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Comments:
The first part of the Lecture Notes borrows material from Trefethen-

Bau ”Numerical Linear Algebra”. The section about Markov Chains uses
material from J. Norris ”Markov Chains”. The section about the multivari-
ate Gaussian distribution based on the material in books by Anderson and
Muirhead.

In retrospect, I would perhaps add some additional material on (a) the
rank-nullity theorem, (b) determinants, and (c) the matrix resolvent and its
relation to Markov Chains.
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Chapter 1

Matrix Products, Range,
Nullspace, Rank, Inverse

1.1 Matrix products

Let x be an n-dimensional column vector with entries xi, i = 1, . . . , n and
A be a an m× n matrix with entries Ai,j , i = 1, . . . ,m, j = 1, . . . , n. That
is, matrix A has m rows and n columns. Then the matrix-vector product
b = Ax is the m-dimensional vector with entries

bi =
n∑

j=1

aijxj , i = 1, . . . ,m. (1.1)

Sometimes it is convenient to write the dimension of the matrix objects as
a subscript and then we have

bm×1 = Am×nxn×1.

This formula can be interpreted in several ways. First, one can think
about x as an element of an n-dimensional vector space V written in a
specific coordinate basis. Then the formula b = Ax represents an action of a
linear transformation A on vector x. This linear transformation sends vector
space V to an m-dimensional subspace W , and the formula (1.1) explains
how to calculate the coordinates of the image b in a basis of W from the
coordinates of vector x in a basis of V .
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Another interpretation of formula (1.1) looks at A as a collection of n

column vectors ai, each of dimension m. Then, the formula explains how to
calculate the linear combination of these vectors with coefficients provided
by vector x. It can be re-written as

b =
n∑

i=1

xiai, (1.2)

where we should remember that each xi is a number and each ai is an
m-dimensional vector.

Similarly, if A and C are two matrices, A is l×m and C is m× n, then
we can define the matrix-matrix product B = AC,

Bl×n = Al×mCm×n,

with entries defined by

bij =
m∑
k=1

aikckj . (1.3)

This product can also be interpreted in several ways. If A and C are ma-
trices representing linear transformations, the B = AC is a matrix that
represents a composition of these linear transformations when C acts first,
and A second.

Alternatively, we can think about B as matrix such that each column
of B is a linear combination of columns of A. The first column of B is the
linear combination with the coefficients in c1, which is the first column of
C, the second column of B is the linear combination with the coefficients in
c2 and so on. As a result we get n linear combinations and each of them is
an l-column vector.

1.2 Range, Nullspace, Rank

The range of a matrix A, denoted Range(A) is the set of vectors that can
be expressed as Ax for some x. It is easy to check that it is a linear space
and that it is spanned by columns of matrix A. It is also called the column
space of A.
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The null-space of A is the set of vectors x such that Ax = 0. It is denoted
Null(A) or ker(A).

The column rank of a matrix A is the dimension of its column space. One
can also define the row space and row rank similarly. One of fundamental
theorems in linear algebra is that

column rank = row rank.

In particular one can simply talk about the rank of a matrix A, denoted
rank(A).1

The dimension of the nullspace is called nullity. Another fundamental
theorem of linear algebra is that for an m× n matrix A,

nullity + rank = n,

that is the sum of dimensions of the range and the nullspace are equal to
the number of columns.

It is clear that rank(A) ≤ min{n,m}. If rank(A) = min{n,m}, we say
that matrix A is of full rank.

What is the meaning of full rank? If m ≥ n then the matrix of full
rank A has rank(A) = n so nullity(A) = 0 and so A have a trivial null-
space. The meaning of this is that if we consider m-by-n matrix A as a map
from a linear space of all n-vectors Rn to the linear space of m-vectors Rm

(our interpretation #1) then this map is a bijection on the column space
Range(A). In other words two different vectors must go to two different
vectors.

In particular if m = n, that is, the matrix A is square, and the matrix
A has full rank, then map A is a bijection of Rn on Rm = Rn and we have
an inverse transformation. The matrix of this transformation is called the
inverse of matrix A and denoted A−1.

In particular, in this case for every vector y = Ax, we can recover x by
using the inverse matrix, as x = A−1y.

1For reference, more about rank can be found in Chapter 2, Section III of Hefferon’s
Linear Algebra book.
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For numerical application, it is important to remember that one does
not need to calculate the inverse matrix A−1 in order to solve the equation
y = Ax for one single vector y. The Gaussian elimination which you studied
in the first linear algebra course2 is significantly more efficient and simple
method to do it. The only reason for inverting matrix A is if you plan to
solve many equations y = Ax for various y.

2Chapter 1, Section I of Hefferon
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Chapter 2

Adjoint matrices, scalar
product, and orthogonality

2.1 Transposition and adjoint operation

A transposition of an m× n matrix A is the n×m matrix At for which the
entry (At)ij equals the entry Aji of the original matrix.

In the situation when matrix A has complex entries, it is typically more
useful to define an adjoint matrix A⋆, with the entry (At)ij equal to Aji

where the overline denotes complex conjugation. For real matrices A∗ = At,
so we will use notation A∗ for both real and complex matrix.

For various problem, an especially important class of matrices is self-
adjoint matrices A = A∗. For the real case they are usually called symmetric
and for the complex case, – hermitian.

2.2 Scalar product and vector norms

The scalar product (also called dot product or inner product) of two m-column
vectors x and y is the matrix product of x∗ and y.

x∗y =

m∑
i=1

xiyi.
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This product is often denoted (x, y) or ⟨x, y⟩.
From the course of linear algebra we know that the length of the vector

u, – which we call its norm and denote ∥u∥, – that it can be computed in
terms of its inner product with itself:

∥u∥ =
√
u∗u.

(I will sometime write |u| instead of ∥u∥ if no confusion can arise.)
Mathematically, a norm is a non-negative function on a linear space,

which has the property ∥cv∥ = |c|∥v∥, and satisfy the triangle inequality:
∥u+ v∥ ≤ ∥u∥+ ∥v∥. It is also required that ∥u∥ = 0 implies that u = 0.

There are other norms besides the usual norm that we described above.
For example, a p-norm is defined for every p ≥ 1. If x ∈ Rn, then

∥x∥p =
( n∑

i=1

|xi|p
)1/p

.

This is an exercise that this function is indeed a norm. (One can check that
if p < 1, then this function is not a norm. This is a couple of additional
exercises. First is to check that if ∥ · ∥ is a norm, then this implies that the
unit ball B = {x : ∥x∥ ≤ 1} must be convex. And the second is to check
that if p < 1, then the unit ball is not convex.)

If we look at p → ∞ then we get a so-called supremum norm:

∥x∥∞ = sup
i

|xi|.

In this notation our usual norm can be called 2-norm since it corresponds
to the case p = 2. So, more proper notation for this norm would be ∥v∥2.
However, we will usually use this norm and not any other p-norm and so we
will skip this subscript.

The great advantage of the 2-norm is that it comes from the scalar
product operation. Because of this, it enjoys some properties which are not
true for other norms. For example if we want to find out what is the point
in a linear subspace with the smallest distance from a given point, where
the distance is measured using the 2-norm, then we can use the orthogonal

9



projection operator (which we discuss later). In contrast, if we measure
distance not in the usual 2-norm but in a different norm, then this would
not be true anymore and it would be more difficult to find this point.

On the other hand, the p-norms for p ̸= 2 are sometimes used in modern
statistics, so you should know about them. For example, the lasso regression
uses the 1-norm of vectors.

2.3 Orthogonality

Two vectors are called orthogonal if they are both non-zero and their scalar
product is zero.

A set of vectors u1, . . . , un is called orthonormal if each of these vectors
have length 1 and the vectors are orthogonal to each other (that is, u∗iuj =
δij , where δij is the Kronecker delta symbol: δij = 1 if i = j and δij = 0 if
i ̸= j.)

The useful thing about the systems of orthogonal vectors is that we can
use them to decompose an arbitrary vector in orthogonal components.

Theorem 2.3.1. The vectors an orthogonal set are linearly independent.

Proof. Suppose they are dependent. The we can write, after reordering these
vectors,

v1 =
n∑

i=2

λivi,

where at least one of λi is not zero. Say, λi ̸= 0. Then (v1, vi) = λi|vi|2 ̸= 0,
and vectors v1 and vi are not orthogonal.

In addition, we have the following result.

Theorem 2.3.2. Let {u1, . . . un} is an orthonormal set of vectors in Rm,
where m ≥ n. Then for every vector v ∈ Rm, there exists a unique decom-
position:

v = r +
n∑

i=1

ciui,
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in which vector r is orthogonal to each of vectors ui. The coefficients can be
computed as ci = (ui, v) = (u∗i v).

Note: the theorem remains valid for complex vectors.

Proof. The existence will be proved if we show that

r = v −
n∑

i=1

(u∗i v)ui

is orthogonal to each of vectors ui. By multiplying with ui, we get

(r, ui) = (v, ui)− (ui, v)(ui, ui) = 0,

which is the required property.
For uniqueness, we note that if we have two decompositions like that,

then we can subtract them. As a result we would have that either r = r′, and
ui are linearly dependent, or r ̸= r′ and the orthogonal set r− r′, u1, . . . , un

is linearly dependent. Both are not possible by Theorem 2.3.1.

A matrix is called orthogonal if:
(i) it is square, and
(ii) The set of its column vectors is orthonormal.

(If a matrix has complex entries and satisfies conditions (i) and (ii), it
is called a unitary matrix.) The usual notation for orthogonal and unitary
matrices is Q and U .

Theorem 2.3.2 implies that the columns of the n× n orthogonal matrix
Q form a basis in Q (since in this case the maximal number of linearly
independent vectors is n), and the coefficients of a vector v in this basis can
be computed very conveniently as c = Q∗v.

Exercise 2.3.3. A matrix Q is orthogonal (unitary) if and only if

Q∗Q = I,

where I is the identity matrix, that is, Iij = δij .
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Chapter 3

Matrix norms

We talked about the vector norm. We also want to measure norms of matri-
ces. This is a big topic. Even in the case of vectors, there are many ways to
define the norm besides the standard one. In the case of matrices the choice
is even larger.

There are two most popular ways to define a norm of a matrix. The first
one is called the Frobenius norm and it is defines as follows:

∥A∥F :=

√√√√ m∑
i=1

n∑
j=1

|Aij |2 =
√

Tr(A∗A),

where Tr is the trace operation on square matrices: TrM =
∑

i=1 nMii.
The Frobenius norm of A is the norm of the long vector formed by

stacking all column vectors of A together. The benefit of this norm is that it
is essentially our familiar vector norm, in particular, there is an associated
scalar product: ⟨A,B⟩ = Tr(A∗B). It is easy to calculate the Frobenius
norm but, unfortunately, it is not as meaningful as another norm which is
called the operator norm and which is define by the following formula:

∥A∥ := sup
v ̸=0

|Av|
|v|

= sup
v:|v|=1

|Av|. (3.1)

This norm shows what is the maximum increase in the length of a vector
that can be achieved by the transformation coded by matrix A. This is an
obviously useful quantity but it is more difficult to calculate.

12



For matrix norms, sometimes some additional requirements are imposed
on norms besides the usual properties of norms in vector spaces. These
requirement are related to additional operations on matrices such taking
the adjoint and the multiplication. In particular, it is usually required that

∥A∗∥ = ∥A∥,

and

∥AB∥ ≤ ∥A∥∥B∥.

Both the operator norm and the Frobenius norm satisfy these properties.
For the operator norm it is essentially by definition and for the Frobenius
norm it is an exercise based on the Cauchy-Schwarz inequality. (see text for
derivation.)

Another important property of these two norms is that they are invariant
relative to unitary transformations.

Theorem 3.0.1. For every m×n matrix A and every unitary m×m matrix
Q, we have

∥QA∥2 = ∥A∥2, and
∥QA∥F = ∥A∥F .
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Chapter 4

Projectors

4.1 Definition and properties

A projector is a square matrix P that satisfies the equation P 2 = P .

Exercise 4.1.1. The range and nullspaces of P are invariant under P .

Figure 4.1: Oblique Projector

The complementary projector for
projector P is I −P . It is indeed a pro-
jector, since (I − P )2 = I − 2P + P 2 =

I − P .
It is easy to see that the range

of the complementary projector equals
Null(P ). For (i) P (I − P )v = 0, so
Range(I−P ) ⊂ Null(P ) and (ii) if some
vector u ∈ Null(P ) then Pu = 0 and we

can write u = (I − P )u so Null(P ) ⊂ Range(I − P ).
Now, we have a decomposition of an arbitrary vector v = Pv+(I −P )v

into sum of two vectors. One of them is from the range of P and another
one is from the nullspace of P . This is useful since in many applications
we want to separate a vector into two components, one of which is relevant
and another is irrelevant. So if the relevant components form a linear space
V and if we know how to write this V as a range of a projector P , then
we can simply use the formula v = Pv + (I − P )v to obtain the desired
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decomposition.

Figure 4.2: Ortogonal Projector

The most useful projectors are or-
thogonal projectors. An orthogonal pro-
jector P is a projector that has hermi-
tian (or symmetric in the real case) ma-
trix P ∗ = P .

