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Steady state

§ Consider a model

xn`1 “ f pxnq, n “ 0, 1, . . .

§ Any intersection of the curve y “ f pxq and the diagonal line
y “ x represents a special point.

§ Steady state (or fixed point or equilibrium point) of the
model: a point x˚ that satisfy

x
˚ “ f px˚q.

§ If any iterate is x˚, then all subsequent iterates also are x
˚.



Cobwebbing
Cobwebbing: a graphical method of exploring the behaviour of
repeatedly applying a function f pxq beginning at an initial point x0.
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Figure: Cobwebbing for the discrete logistic model.

Cobwebbing process

§ We consider our first iterate, x0, on the horizontal axis.

§ Then we calculate the next iterate x1 “ f px0q. Visually, we
represent a vertical line from px0, 0q on the horizontal axis to
the point px0, x1q lying on the curve y “ f pxq.

§ Then we have to locate x1 on the horizontal axis. We already
have x1 on the vertical axis, and the easiest way to get it onto
the horizontal axis is to reflect it through the diagonal line
y “ x . Visually, this is shown by a horizontal line from px0, x1q
to point px1, x1q on the diagonal line.

§ Then we calculate the next iterate x2 “ f px1q and draw a
vertical line from point px1, x1q on the diagonal line to
px1, x2q.

§ This process is repeated for subsequent iterates.



Cobwebbing vs. time evolution
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Figure: Graphical determination of the steady state (top); time evolution
of the population growth (bottom).

Linear stability

Relevant question: What happens when an iterate is close to, but
not exactly at, a fixed point?

§ If the subsequent iterates move closer to the fixed point, the
fixed point is said to be stable/attracting.

§ If the subsequent iterates move further away the fixed point,
the fixed point is said to be unstable/repelling.

Strategy: iterate near to a fixed point x˚ and study the behaviour
of the subsequent iterates.



Linear stability analysis

§ Define
⌘n “ xn ´ x

˚, n “ 1, 2, . . .

§ Using a Taylor series about x˚, with remainder R2p⌘nq

x
˚ ` ⌘n`1 “ f px˚ ` ⌘nq “ f px˚qloomoon

“ x˚

`f
1px˚q⌘n ` R2p⌘nq.

§ Linearization: neglect all the term R2p⌘nq

⌘n`1 “ f
1px˚q⌘n “ �⌘n, with � “ f

1px˚q.

§ The parameter � “ f
1px˚q generally is referred to as the

eigenvalue of the map at x*.

§ Given the initial condition ⌘0, the deviations are

⌘n “ �n⌘0.

Linear stability analysis

The behaviour of the deviation ⌘n, and the subsequent conclusion
regarding the stability of the fixed point x˚, can be summarized as
follows:

§ � ° 1: geometric growth; fixed point x˚ is unstable;

§ 0 † � † 1: geometric decay; fixed point x˚ is stable;

§ ´1 † � † 0: geometric decay with sign switch; fixed point x˚

is stable;

§ � † ´1: geometric growth with sign switch; fixed point x˚ is
unstable;

§ � “ ˘1: carefull analysis of R2p⌘nq.

Theorem: Let x˚ be a fixed point of xn`1 “ f pxnq. Then x
˚ is

stable if |f 1px˚q| † 1 and unstable if |f 1px˚q| ° 1.

A fixed point x˚ is called hyperbolic if |f 1px˚q| ° 1 and
non-hyperbolic if |f 1px˚q| “ 1.



Dynamics of the Ricker’ model

Nn`1 “ Nne
rp1´Nn

K
q, r ° 0,K ° 0

Mathematical modelling in biology 2

0 50 100 150 200
0

50

100

150

0 2 4 6 8 10
0

30

60

90

120

Figure 1.1: Dynamics of the Ricker model. The left-hand plot shows a plot of Nt+1 =

Nt exp [r (1 � Nt/K)] alongside Nt+1 = Nt with the cobwebbing technique shown. The right-

hand plot shows Nt for successive generation times t = 1, 2, . . . , 10. Parameters are: N0 = 5,

r = 1.5 and K = 100.

