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Steady state

v

Consider a model

Xpt1 = f(xp), n=0,1,...

v

Any intersection of the curve y = f(x) and the diagonal line
y = X represents a special point.

v

Steady state (or fixed point or equilibrium point) of the
model: a point x* that satisfy

v

If any iterate is x™, then all subsequent iterates also are x*.




Cobwebbing

Cobwebbing: a graphical method of exploring the behaviour of
repeatedly applying a function f(x) beginning at an initial point xg.
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Figure: Cobwebbing for the discrete logistic model.

Cobwebbing process

» We consider our first iterate, xp, on the horizontal axis.

» Then we calculate the next iterate x; = f(xp). Visually, we
represent a vertical line from (xp, 0) on the horizontal axis to
the point (xp, x1) lying on the curve y = f(x).

» Then we have to locate x; on the horizontal axis. We already
have x; on the vertical axis, and the easiest way to get it onto
the horizontal axis is to reflect it through the diagonal line
y = x. Visually, this is shown by a horizontal line from (xg, x1)
to point (x1, x1) on the diagonal line.

> Then we calculate the next iterate x, = f(x1) and draw a
vertical line from point (x1,x1) on the diagonal line to

(Xl,XQ).

» This process is repeated for subsequent iterates.




Cobwebbing vs. time evolution
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Figure: Graphical determination of the steady state (top); time evolution
of the population growth (bottom).

Linear stability

Relevant question: What happens when an iterate is close to, but
not exactly at, a fixed point?

> |f the subsequent iterates move closer to the fixed point, the
fixed point is said to be stable/attracting.

» If the subsequent iterates move further away the fixed point,
the fixed point is said to be unstable/repelling.

Strategy: iterate near to a fixed point x* and study the behaviour
of the subsequent iterates.




Linear stability analysis

>

v

v

v

v

Define

%
Mn=Xp— X, n=12 ...

Using a Taylor series about x*, with remainder Rx(n,)

x* + Nn+1 = f(X* +1n) = f(X*) "’f/(X*)??n + R2(77n)-
—

= x*¥

Linearization: neglect all the term R>(n,)

el = £ (X*)Nn = Anp,  with X = £/(x¥).

The parameter A = f'(x*) generally is referred to as the
eigenvalue of the map at x*.

Given the initial condition 7, the deviations are

h = >\n770-

Linear stability analysis

The behaviour of the deviation 7,, and the subsequent conclusion
regarding the stability of the fixed point x*, can be summarized as
follows:

»

»

>

v

A > 1: geometric growth; fixed point x* is unstable;

0 < A < 1: geometric decay; fixed point x* is stable;

—1 < XA < 0: geometric decay with sign switch; fixed point x*

is stable;

A < —1: geometric growth with sign switch; fixed point x* is

unstable;

> A\ = +1: carefull analysis of Rx(n,).

Theorem: Let x* be a fixed point of x,11 = f(x,). Then x* is
stable if |f'(x*)| < 1 and unstable if |f'(x*)| > 1.

A fixed point x* is called hyperbolic if |f'(x*)| > 1 and
non-hyperbolic if |f'(x*)| = 1.




Dynamics of the Ricker’ model
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Figure: Ricker’ model with Ny =5, r = 1.5, K = 100. Cobwebbing (left);
time evolution (right).

Dynamics of the Ricker’ model

e —1< f/(N,)<0

Ny
F(Ni) = Neya
Ny = N,
t t+1 t
f(N¢) = Neya
Ny = N,
t t+1 t
o f/(N;) < -1
N, -
' J(Nt) = Neg

A‘YH»l = Nt




Bifurcation

A bifurcation point is, in the current context, a point in parameter
space where the number of steady states, or their stability
properties, or both, change.
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Figure: Bifurcation diagram for the non-dimensional discrete-time logistic
model. The non-zero steady state is given, for r > 1, by x* = (r — 1)/r.

