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Discrete-time models

Let xn, n P N0, be a quantity at the n-th measurement or after n
time steps.

We are concerned with a sequence of quantities

x0, x1, x2, x3, . . .

Examples: xn may represent:

§ the size of a population in year n;

§ the proportion of individuals in a population carrying a
particular allele of a gene in the nth generation;

§ the number of cells in a bacterial culture on day n;

§ the concentration of oxygen in the lung after the n-th breath;

§ the concentration in the blood of a drug after the n-th dose;

§ ¨ ¨ ¨



What does it mean to build a discrete-time model?

Discrete model: is a rule describing how xn`1 depends on xn (and
potentially also on xn´1, xn´2, . . . , x0).

Consider the case where xn`1 depends on xn

xn`1 “ f pxnq.

§ This equation is called discrete-time equation or di↵erence
equation, and f is called the updating function or map.

§ Given some initial condition x0, the resulting simulated
sequence

x1 “ f px0q, x2 “ f px1q, x3 “ f px2q, . . .

is called an orbit of the map.

Discrete Malthus’ model

f pxnq “ rxn, with r ° 0

§ Let Nn be the size of a population at time n

§ Discrete Malthus’ model

N0 given, Nn`1 “ rNn ñ Nn “ r
n
N0

corresponds to a geometric growth/decay with ratio r .
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Figure: Geometric growth (r ° 1); geometric decay (r † 1).



Malthus’ model: example

§ Let the probability of any given individual dying between
censuses (the per capita mortality) be d , and let the average
number of birds of any given individual in the same time
period (the per capita production or reproduction) be b.

§ Discrete Malthusian model:

Nn`1 “ p1 ` b ´ dqNn “ rNn,

where r “ 1 ` b ´ d is called (net) growth ratio.

§ The model is not very realistic for most populations nor for
long times but it has been used (with some justification) for
the early stages of growth of certain bacteria.

Discrete logistic model

Example: Paramecium aurelia is a single-celled organism that
abounds in standing water tanks. It was studied by Gregory Gause
in 1932 (see [1]).

Figure: Paramecium aurelia.



Paramecium aurelia data

Day Mean density
0 2
1 -
2 14
3 34
4 56
5 94
6 189
7 266
8 330
9 416
10 507
11 580
12 610

Day Mean density
13 513
14 593
15 557
16 560
17 522
18 565
19 517
20 500
21 585
22 500
23 495
24 525
25 510

Table: Growth of Paramecium aurelia. Here, density is the number of
individuals per 0.5 cm3 (data taken from Gause [1]).

Define the discrete logistic model

§ Let pn be the mean density of the population on day n.

§ A good starting point for building a model for pn:

future value “ present value ` change;

which translates to:

pn`1 “ pn ` �pn,

where �pn “ pn`1 ´ pn.

§ Goal: find a reasonable approximation for �pn that
reproduces the given set of data.



Define the discrete logistic model: look at the data
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Figure: Growth of Paramecium aurelia.

Define the discrete logistic model: analize the data

§ Initially, the population increases slowly. As time progresses,
values of �pn increase and reach a maximum approximately
halfway through the experiment.

§ After that, they decrease again. We can attribute the
decrease in the growth rate to intraspecific competition for
nutrients and space.

§ At the end of the experiment, the population appears to be
leveling o↵ when it reaches a mean density of approximately
540 individuals per 0.5 cm3.



Define the discrete logistic model: find �pn

Based on observations, we can define �pn such that:

§ is small when pn « 0 and pn « 540;

§ is positive for 0 † pn † 540;

§ that is negative for pn ° 540.

Considering
�pn “ rp540 ´ pnqpn

we define a discrete logistic model for the population

pn`1 “ pn ` rp540 ´ pnqpn,

where the parameter r remains to be determined.

Discrete logistic model: define the parameter
§ In our model

pn`1 ´ pnloooomoooon
yn

“ r p540 ´ pnqpnloooooomoooooon
xn

.
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Figure: Plot of pn`1 ´ pn versus p540 ´ pnqpn.
§ The slope of the line of best fit is r « 0.0015.



