10th European Intensive Course on Complex Analysis  

and applications to partial differential equations

Departamento de Matemática, Universidade de Coimbra, Portugal

  May 31 to June 11 2004

Goal of the Course

This intensive course follows the nine held at the Universities of Coimbra and Aveiro from 1995 to 2003 and there are plans for intensive courses in the following years. The lecture notes of some of the courses have been published in Coimbra and others are in print.

This intensive course will have a total of 40 hours of lectures and is at postgraduate level. Lecturers will have time available to discuss with the students. Successfully participating students will get a certificate. This course is organized by the Universities of Coimbra and Aveiro with the same goals as the ones organized under the Socrates/Erasmus Intensive Program of Higher Education, and is opened to all young mathematicians interested in Complex Analysis and its applications.

There will be a Workshop on "Applications and Generalizations of Complex Analysis" on the 4th and 5th of June 2004. 

In the occasion of the 10th European  Intensive Course on Complex Analysis, this Workshop will be in honor of the coordinators of the Erasmus Galois Network that sponsored this series of Intensive Courses, and the following distinguished Professors for theirs contributions in this series of Intensive Courses, Richard Delanghe (Ghent University, Belgium), Sean Dineen (University College Dublin, Ireland), José Fernandes de Carvalho (Coimbra University, Portugal), Jean de Graaf (University of Eindhoven, Netherlands), Gerhard Jank (RWTH Aachen, Germany), and Francisco Marcellán (Carlos III University, Spain).

First Week

 

May 31

June 01

June 02

June 03

Opening session (Room 2.3)

9h30m-10h

     
Van Assche (Room 2.3)

10h-12h30m

10h-12h30m

10h-12h30m

10h-12h30m

Martínez Finkelshtein (Room 2.4)

14h30m-17h

14h30m-17h

14h30m-17h

14h30m-17h

de Graaf (Room 2.4)

 

 

17h-18h

17h-18h

Second Week

 

June 07

June 08

June 09

June 11

Mackey (Room 2.3)

10h-12h30m

10h-12h30m

10h-12h30m

10h-12h30m

Bernstein (Room 2.3)

14h30m-17h

14h30m-17h

14h30m-17h

14h30m-17h

de Graaf (Room 2.3)

17h-18h

17h-18h

 

 

Abstracts

top

Author: Andrei Martínez Finkelshtein, Universidad de Almería, Spain

first week

 Title: Potential Theory
 Summary: The course will cover the main properties of the logarithmic potential up to the proof of the existence of the equilibrium measure. Applications.
Author: Johannes de Graaf, Univ. Eindhoven, Holland

first week

Title: Wavelet Transforms as Frame Transforms
Summary: 
Author: Michael Mackey, University College, Dublin, Ireland

second week

 Title:  The Schwarz lemma and Composition Operators
 Summary:  Starting with the famous Schwarz lemma we examine metric properties of holomorphic functions on the unit disc, D, and look at the connection between the Poincaré metric on D and the operator norm for composition operators on the space of bounded holomorphic functions on D
Author: Swanhild Bernstein, University of Weimar/University of Freiberg, Germany

second week

 Title: Borel-Pompeiu's Formulae in Complex and Clifford Analysis
 Summary:  Function theory is the theory of functions of one complex variable and the central operator is the so-called -operator which describes the Cauchy-Riemann differential operator. 
An important tool to study the analytic properties of holomorphic functions is the Borel-Pompeiu formula, which is in fact a representation formula. From the Borel-Pompeiu formula the Cauchy formula for holomorphic functions can be derived as well as the formulation of the Riemann-Hilbert problem in terms of a singular integral equation. But the same theory can be developed using a perturbed Cauchy-Riemann differential operator. We will evolve Borel-Pompeiu's formulae for the perturbed Cauchy-Riemann differential operator and deduce Plemelj-Sokhotzki's formulae and the Hardy spaces. In order to obtain similar formulae in the space or even higher dimensions we introduce the algebra of quaternions and Clifford algebras. We will show that the Dirac operator gives a higher dimensional analogue to the Cauchy-Riemann operator. We will prove Borel-Pompeiu's formulae again for this operator.
Author: Walter Van Assche, Katholieke Universiteit Leuven, Belgium

first week

 Title: Riemann-Hilbert problem for orthogonal polynomials
 Summary: A Riemann-Hilbert problem consists of finding an analytic function in the complex plane minus a collection of oriented contours, for which the boundary values on the contours (from both sides of the contours) are given. Typically the solution will involve the Cauchy transform of a function w on the contours, where w describes the boundary values on the contours. The basic idea of the Riemann-Hilbert approach to orthogonal polynomials is to characterize orthogonal polynomials corresponding to a weight function w on the real line via a boundary value problem for matrix valued analytic functions. This Riemann-Hilbert problem was first formulated by Fokas, Its and Kitaev in 1992 and we will formulate the appropriate Riemann-Hilbert problem for orthogonal polynomials on ]-,+[, [0,+[ and [-1,1]. We show that this Riemann-Hilbert problem enables us to find the three-term recurrence relation and the differential equation for Hermite polynomials, Laguerre polynomials, and Jacobi polynomials. One of the main advantages of this Riemann-Hilbert approach is that it allows to obtain strong uniform asymptotics which is valid in the whole complex plane. The idea is to transform the initial Riemann-Hilbert problem in a few steps to another equivalent Riemann-Hilbert problem on a deformed set of contours with simpler jumps on the contours. This technique is called the steepest descent method for Riemann-Hilbert problems and was developed by Deift and Zhou in 1993. If time permits we will show how it works to obtain the strong asymptotics for Laguerre polynomials. 