It is called orthogonal because in
this case its range and nullspace are or-
thogonal to each other. Indeed if u1 =

Pv ∈ Range(P ) and u2 ∈ Null(P ), then

u∗2u1 = u∗2Pv = (P ∗u2)
∗v = 0∗v = 0.

Note that this argument would not work if P ∗ ̸= P .
Note that the complementary projector is also orthogonal since (I −

P )∗ = I − P ∗ = I − P .

Example 4.1.2. Suppose v is a column vector that has unit length. Then
matrix P = vv∗ is an orthogonal projector. Indeed,

P 2 = (vv∗)(vv∗) = v(v∗v)v∗ = vv∗ = P,

where in the second equality we used the fact that the matrix product is
associative and in the third equality that the vector has unit length. It is
also clear that P ∗ = P .

This projector is called a rank-one projector because its range is one-
dimensional: it is spanned by the vector v.

Example 4.1.3. The previous example can be generalized. Suppose that ma-
trix Q has column vectors q1, q2, . . . , qn which form an orthonormal set. Then
matrix P = QQ∗ is an orthogonal projector on the linear space spanned by
these vectors.

It is useful to write P = QQ∗ somewhat differently, as a sum of rank-one
projectors.

P = QQ∗ =
n∑

i=1

qiq
∗
i
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In order to see this, the easiest way is to think about how P acts on vectors
qi. It is clear that Q∗qi is the vector ei that has 1 as its i-the component
and 0 as all other components. So QQ∗qi = Qei = qi for every i. This is
exactly the same outcome as we obtain if we apply

∑n
j=1 qjq

∗
j to qi. Hence

both operators act the same on the span of vectors q1, . . . qn. On all vectors
orthogonal to the span of q1, . . . qn, both operators act by sending them to
0. This proves the desired equality.

But then it is easy to check that

P 2 =
( n∑

i=1

qiq
∗
i

)2
=

n∑
i=1

qiq
∗
i = P.

It is also clear that P ∗ = P . So, we proved that P is an orthogonal projector.
It is also clear that this is a projector on the span of vectors q1, . . . qn.

Example 4.1.4. Now consider even more general case, when we want to
project on a vector space V spanned by vectors a1, a2, . . . , an which are not-
necessarily orthogonal. So let matrix A has columns ai. Then we claim that
the orthogonal projection on V is

P = A(A∗A)−1A∗

(Here we assume that A∗A is full rank and therefore invertible. This is
equivalent to requirement that columns ai are linearly independent.)

First, by direct checking, P 2 = P and P ∗ = P , so P is an orthogonal
projection and we only need to check that it have correct range which should
be V and null-space, which should be the orthogonal complement to V ,
denoted V ⊥.

Indeed, if a vector y is in V , then this means that it is in the range space
of A, that is, there is a vector x such that y = Ax. In this case it is obvious
that

Py = PAx = A(A∗A)−1A∗Ax = Ax = y,

so P preserves vectors in V . It remains to show that the vectors in the
orthogonal complement to V are sent to 0 by P . Since every vector v ∈ V ⊥
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is orthogonal to every column in A, so we can write that A∗v = 0. Then it
is obvious that

Pv = A(A∗A)−1A∗v = 0.

4.2 Relation to Least Squares Regression

In statistics we often need to solve the following problem:

yi = β1x
(1)
i + . . . βnx

(n)
i + εi, (4.1)

where i = 1, . . . ,m labels observations, yi is the value of the variable that
we want to explain in observation i, and x

(1)
i , . . . , x

(n)
i are the values of n

“explanatory” variables in observation i. (They often called “features” in
machine learning.) The numbers εi are “error terms”.

In statistics, εi are usually assumed to be taken from a random process,
often from a process of i.i.d. random variables and sometimes from the
process of i.i.d. Gaussian random variables. In this example we are not
interested in the nature of εi. We simply assume that we observed yi and
x
(k)
i but that we do not know βk and εi.

One simple statistical method is Ordinary Linear Regression. It pre-
scribes to choose those coefficients βj , j = 1, . . . , n that the sum of the
squares of εj is at its minimum. (There is also a generalized least squares
method that weights different error terms differently.)

Another view on this problem is that we simply trying to solve an overde-
termined system of equations, where the number of equations m exceeds the
number of variables n. In this case, there is no exact solution and we trying
to minimize the norm of the vector of the residual terms εi.

We want to develop a simple formula for these values of βj .
Let us introduce m× 1 vector y = [y1, . . . , ym], an m×n matrix X with

entries Xij = x
(j)
i , the n×1 vector of coefficients β = [β1, . . . , βn], and m×1

vector of errors ε = [ε1, . . . , εn].
Then we can re-write equation (4.1) as

y = Xβ + ε,
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Our task is to minimize the norm of vector ε, which we can write as

(y −Xβ)∗(y −Xβ) → min

We can write the first order conditions as

∂

∂β
(y −Xβ)∗(y −Xβ) = 0,

which leads to equations:

X∗(y −Xβ) = 0,

or
X∗Xβ = X∗y. (4.2)

In the traditional statistics, m > n, the number of observations exceeds
the number of explanatory variables. For this reason the rank of a typical
X equals n, so it is a full rank. It follows that X∗X is invertible and we can
solve equation (4.2) as

β = (X∗X)−1X∗y (4.3)

Exercise 4.2.1. We have used in this derivation the differentiation of a func-
tion with respect to a vector β, which should be understood as that we
differentiate with respect to each component of the vector and then put re-
sults of all differentiations in a vector. By writing the differentiations and
the matrix product (y −Xβ)∗(y −Xβ) in components, check that the first
order condition equations are indeed as we wrote them.

The equations in (4.2) are called normal equations and the matrix

X+ = (X∗X)−1X∗

is sometimes called the pseudoinverse of matrix X.
In statistical applications we are also interested in estimated true values

of yi, when the noise εi is filtered out. So we define the predicted values of
y as ŷ = Xβ. Then

ŷ = X(X∗X)−1X∗y.
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These are those linear combinations of explanatory random variables which
minimize the norm of the error term e = y −Xβ.

From the point of view of linear algebra, ŷ is the orthogonal projection
of vector y on the linear space spanned by the vectors of the explanatory
variables x(1), …, x(n). The matrix of the projection is

P = X(X∗X)−1X∗

Note the matrix (X∗X)−1 is n-by-n, so the normal equations are n equa-
tions in n variables. They can be solved in various ways, for example by
Gaussian elimination, which is has the work of around n3 operations. Since
the matrix is symmetric and positive definite, this can be solved also by
Cholesky factorization twice as fast. We will discuss the Cholesky factoriza-
tion later.

Recently, there was a lot of interest when m < n, so that the number of
explanatory variables exceeds the number of observations. In this case X∗X

is not invertible and we cannot solve the normal equations.
A popular approach is to change a minimization target. Instead of mini-

mizing the norm of the error term ∥y−Xβ∥ what is suggested is minimization
of the “regularized problem”,

∥y −Xβ∥2 + λ∥β∥1,

where λ is a regularization parameter and ∥β∥1 =
∑n

i=1 |βi| is the ℓ1-norm
of the parameter vector ∥β∥. This is called the lasso regression. The main
idea is to find a vector β which not only minimizes the error of the regression
but that also has a lot of zeros as its components. We will not discuss the
estimation details here.
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Chapter 5

Singular Value
Decomposition

5.1 Definition and the existence/uniqueness

A singular value decomposition (SVD) of an m × n matrix A is a way to
write down this matrix as a product of two unitary (or orthogonal in the
real case) matrices U and V ∗ and one diagonal matrix Σ.

Formally,
A = UΣV ∗, (5.1)

where U is an m × m unitary matrix, V ∗ is an n × n unitary matrix and
Σ is an m × n diagonal matrix with non-negative entries. That is, if i ̸= j

then Σij = 0, otherwise Σii ≥ 0. The diagonal elements of the matrix Σ are
called the singular values. For a real matrix A all elements in these matrices
can be chosen to be real.

Figure 5.1: Full SVD decomposi-
tion, m > n

Intuitively, for m ≥ n, if A represent
a linear transformation, then we can
write it as a rotation in Rn, then a map
that stretches the result and imbeds it
isometrically to Rm, and finally do an-
other rotation in Rm.

In particular this means that a unit
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sphere in Rn will be mapped to an el-
lipsoid in Rm and the half-lengths of the ellipsoid’s principal axes will be
equal to the singular values σi := Σii.

The decomposition is clearly not unique if m > n. In the picture, the
portion of the matrix U selected by dashed lines will be multiplied by zeros in
the matrix Σ. Therefore, this portion can be chosen arbitrarily. Intuitively,
we can rotate the orthogonal complement to the range of the map A in
arbitrary way.

If we want to remove this source of non-uniqueness, then it is useful to
define a reduced singular value decomposition. Assume that m ≥ n and that
A is full rank, so that its range space has dimension n. Then the reduced
SVD is

A = Û Σ̂V ∗,

where Û is an m × n matrix that has orthonormal set of columns. Matrix
Σ̂ is a square n × n diagonal matrix. And matrix V ∗ is the same as in full
SVD, it is an n× n unitary matrix.

Figure 5.2: Reduced SVD decom-
position, m > n

In the reduced SVD, Û is not uni-
tary since it is not square. However,
Û∗Û = In. Intutitively, the matrix Û

is an isometric embedding of Rn in Rm.
Its columns give an orthonormal basis
in the image of this embedding.

The reduced SVD is still not unique.
However, this non-uniqueness is mild.
It is up to permutation of certain columns and rows in these matrices and
up to multiplication of columns and rows by ±1. It can be almost fixed by
requiring that σ1 ≥ σ2 ≥ . . . ≥ σn and that the first elements in columns of
U and rows of V ∗ are positive. In exceptional cases when some σi are equal,
some additional effort may be needed to get the uniqueness, however, this
usually not happens in practice.

What is more essential is the question about the existence of the SVD
decomposition.
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Theorem 5.1.1. Every matrix A has a singular value decomposition (??).
Furthermore the singular values σi are uniquely determined. If A is square
and the σi are distinct then the corresponding column vectors in U and V

are uniquely determined up to a multiplication by a scalar that have absolute
value 1.

For the complete proof, see Trefethen’s book. Here is a sketch of the
proof of the existence claim.

Proof of the existence claim. For concreteness, let us work with real matri-
ces.

By a compactness argument, the supremum in the definition of the ma-
trix norm (3.1) is attained on a vector v1, and so there exist vectors u1 and
v1 such that u1 = Av1/∥A∥, |v1| = 1, |u1| = 1. (In addition it can be proved
that for a real matrix A, the maximizing vector v1 can be chosen to be real.)

Let us define σ1 = ∥A∥ and complete the vectors u1 and v1 to a pair of
orthonormal bases {ui} and {vj} in Rm and Rn, respectively. Let U1 and
V1 be the matrices with columns ui and vi, respectively.

Then from Av1 = u1 we have that

U∗
1AV1 = S =

[
σ1 w∗

0 B

]
.

We claim that in the fact if the norm of A is attained on v1, then the vector
w must be zero.

Indeed, S is obtained from A by a multiplication by two orthogonal
matrices on both sides, so it has the same norm as A. However, we notice
that the first element of the vector

S

[
σ1

w

]
=

[
σ1 w∗

0 B

][
σ1

w

]

is σ2
1 + w∗w. Hence

∥∥∥∥S
[
σ1

w

]∥∥∥∥ ≥ σ2
1 + w∗w =

(
σ2
1 + w∗w

)1/2∥∥∥∥
[
σ1

w

]∥∥∥∥
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So ∥S∥ ≥
(
σ2
1 + w∗w

)1/2 , so it must be that w = 0.
However, then we can apply the induction hypothesis to the matrix B

and notice that it can be written as B = U2Σ2V
∗
2 .

This leads to the decomposition

A = U1

[
1 0

0 U2

][
σ1 0

0 Σ2

][
1 0

0 V2

]∗

V ∗
1 ,

which gives an SVD for matrix A.

5.2 Relation to eigenvalue decomposition

A (right) eigenvector of a square n×n matrix A is a unit vector v such that
Av = λv. The number λ is called an eigenvalue. Similarly, a left eigenvector
u satisfies uA = λu.

For arbitrary (square) matrices A right eigenvectors do not coincide with
left eigenvectors, but the eigenvalues can be written as roots of a characteris-
tic polynomial det(X−λI) and so their set is defined unambiguously. There
are always n eigenvalues if we count them as the roots of this polynomial
counted with multiplicities.

Unfortunately, even if the matrix is real, the eigenvalues are typically
complex.

In general, the number of eigenvectors can be smaller than the dimension
of the space n. One simple example of this is the matrix[

0 1

0 0

]
.

(However, this never happens if the eigenvalues are distinct.)
For arbitrary matrices, eigenvectors are not orthonormal. Still, if they

form a basis, the matrix A is “diagonalizable”, that is, it is possible to write
the decomposition:

A = XΛX−1,
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where X is the matrix whose columns are (right) eigenvectors and Λ is a
diagonal matrix with eigenvalues on the main diagonal. This should be
thought of as another form of the eigenvector equation:

AX = XΛ.