Discrete logistic model: validate the model
§ Compare the behavior of our model

pn`1 “ pn ` 0.0015p540 ´ pnqpn, n “ 0, 1, . . . ,

with the observed initial data.
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Figure: Comparison of the simulated data and the observed data.

Discrete logistic/Verhulst’ model

§ Discrete logistic/Verhulst’ model

xn`1 “ xn `rpK ´xnqxn “ xn `rK

´
1 ´ xn

K

¯
xn, n “ 0, 1, . . .

where K is the maximum population that can be sustained by
the environment (the carrying capacity of the population).

§ Teh discrete logistic/Verhulst’ model is often written as

xn`1 “ r

´
1 ´ xn

K

¯
xn, n “ 0, 1, . . . ,

where r “ 1 ` rK and K “ 1 ` rK

r
.



Other discrete population models

Ricker’s population model:

Nn`1 “ Nne
rp1´Nn

K
q, r ° 0,K ° 0.

§ Constant reproduction factor er and a density-dependent
mortality factor ep´rNn{Kq, which is more severe the larger Nn.

§ For large Nn there is a reduction in the growth rate but Nn`1

remains nonnegative. So Nn ° 0 for all n if N0 ° 0.

Other population models: replace the Malthusian equation by

Nn`1 “ rSpNnqNn.

§ In a real population, some of the o↵spring produced by each
adult will not survive to be counted as adults in the next
census.

§ SpNnq is the survival rate (depending on Nn).

Dynamics with intraspecific (within-species) competition

Same species competing for a short supply (e.g. food, space,...)

Nn`1 “ rSpNnqNn.

§ r is the growth ratio in the absence of competition

§ SpNq defines the intraspecific competition function

Di↵erent ways to define SpNq:
§ No competition: SpNq “ 1 for all N.

§ Every individual is assumed to get an equal share of a limited
resource: SpNq “ 1 for N † Nc and SpNq “ 0 for N ° Nc ,
where Nc is the critical values of individuals for surviving.

§ There is a limited number of units of resource and each
individual which obtains one of these units of resource
survives and reproduces as in absence of competition:
SpNq “ 1 for N † Nc , and SpNq “ Nc{N for N ° Nc .



Hassell equation

§ A model which exhibits all kinds of compensatory behaviour
depending on the parameters is given by

Nn`1 “ rNn

p1 ` aNnqb ,

with r , a ° 0 and b • 0; for b “ 0 there is no competition.

§ The analysis of the model is easier if we reduce the number of
parameters. Defining xn “ aNn, the Hassell equation becomes

xn`1 “ rxn

p1 ` xnqb .

Homework #1

Exercise 1.1: Consider the model

p0 “ 2, pn`1 “ pn ` 0.0015p540 ´ pnqpn, n “ 0, 1, . . .

1. Simulate the model and make a plot to compare the model
results with the data observed by Gause.

2. Recall that the choice to use the number 540 in this equation
was rather arbitrary. Try to improve the model.

3. The following Beverton-Holt model is a suitable alternative
model to describe populations undergoing logistic growth

pn`1 “ r

1 ` r´1
K

pn

pn,

with r ° 0 and K ° 0. Fit the Beverton-Holt model to the
data observed by Gause.



Homework #1

Exercise 1.2: Consider the survival of a population of whales, and
assume that if the number of whales falls below a minimum
survival level m, then the species will become extinct. In addition,
assume that the population is limited by the carrying capacity M

of the environment. That is, if the whale population is above M,
then it will experience a decline because the environment cannot
sustain that large a population level.
1. Let an represent the whale population after n years. Discuss

the model

an`1 “ an ` kpM ´ anqpan ´ mq,
where k ° 0. Does it make sense in terms of the description
above?

2. Sketch the graphs of an versus n for various initial conditions.
You may assume that M “ 5000, m “ 100, and k “ 0.0001.

3. The model has two serious shortcomings. What are they?
Hint: Consider what happens when a0 † m, and when
a0 " M.


