Discrete-Time Models
 Linear stability analysis

Computational Biology
Adérito Araújo (alma@mat.uc.pt)
May 16, 2024

Steady state

- Consider a model

$$
x_{n+1}=f\left(x_{n}\right), \quad n=0,1, \ldots
$$

- Any intersection of the curve $y=f(x)$ and the diagonal line $y=x$ represents a special point.
- Steady state (or fixed point or equilibrium point) of the model: a point x^{*} that satisfy

$$
x^{*}=f\left(x^{*}\right) .
$$

- If any iterate is x^{*}, then all subsequent iterates also are x^{*}.

Cobwebbing

Cobwebbing: a graphical method of exploring the behaviour of repeatedly applying a function $f(x)$ beginning at an initial point x_{0}.

Figure: Cobwebbing for the discrete logistic model.

Cobwebbing process

- We consider our first iterate, x_{0}, on the horizontal axis.
- Then we calculate the next iterate $x_{1}=f\left(x_{0}\right)$. Visually, we represent a vertical line from $\left(x_{0}, 0\right)$ on the horizontal axis to the point $\left(x_{0}, x_{1}\right)$ lying on the curve $y=f(x)$.
- Then we have to locate x_{1} on the horizontal axis. We already have x_{1} on the vertical axis, and the easiest way to get it onto the horizontal axis is to reflect it through the diagonal line $y=x$. Visually, this is shown by a horizontal line from $\left(x_{0}, x_{1}\right)$ to point (x_{1}, x_{1}) on the diagonal line.
- Then we calculate the next iterate $x_{2}=f\left(x_{1}\right)$ and draw a vertical line from point $\left(x_{1}, x_{1}\right)$ on the diagonal line to $\left(x_{1}, x_{2}\right)$.
- This process is repeated for subsequent iterates.

Cobwebbing vs. time evolution

Figure: Graphical determination of the steady state (top); time evolution of the population growth (bottom).

Linear stability

Relevant question: What happens when an iterate is close to, but not exactly at, a fixed point?

- If the subsequent iterates move closer to the fixed point, the fixed point is said to be stable/attracting.
- If the subsequent iterates move further away the fixed point, the fixed point is said to be unstable/repelling.

Strategy: iterate near to a fixed point x^{*} and study the behaviour of the subsequent iterates.

Linear stability analysis

- Define

$$
\eta_{n}=x_{n}-x^{*}, n=1,2, \ldots
$$

- Using a Taylor series about x^{*}, with remainder $R_{2}\left(\eta_{n}\right)$

$$
x^{*}+\eta_{n+1}=f\left(x^{*}+\eta_{n}\right)=\underbrace{f\left(x^{*}\right)}_{=x^{*}}+f^{\prime}\left(x^{*}\right) \eta_{n}+R_{2}\left(\eta_{n}\right) .
$$

- Linearization: neglect all the term $R_{2}\left(\eta_{n}\right)$

$$
\eta_{n+1}=f^{\prime}\left(x^{*}\right) \eta_{n}=\lambda \eta_{n}, \quad \text { with } \lambda=f^{\prime}\left(x^{*}\right) .
$$

- The parameter $\lambda=f^{\prime}\left(x^{*}\right)$ generally is referred to as the eigenvalue of the map at x^{*}.
- Given the initial condition η_{0}, the deviations are

$$
\eta_{n}=\lambda^{n} \eta_{0}
$$

Linear stability analysis

The behaviour of the deviation η_{n}, and the subsequent conclusion regarding the stability of the fixed point x^{*}, can be summarized as follows:

- $\lambda>1$: geometric growth; fixed point x^{*} is unstable;
- $0<\lambda<1$: geometric decay; fixed point x^{*} is stable;
- $-1<\lambda<0$: geometric decay with sign switch; fixed point x^{*} is stable;
- $\lambda<-1$: geometric growth with sign switch; fixed point x^{*} is unstable;
- $\lambda= \pm 1$: carefull analysis of $R_{2}\left(\eta_{n}\right)$.

Theorem: Let x^{*} be a fixed point of $x_{n+1}=f\left(x_{n}\right)$. Then x^{*} is stable if $\left|f^{\prime}\left(x^{*}\right)\right|<1$ and unstable if $\left|f^{\prime}\left(x^{*}\right)\right|>1$.

A fixed point x^{*} is called hyperbolic if $\left|f^{\prime}\left(x^{*}\right)\right|>1$ and non-hyperbolic if $\left|f^{\prime}\left(x^{*}\right)\right|=1$.

Dynamics of the Ricker' model

$$
N_{n+1}=N_{n} e^{r\left(1-\frac{N_{n}}{K}\right)}, \quad r>0, K>0
$$

Figure: Ricker' model with $N_{0}=5, r=1.5, K=100$. Cobwebbing (left); time evolution (right).

Dynamics of the Ricker' model

- $-1<f^{\prime}\left(N_{s}\right)<0$

- $f^{\prime}\left(N_{s}\right)=-1$

- $f^{\prime}\left(N_{s}\right)<-1$

Bifurcation

A bifurcation point is, in the current context, a point in parameter space where the number of steady states, or their stability properties, or both, change.