You can read more about the conditions that ensure that the matrix
is diagonalizable in Chapter 5, Section II of Hefferon’s book. For exam-
ple the matrix is always diagonalizable if all eigenvalues are distinct (the
characteristic polynomial does not have multiple roots).

Geometrical meaning of the eigenvalue decomposition is that we can
think about a diagonalizable matrix A as a matrix that in a certain basis
acts by multiplication of each component of a vector by the corresponding
eigenvalue. If a vector v = a1x1+ . . .+ anxn, where x1, . . . , xn are eigenvec-
tors of A, then Av = λ1a1x1 + . . .+ λnanx2.

The bad thing is that for general matrices both eigenvectors and eigen-
values are complex and the eigenvectors do not form an orthonormal basis.
For this reason, the intuitive meaning of this multiplication by complex
scalars is not very clear.

For example, a rotation matrix[
cosφ sinφ

− sinφ cosφ

]
.

is diagonalizable and also can be thought as a matrix of stretching by some
complex numbers eiφ.

However, the eigenvalue decomposition do have one very important ben-
efit. Namely, it helps us define the functions of a diagonalizable matrix A.
For example, we can see that

An = XΛnX−1,

and for any polynomial P (t),

P (A) = XP (Λ)X−1.
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Since every continuous function can be approximated by polynomials, this
suggests that we can define

f(A) = Xf(Λ)X−1,

where f(Λ) is obtained by applying function f to each diagonal element of
Λ.

For examples, this allows define non-integer powers of matrices.
In general, this cannot be done with singular value decomposition since

matrices U and V are not related to each other.
For general matrices, the connection between eigenvalues and singular

values is not straightforward. There is a bunch of inequalities between the
singular values and absolute values of eigenvalues. There is also a wonderful
connection between them for large random matrices, however, we are not
going to talk about it here.

The eigenvalue decomposition becomes very important when the matrix
A is symmetric (or Hermitian in the complex case). In this case, all eigen-
values are real and one can choose eigenvectors in such a way that they form
an orthonormal set and matrix X becomes orthogonal. This is very close to
the SVD decomposition and the difference is that some eigenvalues may be
negative and the singular values must be non-negative.

Theorem 5.2.1. If A is a self-adjoint n × n matrix, then the singular
values of A are the absolute values of the eigenvalues of A, σi = |λi|, for
i = 1, . . . , n.

Proof. In the case of the self-adjoint matrices, we have the eigenvalue de-
composition:

A = QΛQ∗,

where Λ and Q are diagonal and orthogonal matrices, respectively. We can
easily convert it to the SVD decompositions by multiplying some of the
columns by −1,

A = Q|Λ|sign(Λ)Q∗,
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where sign(Λ) is the diagonal matrix with the diagonal entries sign(λi). This
shows that σi = λi.

So in the SVD decomposition, U = X and V equals to X with some of
the columns multiplied by −1.

We will talk a bit more about the eigenvalue decomposition after we
finish the SVD decomposition.

5.3 Properties of the SVD and singular values

Theorem 5.3.1. Let A = UΣV ∗ be the full SVD of A and let r be the
number of non-zero singular values. Then

Range(A) = span{u1, . . . , ur},
Null(A) = span{vr+1, . . . , vn},

where ui and vj are columns of matrices U and V respectively. In particular
the rank of A equals r.

Proof. The matrices U and V are full rank orthogonal matrices. Essentially
they simply rotate Rm and Rn. What is important is that the Range(Σ) =
span{e1, . . . , er} in Rm and Null(Σ) = span{er+1, . . . , en} in Rn.

The operator and Frobenius norms of a matrix can be written in terms
of its singular values.

Theorem 5.3.2. Let σ1 ≥ σ2 ≥ . . . ≥ σr > 0 be non-zero singular values of
matrix A. Then,

∥A∥2 = σ1,

∥A∥F =
√
σ2
1 + . . .+ σ2

r .

Proof. Note that multiplication by an orthogonal (or unitary) matrix does
not change the norm of a vector. This implies that ∥A∥2 = ∥Σ∥2, and it is
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easy to check that ∥Σ∥2 = σ1. For the Frobenius norm, we calculate:

∥A∥2F = Tr(A∗A) = Tr
(
(V Σ∗U∗)(UΣV ∗)

)
= Tr

(
V Σ∗ΣV ∗

)
= Tr(Σ∗Σ),

where the last step is by the property of the trace: Tr(AB) = Tr(BA).
And the last quantity is easy to calculate:

Tr(Σ∗Σ) = σ2
1 + . . .+ σ2

r .

Theorem 5.3.3. The non-zero singular values of A are the square roots of
the non-zero eigenvalues of A∗A or AA∗. (These matrices have the same
non-zero eigenvalues.)

Proof. Let the (full) singular value decomposition for A be

A = UΣV ∗.

Then,

A∗A = V (Σ∗Σ)V ∗.

Since V is orthogonal and Σ∗Σ is diagonal, therefore, we found an eigenvalue
decomposition of A∗A, so, in particular, non-zero eigenvalues of matrix A∗A

are non-zero elements of Σ, that is, the singular values of A. For A∗A, the
proof is similar.

Note that this gives another proof of Theorem 5.2.1, since for self-adjoint
matrix A, we have A∗A = A2 and the eigenvalues of A2 are equal to the
squares of eigenvalues of A. So, by Theorem 5.3.3, singular values of A are
equal to

√
λ2
i = |λi|, absolute values of eigenvalues of A.

Now let us consider the relation of eigenvalues and singular values to the
determinant. For eigenvalues, it is possible to prove that det(A) =

∏n
i=1 λi.

This is true for every matrix A, and it is very simple to prove in the case
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when matrix A has an eigenvalue decomposition. In this case we can use
the multiplicative property of the determinant and write:

det(A) = det(XΛX−1) = det(X)det(Λ)det(X)−1

= det(Λ) =
n∏

i=1

λi.

It turns out that we can also write a similar formula using the singular values,
except that we lose the information about the sign of the determinant.

Theorem 5.3.4. For an m×m matrix A,

|det(A)| =
m∏
i=1

σi,

where σi are singular values of the matrix A.

Proof. By using the multiplicative property of the determinant, we write:

|det(A)| = |det(UΣV ∗)| = |det(U)||det(Σ)||det(V ∗)|

= |det(Σ)| =
m∏
i=1

σi.

In order to go to the second line, we used the fact that the determinant
of a unitary matrix have absolute value 1. This fact holds because (i)
det(U)det(U∗) = det(UU∗) = 1, and (ii) det(U∗) = det(U)∗. Hence
|det(U)|2 = 1, and therefore |det(U)| = 1.

5.4 Low-rank approximation via SVD

The SVD is useful because it allows us to construct low-rank approximations
a matrix which are optimal in the Frobenius or operator norm.

Given an integer ν ≥ 1, a rank-ν approximation to a matrix A in a norm
∥ · ∥ is a matrix B that has rank ν and minimizes the norm of the difference
A−B.

28



Theorem 5.4.1. Let an m× n matrix A has rank r, and let A = UΣV ∗ be
its SVD, with σ1 ≥ σ2 ≥ . . . ≥ σr. Then

Aν =
ν∑

j=1

σjujv
∗
j

is a rank-ν approximation to A in the operator norm. Moreover, for ν < r

the error of the approximation

inf
B:rank(B)≤ν

∥A−B∥ = ∥A−Aν∥ = σν+1.

(For ν ≥ r, Aν = A.)

Proof. Suppose that there is some matrix B with the rank ≤ ν, which
outperform Aν . Namely, suppose that ∥A−B∥2 < ∥A−Aν∥2 = σν+1. Since
the matrix B has rank ≤ ν its null-space W has dimension ≥ n − ν. For
every vector in w ∈ W , we have

∥Aw∥ = ∥(A−B)w∥ < σν+1∥w∥.

On the other hand, for the linear subspace V spanned by the first ν + 1

singular vectors of A, we have that for every v ∈ V ,

∥Av∥ ≥ σν+1∥v∥.

Since the sum of the dimensions of W and V exceeds n, they must have a
non-zero vector in common. This gives a contradiction.

An analogous result holds also for the Frobenius norm.

5.5 Applications

5.5.1 Relation to Linear Regression

If the data matrix X has the reduced SVD

X = UΣV ∗,
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then it is full rank if and only if all its singular values are positive. Then,

X∗X = V ΣU∗UΣV ∗ = V Σ2V ∗,

where V is the orthogonal matrix, with V −1 = V ∗. Hence, the pseudo-
inverse, which is an n×m matrix, can be written as follows.

X+ = (X∗X)−1X∗ = V Σ−2V ∗V ΣU∗

= V Σ−1U∗.

This gives a method for solving the normal equations of the linear re-
gression problem. Namely, calculate the singular value decomposition of X,
and then calculate the pseudo-inverse by the previous formula. Then the
solution of normal equations is given by

β = X+y.

It is easy to calculate Σ−1 because this is simply an n× n diagonal matrix
with diagonal entries σ−1

1 , σ−1
2 , …, σ−1

n .
The most work goes into calculating the singular value decomposition.

According to Trefethen and Bau, this method has some advantages over
other methods if some of the singular values of the matrix X are small.

5.5.2 Principal Component Analysis

Singular value decomposition is often used in data analysis for dimension
reduction. The basic idea that we are trying to approximate a matrix of
data with a low-rank matrix.

Suppose a matrix X is the matrix of data. The rows of this matrix
are observations and the columns are various variables or features of the
observation. For example, rows can correspond to different individuals and
columns to different characteristics of the individual. For another example,
rows can correspond to dates and the columns to different financial stocks
while the entries are the stock returns recorded on that day.

One statistical technique is to analyze the empirical covariance matrix
of the data: X∗X (we assume that the columns of X have zero mean.
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The principal component analysis is the eigenvalue decomposition of the
empirical covariance matrix:

X∗X = V ΛV ∗

The eigenvectors (the columns of V) are interpreted as the linear combina-
tion of characteristics that have some significance in terms of the covariance
matrix. For example, the eigenvector with the largest eigenvalue correspond
to the linear combination of characteristics with the largest variation across
individuals.

The eigenvectors with the largest eigenvalues are called the principal
components. An interpretation of them is that these are factors that contain
the most variability in the system.

From the linear algebra viewpoint this calculation to finding the singular
values and right singular vectors in the SVD decomposition of the matrix
X.

One example where this method is used is the data of financial stock
returns. It turns out that the empirical covariance matrix exhibit three
important factors (principal components with large corresponding singular
value).

5.5.3 Factor analysis

The factor analysis takes into account not only the matrix V in the SVD
decomposition of the data matrix X but also the matrix U .

Namely, we can write:

X = UΣV ∗ =

r∑
k=1

σku
(k)

(
v(k)

)∗
,

where u(k) and v(k) are k-th columns of the matrices U and V , respectively.
In components, this can be written as

xtj =

r∑
k=1

σku
(k)
t v

(k)
j
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where t = 1, . . . ,m and j = 1, . . . , n. Then vector σku
(k)
t is called the k-

th factor (or the observations of the k-th factor) and the vector v(k) is the
vector of factor loadings.

The interpretation is that fluctuation in factors capture the main sources
of variations in the data and the factor loadings show how this variation
is reflected in individual characteristics (say, in the returns of individual
stocks.)

5.5.4 Face recognition

The SVD is used for face and writing recognition. This is a variant of factor
analysis. For face recognition, face images are vectorized (that is, an image
is represented as a long vector of pixel values). Then a collection of these
vectors for a large number of individuals is put together as a matrix. For
example, let X be a matrix where columns represent individuals and rows
are pixels in an image.

After the SVD is performed on this matrix, we have as before:

xip =
r∑

k=1

σku
(k)
i v(k)p

where p stands for a person.
The vectors uki are eigenfaces, where “eigenface” means a singular vector

corresponding to a sufficiently large singular value.
Note that the decomposition above means that the σkvp(k), k = 1, . . . , r

are coefficients in the expansion of the p-th column vector Xip (which is the
image of the person p, over the orthogonal basis given by eigenfaces u(k).

We can interpret the vector σkv(k)p , k = 1, . . . , r as the “signature” of the
individual p. These signatures are stored in a database. When a new face
image is presented, it is decomposed in the eigenface basis and compared
to the signatures in the database. If a sufficiently close match is found, the
face is recognized.
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5.5.5 Image Processing

1) An SVD was suggested as a method for image compressing, however, the
standard technologies use different compressing algorithms. In particular,
JPEG uses the discrete cosine transform, which is a variant of Fast Fourier
Transform.

The SVD method is straightforward. An image can be represented as
3 matrices of pixels. Every matrix can be subjected to SVD and a low-
rank approximation computed. Then it is only necessary to retain several
largest singular values and the corresponding singular vectors. This gives a
significant compressing ratio.

2) The SVD can be used in removing static background from videos.
Videos can be converted to matrices by vectorizing each frame and stacking
them together. In this case the background is the low-rank approximation to
the matrix and can be removed by calculating the low-rank approximation
and subtracting it from the matrix.

