
see e.g. [1, Eq. (8.29)]. In our specific case, this leads to

βk+1 =

〈
grad f(Xk+1), grad f(Xk+1)− P

hor
Xk+1

(PXk+1
(grad f(Xk)))

〉M
Xk+1〈

grad f(Xk), grad f(Xk)
〉M
Xk

=
tr
(
grad f(Xk+1)

⊤MXk+1

(
grad f(Xk+1)− grad f(XXk

)
))

tr
(
grad f(Xk)⊤MXk

grad f(Xk)
) ,

(5.55)

where, similar to [2, Sec. 5.1], the second equality follows from the definition of the metric
〈·, ·〉M and exploits that grad f(Xk+1) ∈ Hor(Stn,k)Xk+1

is satisfied.

5.4.5 Numerical Experiments

In this section we present some numerical experiments using GNU Octave, see [9]. The
result of Algorithm 1 for minimizing the generalized Rayleigh quotient with respect to
different Riemannian metrics as defined at the beginning of Section 5.4 above, are shown in
Figure 1. Although our implementation is not optimized, we make the following comments:
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1. Algorithm 1 needs only on multiplication of A by an (n×k)-matrix in each iteration
although both matrices, AXk (for evaluating grad f(Xk)) and Aηk, see (5.50), are
required in each iteration. Indeed, the observation from [2, Eq. (6.3)] can applied to
Algorithm 1, as well. Given AXk, one can compute AXk+1 by using the right-hand
side of the following equation which follows by multiplying (5.54) by A from the left

AXk+1 = (AXk + αkAηk)S
(
Ik + α2

kDβ

)−1/2
S⊤. (5.56)

2. In each iteration, Algorithm 1 needs only two matrix multiplications of M−1
Xk

by an

(n × k)-matrix, namely M−1
Xk
Xk and MXk

(AXk). Indeed, recall that PX : ❘n×k →
TXStn,k from Lemma 3.5 is given by

PX : ❘n×k → TXStn,k, V 7→ V − 2M−1
X X

(
ϕ−1
X,MX

(
sym(X⊤V )

))
(5.57)

and for f : Stn,k ∋7→ 1
2 tr(X

⊤AX) ∈ ❘, the gradient given by Lemma 3.6 reads as

grad f(X) =M−1
X AX − 2M−1

X X
(
ϕ−1
X,MX

(
sym(X⊤M−1

X AX)
))
. (5.58)

By Lemma 3.4, S = ϕ−1
X,MX

(sym(X⊤V )) in (5.57) and S = ϕ−1
X,MX

(sym(X⊤M−1
X AX))

in (5.58) are the unique solutions of (X⊤M−1
X X)S + S(X⊤M−1

X X) = T , where
T = sym(X⊤V ) and T = sym(X⊤M−1

X AX), respectively.

3. Algorithm 1 needs only one matrix multiplication of MX by an (n × k)-matrix
in each iteration. Indeed, using for X ∈ Stn,k and V ∈ TXStn,k the equality
skew(X⊤MXV ) = − skew(V ⊤MXX), the projection onto the horizontal bundle ob-
tained in Corollary 4.7 can be rewritten as

P
hor
X : TXStn,k → Hor(Stn,k)X , V 7→ V + 2X

(
φ−1
X,MX

(
skew(V ⊤MXX)

))
, (5.59)

where A = φ−1
X,MX

(
skew(V ⊤MXX)

)
∈ so(k) is the unique solution of the Sylvester

equation (X⊤MXX)A+A(X⊤MXX) = skew(V ⊤MXX) according to Lemma 4.5.

4. We also point out that the computation of βk detailed in Section 5.4.4 needs no further
multiplication of the matrices A, MX or M−1

X . In fact, slightly rewriting (5.55), we
obtain

βk =
tr
((
MXk+1

grad f(Xk+1)
)⊤(

grad f(Xk+1)− grad f(XXk
)
))

tr
((
MXk

grad f(Xk)
)⊤
M grad f(Xk)

) . (5.60)

Next, by multiplying grad f(Xk) given by (5.58) from the left by MXk
, we obtain

MXk
grad f(Xk) = AXk − 2Xk

(
ϕ−1
Xk,MXk

(
sym(X⊤

k M
−1
Xk
AXk)

))
. (5.61)

Clearly, (5.61) is still satisfied if every index k is replaced by k + 1. Thus, plug-
ging (5.61) into (5.60) proves the claim concerning the computation of βk+1.

After these comments, we now present the results of a numerical experiment, where the
restart criterion, Algorithm 1, Step 2c, is chosen to be satisfied whenever dim(Grn,k) =
n(n − k) divides the number of iterations. Moreover, the function χ

λ
: ❘ → ❘ given in

Remark 5.5, Item 2, is used with the parameters s = 10 and λ = λmin(M̂)−ǫ with ǫ = 10−4.
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Concerning stopping criterion, Algorithm 1, Step 2d, the algorithm is stopped after 350
iterations or before, if ‖ grad f(Xk+1)‖Xk+1

< 10−5 is satisfied, where ‖ · ‖Xk+1
is induced

by the scalar product 〈·, ·〉MXk+1
.
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Figure 1: Distance (left-hand side) to the known solution and Riemannian norm of the
Riemannian gradients (right-hand side) of the iterates produced by Algorithm 1 using
different metrics on St1000,10/O(10). The matrix A ∈ ❘1000×1000 used for the definition
of the generalized Rayleigh quotient is similar to D = diag(1, . . . , 1000) ∈ ❘1000×1000. In
more detail, A = QDQ⊤, where Q is the Q-factor of the QR-decomposition of a randomly
generated matrix.
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