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Biological processes in time and space

§ Biological systems have
complex internal structure
capable of formation of
intricate patterns on all
levels of organization from
individual cell to large scale
patterns exhibited by
populations.

§ Science arrived at two
seemingly contradictory
conclusions: the biological
processes are governed by
the (old) physical/chemical
principles; we continue to
discover deeper levels of
complexity which never stop
to bewilder us.

Things moving around: reaction-diffusion equations

§ One common method of quantitative description for spatial
inhomogeneous systems which has enjoyed wide and successful
applicability is through the use of PDEs (partial differential
equations) known as reaction-diffusion equations.

§ These equations are a natural extension for a spatial
distributed case of the mass action laws.



A biochemical reaction

§ Suppose a biochemical reaction occurring among solutes in a
relatively large, unstirred solution.

§ The dynamics of the system is not only governed by the
dynamics of the rate at which the biochemical react, but also
by the fact there can be spatial variation in solute
concentrations, which entails that diffusion of the reactants
can occur.

§ Modelling such a system requires taking into account both
reaction and diffusion.

§ We will study how to model such phenomena and how (when
possible) to solve the resulting equations in detail.

Derivation of the reaction-diffusion equations

§ Suppose a chemical species U, of concentration upx , tq –
typically measured in mol m´3 –, is living (dependence on
time) and moving (dependence on space) in a container.

§ To describe the movement, we introduce another quantity: the
flux Jpx , tq – typically measured in mol m´2 s´1.



The flux
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Figure 4.4. Sketch of a test volume � with boundary �, population density
u(x, t), and flux J(x, t) through the boundary.

4.3.1 Derivation of Reaction-Diffusion Equations

Assume a population with density u(x, t) is living and moving in a container. To
describe movement, we introduce another dependent quantity, the particle flux,
J(x, t) � Rn. At each location x and at each time t, the flux J(x, t) is a vector
which points in the general direction of movement at that location. Its magnitude,
|J(x, t)|, is proportional to the amount of particles which flow in that direction per
unit time. Specifically, the flux J plays the role of the heat flux in heat transport,
or a concentration flux for a chemical reactor, and so on.

We consider a test volume � with boundary � and we balance the fluxes inward
and outward on � through � (see Figure 4.4). In words,

Change of u in � = flux through � + change due to birth, death, interactions.

Written in mathematical relations, this means

d

dt

�

�
u(x, t)dV = �

�

�
J(x, t)dS +

�

�
f(u(x, t))dV,

where dV denotes integration in the whole space Rn and dS denotes surface inte-
gration in dimension Rn�1.

We use the Divergence Theorem
�

�
J(x, t)dS =

�

�
divJ(x, t)dV,

§ At each location x and at each time t, the flux Jpx , tq is a
vector which points in the general direction of movement at
that location.

§ Its magnitude, |Jpx , tq|, is proportional to the amount of
particles which flow in that direction per unit time.

§ Specifically, the flux J plays the role of the heat flux in heat
transport, or a concentration flux for a chemical reactor.

Ficks Law of Diffusion

“aaa”
2005/6/27
page 127�

�
�

�

�
�

�
�

4.3. Reaction-Di�usion Equations 127

x

u(x)

J(x)

Figure 4.5. Schematic of Fick’s second law. A positive gradient of u gives
rise to a negative flux J .

and we get
�

�

�
d

dt
u � f(u) + divJ

�
dV = 0.

The above relation is satisfied in each test volume �. Then (if the measure dV is
not degenerate) it follows that

d

dt
u � f(u) + divJ = 0. (4.11)

Next, we need an expression of the flux in terms of the population distribution. As
for chemical reactions, we use Fick’s second law1

J = �Dru. (4.12)

We assume that the flux J is proportional to the negative gradient of the particle
distribution. In Figure 4.5, we show a positive gradient of u ( �

�xu(x, t) > 0). The
flux points to the left, leading to equilibrate high and low levels of u. If we combine
the balance law (4.11) with Fick’s law (4.12), we get a reaction-di�usion equation,

d

dt
u = D�u + f(u), (4.13)

where the Laplacian �u is defined as

�u(x, t) =
�2

�x2
1

u(x, t) + · · · + �2

�x2
n
u(x, t), x = (x1, . . . , xn) � Rn.

If f = 0, then equation (4.13) is simply the di�usion equation or heat equation.

1

In the interpretation of heat transport, this law is known as Fourier’s law.

§ Ficks Law of Diffusion relates the flux J to the gradient of u
via

J “ ´Dru,

where D, the diffusion coefficient, is independent of u and ru.
§ The flux is proportional to the negative gradient of the

concentrations.



Mass balance

§ We consider a test volume ⌦ with boundary � and we balance
the fluxes inward and outward through �

Change of u in ⌦ “ flux through �` changes due to reactions

§ In mathematical terms, this is given by
B
Bt

ª

⌦
upx , tqdV “ ´

ª

�
Jpx , tqdS `

ª

⌦
f pupx , tqqdV ,

where f pupx , tqq describes the rate of change of the
concentration u.

§ By the divergence theorem (
≥
� Jpx , tqdS “ ≥

⌦ div Jpx , tqdV )
ª

⌦

B
Bt upx , tq ` div Jpx , tq ´ f pupx , tqqdV “ 0

and so (if the mesure dV is not degenerate) the Mass Balance
Law is Bu

Bt ` div J ´ f puq “ 0.