5.5.6 Other applications

– The SVD has some application in continuous mechanics and in robotics
since it decomposes a matrix as a product of two rotations, which can be
accomplished without stress and a stretching matrix.

– Eigenvalue decomposition is used in the spectral clustering algorithm.
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Chapter 6

Eigenvalues and eigenvectors

6.1 Definition and properties

We already discussed some facts about eigenvalues and eigenvectors. In
particular, in one of the assignments, you were asked to prove that the
eigenvalues of a symmetric matrix are real and that if two eigenvalues of this
matrix are different then the corresponding eigenvectors are orthogonal.

Here we give some more detail. First, recall that a non-zero vector
x ∈ Cm is an eigenvector of an m × m matrix A if Ax = λx and then λ

is its corresponding eigenvalue. The set of all eigenvalues of a matrix A is
called the spectrum of the matrix A. It is a subset of the plane of complex
numbers.

Can the spectrum be empty? The answer is “no” as we will see a bit
later.

Now, if λ is an eigenvalue, then the corresponding eigenvectors form
a linear space, which is called an eigenspace. We denote it by Eλ. The
dimension of this eigenspace is called the geometric multiplicity of λ.

The characteristic polynomial of A is the polynomial pA(z) defined by
det(zI −A).

A very important theorem connects eigenvalues and the characteristic
polynomial.

Theorem 6.1.1. A number λ is an eigenvalue of A, if and only if pA(λ) = 0.

34



Proof. Indeed, λ is an eigenvalue if and only if there is a vector x (its cor-
responding eigenvector), such that (λI − A)x = 0. This happens if and
only if the matrix λI − A is singular (that is, if its rank is smaller than its
dimension). And here we can use a property of the determinant that the
singularity of matrix λI − A is equivalent to det(λI − A) = 0. (Intuitively
the determinant of a matrix equals to zero if and only if there is a linear
dependence among the column vectors of this matrix.)

From this theorem we immediately obtain the consequence that every
matrix has at least one eigenvalue and so its spectrum is not empty. This is
a consequence of the fundamental theorem of algebra that says that every
polynomial which is not identically constant has at least one root, which
might be a complex number.

Moreover, the characteristic polynomial pA(z) of an m×m matrix A has
degree m and the fundamental theorem of algebra gives us some additional
information. Namely, we can write pA in the form

pA(z) = (z − λ1)(z − λ2) . . . (z − λm),

where λi are eigenvalues of A. The number of times a given eigenvalue
λj appears in this product is called the algebraic multiplicity of λj . An
eigenvalue is called simple if its algebraic multiplicity is 1.

In particular, we see that the number of distinct eigenvalues is between
1 and m. If all roots of pA(z) are simple, then A has m distinct eigenvalues.
(This is the generic situation. If all entries of A are real numbers chosen at
random from a continuous distribution, then with probability 1 the roots of
pA(z) are simple. If the entries are not real but say integer, and the matrix
A is large then the probability that a root is not simple is not zero but very
small.)

Now how do geometric and algebraic multiplicities are related?
For a non-singular matrix X, matrices A and X−1AX are called simi-

lar. Intuitively, they can be thought as representations of the same linear
transformation in two different bases, with the basis transformation given
by X.

35



Theorem 6.1.2. If X is non-singular, then A and X−1AX have the same
characteristic polynomial, eigenvalues, and algebraic and geometric multi-
plicities.

Proof. First we show that the characteristic polynomials are the same, by
using properties of the determinant:

pX−1AX(z) = det
(
zI −X−1AX

)
= det

(
X−1(zI −A)X

)
= det

(
X−1)det(zI −A)det

(
X
)

= det(zI −A) = pA(z).

The agreement of the characteristic polynomials implies that the eigenvalues
and its algebraic multiplicities are the same for A and X−1AX.

In order to show that the geometric multiplicities agree, it is easy to
check that if Eλ is an eigenspace for A, then X−1Eλ is an eigenspace for
X−1AX, and conversely.

Theorem 6.1.3. The algebraic multiplicity of an eigenvalue λ is at least as
great as its geometric multiplicity.

Proof. Let n be the geometric multiplicity of λ for matrix A, and let V̂ be
an m× n matrix with the columns that form an orthonormal basis for Eλ.
Then AV̂ = λV̂ .

Let us extend V̂ to a square unitary matrix V . Then it is easy to check
that

B = V ∗AV =

[
λIn×n C

0 D

]
,

where C is n× (m− n) and D is (m− n)× (m− n). Note that B is similar
to A. We calculate by using the definition of the determinant:

det(zI −B) = det(zI − λI)det(zI −D)

= (z − λ)n det(zI −D).

Therefore the algebraic multiplicity of λ as eigenvalue of B is at least n.
Since A is similar to B, it has the same algebraic multiplicity for λ, and so
the algebraic multiplicity of λ in A is no less than its geometric multiplicity.
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Example 6.1.4. Here is an example that the geometric and algebraic multi-
plicities of an eigenvalue can be different. Consider matrices

A =

2 2

2

 and B =

2 1

2 1

2


The characteristic polynomial for both matrices is p(z) = (z − 2)3, so the
only eigenvalue is λ = 2 and it has the algebraic multiplicity 3 for both
matrices. However it is easy to check that the eigenspace of λ = 2 is the
whole space R3 in case of matrix A, and the line spanned by the vector
e1 = (1, 0, 0) in case of matrix B.

We say that an eigenvalue is defective if its algebraic multiplicity is
greater than its geometric multiplicity. A matrix is defective if it has one or
more defective eigenvalues.

Theorem 6.1.5. An m×m matrix A is non-defective if and only if it has
an eigenvalue decomposition A = XΛX−1.

Proof. If matrix A has an eigenvalue decomposition than it is similar to
matrix Λ and hence has same eigenvalues with same multiplicities. Since
it is easy to check that a diagonal matrix is non-defective, hence Λ is non-
defective and the same holds for A.

In the converse direction, we can check that eigenvectors corresponding
to different eigenvalues are linearly independent (exercise). If a matrix A is
non-defective, then the dimension of each eigenspace equals to the algebraic
multiplicity of the corresponding eigenvalue. Hence the sum of the dimen-
sions of these eigenspaces equal to m. If we choose a basis in each of these
eigenspaces, then we obtain the set of m linearly independent eigenvectors.
If these m independent eigenvectors are formed into the columns of a matrix
X, then X is nonsingular and we have A = XΛX−1.

That is, when we say that a matrix is diagonalizable or that a matrix is
non-defective, we describe the same property of matrices.
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Theorem 6.1.6. The determinant and the trace of a matrix A are equal to
the product and the sum of the eigenvalues of A, respectively, counted with
their algebraic multiplicities.

Proof. We have already proved the statement about the determinant for
diagonalizable matrices in a previous lecture. In general, we set z = 0 in the
definition of the characteristic polynomial and obtain the required formula.

For the trace recall that the trace equals to the sum of diagonal elements
of the matrix. From the definition of the determinant we see that in the
expansion of det(zI−A) in powers of z the coefficient before zm−1 is − tr(A).
(Indeed, in order to ensure that we have m − 1 variables z in one of the
determinant products, we need to take z from every diagonal element of the
matrix zI −A except one. This forces the last choice to be a −Aii from the
remaining diagonal element. After summing over i, we obtain − trA.) On
the other hand expanding (z − λ1) . . . (z − λm), we find that this coefficient
is −

∑m
i=1 λi. This completes the proof.

One of the most important properties of every self-adjoint matrix is
that it is possible to form a basis that consists of its eigenvectors and as a
consequence they admit a unitary diagonalization:

A = QΛQ∗,

where Q is an orthogonal matrix.
This is true if all eigenvalues are different since then all eigenvectors

are orthogonal. In general, we will prove it by proving the existence of a
so-called Schur factorization of an arbitrary square matrix.

A Schur factorization of a matrix A is a factorization A = QTQ∗, where
Q is unitary and T is upper-triangular.

Theorem 6.1.7. Every matrix A has a Schur factorization.

Remark: Moreover, if matrix A is real and all its eigenvalues are real
then it is possible to choose Q and T to be real in this factorization.
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Proof. The proof is by induction on the dimension m of A. Suppose m ≥ 2.
Every matrix A has at least one eigenvalue λ by one of our previous results.
Let x be a unit eigenvector belonging to λ and set it as a first column of a
unitary matrix U . Then, we can check that

U∗AU =

[
λ w∗

0 B

]
.

By inductive hypothesis, there exists a Schur factorization V TV ∗ of B.
Then, we can set

Q = U

[
1 0

0 V

]
,

and check that

Q∗AQ =

[
λ w∗V

0 T

]
,

which is the desired Schur factorization.

Corollary 6.1.8. If A∗ = A, then A admits unitary diagonalization:

A = QΛQ∗,

where Q is unitary and Λ is diagonal with real entries.

Remark: if A is real then by using the remark after the theorem about
the Schur diagonalization, we can show that Q can be chosen real.

Two Hermitian matrices A and B are called simultaneously diagonaliz-
able if we can find a unitary matrix U such that

A = UΛAU
∗,

B = UΛBU
∗,

where ΛA and ΛB are the diagonal matrices with eigenvalues of A and B,
respectively, on the main diagonal.

Theorem 6.1.9. Hermitian matrices A and B are simultaneously diago-
nalizable if and only they commute, that is, if AB = BA.
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Proof. For the case when all eigenvalues of matrices A and B are distinct,
the proof proceeds by showing that if x is an eigenvector of A then Bx is
also an eigenvector of A therefore Bx must be proportional to x and so x

is also an eigenvector of B. This implies that we can take the matrix of
(normalized) eigenvectors of A as U . The other case, in which eigenvalues
can have multiplicity greater than 1, is more complicated and we omit the
proof.

Some other classes of matrices also admit unitary diagonalization. The
general criteria is that a square matrix A admits unitary diagonalization if
and only if A∗A = AA∗. Such matrices are called normal. We omit the
proof. Intuitively, the eigenvalue matrices for A∗A and AA∗ are matrices of
left and right singular vectors for A. If they coincide we can conclude that
the matrices U and V in the singular value decomposition are the same and
the singular value decomposition becomes the eigenvalue decomposition.

Two examples of normal matrices are projection matrices and unitary
matrices. For projection matrices all eigenvalues are either 0 or 1 and the
corresponding eigenspaces are the nullspace and the range of the matrix.
For the unitary matrices all eigenvalues must have unit absolute value since
unitary matrices preserve the length of the vectors.

6.2 Applications

6.2.1 Difference equations

A one-dimensional difference equation has the form

xn = c1xn−1 + c2xn−2 + . . .+ ckxn−k

Here xn is a sequence of numbers. We are given the initial conditions
xk−1, xk−2, . . . , x0 and look to find what is the behavior of xn for large n.

This equation can be written as the matrix equation if we introduce
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k-vectors x(i) = [xk+i−1, xk+i−2, . . . , xi]
∗ and matrix

A =


c1 c2 . . . ck

1 0 0 . . . 0 0

0 1 0 . . . 0 0

0 0 1 . . . 0 0

0 0 0 . . . 1 0


Then we can write the difference equation in the form

x(i+1) = Ax(i). (6.1)

The solution of this equation is x(s) = Asx(0). Hence if we want to know
the behavior of the sequence xn for large n we need to know the behavior
of powers of the matrix As.

If we can diagonalize the matrix A then we have

A = XΛX−1,

As = XΛsX−1

If we know both Λ and the matrix of eigenvectors X we can write an explicit
formula for x(n). Even if we don’t know X, a typical situation is that the
matrix Λ has a single eigenvalue λ1 with the largest absolute value. If
in addition we assume that the first component of X−1x(0) is not zero,
then the growth of |xn| is approximately c|λ1|n. In particular, if |λ1| < 1

then the sequence declines to zero, and if |λ1| > 1 then the sequence grows
unboundedly.

Many other dynamic problems in biology, engineering and physics can
be cast in the form (6.1) with x(k) that describe the state of a system at time
k, and A that describe the evolution of the state. In this case, the stability
of the system depends on the size of the eigenvalue with the largest absolute
value.

Example 6.2.1 (Fibonacci numbers). A classic example for this concept is
the Fibonacci numbers, which are defined by the relation:

fn = fn−1 + fn−2.
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Then we have f0 = 1, 0 and

A =

[
1 1

1 0

]

=

[
λ1 λ2

1 1

][
λ1 0

0 λ2

][
λ1 λ2

1 1

]−1

,

where λ1 = (1 +
√
5)/2 and λ2 = (1 −

√
5)/2 are eigenvalues of matrix A.

Then,

An =

[
λ1 λ2

1 1

][
λn
1 0

0 λn
2

][
λ1 λ2

1 1

]−1

,

After some calculation one can get from this formula:

Fn =
1√
5

(
λn
1 − λn

2

)
.

Since |λ1| > |λ2| we find that

Fn ∼ 1√
5

(1 +√
5

2

)n

For example, F30 = 832, 040 and the right hand side is 832, 040 + 2.4063 ×
10−7.

6.2.2 Power iteration as a tool to find the largest eigenvalue

In fact we can use the previous result in the converse direction to find the
eigenvalue with the largest absolute value.

