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How species can invade new habitats

§ To illustrate the use of reaction-diffusion equations in this
context, we use Fisher’s equation:

Bu
Bt “ D

B2u

Bx2 ` µup1 ´ uq,

in all R, i.e., for x P R.
§ We seek solutions upx , tq that have the form shown in the

next figure, and then move with constant speed c.
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Figure 4.12. A typical invasion traveling wave.

Figure 4.13. The profile (f>(x)from the top figure is shifted by 2 to the right (bottom).

We make the traveling wave ansatz

where instead of boundary conditions, we now have conditions at ±00. For x -> —oo, the
population already has grown to its carrying capacity (1 in this case), and for x ->• +00,
the population has not arrived yet.

From (4.28), we obtain

and (4.27) reduces to the following ODE for <f>(z):

As in the previous section, we introduce a new variable, ty := </»', and write (4.29) as a 2 x 2
system

The equilibria of (4.30) are PI = (0, 0) and P2 — (1,0). Using the linearization, we find
that the point PI = (0,0) is stable for c > 0. It is a stable spiral for c < 2-JD^i and a stable
node for c > 2^/D^. The point P2 — (1,0) is always a saddle.



Traveling waves

§ A solution of this type can be expressed as

upx , tq “ �px ´ ctq.
§ For c ° 0, the function �px ´ ctq is the function �pxq shifted

to the right by ct (see next figure).

112 Chapter 4. Partial Differential Equations

Figure 4.12. A typical invasion traveling wave.

Figure 4.13. The profile (f>(x)from the top figure is shifted by 2 to the right (bottom).

We make the traveling wave ansatz

where instead of boundary conditions, we now have conditions at ±00. For x -> —oo, the
population already has grown to its carrying capacity (1 in this case), and for x ->• +00,
the population has not arrived yet.

From (4.28), we obtain

and (4.27) reduces to the following ODE for <f>(z):

As in the previous section, we introduce a new variable, ty := </»', and write (4.29) as a 2 x 2
system

The equilibria of (4.30) are PI = (0, 0) and P2 — (1,0). Using the linearization, we find
that the point PI = (0,0) is stable for c > 0. It is a stable spiral for c < 2-JD^i and a stable
node for c > 2^/D^. The point P2 — (1,0) is always a saddle.

§ The parameter c is the wave speed, the new variable
z :“ x ´ ct is called the wave variable, and the function �pzq
is called the wave profile.

Traveling wave ansatz

§ A solution of this type can be expressed as

upx , tq “ �px ´ ctq, �p´8q “ 1, �p`8q “ 0.

Instead of boundary conditions, we have conditions at ˘8.4.3. Reaction-Diffusion Equations 113

Figure 4.14. The traveling wave as a function of the wave variable z.

Figure 4.15. Heteroclinic connection from the saddle at (1, 0) to the stable spiral
at (0, 0). Here n = D — 1 and c < 2. There is no nonnegative traveling wave.

Recall that the boundary conditions for the wave profile are </> (—00) = 1 and0(+oo) =
0. Moreover, from the form of 0 as shown in Figure 4.14, it is clear that V(~°°) =
\j/(+oo) = 0. Hence, in the phase portrait of system (4.30), we have to find a connection
from the saddle (1, 0) to the stable point (0,0). We show these connections for c < 2,/T)JI
in Figure 4.15, and for c > 2^/TJJI in Figure 4.16.

The function 0 is the profile of the population density; hence it has to be nonnegative.
Thus solutions for c < 2>/Z5/Z are not biologically relevant. They correspond to an oscil-
lating front (see Figure 4.17). We obtain that the minimal speed c* for which a wave front
solution exists is given by c* = 2^/TJJI (here we argued graphically; a proof can be found
in Kallen, Arcuri, and Murray [97]).

General Fisher Equation

The above result on the minimal wave speed of traveling fronts can be generalized to general
Fisher equations

§ For x Ñ ´8, the population already has grown to its carrying
capacity (1 in this case), and for x Ñ `8, the population has
not arrived yet.



Steady-states

§ From the previous equation we wave

Bu
Bt px , tq “ ´c�1px ´ ctq, B2u

Bx2 px , tq “ �2px ´ ctq,

where �1 “ d�
dz , with z “ x ´ ct.

§ The Fisher equation reduces to the following ODE for �pzq

´c�1 “ D�2 ` µ�p1 ´ �q.
§ Introducing a new variable  “ � we have the system of ODEs

�1 “  ,  1 “ ´ c

D
 ´ µ

D
�p1 ´ �q.