For example:

• �1 < f �(Ns) < 0

• f �(Ns) = �1

• f �(Ns) < �1

Figure: Ricker’ model with N0 “ 5, r “ 1.5, K “ 100. Cobwebbing (left);
time evolution (right).
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For example:

• �1 < f �(Ns) < 0

• f �(Ns) = �1

• f �(Ns) < �1



Bifurcation
A bifurcation point is, in the current context, a point in parameter
space where the number of steady states, or their stability
properties, or both, change.

0 1 2 3 4

-0.5

0

0.5

1

1.5

2

Figure: Bifurcation diagram for the non-dimensional discrete-time logistic
model. The non-zero steady state is given, for r ° 1, by x

˚ “ pr ´ 1q{r .

Linear stability analysis: discrete logistic model

Discrete logistic model (Verhulst model)

xn`1 “ r

´
1 ´ xn

K

¯
xn, n “ 0, 1, . . . , with r ,K ° 0.

Eliminating the parameter K : let x̄n “ xn{K to obtain (after
dropping the overbars)

xn`1 “ f pxnq “ r xnp1 ´ xnq, n “ 0, 1, . . . , with r ° 0.

Note: If xn ° 1 then xn`1 † 0. To avoid this, note that:

§ the maximum value of f pxq “ rxp1 ´ xq is f p1{2q “ r{4;
§ if x0 P r0, 1s and 0 § r § 4 then xn P r0, 1s for all n.



Steady states and stability analysis

f pxq “ rxp1 ´ xq
Steady states and corresponding eigenvalues �:

§ x
˚ “ 0, � “ f

1p0q “ r ,

§ x
˚ “ r ´ 1

r
(positive when r ° 1), � “ f

1p r´1
r

q “ 2 ´ r .

Stability analysis:

§ 0 † r † 1: as r increases the only realistic (non-negative)
steady state is x˚ “ 0 which is stable (0 † � † 1).

§ r “ 1: first bifurcation, since x
˚ “ 0 becomes unstable (� ° 1

for r ° 1).

§ 1 † r † 3: the positive steady state x
˚ “ pr ´ 1q{r ° 0 is

stable (´1 † � † 1).
Note: this is the case for the population of Paramecium

aurelia discussed before, where r “ 1 ` 0.0015 ˆ 540 “ 1.81.

§ r “ 3: second bifurcation, where � “ ´1.
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Figure 2.7. Partial bifurcation diagram for the resettled discrete logistic equation,
(2.15). Shown are the fixed points and their stability as a function of the model parameter r.
Solid lines indicate stability of the fixed point, and dashed lines indicate instability. The
filled circles represent bifurcation points.

the eigenvalue is f'('—^-} = 2 — r . That is, the nontrivial fixed point is stable for 1 < r < 3,
and unstable for 3 < r < 4.

The existence and stability of the fixed points is summarized in the bifurcation diagram
of the fixed points versus the parameter r, shown in Figure 2.7. Reading the diagram from
left to right, note that the trivial fixed point becomes unstable as soon as the nontrivial fixed
points come onto the scene at r = 1, when the eigenvalue moves through +1. The nontrivial
fixed point is stable initially, but loses its stability at r = 3, when the eigenvalue moves
through — 1.

The two points r = 1 and r = 3 are known as bifurcation points. A bifurcation point
is a parameter value at which there is a qualitative change in the dynamics of the map.
The bifurcation at r = 1 is called a transcritical bifurcation, referring to an exchange of
stability when two branches of fixed points meet (the two branches meeting here are Jt* = 0
and Jt* = ^). The bifurcation at r = 3 is called a. flip bifurcation or a period-doubling
bifurcation. We will see shortly how the dynamics of the map changes at this flip bifurcation.