Linear stability analysis: discrete logistic model

Discrete logistic model (Verhulst model)
Xn ,
x,,+1=r(1—?)xn, n=0,1,..., with r,K > 0.

Eliminating the parameter K: let X, = x,/K to obtain (after
dropping the overbars)

Xpt1 = F(xp) = rxp(l—x,), n=0,1,..., withr>0.

Note: If x, > 1 then x,1+1 < 0. To avoid this, note that:
> the maximum value of f(x) = rx(1 — x) is f(1/2) = r/4;
> if xp € [0,1] and 0 < r < 4 then x, € [0, 1] for all n.




Steady states and stability analysis

f(x) =rx(1—x)

Steady states and corresponding eigenvalues \:
» x* =0, A=f'(0)=r,
r—1

> x* = (positive when r > 1), A = f/(==) =2 —r.
r

Stability analysis:
» 0 < r < 1: as r increases the only realistic (non-negative)
steady state is x* = 0 which is stable (0 < A < 1).

» r = 1: first bifurcation, since x* = 0 becomes unstable (A > 1
for r > 1).

» 1 < r < 3: the positive steady state x* = (r —1)/r > 0 is
stable (—1 < A < 1).
Note: this is the case for the population of Paramecium
aurelia discussed before, where r = 1 4+ 0.0015 x 540 = 1.81.

» r = 3: second bifurcation, where A\ = —1.

Bifurcation diagram: discrete logistic model (0 < r < 3)
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Figure: Fixed points and their stability as a function of the model
parameter r. Solid lines indicate stability of the fixed point, and dashed
lines indicate instability. The filled circles represent bifurcation points.




Stability analysis:
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discrete logistic model (0 < r < 3)
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Figure: Case 1 (0 < r < 1), for r = 0.9 ((a) and (b)): the only faced
point x = 0 is stable, and the population goes extinct. Case 2
(1<r<3),forr=2((c) and (d)): the faced point x = 0 is unstable,
the nontrivial fixed point is stable, and the population size stabilizes.

Two-cycle, four-cycle and chaos (r > 3)
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Figure: Case 3 (3 < r < 4): two-cycle with r = 3.2 ((a) and (b));
four-cycle with r = 3.55 ((c) and (d)); chaos with r = 3.88 ((e) and (f)).




Bifurcation diagram: discrete logistic equation (0 < r < 4)
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Figure: Fixed points, as well as the 2-cycle for values of r > 3. The
2-cycle is stable up to r =1 + v/6, and unstable thereafter.

Bifurcation diagram: discrete logistic equation (0 < r < 4)
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Figure: Orbital bifurcation diagram for the discrete logistic equation.




Homework #2

Exercise 1.3: Suppose that the evolution of a population can be
described by a discrete-time Hassel model of the form

RoXn
Xn+1 = 77— -
T (14 xp)P

1. Determine any non-negative steady state.
2. Study the linear stability of the steady states.

3. Construct a cobweb map the model and discuss the global
qualitative behaviour of the solutions.

Homework #2

Exercise 1.4: Suppose that the evolution of a population can be
described by a discrete-time Ricker model of the form

Nn+1 = Nner(l_%)7
with 0 < r <2and K > 0.
1. Describe the biological interpretation of the model.
2. Determine any non-negative steady states and their linear
stability.
3. Construct a cobweb map the model and discuss the global
qualitative behaviour of the solutions.




Homework #2

Exercise 1.5: This exercise deals with the second-iterate map,
f2(x), for the logistic map, f(x) = rx(1 — x).
1. Compute f2(x).
2. Find the fixed points of f2(x). Verify that a nontrivial 2-cycle
exists only for r > 3.

3. Verify that the nontrivial 2-cycle is stable for 3 < r < 1 + /6,
and unstable for r > 1 + /6.

Homework #2

Exercise 1.6: Consider the discrete model Nyi1 = f(N;). The
graphs of the function y = f(x) and the straight line y = x are
shown in the figures, for different definitions of f.
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For each case, find the fixed points and their stability.