Reaction-Diffusion Equation

Combining:
§ Mass Balance Law

Bu
Bt ` div J ´ f puq “ 0

§ Ficks Law of Diffusion

J “ ´Dru,

we get a reaction-diffusion equation

Bu
Bt “ D�u ` f puq,

where the Laplacian �u is defined as

�upx , tq “
nÿ

j“1

B2

Bx2
j

upx , tq.



The fundamental solution for the diffusion equation

§ Consider the initial value problem in one dimension

Bg
Bt “ D

B2g

Bx2 , gpx , 0q “ �0pxq.

§ The �´distribution �0pxq (a.k.a. Dirac-delta function) is not a
function in the classical sense. It f pxq is a smooth function,
the �0pxq is the only object which satisfies

ª

R
�0pxqf pxqdx “ f p0q,

ª

R
�0pxqdx “ 1.

§ The fundamental
solution is given by

gpx , tq “ 1?
4⇡Dt

e´ x2
4Dt .
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0 x

t = 0

t1 > 0

t2 > t1

Figure 4.6. Solutions of the di�usion equation (4.15) for three time values,
t = 0, t = t1 > 0, and t = t2 > t1.

If we study the di�usion equation with a general initial condition,

ut = Duxx, u(x, 0) = f(x), (4.17)

then the solution can be found by convolution with g:

u(x, t) = (f � g(·, t))(x),

where the convolution integral is given by

(f � g(·, t))(x) =

� �

��
f(y) g(x � y, t) dy

=
1

2
�

⇡Dt

� �

��
f(y)e� (x�y)2

4Dt dy.

(4.18)

4.3.3 Critical Patch Size

Reaction-di�usion equations are used to estimate the size of a habitat that can
support a population. In general, it is not possible to establish a stable surviving
population on an island that is too small. For pests, like the spruce budworm (see
Murray [110]), information about the critical patch size can be used to determine
how to split a woodland into small enough patches so as to prevent the budworms
from settling in.

Root-mean-square displacement (˚q
§ From this we can obtain the root-mean-square displacement of

a diffusion particle in one-dimension.
§ From statistical physics we know that the average quadratic

displacement of a particle starting at px , tq “ p0, 0q is given by

xx2y “
ª 8

´8
x2 gpx , tqloomoon

p.d.f.

dx “ 2Dt

then
xrms “

b
xx2y “

?
2Dt.

§ In three dimensions this result converts to xrms “
?

6Dt.
§ This result can also be rewritten in the form convenient for

calculation of time necessary for the particle to travel certain
distance R

t “ R2

6D
.



The fundamental solution for general initial condition

If we study the diffusion equation with a general initial condition,

Bu
Bt “ D

B2u

Bx2 , upx , 0q “ u0pxq.

then the solution can be found by convolution with g

upx , tq “ pu0 ˚ gp¨, tqqpxq,

where the convolution integral is given by

pu0 ˚ gp¨, tqqpxq “
ª 8

´8
u0pyqgpx ´ y , tqdy

“ 1?
4⇡Dt

ª 8

´8
u0pyqe´ px´yq2

4Dt dy .

What defines the diffusion coefficient D? (˚)

§ Theoretic estimates for the diffusion coefficient can be
obtained from the Einstein theory of Brownian motion. For a
spherical particle with radius r

D “ kbT

6⇡µr
,

where T is temperature, kb is the Boltzmann’s constant and µ
is the dynamic viscosity.

§ The radius of a molecule can be estimated from its molecular
weight and density

M “ 4
3
⇡r3⇢ ñ D “ kbT

3µ

´ ⇢

6⇡2M

¯1{3
ñ DM1{3 « CT ,

where C is a constant. If M † 1000, DM1{2 « CT .



Molecular weight and diffusion coefficients (˚)

Molecular weight and diffusion coefficients of some biochemical
substances in dilute aqueous solution at 20oC.

Substance M (g/mol) D (cm2{s)
Glycine 75 9.34 ˆ10´6

Glucose 192 6.60 ˆ10´6

Insuline 5 734 2.10 ˆ10´6

Cytochrome C 13 370 1.14 ˆ10´6

Hemoglobine 64 500 0.69 ˆ10´6

Catalase 247 500 0.41 ˆ10´6

Myosin 524 800 0.105 ˆ10´6

Tobacco mosaic virus 40 590 000 0.053 ˆ10´6

Time scales

§ For a given length scale, L, and diffusion coefficient, D, the
timescale of the system is t « L2{D.

§ For a cell, L « 10´3 cm and a typical protein D « 10´7

cm2s´1, the time scale for diffusion to homogenise spatial
gradients of this protein within a cell is

t « L2

D
« 10´6

10´7 “ 10 s.

§ Therefore, we can often neglect diffusion in a cell.
§ However, as the scale doubles the time scales squares e.g.

L1 “ Lˆ10 ñ t1 “ tˆ100, L2 “ Lˆ100 ñ t2 “ tˆ104.



Homework #9: Signaling in ant populations

Exercise 3.1: Certain ant species (such as Pogonomyrmex badius)
use pheromones as a signal for danger. A good model for the
spread of the pheromones in the tube is the one-dimensional
diffusion equation. In experiments, Bossert and Wilson released
ants in a long tube and stimulated one ant until it released a
pheromone. They measured within which distance and after which
time delay the other ants would react to the signal. Weassume that
at time t “ 0 a signal of strength ↵ is released. The diffusion
constant is D “ 1. Other ants react to the stimulus if the
concentration they perceive is 10% of ↵ or higher.

1. For each t ° 0, find the region in the tube 0 † x † xptq where
the ants would react to the stimulus (region of influence).

2. Sketch the time evolution of xptq.
3. Find the time t˚ such that the region of influence is empty for

all t ° t˚.