§ Exercise 3.3: The equilibria of the system are P1 “ p0, 0q and
P2 “ p1, 0q. Using the linearization, prove that the point
P1 “ p0, 0q is stable for c ° 0. It is a stable spiral for
c † 2

?
Dµ and a stable node for c ° 2

?
Dµ. The point

P2 “ p1, 0q is always a saddle.

Minimal speed

§ In the phase portrait of system of ODEs , we have to find a
connection from the saddle p1, 0q to the stable point p0, 0q.
We show these connections for c † 2

?
Dµ in the next figure

(left), and for c ° 2
?
Dµ in next figure (right).
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Figure 4.14. The traveling wave as a function of the wave variable z.

Figure 4.15. Heteroclinic connection from the saddle at (1, 0) to the stable spiral
at (0, 0). Here n = D — 1 and c < 2. There is no nonnegative traveling wave.

Recall that the boundary conditions for the wave profile are </> (—00) = 1 and0(+oo) =
0. Moreover, from the form of 0 as shown in Figure 4.14, it is clear that V(~°°) =
\j/(+oo) = 0. Hence, in the phase portrait of system (4.30), we have to find a connection
from the saddle (1, 0) to the stable point (0,0). We show these connections for c < 2,/T)JI
in Figure 4.15, and for c > 2^/TJJI in Figure 4.16.

The function 0 is the profile of the population density; hence it has to be nonnegative.
Thus solutions for c < 2>/Z5/Z are not biologically relevant. They correspond to an oscil-
lating front (see Figure 4.17). We obtain that the minimal speed c* for which a wave front
solution exists is given by c* = 2^/TJJI (here we argued graphically; a proof can be found
in Kallen, Arcuri, and Murray [97]).

General Fisher Equation

The above result on the minimal wave speed of traveling fronts can be generalized to general
Fisher equations
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Figure 4.16. Heteroclinic connection from the saddle at (1,0) to the stable node
at (0, 0). Here IJL — D = 1 and c > 2. There exists a nonnegative traveling wave.

Figure 4.17. Oscillations of the leading edge of the wave from Figure 4.15.

where /(«) has a shape similar to fjiu (l — -|-). The exact conditions on / are as follows:
There is a K > 0 such that

Moreover, if we assume that /(«) satisfies the subtangential condition,

then the minimal wave speed is

The Linear Conjecture

As we saw in the previous sections, the minimal wave speed c* is exactly that value where
(0,0) changes from spiral into node. If we consider the traveling wave solution close to

§ The function � is the profile of the population density; hence it
has to be nonnegative. Thus solutions for c † 2

?
Dµ are not

biologically relevant. They correspond to an oscillating front.
We obtain that the minimal speed c˚ for which a wave front
solution exists is given by c˚ “ 2

?
Dµ.



Minimal speed and linear conjecture

§ As we saw, the minimal wave speed c˚ is exactly that value
where p0, 0q changes from spiral into node.

§ Exercise 3.4: By linearization, prove that the solution near
p0, 0q behaves like e´c˚{p2Dq, where c˚ “ 2

?
Dµ.

§ Linear conjecture: In many cases, it is enough to measure the
decay rate of the profile for large x to get a good
approximation for the minimal wave speed c˚.

§ Exercise 3.5: Prove that the minimal wave speed for the
general Fisher equation

Bu
Bt “ D

B2u

Bx2 ` f puq,

is c˚ “ 2
a
Df 1p0q.

Homework #11: Dingoes in Australia (see Textbook [1])

Exercise 3.6: A dingo population which lives in the eastern parts of
Australia is prevented from invasion to the west by a fence which
runs north-south. Consider the case in which the fence breaks
somewhere (at time t “ 0). Two farms, A and B are located on the
west side of the fence. The distance from farm A to the fence is
100 miles, and the distance from farm A to B is another 100 miles.
The farmers would like to know how long it would take for the
dingoes to reach their farms. We model the spread of the dingo
population with Fisher’s equation

Bu
Bt “ D

B2u

Bx2 ` up1 ´ uq.

1. The region between farm A and the fence is flat and the
diffusion constant is D1 “ 100 (miles2/month). When does
the dingo population reach farm A?

2. The region between farm A and B has rocks and slope; hence
there the diffusion constant is D2 “ 50 (miles2/month). When
does the dingo population reach farm B?


