Discrete-Time Models

Linear stability analysis

Computational Biology

Adérito Araújo (alma@mat.uc.pt) May 16, 2024

Steady state

Consider a model

$$x_{n+1} = f(x_n), \quad n = 0, 1, \ldots$$

- Any intersection of the curve y = f(x) and the diagonal line y = x represents a special point.
- Steady state (or fixed point or equilibrium point) of the model: a point x* that satisfy

$$x^* = f(x^*).$$

• If any iterate is x^* , then all subsequent iterates also are x^* .

◆□ > ◆□ > ◆三 > ◆三 > 三 の < ⊙

Cobwebbing

Cobwebbing: a graphical method of exploring the behaviour of repeatedly applying a function f(x) beginning at an initial point x_0 .

Cobwebbing process

- We consider our first iterate, x_0 , on the horizontal axis.
- Then we calculate the next iterate x₁ = f(x₀). Visually, we represent a vertical line from (x₀, 0) on the horizontal axis to the point (x₀, x₁) lying on the curve y = f(x).
- Then we have to locate x₁ on the horizontal axis. We already have x₁ on the vertical axis, and the easiest way to get it onto the horizontal axis is to reflect it through the diagonal line y = x. Visually, this is shown by a horizontal line from (x₀, x₁) to point (x₁, x₁) on the diagonal line.
- Then we calculate the next iterate x₂ = f(x₁) and draw a vertical line from point (x₁, x₁) on the diagonal line to (x₁, x₂).

・ロト ・日ト ・ヨト ・ヨト

= nar

This process is repeated for subsequent iterates.

Linear stability analysis

Define

$$\eta_n = x_n - x^*, \ n = 1, 2, \dots$$

• Using a Taylor series about x^* , with remainder $R_2(\eta_n)$

$$x^{*} + \eta_{n+1} = f(x^{*} + \eta_{n}) = \underbrace{f(x^{*})}_{= x^{*}} + f'(x^{*})\eta_{n} + R_{2}(\eta_{n}).$$

• Linearization: neglect all the term $R_2(\eta_n)$

$$\eta_{n+1} = f'(x^*)\eta_n = \lambda \eta_n, \quad \text{with } \lambda = f'(x^*).$$

- The parameter \u03c0 = f'(x*) generally is referred to as the eigenvalue of the map at x*.
- Given the initial condition η_0 , the deviations are

$$\eta_n = \lambda^n \eta_0.$$

Linear stability analysis

The behaviour of the deviation η_n , and the subsequent conclusion regarding the stability of the fixed point x^* , can be summarized as follows:

- $\lambda > 1$: geometric growth; fixed point x^* is unstable;
- $0 < \lambda < 1$: geometric decay; fixed point x^* is stable;
- −1 < λ < 0: geometric decay with sign switch; fixed point x* is stable;
- λ < −1: geometric growth with sign switch; fixed point x* is unstable;
- $\lambda = \pm 1$: carefull analysis of $R_2(\eta_n)$.

Theorem: Let x^* be a fixed point of $x_{n+1} = f(x_n)$. Then x^* is stable if $|f'(x^*)| < 1$ and unstable if $|f'(x^*)| > 1$.

A fixed point x^* is called hyperbolic if $|f'(x^*)| > 1$ and non-hyperbolic if $|f'(x^*)| = 1$.

・ロト・日本・日本・日本・日本・日本

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

Bifurcation

A bifurcation point is, in the current context, a point in parameter space where the number of steady states, or their stability properties, or both, change.

Linear stability analysis: discrete logistic model

Discrete logistic model (Verhulst model)

$$x_{n+1} = r\left(1-\frac{x_n}{K}\right)x_n, \quad n=0,1,\ldots, \quad \text{with } r,K>0.$$

Eliminating the parameter K: let $\bar{x}_n = x_n/K$ to obtain (after dropping the overbars)

$$x_{n+1} = f(x_n) = r x_n(1-x_n), \quad n = 0, 1, \dots, \text{ with } r > 0.$$

Note: If $x_n > 1$ then $x_{n+1} < 0$. To avoid this, note that:

- the maximum value of f(x) = rx(1-x) is f(1/2) = r/4;
- if $x_0 \in [0, 1]$ and $0 \leq r \leq 4$ then $x_n \in [0, 1]$ for all n.

・ロト ・四ト ・ヨト ・ヨト

э.

500

Steady states and stability analysis

f(x) = rx(1-x)

Steady states and corresponding eigenvalues λ :

•
$$x^* = 0, \ \lambda = f'(0) = r,$$

• $x^* = \frac{r-1}{r}$ (positive when $r > 1$), $\lambda = f'(\frac{r-1}{r}) = 2 - r.$

Stability analysis:

- 0 < r < 1: as r increases the only realistic (non-negative) steady state is x^{*} = 0 which is stable (0 < λ < 1).
- r = 1: first bifurcation, since x* = 0 becomes unstable (λ > 1 for r > 1).
- 1 < r < 3: the positive steady state x* = (r − 1)/r > 0 is stable (−1 < λ < 1).

Note: this is the case for the population of *Paramecium* aurelia discussed before, where $r = 1 + 0.0015 \times 540 = 1.81$.

• r = 3: second bifurcation, where $\lambda = -1$.

= 3.55 ((c) and (d)); chaos with r = 3.88 ((e) and (f))

 $\bullet \Box \bullet$

▲□ → ▲ ■ → ▲ ■ → ● ◆ ●

Figure: Orbital bifurcation diagram for the discrete logistic equation.

r

0

 r_1

 r_2

・ロト・白ト・モー・モー しょう

Homework #2

Exercise 1.4: Suppose that the evolution of a population can be described by a discrete-time Ricker model of the form

$$N_{n+1}=N_ne^{r\left(1-\frac{N_n}{K}\right)},$$

with 0 < r < 2 and K > 0.

- 1. Describe the biological interpretation of the model.
- 2. Determine any non-negative steady states and their linear stability.
- 3. Construct a cobweb map the model and discuss the global qualitative behaviour of the solutions.

Homework #2

Exercise 1.5: This exercise deals with the second-iterate map, $f^2(x)$, for the logistic map, f(x) = rx(1-x).

- 1. Compute $f^2(x)$.
- 2. Find the fixed points of $f^2(x)$. Verify that a nontrivial 2-cycle exists only for r > 3.
- 3. Verify that the nontrivial 2-cycle is stable for $3 < r < 1 + \sqrt{6}$, and unstable for $r > 1 + \sqrt{6}$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ● ○ ○ ○ ○ ○