There are many other types of bifurcations. A detailed discussion of bifurcation theory
is beyond the scope of this book, and the interested reader is referred to Alligood, Sauer,
and Yorke [4], Kuznetsov [104], and Strogatz [152].

We can easily read the long-term behavior of the logistic map from the bifurcation
diagram. As before, let us think of xn as the size of a population (now scaled by the factor K).
We can distinguish three cases (indicated along the bottom of Figure 2.7). In the first case,
for 0 < r < 1, the population goes extinct, no matter what the size of the initial population,

Figure: Fixed points and their stability as a function of the model
parameter r . Solid lines indicate stability of the fixed point, and dashed
lines indicate instability. The filled circles represent bifurcation points.
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Figure 2.9. (a) and (b) Case 1 (0 < r < 1), for r — 0.9. The only faced point
x = 0 is stable, and the population goes extinct, (c) and (d) Case 2(1 < r < 3), for r = 2.
The faced point x = 0 is unstable, the nontrivial fixed point is stable, and the population
size stabilizes.

fixed point is less than — I, and so the fixed point now is unstable, as we had inferred earlier
from linear stability analysis (Theorem 2.1).

We now continue with the graphical analysis and cobwebbing to determine what hap-
pens in the third case. In Figure 2.10, we show the dynamics of the discrete logistic equation
for three values of r between 3 and 4. The plots in the left column of Figure 2.10 show values
of the iterates xn as a function of n for various values of r. Corresponding cobwebbing
diagrams are shown in the right column of Figure 2.10 (to clarify the cobwebbing diagrams
shown in (b) and (d), only the last few iterates are used).

In Figures 2.10 (a) and (b), for r = 3.2, we observe that the population eventually
oscillates between two values. We refer to the oscillation as a 2-cycle. In Figures 2.10 (c) and
(d), for r = 3.55, we eventually observe a 4-cycle, or an oscillation between four population
sizes. Values of r can be found at which the discrete logistic equation exhibits an S-cycle,
a 16-cycle, and so on. But not all values of r > 3 give periodic oscillations. An example of
an aperiodic oscillation is shown in Figures 2.10 (e) and (f), for r = 3.88. The orbit appears
chaotic, and indeed, it can be shown that the discrete logistic equation exhibits chaos in the
mathematical sense. A careful mathematical definition of chaos is beyond the scope of this
book, and the interested reader is referred to Alligood, Sauer, and Yorke [4] and Strogatz
[152] for more information. For the purposes of our discussion, it suffices to observe that
the simple model under investigation can exhibit some very complicated dynamics.

We can broaden our analysis to determine the origin of the 2-cycle. When an orbit
converges to a 2-cycle, it oscillates between two values, say u and v (see Figure 2.10 (b)),

Figure: Case 1 (0 † r † 1), for r “ 0.9 ((a) and (b)): the only faced
point x “ 0 is stable, and the population goes extinct. Case 2
(1 † r † 3), for r “ 2 ((c) and (d)): the faced point x “ 0 is unstable,
the nontrivial fixed point is stable, and the population size stabilizes.

Two-cycle, four-cycle and chaos (r ° 3)22 Chapter 2. Discrete-Time Models

Figure 2.10. Illustration of the various types of dynamical behavior of the discrete
logistic equation in case 3, when 3 < r < 4. (a) and (b) Two-cycle with r = 3.2. (c) and
(d) Four-cycle with r = 3.55. (e) ant/ (f) Chaos with r = 3.88.

with

or, equivalently,

Recalling the definition of a fixed point (jc is a fixed point of /(jc) if /(jc) = Jt), we see
that the above equations imply that u and u are fixed points of the second-iterate map,