Suppose that a matrix A has simple eigenvalues λ1, . . . λm with corre-
sponding eigenvectors x1, . . . , xm. If we start with an arbitrary vector v,
which in the basis of x1, . . . , xn has the representation v = c1x1 + . . . cmxm,
then

Asv = c1(λ1)
sx1 + . . . cm(λm)sxm

If λ1 is the eigenvalue with the largest absolute value, then for large s this
sum is dominated by the term c1(λ1)

sx1. So for large s the vector As

becomes very close to being proportional to the eigenvector x1.
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The algorithm works as follows. Start with a random unit vector v, and
repeat the following steps.

1) calculate u = Av.
2) normalize u by computing unit vector v′ = u/|u|.
3) if |v′−v| is sufficiently small, calculate λ = (Av, v). This is the desired

eigenvalue with eigenvector equal to v. Otherwise, set v = v′ and repeat.
The other eigenvalues are found on the basis of this algorithm. One

method is to calculate B = (α − A)−1. This maps an eigenvalue in the
vicinity of α to the largest eigenvalue of B. Other methods and ideas can
be found in the book by Trefethen and Bau.

6.2.3 Markov Chains

Let S be a finite set, and Xn, n ≥ 0, be a sequence of random variables that
take values in the state space S. (We will often identify S with a subset of
integers {1, . . . ,m}.) We say that Xn is a discrete-time Markov chain with
the initial probability distribution µ on S, and transition matrix P if

1. P(X0 = x) = µx;

2. P(Xn+1 = xn+1|X0 = x0, . . . , Xn = xn) = Pxn,xn+1 .

Figure 6.1

This is illustrated
by diagrams in Fig-
ure 6.1.

The transition ma-
trix P is a square
m × m matrix has
the properties that
all its entries are
non-negative and the
sum of the entries in
every row equals to
1. Such matrices are

called stochastic matrices.
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One property of the stochastic matrices is that they always have an
eigenvalue λ1, which corresponds to the (right) eigenvector v = [1, 1, . . . 1].
However, the left eigenvectors are also interesting because the multiplication
of a vector of probabilities on the right by matrix P corresponds to the
evolution of the probability distributions.

Indeed, the definition of the transition probabilities allows us to calculate
the joint distributions. For every sequence of states, (x0, . . . , xn)

P(X0 = x0, . . . , Xn = xn) = µx0Px0,x1Px1,x2 . . . Pxn−1,xn .

In particular if we sum over all x0, . . . xn−1, we will find the marginal distri-
bution of Xn,

P(Xn = xn) = (µPn)xn .

Here Pn is the n-th power of the matrix P , µPn denote the product of vector
µ by matrix Pn, and (µPn)j is the j-th component of this product.

It follows that

P(Xn = y|X0 = x) = (Pn)xy.

We will often write the conditional probabilities P(A|X0 = x) as Px(A),
so, for example, the previous result is Px(Xn = y) = (Pn)xy.

Example 6.2.2 (Random walk on a graph).

Recall that a graph G = (V,E) is a set of vertices V and a set of edges E,
which are simply a pair of vertices E ⊂ V ×V . We will usually assume that
the graph is simple, that is, that there are no multiple edges (edges with the
same endpoints) and that there are no loops, edges that have the same vertex
as both endpoints. The edges (v1, v2) and (v2, v1) are not distinguished, so
the graph is undirected. A degree of a vertex v, denoted d(v), is the number
of edges which are incident to v, that is, that have v as one of its endpoints.

Now we define a Markov chain which is called a simple random walk
on G. The states are vertices and the transition probability Puv = 1/d(u).
The interpretation is that if there is a particle at vertex u, it has equal
probabilities move along each of the edges incident to u.
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A distribution µ on a (countable) state S space is a non-zero vector with
non-negative entries. We call it a probability distribution if the sum of the
entries is 1.

If P is the transition matrix of a Markov chain then a distribution π is
called invariant if

πP = π

The terms equilibrium or stationary measure are also used to mean the same.
The definition of the invariant distribution implies that if Xn is dis-

tributed according to π then Xn+1 will also be distributed according to π.
Note that

∑
j Pij = 1 for all i, which means that matrix P has a right

eigenvector with eigenvalue 1 that has all its entries equal to 1. From an
algebraic viewpoint an invariant measure is a left eigenvector of the matrix
P with eigenvalue 1. This gives us a practical method for computation of
the invariant distribution if the state space is finite (and not too large).

Since 1 is an eigenvalue of P , therefore the left eigenvector with eigen-
value 1 exists. However, how do we know that it has non-negative entries?

It turns out that there is always a left eigenvector with non-negative
entries. One of the proves is based on the Perron-Frobenius theorem. It
holds not only for stochastic matrices but for a more general case of non-
negative matrices with some additional restrictions.

We formulate this theorem for a class of non-negative matrices called
primitive. It can be generalized to a wider class of non-negative matrices,
called irreducible. (I follow the book “Non-negative matrices” by Seneta
here.)

Definition 6.2.3. A square non-negative matrix P is called primitive if for
some positive integer k, all entries of the matrix P k are positive.

Theorem 6.2.4. Suppose P is a square non-negative primitive matrix.
Then,

1. There exists a positive real eigenvalue λ such that it is strictly greater
than the absolute value of any other eigenvalue.
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2. The algebraic and geometric multiplicities of λ equal 1.

3. The left and right eigenvectors corresponding to λ are strictly positive.

We refer to Seneta for the proof of this theorem. For stochastic primitive
matrices, with some additional effort, it is possible to show that the largest
eigenvalue equals 1. Hence, a consequence of the Perron-Frobenious theorem
is that there exists a unique invariant distribution for every Markov Chain
with primitive transition matrix.

The other eigenvalues are also important. Indeed, if µ(0) is an initial
distribution on the state space than we can expand it in the basis of left
eigenvectors of matrix P :

µ(0) = c1π +

n∑
k=2

ckvk,

where π is the invariant distribution and vk are other left eigenvectors. Then,
the distribution at step t of the Markov Chain is

µ(t) = µ(0)P t = c1π +
n∑

k=2

λt
kckvk.

This implies that (1) c1 = 1, and

lim
t→∞

µ(t) = π,

that is, the distribution converges to the stationary distribution. and (2) if
λ2 is the eigenvalue that has the second-largest absolute value, and if c2 ̸= 0,
then

|µ(t) − π| ∼ |λ2|t|ckvk|.

That is, the speed of the convergence to the stationary distribution depends
on the second largest eigenvalue λ2.

Since the speed of the convergence to the stationary distribution is im-
portant in many applications of Markov Chains, it is often an important
question if some good estimates of the second largest eigenvalue exist.

46



6.2.4 Reversible Markov Chains

A Markov chain with transition matrix P is called reversible if for some
probability distribution µ and all states i, j.

µjPji = µiPij (6.2)

These equations are called the detailed balance equations. The name is
related to the fact that if initial distribution is the invariant distribution then
for reversible chain it is is not possible to distinguish statistically between
sequences X0, . . . , Xn and Xn, . . . , X0. It turns out that reversible Markov
chains are easier to understand than non-reversible chains.

In terms of matrices, the detailed balance equations can be written as

DP = P ∗D, (6.3)

where D is the diagonal matrix with the entries Dii = µi.
The solution µ of the equation (6.2) is the invariant distribution.

Lemma 6.2.5. If the probability distribution µ satisfy (6.2) , then µ is
invariant.

Proof. We need to check that µP = µ. We write:

(µP )i =
∑
j

µjPji =
∑
j

µiPij = µi.

Often this property gives us a convenient tool for finding the invariant
distribution of a chain.

Example 6.2.6 (Random walk on a graph).

Consider a graph G with vertices v ∈ V . A degree (or valence) of a vertex
v is the number of edges incident with v. A random walk on the graph G

has the transition matrix P with entries Puv = 1/du if (u, v) is an edge, and
Puv = 0 otherwise. Here du denotes the degree of the vertex u. It is easy to
check that P satisfies the detailed balance condition with µu = du. It follows
that the random walk is reversible with the invariant measure π = du.
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If the graph G is not regular, that is, if it has vertices of differing degrees,
then this invariant measure is not uniform. Vertices with larger degree will
be visited more often than vertices with smaller degree. What if we want
to have at our disposal a Markov chain on the graph G that would have the
same transitions, – from a vertex to their neighbors, – but that would have
a uniform distribution on vertices?

In this case, we can use a lazy random walk. Namely, suppose d =

max{d1, . . . , d|V |} is the maximum vertex degree in the graph. Then we set
Puv = 1/d if (u, v) is an edge, and Puu = 1−du/d. In other words, if du < d

then with positive probability the particle will stay at vertex u and wait for
the next time period. It is easy to see from the detailed balance equation
that the uniform distribution is invariant for this chain.

Figure 6.2: An example of a non-reversible chain: a random walk with a bias.

In Figure 6.2, a non-reversible chain is presented. It is clear from symme-
try that the invariant distribution is uniform, but then the detailed balance
equation is not satisfied: Pji ̸= Pij .

Theorem 6.2.7. The eigenvalues of the transition matrix P of a reversible
Markov chain are real and P has the following eigenvalue decomposition:

P = D−1/2UΛU∗D1/2.
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where D is a diagonal matrix whose diagonal entries are the elements of the
invariant distribution, and U is an orthogonal matrix.

The fact that the eigenvalues of P are real for a system invariant to
time-reversal is an important general fact. In addition, the decomposition
stated in the theorem is useful in the analysis of properties of P .

Proof. The matrix form of the detailed balance equations (6.3) can be writ-
ten as

D1/2PD−1/2 = D−1/2P ∗D1/2

=
(
D1/2PD−1/2

)∗
.

In other words, the matrix

P̂ = D1/2PD−1/2

is symmetric. Therefore, it has an orthogonal decomposition UΛU∗ and its
eigenvalues are real. Since P is similar to P̂ its eigenvalues are also real and
it has decomposition

P = D−1/2UΛU∗D1/2.
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Chapter 7

Covariances and Multivariate
Gaussian Distribution

7.1 Covariance of a linearly transformed vector

Suppose x = (x1, . . . , xm)∗ be a column vector of random variables xi. Then
the covariance matrix C of x is the m×m matrix of covariances of the r.v.’s
xi:

Cij = Cov(xi, xj)

We will denote this matrix by Var(x). For example, if xi are i.i.d random
variables with variance σ2, then the covariance matrix is a multiple of the
identity matrix:

C ≡ Var(x) = σ2Im×m

Obviously, the covariance matrix is symmetric. It has also another im-
portant property. First, let us define a symmetric positive definite matrix
as a symmetric matrix that has the following property: (x,Ax) = x∗Ax > 0

for all real vectors x ̸= 0. If a symmetric matrix (x,Ax) ≥ 0 for all x then
it is called non-negative definite. (Similar concepts can be defined more
generally for hermitian matrices.)
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Theorem 7.1.1. If v is a real random vector, then its covariance matrix C

is non-negative definite.

Proof. It is clear that the covariance matrix is symmetric. Let x be a non-
random vector. Then,

Var(x∗v) = Var
( m∑

i=1

xivi

)
=

∑
i,j

xiCov(vi, vj)xj

= x∗Cx = (x,Cx)

However, Var(x∗v) ≥ 0 by properties of variance. Hence, (x,Cx) ≥ 0 for all
x and therefore the matrix C is non-negative definite.

The proof also shows that the matrix C is positive definite unless there
is a linear combination of components of vector v that has zero variance.

Theorem 7.1.2. Let x be a random m-vector with covariance matrix C,
and suppose y = Ax, where A is an n ×m non-random matrix. Then, the
covariance matrix of vector y is ACA∗.

Proof. We calculate:

Cov(yi, yj) = Cov
( m∑

k=1

Aikxk,
m∑
l=1

Ajlxl

)
=

m∑
k=1

m∑
l=1

AikAjlCov(xk, xl)

=

m∑
k=1

m∑
l=1

AikCklAjl

= (ACA∗)ij

Example 7.1.3 (Linear regression). Consider the linear statistical model

y = Xβ + ε, (7.1)

where y is an m-vector, X is a non-random m×n matrix, β is a non-random
n-vector, and ε is a random m-vectors. In the statistical setting y are m
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observations of a dependent variable, the columns of X are m observations
of n independent (or explanatory) variables, β are unknown coefficients and
ε are unknown error terms.

Assume that εi are i.i.d. with zero mean and variance σ2, which we as-
sume known for simplicity. The linear regression method gives the following
estimator of β:

β̂ = (X∗X)−1X∗y. (7.2)

This estimator is a random vector since y is a random vector. What is its
covariance matrix?

Let us plugin equation (7.1) into (7.2):

β̂ = (X∗X)−1X∗(Xβ + ε)

= β + (X∗X)−1X∗ε.

The first term is non-random so it does not affect any of the covariances.
So it is enough to calculate the covariance matrix of the second term. By
applying Theorem 7.1.2 and using the fact that Var(ε) = σ2Im×m, we get

Var(β̂) = (X∗X)−1X∗X(X∗X)−1

= σ2(X∗X)−1.