Living expenses can be partially covered for some students if they do not have support from their own institution and if there is enough money available.

Abreu, Luis Daniel Moura. Address. Departamento de Matemática, FCTUC, Apartado 3008, 3000 Coimbra, Portugal. e.mail. daniel@mat.uc.pt.
Almeida, Regina. Address. UTAD,  Dep. de Matemática, Quinta de Prados, Apartado 1013, 5000-911 VILA REAL. e.mail. ralmeida@utad.pt.
Bernstein, Sanhild. address. Bauhaus-Universität Weimar, Mathematische Optimierung, Coudraystr. 13B, 99421 Weimar, Germany. e.mail. swanhild.bernstein@fossi.uni-weimar.de.
Carvalhal, Gonçalo Nuno de Almeida de Sousa Teles do. address. Ladeira das Alpenduradas, nº42 3030 Coimbra. e.mail. GCarvalhal@netcabo.pt.
Cotrim, Luís. address. Escola Superior de Tecnologia e Gestão do I.P.L., Quinta do Seixo lote 1 - 4 Dto 2410 Leiria, Portugal. e.mail. lmsc@estg.ipleiria.pt.
Coutinho, Cláudia Alexandra. address. Departamento de Matemática da Universidade de Aveiro, Campus de Santiago, 3810 Aveiro. e.mail. ccoutinho@prof2000.pt.
Ferreira, Milton dos Santos. address. Departamento de Matemática da Universidade de Aveiro, Campus de Santiago, 3810 Aveiro. e.mail. mferreira@mat.ua.pt.
de Graaf, Johannes. address. Santvlietmolen 3, 5612 MD EINDHOVEN, Nederland. e.mail. J.d.Graaf@tue.nl.
Horan, David. address. Dept. of Mathematics, UCD, Belfield, Dublin 4, Ireland. e.mail
Jain, Rahul. address. Tata Institute of Fundamental Research(TIFR), Indian Institute of Science (IISc), Bangalore, India. e.mail. rahul@math.tifrbng.res.in
Jesus, Márcio Dinis do Nascimento de. address. Instituto Politecnico de Viseu, Escola Superior e Tecnologia de Viseu. e.mail. mnasce@mat.estv.ipv.pt.
Loureiro Vieira, Nelson Felipe. address. Departamento de Matemática da Universidade de Aveiro, Campus de Santiago, 3810 Aveiro. e.mail. nvieira@mat.ua.pt.
Martinez-Finkelshtein, Andrei. address. Dept. Estadistica y Matematica Aplicada, Universidad de Almeria, La Canada, 04120 Almeria, Spain. e-mail: andrei@ual.es.
Mendes, Ana Isabel. address. Escola Superior de Tecnologia e Gestão do I.P.L., Quinta do Seixo lote 1 - 4 Dto 2410 Leiria, Portugal. e.mail. aimendes@estg.ipleiria.pt.
Mackey, Michael. address. Dept. of Mathematics, UCD, Belfield, Dublin 4, Ireland. e.mail. Michael.Mackey@ucd.ie.
Monteiro, Paulo Alexandre Bessa Soares. address. Tv. dos Xistos nº 22, 4435-826 BAGUIM DO MONTE. e.mail. anthrax@clix.pt.
Nogueira, João Manuel. address. Departamento de Matemática, FCTUC, Apartado 3008, 3000 Coimbra, Portugal. e.mail. nogueira@mat.uc.pt.
O'Shea, James. address. Dept. of Mathematics, UCD, Belfield, Dublin 4, Ireland. e.mail
Paiva, Anabela Monteiro. address. Universidade da Beira Interior, Departamento de Matemática, Av. Marquês D'Ávila e Bolama, 1, Covilhã. e.mail. apaiva@noe.ubi.pt.
Pereira de Sousa, Victor Luís. address. Instituto Politécnico de Bragança, Escola Superior de Tecnologia e de Gestão de Bragança, Ap. 134, 5301-857 Bragança, Portugal. e.mail. vitorsousa@ipb.pt.
Rebocho, Maria das Neves. address. Universidade da Beira Interior, Departamento de Matemática, Av. Marquês D'Ávila e Bolama, 1, Covilhã. e.mail. mneves@noe.ubi.pt.
Santos, Ana Margarida. address. Universidade de Aveiro, Departamento de Matemática, Campus de Santiago, 3810 Aveiro, Portugal. e.mail. asantos@mat.ua.pt.
Santos Cardoso, José Luis. address. UTAD,  Dep. de Matemática, Quinta de Prados, Apartado 1013, 5000-911 VILA REAL. e.mail. jluis@utad.pt.
Vicente Majúa, Julio Iñigo de. address.Universidad Carlos III, Ave. Universidad, 30, 28911 Leganés-Madrid, Spain. e.mail.
Van Assche, Walter. address. Katholieke Universiteit Leuven, Celestijnenlaan 200 B 3001 Leuven, Belgium. e.mail.walter@wis.kuleuven.ac.be.
Amilcar Branquinho (Departamento de Matemática Universidade de Coimbra)
Helmuth Malonek (Departamento de Matemática da Universidade de Aveiro)
Jaime Carvalho e Silva (Departamento de Matemática Universidade de Coimbra)
Paula Cerejeiras (Departamento de Matemática da Universidade de Aveiro)
With support from CMUC (Centro de Matemática da Universidade de Coimbra), UI&D "Matemática e Aplicações" da Universidade de Aveiro, and the Socrates programme