Figure: Bifurcation diagram for the non-dimensional discrete-time logistic model. The non-zero steady state is given, for $r>1$, by $x^{*}=(r-1) / r$.

Linear stability analysis: discrete logistic model

Discrete logistic model (Verhulst model)

$$
x_{n+1}=r\left(1-\frac{x_{n}}{K}\right) x_{n}, \quad n=0,1, \ldots, \quad \text { with } r, K>0 .
$$

Eliminating the parameter K : let $\bar{x}_{n}=x_{n} / K$ to obtain (after dropping the overbars)

$$
x_{n+1}=f\left(x_{n}\right)=r x_{n}\left(1-x_{n}\right), \quad n=0,1, \ldots, \quad \text { with } r>0 .
$$

Note: If $x_{n}>1$ then $x_{n+1}<0$. To avoid this, note that:

- the maximum value of $f(x)=r x(1-x)$ is $f(1 / 2)=r / 4$;
- if $x_{0} \in[0,1]$ and $0 \leqslant r \leqslant 4$ then $x_{n} \in[0,1]$ for all n.

Steady states and stability analysis

$$
f(x)=r x(1-x)
$$

Steady states and corresponding eigenvalues λ :

- $x^{*}=0, \lambda=f^{\prime}(0)=r$,
- $x^{*}=\frac{r-1}{r}$ (positive when $r>1$), $\lambda=f^{\prime}\left(\frac{r-1}{r}\right)=2-r$.

Stability analysis:

- $0<r<1$: as r increases the only realistic (non-negative) steady state is $x^{*}=0$ which is stable $(0<\lambda<1)$.
- $r=1$: first bifurcation, since $x^{*}=0$ becomes unstable $(\lambda>1$ for $r>1$).
- $1<r<3$: the positive steady state $x^{*}=(r-1) / r>0$ is stable $(-1<\lambda<1)$.
Note: this is the case for the population of Paramecium aurelia discussed before, where $r=1+0.0015 \times 540=1.81$.
- $r=3$: second bifurcation, where $\lambda=-1$.

Bifurcation diagram: discrete logistic model $(0<r \leqslant 3)$

Figure: Fixed points and their stability as a function of the model parameter r. Solid lines indicate stability of the fixed point, and dashed lines indicate instability. The filled circles represent bifurcation points.

Stability analysis: discrete logistic model $(0<r \leqslant 3)$

Figure: Case $1(0<r<1)$, for $r=0.9$ ((a) and (b)): the only faced point $x=0$ is stable, and the population goes extinct. Case 2 $(1<r<3)$, for $r=2((c)$ and (d)): the faced point $x=0$ is unstable, the nontrivial fixed point is stable, and the population size stabilizes.

Two-cycle, four-cycle and chaos ($r>3$)

Figure: Case $3(3<r<4)$: two-cycle with $r=3.2$ ((a) and (b));
four-cycle with $r=3.55((c)$ and (d)); chaos with $r=3.88((e)$ and (f)).

Bifurcation diagram: discrete logistic equation ($0<r<4$)

Figure: Fixed points, as well as the 2-cycle for values of $r>3$. The 2-cycle is stable up to $r=1+\sqrt{6}$, and unstable thereafter.

Bifurcation diagram: discrete logistic equation $(0<r<4)$

Figure: Orbital bifurcation diagram for the discrete logistic equation.

Homework \#2

Exercise 1.3: Suppose that the evolution of a population can be described by a discrete-time Hassel model of the form

$$
x_{n+1}=\frac{R_{0} x_{n}}{\left(1+x_{n}\right)^{b}} .
$$

1. Determine any non-negative steady state.
2. Study the linear stability of the steady states.
3. Construct a cobweb map the model and discuss the global qualitative behaviour of the solutions.

Homework \#2

Exercise 1.4: Suppose that the evolution of a population can be described by a discrete-time Ricker model of the form

$$
N_{n+1}=N_{n} e^{r\left(1-\frac{N_{n}}{K}\right)},
$$

with $0<r<2$ and $K>0$.

1. Describe the biological interpretation of the model.
2. Determine any non-negative steady states and their linear stability.
3. Construct a cobweb map the model and discuss the global qualitative behaviour of the solutions.

Exercise 1.5: This exercise deals with the second-iterate map, $f^{2}(x)$, for the logistic map, $f(x)=r x(1-x)$.

1. Compute $f^{2}(x)$.
2. Find the fixed points of $f^{2}(x)$. Verify that a nontrivial 2-cycle exists only for $r>3$.
3. Verify that the nontrivial 2-cycle is stable for $3<r<1+\sqrt{6}$, and unstable for $r>1+\sqrt{6}$.

Homework \#2

Exercise 1.6: Consider the discrete model $N_{t+1}=f\left(N_{t}\right)$. The graphs of the function $y=f(x)$ and the straight line $y=x$ are shown in the figures, for different definitions of f.

For each case, find the fixed points and their stability.