What about the variance of the fitted values ŷ?
For fitted values we have the formula:

ŷ = X(X∗X)−1X∗y

= X(X∗X)−1X∗(Xβ + ε)

= Xβ +X(X∗X)−1X∗ε.

So by applying Theorem 7.1.2, we find:

Var(ŷ) = X(X∗X)−1X∗(σ2I)X(X∗X)−1X∗

= σ2X(X∗X)−1X∗

This formula can be used to write the variance of individual terms of Var(ŷ).
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7.2 Eigenvalue and Cholesky factorizations of a co-
variance matrix

Theorem 7.1.2 implies that if a random vector x has an identity covariance
matrix C = I, then the covariance matrix of Ax is C = AA∗.

Sometimes we are given a matrix C and want to find such A that C =

AA∗. For example, one of the ways to generate a multivariate random
Gaussian variable with m components and covariance matrix C is to generate
m independent Gaussian variables with unit variance and multiply a vector
of these variables by A. It is known that the resulting variable is Gaussian
and Theorem 7.1.2 will ensure that it has the correct covariance matrix.

There are many factorizations C = AA∗. One is the eigenvalue factor-
ization. Since C is symmetric, it has an eigenvalue decomposition:

C = UΛU∗,

where U is an orthogonal matrix of eigenvectors and Λ is the diagonal matrix
of eigenvalues. Note that all eigenvalues of a non-negative definite matrix
must be non-negative. Indeed, if λ < 0 is a negative eigenvalue of C with
eigenvector u, then u∗Cu = −λ∥u∥2 < 0, which contradicts the assumption
that C is non-negative.

So, in particular we can take a square root of Λ. The result is the matrix
Λ1/2 that has

√
λi on its diagonal. Then we can use matrix A = UΛ1/2 to

factorize C as C = AA∗.
Another factorization is particularly popular in practice because it is

very simple to calculate.

Definition 7.2.1. The Cholesky factorization of a self-adjoint matrix C is
a decomposition

C = RR∗,

where R is a lower-triangular matrix.

When does this factorization exist?
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Theorem 7.2.2. Every hermitian positive definite matrix has a unique
Cholesky factorization.

Proof. The proof is by induction. Let A be an hermitian positive definite
matrix. First note that the fact that a matrix A = (aij) is positive definite
implies that all diagonal elements are positive. Let α =

√
a11 and write the

first step of the factorization:

A =

[
a11 w∗

w K

]

=

[
α 0

w/α I

][
1 0

0 K − ww∗/a11

][
α w∗/α

0 I

]
(7.3)

Indeed, [
α 0

w/α I

][
1 0

0 K − ww∗/a11

]
=

[
α 0

w/α K − ww∗/a11

]

and one more multiplication verifies the equality in (7.3).
We can write this equality as A = R1A1R

∗
1, where R1 is lower-triangular.

It is easy to check that A1 is positive definite (exercise). This implies that
its principal sub-matrix K−ww∗/a11 is also positive definite. In particular,
it is possible to apply the induction assumption that this submatrix has a
Cholesky factorization R2R

∗
2. Then if we define

R̂2 =

[
1 0

0 R2

]
,

then we obtain the factorization A = R1R̂2R̂
∗
2R

∗
1. This is the desired fac-

torization with the lower-triangular R = R2R1.
For the uniqueness, see the proof of Theorem 23.1 in Bao - Trefethen.

7.3 Multivariate Gaussian distribution

Definition 7.3.1. Let µ be an m-vector and Σ a positive definite m ×
m real symmetric matrix. The multivariate normal random variable with
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parameters µ and Σ is a random m-vector X with the following density
function:

fX(x) =
1

(2π)m/2(detΣ)1/2
exp

[
− 1

2
(x− µ)∗Σ−1(x− µ)

]
(7.4)

The density is called the Gaussian density and it is ubiquitous in statis-
tics and in statistical physics.

Remark 1: here and in the following we use the convention that random
variables are denoted by upper case roman letters, while their realizations
by lower case letters. This is in some conflict with our previous practice
when we used uppercase letters to denote matrices and lowecase letters to
denote vectors.

Remark 2: One can define a multivariate normal distribution in a more
general sense, when Σ may have a non-trivial null-space. Then one defines
K = Σ+, the pseudo-inverse of matrix Σ and the density is

fX(x) =
(detK)1/2

(2π)m/2
exp

[
− 1

2
(x− µ)∗K(x− µ)

]
, (7.5)

if x − µ ∈ Range(K) and fX(x) = 0 if x − µ ∈ Null(K). This is useful for
describing singular normal random vectors, for which the variances of some
linear combinations of the components of X are zero.

The matrix K = Σ+ is often called the concentration matrix. It useful
even if Σ is invertible and Σ+ = Σ−1.

Theorem 7.3.2. The function fX(x) in (7.4) is a valid probability density
function and the expectation and variance of the random vector X are µ and
Σ, respectively.

Proof. Let V be a random m-vector whose components are independent
standard normal random variables. By independence, its density is the
product of the densities of the components:

fV (v) =
m∏
i=1

1√
2π

exp
(
− 1

2
v2i

)
=

1

(2π)m/2
exp

(
− 1

2
v⋆v

)
Now let Σ = RR∗ be the Cholesky factorization of Σ, and let X =

µ+RV . Then EX = µ and by Theorem 7.1.2, Var(X) = RIm×mR∗ = Σ.
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In order to calculate the density function for X, we note that V =

(R)−1(X − µ), and therefore,

−1

2
v∗v = −1

2
(x− µ)∗(R∗)−1R−1(x− µ)

= −1

2
(x− µ)∗(RR∗)−1(x− µ)

= −1

2
(x− µ)∗Σ−1(x− µ).

Next we note that the transformation v = R−1(x − µ) is one-to-one and
linear, and that the matrix of derivatives for this transformation is

∂v(x)

∂x
:=

[
∂vi(x)

∂xj

]
i,j=1,...,m

= R−1.

Hence the Jacobian of this transformation is |detR−1| = |detR|−1. On the
other hand detΣ = detR∗ detR = |detR|2. It follows that the Jacobian of
the transformation v = R−1(x− µ) is (detΣ)−1/2.

The by the general theorem about the density function for transformed
random variables, we find that the density function of the random vector X
is

fX(x) =
1

(2π)m/2(detΣ)1/2
exp

[
− 1

2
(x− µ)∗Σ−1(x− µ)

]
and this completes the proof of the theorem.

Theorem 7.3.3. Let X be a multivariate normal m-vector with zero mean
and variance Σ. Then, for every non-random m-vector v:

E exp(v∗X) = exp
(1
2
v∗Σv

)
Before doing the general proof, let us look at the one-dimensional case

when X is a usual zero mean normal random variable with variance σ2. In
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this case, v is a scalar and we can calculate:

E exp(vX) =
1√
2πσ2

∫ ∞

−∞
exp

(
vx− x2

2σ2

)
dx

=
1√
2πσ2

∫ ∞

−∞
exp

(
− (x− σ2v)2 − σ4v2

2σ2

)
dx

= exp
(σ2v2

2

) 1√
2πσ2

∫ ∞

−∞
exp

(
− (x− σ2v)2

2σ2

)
dx

= exp
(σ2v2

2

)
,

where the last integral is computed by the change of variable y = x− σ2v.

Proof. We need to calculate the multiple integral

E exp(v∗X) = c

∫
Rm

dx exp
[
− 1

2
x∗Σ−1x+ v∗x

]
, (7.6)

where

c =
1

(2π)m/2(detΣ)1/2
.

Let Σ−1 = QΛQ∗ be the eigenvalue decomposition of Σ−1 with an orthogo-
nal matrix Q and a diagonal positive definite matrix Λ with diagonal entries
(λ1, . . . λm). Define y = Q∗x. Since |detQ| = 1, the Jacobian of the trans-
formation is 1 and the integral (7.6) can be written as:

c

∫
Rm

dy exp
[
− 1

2
y∗Q∗Σ−1Qy + v∗Qy

]
= c

∫
Rm

dy exp
[
− 1

2
y∗Λy + u∗y

]
,

where u = Q∗v.
Note that in coordinates

−1

2
y∗Λy + u∗y =

m∑
i=1

[
− 1

2
y2i λi + uiyi

]
,

so the multiple integral splits into a product of one-dimensional integrals,
which we have already done. (We need only to set σ2

i = 1/λi.) So we
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calculate the integral as

c
m∏
i=1

√
2πλ

−1/2
i exp

[ u2i
2λi

]
Product of λi equals detΛ = detΣ−1. Hence,

c

m∏
i=1

√
2πλ

−1/2
i = c(2π)m/2(detΣ)1/2 = 1.

And
m∏
i=1

exp
[ u2i
2λi

]
= exp

[1
2
(Q∗v)∗Λ−1Q∗v

]
= exp

[1
2
v∗QΛ−1Q∗v

]
= exp

[1
2
v∗Σv

]

Essentially this result gives the moment-generating and characteristic
functions of the multivariate normal distribution.

Corollary 7.3.4. Let X be a multivariate normal m-vector with zero mean
and variance Σ, and let t = [t1, . . . , tm]∗ be a vector in Rm. Then the
moment generating function of X is

mX(t) := Eet
∗X = exp

(1
2
t∗Σt

)
,

and the characteristic function of X is

φX(t) := Eei(t
∗X) = exp

(
− 1

2
t∗Σt

)
By using the moment-generating function, we can calculate the moments

of the multivariate normal distribution. The following result was proved by
Leon Isserlis in 1918. Recently, it was made popular by particle physicists
under the name Wick’s theorem. The physicists used it in the perturbative
Quantum Field Theory and Statistical Field Theory.
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Theorem 7.3.5 (Wick’s theorem). Let X = (xi) be a multivariate normal
m-vector with zero mean and variance Σ. Then,

E
(
xi1xi2 . . . xik

)
=

∑
Σab . . .Σyz,

where the sum is over all different pairings (ab), . . . , (yz) of the set of indices
{i1, i2, . . . , ik}.

An example should make this statement more clear. For two indices, we
simply have E(xixj) = Σij . For four indices, we have:

E(xixjxkxl) = ΣijΣkl +ΣikΣjl +ΣilΣjk.

Proof of Theorem 7.3.5. By a well-known result, we can write the moment
as the multiple derivative of the moment generating function evaluated at
zero:

E
(
xi1xi2 . . . xik

)
=

∂k

∂ti1 . . . ∂tik
mX(t)

∣∣∣
t=0

=
∂k

∂ti1 . . . ∂tik
exp

(1
2
t∗Σt

)∣∣∣
t=0

Consider first the derivative with respect to ti1 . By the chain rule it gives

( m∑
j=1

Σi1jtj

)
exp

(1
2
t∗Σt

)
Further differentiations will act either on the sum or on the exponential. If
they act on the exponential they generate new sums of the similar form as
a factor. If they act on the sum, they generate as scalar factor.

Note, however, that one of the further differentiations must act on the
sum. Otherwise, the evaluation t = 0 will set the result to zero. Let it be
differentiation with respect to tis . Then we have a pairing of i1 with is and
this pairing results in a factor Σi1is .

Quite similar we see that every differentiation either generate a new sum
or is paired with a previous differentiation to reduce one of these sums to a
scalar.
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Let us accept without proof two facts. First, that a linear transformation
of a multivariate normal random vector is a multivariate normal, although
perhaps in the generalized sense with the density as in (7.5). The second
is that a multivariate normal distribution is completely determined by its
mean and variance (even if the distribution is singular, in which case one
should use A = Σ+, the pseudo-inverse of Σ). Then, we have the following
theorem.

Theorem 7.3.6. Let X be a random m-vector with the normal distribution
and let EX = µ, Var(X) = Σ. Suppose that B is an k ×m matrix and b is
a (non-random) k-vector. Then Y = BX + b has the normal distribution,
and

EY = b+Bµ,

VarY = BΣB∗.

Proof. This result follows from the two facts that we stated before the the-
orem, and the calculation of the expectation and variance. In particular,
variance can be computed by formula in Theorem 7.1.2.

A consequence of this theorem is that the marginal distributions of the
multivariate normal vector are normal.

Theorem 7.3.7. Let X be a random m-vector with the normal distribution
and let EX = µ, Var(X) = Σ. Suppose X = (X1, X2)

∗, where X1 is a
k-vector with k < m, and suppose µ = (µ1, µ2), where µ1 is a k-vector, and

Σ =

[
Σ11 Σ12

Σ21 Σ22,

]

where Σ11 is a k× k matrix. Then X1 is normally distributed k-vector with
mean µ1 and covariance matrix Σ11.

Proof. This result follows from Theorem if we take b = 0 and

B = [Ik×k, 0k×(m−k)],
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that is B is a k × m matrix that consists of the k × k identity matrix
followed by m−k columns of zeros. Then X1 = BX and a calculation gives
the expectation and variance of X1 stated in the corollary.

We can also derive a formula for conditional distributions. Recall that if
X1 and X2 are two random variables with the joint density fX1,X2(x1, x2),
then the conditional density of X1 given X2 = x2 is defined as

fX1|X2
(x1|x2) =

fX1,X2(x1, x2)

fX2(x2)
,

where fX2(x2) is the marginal density of X2. The conditional mean and
variance of X1 given X2 = x2 are calculated as mean and variance with
respect to the conditional density fX1|X2

(x1|x2).
It turns out that the conditional density of a normal multivariate distri-

bution is also normal and there are nice formulas for the conditional expec-
tation and variance.

