Continuous modelling by PDEs

Numerical methods

Computational Biology

Adérito Araújo (alma@mat.uc.pt) July 25, 2024

Finite differences method (FDM)

Let us consider the reaction-diffusion equation

$$
\frac{\partial u}{\partial t}=D\frac{\partial^2 u}{\partial x^2}+f(u),\quad x\in(0,L),\ t>0,
$$

with homogeneous Dirichlet boundary conditions

$$
u(0,t)=u(L,t)=0, \qquad t\geqslant 0
$$

and initial condition

$$
u(x, 0) = u_0(x), \qquad x \in [0, L].
$$

The idea is of the FDM consists on obtaining an approximate solution for the initial boundary value problem replacing the derivatives in the equation by finite differences.

Kロト K部ト K目ト K目ト 「目」 のQ (^

Finite differences method: algorithm

3. Discretize space derivatives using the finite difference formula (obtained by Taylor expansion)

$$
\frac{\partial^2 u}{\partial x^2}(x_i,t)=\frac{u(x_{i+1},t)-2u(x_i,t)+u(x_{i-1},t)}{\Delta x^2}-\frac{\Delta x^2}{12}\frac{\partial^4 u}{\partial x^4}(\eta_i,t),
$$

where $\eta_i \in (x_{i-1}, x_{i+1})$. Replacing on the equation and eliminating the error we obtain the system of *n* ODEs

$$
\frac{d\hat{u}_i}{dt}(t) = \frac{\hat{u}_{i+1}(t) - 2\hat{u}_i(t) + \hat{u}_{i-1}(t)}{\Delta x^2} + f(\hat{u}_i(t)),
$$

$$
\hat{u}_1(t) = \hat{u}_N(t) = 0,
$$

for $i = 2, ..., N - 1$, where $\hat{u}_i(t) \approx u(x_i, t)$

4. The system of ODEs may be solved by an ODE solver (like the Euler or Runge-Kutta solvers).

Finite differences method: algorithm

4. Find a grid on time

$$
0=t^0
$$

such that $\Delta t = t^{m+1} - t^m$, for all *m*.

5. Discretize time using the finite difference formula

$$
\frac{d\hat{u}_i}{dt}(t^m) = \frac{\hat{u}_i(t^{m+1}) - \hat{u}_i(t^m)}{\Delta t} - \frac{\Delta t}{2} \frac{d^2 \hat{u}_i}{dt^2}(\tau^m)
$$

where $\tau^m \in (t^m, t^{m+1})$. Replacing on the equation and eliminating the error we obtain the algebraic system

$$
U_i^{m+1} = U_i^m + r \left(U_{i+1}^m - 2U_i^m + U_{i-1}^m \right) + \Delta t f(U_i^m),
$$

$$
U_1^m = U_N^m = 0,
$$

for $i = 2,..,N-1$, $m = 0,1,...$, where $r = \frac{D \Delta t}{\Delta x^2}$ and $U_i^m \approx \hat{u}_i(t^m) \approx u(x_i, t^m).$ K □ K K @ K K 통 K K 통 K X G Q Q Q

Finite differences method: matrix form

The algebraic system may be written in the matrix form as

$$
U^{m+1} = U^m + rA U^m + \Delta t F(U_i^m)
$$

where $U^m = [U_2^m, U_3^m, \ldots, U_{N-2}^m, U_{N-1}^m]^T$, and

$$
A = \begin{bmatrix} -2 & 1 & & & \\ 1 & -2 & 1 & & \\ & & \ddots & \ddots & \ddots & \\ & & & 1 & -2 & 1 \\ & & & & 1 & -2 \end{bmatrix}
$$

$(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ OQ GB.

Finite differences method: algorithm

6. Obtain the approximate solutions U^{m+1} , $m = 0, 1, \dots$, solving the algebraic system

$$
U^{m+1}=U^m+rAU^m+\Delta t F(U_i^m).
$$

In alternative, we may consider the semi-implicit method (more stable)

$$
U^{m+1}=U^m+rAU^{m+1}+\Delta t F(U_i^m),
$$

and obtain the approximate solutions U^{m+1} , $m = 0, 1, \ldots$, solving the linear system of equations

$$
BU^{m+1}=U^m+\Delta t F(U_i^m),
$$

where $B = I - rA$ and *I* is the identity matrix of order $N - 2$.

Computational exercise: diffusion equation

Exercise 3.7: Explore the Matlab codes Difusion_1D_explicit.m and Difusion_2D_explicit.m.

- 1. Observe the diffusive behaviour of the solutions.
- 2. Use the Matlab command spy to see the structure of the diffusive matrix.
- 3. Explore the behaviour of the numerical solution obtained with the explicit methods when you increase Δt . Try to find a value *r* such that, for $\Delta t > r$ Δx^2 $\frac{20}{D}$ the numerical solution starts to oscillate.

Computational exercise: reaction-diffusion equations

Exercise 3.8: Starting with the Matlab code

Difusion_1D_explicit.m, obtain a new file Fisher_explicit.m to solve the following problem.

1. Using the FDM, obtain the numerical solution of the Fisher equation in 1D

$$
\frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial x^2} + \mu u (1 - u)
$$

with $0 \le x \le 2$, $\mu = 0.1$, $D = 0.01$, with the boundary conditions $u(0, t) = u(2, t) = 0$ and initial conditions $u(x, 0) = 1, x \in [0.8, 1.2]$, and $u(x, 0) = 0$ elsewhere.

2. Explore the dynamical behaviour of the system for different values of *µ*.

Computational exercise: Fisher equation

Exercise 3.9: Explore the Matlab code Fisher_explicit.m.

- 1. Start with $\mu = 0$ (just diffusion) and see the behaviour of the solution when $\mu > 0$.
- 2. Explore the behaviour of the numerical solution for different values of *D* and *µ*.
- 3. Try to see numerically a relation between *D* and *µ* such that for *t* large enough the steady state solution will vanish.

K □ ▶ K @ ▶ K 글 ▶ K 글 ▶ │ 글 │ K) Q Q ۞

Homework #12: system of reaction-diffusion equations

Exercise 3.10: Starting with the Matlab code Fischer_explicit.m, obtain a new file Brusselator_explicit.m to solve the following problem.

1. Using the FDM, obtain the numerical solution of the dumped Brusselator in 1D

$$
\frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial x^2} + \alpha + u^2 v - (\beta + 1) u
$$

$$
\frac{\partial v}{\partial t} = D \frac{\partial^2 v}{\partial x^2} + \beta u - u^2 v,
$$

with $0 \le x \le 1$, $\alpha = 1$, $\beta = 3$, $D = 1/50$, with the boundary conditions $u(0, t) = u(1, t) = 1$, $v(0, t) = v(1, t) = 3$ and initial conditions $u(x, 0) = 1 + \sin(2\pi x)$, $v(x, 0) = 3$.

- 2. Explore the dynamical behaviour of the system.
- 3. For $D = 0$ (no diffusion), the Brusselator model is a system of ODEs. Try to obtain the plots presented at Exercise 2.7 (Homework #6) for $\alpha = 1$ and $\beta = 1, 2, 3$.

A final question

Why are there animals with spotted bodies and striped tails, but none with striped bodies and spotted tails?

More in: https://turing-pattern-project.sites.sheffield.ac.uk/turing-patterns