The graph of the second-iterate map f2 is shown in Figure 2. 1 1 for various values
of the parameter r. For values of r < 3 (Figure 2.1 1 (a)), the second-iterate map has two
fixed points, namely, the origin, which is unstable, and the nontrivial fixed point, jt* = ~
of the original logistic map, which is stable (note that any fixed point of the logistic map
automatically also is a fixed point of the second-iterate map). That is, no interesting 2-cycles
exist for these values of r. As r increases, the maxima of the second-iterate map rise and

f (f (x)) = f2(x)

Figure: Case 3 (3 † r † 4): two-cycle with r “ 3.2 ((a) and (b));
four-cycle with r “ 3.55 ((c) and (d)); chaos with r “ 3.88 ((e) and (f)).
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Figure 2.12. Updated bifurcation diagram for the discrete logistic equation shown
earlier in Figure 2.7. Shown are the fixed points, as well as the 2-cycle for values of
r > rj = 3. The 2-cycle is stable uptor2 = \ + \/6, and unstable thereafter.

Figure 2.13. Orbital bifurcation diagram for the discrete logistic equation.

By examining the orbital bifurcation diagram, it can be seen that the 4-cycle exists
only over a small range of r, the 8-cycle over an even smaller range of r, etc. It can be
shown (see, e.g., Holmgren [89]) that the bifurcation points leading to higher-order cycles
converge at r % 3.57. Beyond r ^ 3.57, the logistic map becomes chaotic, that is, the
iterates no longer appear to follow a predictable pattern, although they are confined to take
on only certain values (e.g., when r — 3.6, the iterates never take on values below 0.324

Figure: Fixed points, as well as the 2-cycle for values of r ° 3. The
2-cycle is stable up to r “ 1 `

?
6, and unstable thereafter.
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Figure 2.12. Updated bifurcation diagram for the discrete logistic equation shown
earlier in Figure 2.7. Shown are the fixed points, as well as the 2-cycle for values of
r > rj = 3. The 2-cycle is stable uptor2 = \ + \/6, and unstable thereafter.

Figure 2.13. Orbital bifurcation diagram for the discrete logistic equation.

By examining the orbital bifurcation diagram, it can be seen that the 4-cycle exists
only over a small range of r, the 8-cycle over an even smaller range of r, etc. It can be
shown (see, e.g., Holmgren [89]) that the bifurcation points leading to higher-order cycles
converge at r % 3.57. Beyond r ^ 3.57, the logistic map becomes chaotic, that is, the
iterates no longer appear to follow a predictable pattern, although they are confined to take
on only certain values (e.g., when r — 3.6, the iterates never take on values below 0.324

Figure: Orbital bifurcation diagram for the discrete logistic equation.



Homework #2

Exercise 1.3: Suppose that the evolution of a population can be
described by a discrete-time Hassel model of the form

xn`1 “ R0xn

p1 ` xnqb .

1. Determine any non-negative steady state.

2. Study the linear stability of the steady states.

3. Construct a cobweb map the model and discuss the global
qualitative behaviour of the solutions.

Homework #2

Exercise 1.4: Suppose that the evolution of a population can be
described by a discrete-time Ricker model of the form

Nn`1 “ Nne
rp1´Nn

K
q,

with 0 † r † 2 and K ° 0.

1. Describe the biological interpretation of the model.

2. Determine any non-negative steady states and their linear
stability.

3. Construct a cobweb map the model and discuss the global
qualitative behaviour of the solutions.



Homework #2

Exercise 1.5: This exercise deals with the second-iterate map,
f
2pxq, for the logistic map, f pxq “ rxp1 ´ xq.
1. Compute f

2pxq.
2. Find the fixed points of f 2pxq. Verify that a nontrivial 2-cycle

exists only for r ° 3.

3. Verify that the nontrivial 2-cycle is stable for 3 † r † 1 `
?
6,

and unstable for r ° 1 `
?
6.

Homework #2
Exercise 1.6: Consider the discrete model Nt`1 “ f pNtq. The
graphs of the function y “ f pxq and the straight line y “ x are
shown in the figures, for di↵erent definitions of f .

For each case, find the fixed points and their stability.