Theorem 7.3.8. Assume the notation of theorem 7.3.7 and let Σ22 be non-
singular. Then the conditional distribution of X1 given X2 is normal with
mean

µ1|2 = µ1 +Σ12Σ
−1
22 (X2 − µ2),

and variance

Σ1|2 = Σ11 − Σ12Σ
−1
22 Σ21.

Remark 1: The theorem is actually also valid for singular Σ22 if one uses
the pseudo-inverse Σ+

22 instead of Σ−1
22 .

Proof. In principle, the calculation of the conditional density is straightfor-
ward from the definition. If random vector X = [X1, X2]

∗ and its value is
x = [x1, x2]

∗, then

fX1|X2
(x1|x2) ∝ exp

(
(x− µ)∗Σ−1(x− µ)− (x2 − µ2)

∗Σ−1
22 (x2 − µ2)

)
∝ exp

(
(x− µ)∗Σ−1(x− µ)

)
.
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where symbol ∝ means “proportional to” and the coefficient of proportion-
ality does not depend on x1. Then it remains to invert the block matrix

Σ =

[
Σ11 Σ12

Σ21 Σ22,

]
and complete the square so that the result has the form

fX1|X2
(x1|x2) ∝ exp

(
(x1 − µ1|2)

∗Σ−1
1|2(x1 − µ1|2)

)
This is possible to do and there are formulas for the inversion of the 2 × 2

block matrix Σ, which are called Schur’s complement formulas. However, we
will use only the fact that the resulting conditional density is normal and
calculate the conditional expectation µ1|2 and variance Σ1|2 in a different
way.

First, X1 and X2 are two random vectors, define the covariance of these
vectors as a matrix C = Cov(X1, X2) with entries

Cij = Cov
(
(X1)i, (X2)j

)
,

where (X1)i and (X2)j are the i-th and j-th components of the vectors X1

and X2, respectively.
Let Z = X1 +AX2, where A = −Σ12Σ

−1
22 . Then,

Cov(Z,X2) = Cov(X1, X2) + Cov(AX2, X2)

= Σ12 − Σ12Σ
−1
22 Σ22 = 0.

So Z and X2 are uncorrelated. (In fact, A was chosen precisely to ensure
this property.) Crucially, for normal random variables this implies that the
variables are also independent. It follows that

E(X1|X2) = E(Z −AX2|X2) = E(Z|X2)−AX2

= EZ −AX2 = µ1 +Aµ2 −AX2,

and this gives the desired formula for the conditional expectation.
For the conditional variance we calculate,

Var(X1|X2) = Var(Z −AX2|X2)

= Var(Z|X2) + Var(AX2|X2)− Cov(Z,X2)A
∗ −ACov(X2, Z).
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The second term is equal to zero because AX2 is not random given X2. The
third and fourth term are equal to zero because Z and X2 are independent.
Finally, the first term equals to the unconditional variance Var(Z) again
because Z and X2 are independent. Therefore,

Var(X1|X2) = Var(Z) = Var(X1 +AX2)

= Var(X1) +AVar(X2)A
∗ + Cov(X1, X2)A

∗ +ACov(X2, X1)

= Σ11 +Σ12Σ
−1
22 Σ22Σ

−1
22 Σ21 − 2Σ12Σ

−1
22 Σ21

= Σ11 − Σ12Σ
−1
22 Σ21

These formulas is also possible to write in terms of the concentration
matrix. Let

K = Σ−1 =

[
K11 K12

K21 K22

]
.

Then for the conditional distribution of X1 given X2, we have formulas:

µ1|2 = E(X1|X2) = µ1 −K−1
11 K12(X2 − µ2)

K1|2 = Var(X1|X2)
−1 = K11.

This formulas can be obtained by manipulating formulas that express K11,
K12, and K22 in terms of Σ11, Σ12, and Σ22.

Example 7.3.9. Consider a 3-dimensional normal random vector X = [X1, X2, X3]
∗

with zero mean and covariance matrix

Σ =

1 1 1

1 2 1

1 1 2

 .

Then, we can calculate the concentration matrix

K = Σ−1 =

 3 −1 −1

−1 1 0

−1 0 1

 .
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The marginal distribution of (X2, X3) has the covariance and concentra-
tion matrices

Σ(23) =

[
2 1

1 2

]
and K(23) =

(
Σ(23)

)−1
=

1

3

[
2 −1

−1 2

]

The conditional distribution of (X1, X2) given X3 has the concentration and
covariance matrices

K(12|3) =

[
3 −1

−1 2

]
and Σ(12|3) =

(
K(12|3)

)−1
=

1

2

[
1 1

1 3

]
.

Simlarly, Var(X1|X2, X3) = 1/K11 = 1/3 and so on.

7.4 An application

Theorem 7.4.1. Let X1, X2, . . . , Xn be independent random variables dis-
tributed according to N(µ, σ2). Then,

(n−1)S2

σ2
=

∑
(Xi −X)2

has a χ2 distribution with (n−1) df. Also, X and S2 are independent random
variables.

For the proof see Exercise 13.93 in Wackerly ”Mathematical Statistics
with Applications”
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Chapter 8

QR factorization

8.1 Gram-Schmidt orthogonalization

In some cases we are given a basis (a1, a2, . . .) of a linear space V and we
want to construct a orthogonal basis (q1, q2, . . . , qn). More generally, we are
given an increasing sequence of spaces (a flag)

V1 ⊂ V2 ⊂ . . . ⊂ Vn,

where Vk = span(a1, . . . , ak), and we want to construct an orthonormal
system of vectors q1, . . . , qn so that Vk = span(q1, . . . qn). This can be easily
done by the process that is called the Gram-Schmidt orthogonalization.

The process is recursive. At step 1, we take vector a1 and normalize it
to have the unit length:

q1 =
1

r11
a1,

where r11 = ∥a1∥.
At step k we take vector ak and subtract its projection on the subspace

Vk−1. These is especially easy to do because we already know (q1, . . . , qk−1),
which form an orthonormal basis of Vk−1. After this, we normalize the
resulting vector so that it had the unit length.
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So,

vk = ak − (q∗1ak)q1 − . . .− (q∗k−1ak)qk−1,

qk =
1

rkk
vk,

where rkk = ∥vk∥.
The process will continue without interruption, provided that the inclu-

sions Vk−1 ⊂ Vk are strict, which is the same as that the matrix A with
columns a1, . . . , an has full rank.

The formulas above can also be written differently, as

a1 = r11q1,

a2 = r12q1 + r22q2,

a3 = r13q1 + r23q2 + r33q3,

. . .

an = r1nq1 + r2nq2 + . . .+ rnnqn,

where rij = q∗i aj when i < j and rii > 0 is as defined above.
In a matrix form it can be written as

A = Q̂R̂,

where A is an m×n matrix, Q is an m×n matrix with orthonormal columns
and R is an upper-diagonal n× n matrix with positive diagonal elements.

This factorization is called the reduced QR factorization and above ar-
gument shows that if matrix A has full rank, then this factorization exists
and is unique. By extending matrix Q̂ to an orthogonal m ×m matrix Q,
and R̂ to an upper-diagonal m × n matrix R one can obtain the full QR
factorization, although this factorization is not unique.

Above, we showed how to calculate the QR factorization by using the
Gram-Schmidt orthogonalization. There exists another, a faster method to
calculate this factorization based on so-called Householder reflections. For
details, see the textbook by Trefethen and Bau.
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8.2 Relation to least squares problem

Since the columns of Q̂ give an orthonormal basis of the columns space of
matrix A, it is very easy to project on this column space if Q̂ is computed.
So QR factorization gives an algorithm for solving a linear squares problem.

Formally, we have a problem

Ax = y + ε,

where we assume that A is a full-rank matrix.
Its least-squares solution is the solution of the normal equations:

A∗Ax = A∗y,

which we can rewrite as

R̂∗Q̂∗Q̂R̂b = R̂∗Q̂∗y

R̂∗R̂b = R̂∗Q̂∗y

Since the matrix R̂∗ is lower-diagonal and all its diagonal elements are pos-
itive, hence it is invertible, and we have:

R̂b = Q̂∗y

This gives the desired algorithm.

1. Compute the reduced QR factorization of A.

2. Calculate z = Q̂∗y

3. Solve the upper-triangular system R̂x = z for x.

Apparently, this is one of the fastest methods to solve the least squares
problem.

8.3 Relation to eigenvalue calculation

Theorem 8.3.1. Suppose that A = QR is the QR factorization of a real
symmetric matrix A, and let A1 = RQ. Then A1 is real symmetric and it
has the same eigenvalues as A.
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Proof. Since Q is orthogonal, we can express R as R = Q∗A. If we plug
this expression in the definition of A1 we find A1 = Q∗AQ which implies the
claims of the theorem.

Then we can define matrices Ak recursively (with A = A0) . If Ak−1 =

Qk−1Rk−1, then we define

Ak = Rk−1Qk−1.

By the previous theorem all Ak are real symmetric and have the same eigen-
values as A.

What we want to show is that if eigenvalues of A are all positive
and distinct, then Ak converges to a diagonal matrix. In particular,
the diagonal entries of Ak converge to the eigenvalues of A.

We will not prove this statement in detail but give some ideas why it is
true.

Note that by the proof of the previous theorem, we have

Ak = (Q(k))∗AQ(k),

where Q(k) = Q1Q2 . . . Qk. Define also

R(k) = RkRk−1 . . . R1

Theorem 8.3.2. The matrices Q(k) and R(k) give the QR decomposition of
the k-th power of the matrix Ak,

Ak = Q(k)R(k).

Proof. For k = 1, this simply means that A = QR. For large k, we proceed
by induction. Suppose that the we already know that Ak−1 = Q(k−1)R(k−1).
Multiply this equality by A on the left and note that

AQ(k−1) = AQ1Q2 . . . Qk−1 = Q1A1Q2 . . . Qk−1

= Q1Q2A2 . . . Qk−1

. . .

= Q1Q2Qk−1Ak = Q(k−1)QkRk

This implies that Ak = Q(k)R(k).
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That is Q(k) is the basis of the column space of Ak obtained as a result
of Gram-Schmidt orthogonalization.

We can write Ak = UΛkU∗, where U is the matrix of eigenvectors of
A and Λ is the diagonal matrix of eigenvalues. If the eigenvalues of A

are all positive and distinct. Then the columns of matrix Ak are linear
combinations of eigenvectors ui,

b1λ
k
1u1 + . . .+ bnλ

k
1un.

if we assume λ1 > λ2 > . . . > λn, then all columns of Ak, including the first
one, are dominated vectors proportional to the eigenvector u1. Hence the
first column of Q(k) is also very close to u1 The idea is that after orthogo-
nalization, the second column of Q(k) will be close to the second eigenvector
u2, and so on.

Indeed, the second flag space V2 spanned by the first and the second
columns of Ak is close to the space V̂2 spanned by the first and the second
eigenvectors u1 and u2. So, the second column of the matrix Q(k) obtained
from the orthogonalization of the flag V1 ⊂ V2 will be close to the vector u2.
(Since the first column of Q(k), as was just argued, is close to u1 and u2 is
the only vector in V̂2 orthogonal to u1.

In summary, the orthogonal matrix Q(k) will be close to the orthog-
onal matrix of eigenvectors of U and since A = UΛU∗, we have Ak =

(Q(k))∗AQ(k) = (Q(k))∗UΛU∗Q(k), and therefore Ak is close to Λ.
The detailed implementation of this plan is omitted.

8.4 Rayleigh quotient

Recall that we defined the norm of a matrix A as the maximum of the
quotient

∥Ax∥
∥x∥

over all possible non-zero x. So the square of the norm of matrix A maxi-
mizes

∥Ax∥2

∥x∥2
=

(Ax,Ax)

(x, x)
=

(x,A∗Ax)

(x, x)
.
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For symmetric matrices, the eigenvalues and the norm are closely related.
Indeed, in this case we have A = UΛU∗, where U is unitary and Λ is
diagonal, and since the unitary transformation does not change the norm,
we know that ∥A∥ = ∥Λ∥. For the diagonal matrix Λ we can directly solve
the maximization problem and find that the norm of Λ (and hence A) is
|λ1∥, the largest absolute value of an eigenvalue of A.

In particular, this argument shows that for a symmetric matrix the
square of the largest absolute value of an eigenvalue equals to the maxi-
mum of the ratio

(x,A∗Ax)

(x, x)
.

The Rayleigh quotient is a modification of this idea, which focuses di-
rectly on eigenvalues, not their squares. By definition the Rayleigh quotient
is the ratio:

R(x) =
(x,Ax)

(x, x)
.

Theorem 8.4.1 (Rayleigh-Ritz). If A has eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn,
then λ1 and λn are the maximum and the minimum, respectively, of the
Rayleigh quotient R(x) over all x ̸= 0.

Proof. We need to check that

λn(x, x) ≤ (x,Ax) ≤ λ1(x, x) (8.1)

holds and that the bounds can be achieved by a suitable choice of x ̸= 0.
The inequalities hold because A = UΛU∗ and so

(x,Ax) = (U∗x,ΛU∗x) = λ1y
2
1 + . . .+ λny

2
n.

where y = (y1, . . . , yn)
∗ = U∗x. The last expression is between λn∥y∥2 and

λ1∥y∥2 and we know that ∥y∥2 = ∥x∥2.
It is also clear that the bounds in the inequalities (8.1) are achieved if we

set x equal to the eigenvectors corresponding to eigenvalues λ1 and λn.
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This theorem can be extended to intermediate eigenvalues. Let Vk−1

be the space spanned by orthonormal system of eigenvectors u1, u2, . . . uk−1

that correspond to eigenvalues λ1, λ2, . . . , λk−1. Then,

λk = max
x ̸=0,x⊥Vk−1

R(x).

In order to see this note that the space V ⊥
k−1 orthogonal to Vk−1 is invariant

under the transformation A and spanned by the eigenvectors corresponding
to the eigenvalues λk, . . . , λn. Then the desired result can be obtained by
restricting the linear transformation A to the linear space V ⊥

k−1 and applying
the Rayleigh-Ritz theorem to this restriction.

An interesting extension to this is the Courant-Fisher Theorem. It says
that instead of explicitly choosing Vk as the span of the first k eigenvectors,
one can solve a min max problem. Namely,

λk = min
Vk−1

max
x ̸=0,x⊥Vk

R(x),

where the minimization is over all k − 1 dimensional subspaces Vk−1. The
benefit is that one does not need to assume knowledge of the eigenvectors
u1, . . . , uk−1.

The Courant-Fisher Theorem allows proving several important theoret-
ical results. One of the most useful is a theorem by Hermann Weyl. Let us
write λj(X) to denote the eigenvalues of an Hermitian matrix X arranged
in decreasing order.

Theorem 8.4.2. Let A and B be two Hermitian n× n matrices. For each
k = 1, 2, . . . , n, we have

λk(A) + λn(B) ≤ λk(A+B) ≤ λk(A) + λ1(B)

In particular, if matrix B is non-negative definite, then all eigenvalues
of A increase when we add B.

λk(A+B) ≥ λk(A)
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Figure 8.1

Another impor-
tant and surprising
result is the inter-
lacing theorem. If
the matrix B is non-
negative definite and

has rank 1, then

λk+1(A) ≤ λk+1(A+B) ≤ λk(A),

where k = 0, . . . , n− 1, with the convention that λ0(A) = +∞.
In other words the rank-one perturbation of matrix A cannot move the

internal eigenvalues too much. This is illustrated in Figure 8.1
It is interesting that if the eigenvalues of n × n symmetric matrices A

and B are known, and n is large, then one can calculate approximately the
distribution of eigenvalues of the matrix A + UBU∗, where U is a random
unitary matrix. This was one found recently (around 20 years ago) in re-
search that comprised the study of random matrices and results from a field
in functional analysis called free probability theory.
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Chapter 9

Exercises

Exercise 9.0.1 (Exercise 1.1 in Trefethen-Bau). Let B be a 4 x 4 matrix to
which we apply the following operations:

1. double column 1,
2. halve row 3,
3. add row 3 to row 1,
4. interchange columns 1 and 4,
5. subtract row 2 from each of the other rows,
6. replace column 4 by column 3,
7. delete column 1 (so that the column dimension is reduced by 1).
(a) Write the result as a product of eight matrices.
(b) Write it again as a product ABC (same B) of three matrices.

Exercise 9.0.2 (Exercise 1.4 in Trefethen-Bau). Let f1, . . . f8 be a set of
functions defined on the interval [1, 8] with the property that for any numbers
d1, . . . , d8, there exists a set of coefficients cl, . . . , c8 such that

8∑
j=1

cjfj(i) = di, i = 1, . . . , 8.

(a) Show by appealing to the theorems of this lecture that d1, . . . , d8

determine c1, . . . , c8 uniquely.
(b) Let A be the 8×8 matrix representing the linear mapping from data

d1, . . . , d8 to coefficients cl, . . . , c8. What is the i, j entry of A−1?
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Exercise 9.0.3 (Exercise 2.3 in Trefethen-Bau). Let A be a hermitian matrix.
An eigenvector of A is a non-zero vector x such that Ax = λx for some λ

which can potentially be a complex number and which is the eigenvalue
corresponding to the eigenvector x.

(a) Prove that all eigenvalues of A are real.
(b) Prove that if x and y are eigenvectors corresponding to distinct eigen-

values, then x and y are orthogonal.

Exercise 9.0.4 (Exercise 2.6 in Trefethen-Bau). If u and v are vectors, the
matrix A = I+uv∗ is known as a rank-one perturbation of the identity. Show
that if A is nonsingular, then its inverse has the form A−1 = I + αuv∗ for
some scalar α and give an expression for α. For what u and v is A singular?
If it is singular, what is Null(A)?

Exercise 9.0.5 (Exercise 3.4 in Trefethen-Bau). Let A be an m × n matrix
and let B be a submatrix of A, that is, a µ× ν matrix obtained by selecting
certain rows and columns of A.

(a) Explain how B can be obtained by multiplying A by certain row and
column “deletion” matrices” as in step 7 of Exercise 1.1.

(b) Using this product, show that ∥B∥p ≤ ∥A∥p for any p with 1 ≤ p ≤
∞.

Exercise 9.0.6 (Exercise 3.5 in Trefethen-Bau). Example 3.6 shows that if
E is an outer product E = uv∗, then ∥E∥2 = ∥u∥2∥v∥2. Is the same true
for the Frobenius norm, that is, is ∥E∥F = ∥u∥F ∥v∥F ? Prove it or give a
counterexample.

Exercise 9.0.7 (Exercise 6.1 in Trefethen-Bau). If P is an orthogonal projec-
tor, then I − 2P is unitary. Prove this algebraically, and give a geometric
interpretation.

Exercise 9.0.8 (Exercise 6.2 in Trefethen-Bau). Let E be the m×m matrix
that extracts the even part of an m-vector: Ex = (x+Fx)/2, where F is the
m×m matrix that flips (x1, . . . , xm)∗ to (xm, . . . , x1)

∗. Is E an orthogonal
projector, an oblique projector, or not a projector at all? What are its
entries?
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Exercise 9.0.9 (Exercise 6.3 in Trefethen-Bau). Given an m × n matrix A

with m ≥ n, show that A∗A is non-singular if and only if A has full rank.
Exercise 9.0.10 (Exercise 6.4 in Trefethen-Bau). Consider the matrices

A =

1, 0

0, 1

1, 0

 and B =

1, 2

0, 1

1, 0


Answer the following questions by hand calculation.

(a) What is the orthogonal projector P onto Range(A) and what is the
image under P of the vector (1, 2, 3)∗?

(b) Same question for B.
Exercise 9.0.11 (Exercises 4.1 and 5.1 in Trefethen-Bau). Determine the
SVDs of the following matrices (by hand calculation):

(a)
[
3 0

0 −2

]
, (b)

[
2 0

0 3

]
, (c)

0 2

0 0

0 0

 , (d)
[
1 1

0 0

]
, (e)

[
1 1

1 1

]
.

What are the singular values of the matrix

A =

[
1 2

0 2

]
?

Exercise 9.0.12 (Exercise 4.2 in Trefethen-Bau). Suppose A is an m × n

matrix and B is the n × m matrix obtained by rotating A ninety degrees
clockwise on paper. Do A and B have the same singular values? Prove that
the answer is yes or give a counterexample.
Exercise 9.0.13 (Exercise 4.4 in Trefethen - Bau). Two matrices m × m

matrices A and B are unitarily equivalent if A = QBQ∗ for some unitary
Q. Is it true or false that A and B are unitarily equivalent if and only if
they have the same singular values?
Exercise 9.0.14 (Exercise 5.4 in Trefethen - Bau). Suppose an m×m matrix
A has an SVD A = UΣV ⋆. Find an eigenvalue decomposition XΛX−1 of
the 2m× 2m hermitian matrix

B =

[
0 A∗

A 0

]
.
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Exercise 9.0.15 (Exercise 24.1 in Trefethen-Bau). For each of the following
statements, prove that it is true or give an example to show it is false.
Throughout, A is a complex m ×m matrix unless otherwise indicated and
“ew” stands for eigenvalue. (This comes from the German “Eigenwert.” The
corresponding abbreviation for eigenvector is “ev,” from “Eigenvektor.”)

a. If λ is an ew of A and µ ∈ C, then λ− µ is an ew of A− µI.

b. If A is real and λ is an ew of A, then so is −λ.

c. If A is real and λ is an ew of A, then so is λ.

d. If λ is an ew of A and A is non-singular, then λ−1 is an ew of A−1.

e. If all the ew’s of A are zero, then A = 0.

f. If A is hermitian and λ is an ew of A then |λ| is a singular value of A.

g. If A is diagonalizable and all its ew’s are equal, then A is diagonal.

2) Exercise 5.2.6 in Strang:

a. If A2 = I, what are possible eigenvalues of A?

b. If this A is 2× 2 and not I or −I, find its trace and determinant.

c. If the first row is (3,−1), what is the second row?

Exercise 9.0.16 (Exercise 5.3.4 in Strang). Suppose each “Gibonacci” num-
ber Gk+2 is the average of the two previous numbers Gk+1 and Gk. Then
Gk+2 =

1
2(Gk+1 +Gk). In matrix form this can be written as

[
Gk+2

Gk+1

]
= A

[
Gk+1

Gk

]
.

a. Find the eigenvalues and eigenvectors of A.

b. Find the limit as n → ∞ of the matrices An.
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c. If G0 = 0 and G1 = 1, show that the Gibonacci numbers approach 2
3 .

Exercise 9.0.17 (Exercise 24.4 (a) in Trefethen-Bau). The spectral radius
ρ(A) of a square matrix A is the largest absolute value |λ| of an eigenvalue
λ of A.

For an arbitrary m×m complex matrix A and the operator norm ∥ · ∥,
prove using the Schur decomposition (Theorem 24.9):

lim
n→∞

∥An∥ = 0 if and only if ρ(A) < 1.

Exercise 9.0.18 (Ex 1.1.4 from Norris’ “Markov Chains”). A flea hops about
at random on the vertices of a triangle with all jumps equally likely. Find
the probability that after n hops the flea is back where it started.

A second flea also hops about on the vertices of a triangle, but this flea is
twice as likely to jump clockwise as anti-clockwise. What is the probability
that after n hops this second flea is back where it started. [Recall that
e±iπ/6 =

√
3/2± i/2.]

Exercise 9.0.19 (From Norris’ “Markov Chains”). Let Xn, n = 0, 1, . . ., be a
Markov chain on {1, 2, 3} with transition matrix

P =

0 1 0

0 2/3 1/3

p 1− p 0

 .

Calculate the invariant distribution for this chain in each of the following
cases: (a) p = 1/16, (b) p = 1/6, (c) p = 1/2.

Exercise 9.0.20 (Ex. 1.9.1 From Norris). In each of the following cases
determine whether the stochastic matrix P is reversible:

1. [
1− p p

q 1− q

]
;

(0 < p < 1 and 0 < q < 1.)
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2.  0 p 1− p

1− p 0 p

p 1− p 0

 ;

(0 < p < 1)

3. The state space is {0, 1, . . . , N} and pij = 0 if only if |j − i| ≥ 2.

Exercise 9.0.21. Suppose (X,Y ) is a bi-variate normal vector with µX =

µY = 0, standard deviations σX = σY = 1, and correlation ρ = 1/2. (Recall
that ρ is defined as ρ = σXY /(σXσY ).)

Find P(Y > 0|X = 1).

Exercise 9.0.22 (From Boyd’s “Applied Linear Algebra”). A disease is in-
troduced into a population. In each period (say, days) we count the fraction
of the population that is in four different infection states:

1. Susceptible. These individuals can acquire the disease the next day.

2. Infected. These individuals have the disease.

3. Recovered (and immune). These individuals had the disease and sur-
vived, and now have immunity.

4. Deceased. These individuals had the disease, and unfortunately died
from it.

There are many mathematical models that predict how the disease state
fractions xt evolve over time. One simple model can be expressed as a linear
dynamical system. The model assumes the following happens over each day.

• 5% of the susceptible population will acquire the disease. (The other
95% will remain susceptible.)

• 1% of the infected population will die from the disease, 10% will recover
and acquire immunity, and 4% will recover and not acquire immunity
(and therefore, become susceptible). The remaining 85% will remain
infected.
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Write down the transition matrix for this model and find the steady
state. (You can use software to calculate eigenvectors.)

Write a Python program to simulate the evolution of this system. Start
with the initial state vector in which 0.1% of population is infected and all
others are succeptible. By using Matplotlib, draw a picture, where each line
illustrates the evolution of the percentage of each type of population.

How many days will it take for system to converge to equilibrium (with
the convergence defined as the time when the norm of the difference of the
state vector from the invariant distribution is smaller than 0.001.)
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