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Last lecture: scalar problems

Initial value problem: find x(t) such that

dx
B~ ), 0
x(0) = xo.

Picard-Lindelof theorem ()

Let f : D c R — R a Lipchitz continuous function!, i.e., there
exists a positive constant L such that |f(x) — f(y)| < L|x — y|, for
all x,y € D. If the initial condition of (1) lies in D (xg € D), there
exists T > 0 such that (I) has a unique solution x(t) for t € [0, T].

Note: Solutions to different initial conditions never intersect. Why?

'A continuously differentiable function is always Lipschitz continuous (on a
bounded domain D c R)




Today: systems of equations

System of differential equations: find x(t) = (x1(t),...,xa(t))
such that

J Xli(t> fl(Xl,....,Xn)

E : :
Xn(t) fn(Xla--an)

with appropriate initial conditions.

Note: The Picard-Lindelof theorem holds true for systems of
differential equations; in this case, the functions fi, ..., f, must be
Lipchitz continuous in all its arguments. The same result also
holds, with small changes, for non autonomous equations.

We will consider three cases:
1. reaction kinetics;
2. interacting populations;

3. spread of an infection disease.

Case 1: Reaction kinetics

» Consider x the concentration of a substrate X (e.g. mRNA,
protein, small molecule, metabolite, any reagent).

» The decay dx/dt = kx, k < 0 can be seen as a kinetic
reaction (in which we are not interested in the product of the
degradation):

X K

» Law of Mass Action: when 2 or more reactants are involved in
a reaction step, the reaction rates are proportional to the
product of their concentrations.

» Justification: macroscopic version of collision theory.

» Validity: constant temperature; medium must be well-mixed;
# of molecules must be high.




Elementary reaction kinetics

» Bimolecular reaction

) @ = —kxy
X+Y->5Z ODE ¥ = —kxy
% = kxy
» Dissociation
% = kz
k d
> X+Y ODE d—{ = kz
% = —kz
» Reversible dissociation
& — _koxy + k_z
k_|_ dt + .y -
X+Y2Z ODE Y = _koxy+k_z
X dt + .y
N % = kyixy —k_z

Elementary reaction kinetics

Conservation laws (e.g. mass conservation) can be used to reduce
the number of equations involved.

Example: for

?'/I_E i —/;ny + l;_z
g : ; Xy + k_z
& = kixy—k z
mass conservation implies
% =0 x(t)+z(t) = xo+2z0=ao
% = 0 :{ y(t)+z(t) = yo+ 20 = bo

and hence the system of 3 ODEs reduces to the scalar ODE
dz
dt

Once we solve this ODE for z(t) we can recover

ki(ap — z)(by — z) — k_z.

x(t) =ag— z(t) and y(t) = by — z(t).




Matlab code

Exercise 2.10: Use the Matlab function ode45 to solve the initial
value problem (IVP)

92 — ki(ag—z)(bo—z) —k-z, te(0,3],
z(0) = 0.
with ky =1, k- =1and xg =1, yp = 2.

% Matlab code to solve Exercise 1
x0 = 1; yO = 2; z0 = 0; % initial conditiomns

a0 = x0 + z0; b0 = y0O + z0; 7 constants

kp = 1; km = 1; % rates

f = @(t,z) kp*(a0-z) .*(b0-z)-km*z; 7 ODE function
[t, z] = oded4b5(f, [0 3], z0); % solve ODE
x=a0 - z; y = b0 -z;

plot(t, x, t, y, t, z) % plot the solutions

xlabel(’time’), ylabel(’concentrations’)
legend(’x’,’y’,’2’)
set(gca, ’FontName’, ’Helvetica’,’FontSize’,20)

Enzyme catalyzed reactions
Most reactions need to be catalyzed to take place at interesting
rates.

enzymes = proteins that convert specific reactants (called
substrates) into products while remaining basically unchanged.

enzyme

substrate

product




Enzyme catalyzed reactions

Rate of production depends nonlinearly on the concentration of the
substrate

k
5+E;—_1> cChBpiE
1

v

S = substrate
» E = enzyme
» C = complex ("= [ES]")
» P = product
Exercise 2.11: Obtain the system of ODEs

% = —kise+ k_1c

? = —kise+ (k_1 + ko)c
g—g = kyse — (k_1 + ko)c
d_ll? = k2C

that is complemented with the initial conditions

s(0) =sp, e(0)=e «s0 ¢c(0)=0 p(0)=0.

Enzyme catalyzed reactions
Simplifications:
> last equation does not feedback = We can ignore it and get
p(t) by integration once we have c(t);
» conservation of mass for the enzyme:

d d
d_f‘ + d—i = 0= e(t) + c(t) = const = e.
Then another equation can be eliminated
{ ? = —kls(eo — C) + k_1c
% = kis(ep—c)— (ko1 + ko)c

Exercise 2.12: Solve the previous system of differential equations
for t € [0,25], considering the parameter

kk=1 k_1=0.15, k =04
and the initial conditions

So = 1, € = 0.5, C = 0.




Matlab code

tint = [0, 25];

sO =1; cO0 = 0; x0 = [s0, c0];

[t,x] = ode45(@fmm2, tint, x0);

plot(t,x,’LineWidth’,3) ; legend (’substrate’, ’complex’)
set(gca, ’FontName’, ’Helvetica’,’FontSize’,20)

function dxdt = fmm2(t,x)

ki1 = 1; kim = 0.15; k2 = 0.4; e0 = 0.5;
s = x(1); ¢ = x(2);

dsdt = - kil*s*x(e0 - c) + kilmxc;

dcdt = kil*s*x(e0 - c) - (kim + k2)*c;
dxdt = [dsdt; dcdt];

end

Michaelis-Menten kinetics: hyperbolic responses

The following system of equations can be further simplified

{ 95— —kys(eg—c) + k_1c
% = kis(eg —c) — (k_1 + ko)c

Quasi steady state approximation: after a transient period on
which the enzyme fills up, the amount of complex C stays (almost)

the same:
dc €S k_1+ ko
7 0=c K ts where k1

—_—
Michaelis const.

then reduces to a scalar ODE

ds \Ans dp \AﬂS
h Vi, = k . — = koc =
where Vg 2€0 ( : 2C K S)

dr Km+s




Michaelis-Menten kinetics: hyperbolic responses

Exercise 2.13: Plot the the production rate of the reaction product

dp Vs
dt  Kmp+s

as a function of s, considering V,,, =1, Km =1 and s € [0, 20].

Hyperbolic response

0 5 10 15 20
S

Note: 1. V, = upper bound for dp/dt; 2. K, = value of s such
that dp/dt = 1/2Vp,; 3. V,/ K, = initial slope of dp/dt.

Michaelis-Menten kinetics: time-scales
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Michaelis-Menten kinetics: time-scales
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Cooperativity

When n molecules of substrate must fit together with the enzyme

in order for the reaction to take place.

R, B A

substrates l |

product

Examples: ligand binding to cell surface receptors; binding of
transcriptor factors to DNA to control gene expression.

Kinetics
kq ko
nS+E2C->P+E

k_1




Cooperativity
Exercise 2.14: Obtain the system of ODEs

% = —kis"e+ nk_qc

% = —kis"e+ (k-1 + ko)c
% = kis"e— (ko1 + ko)c
% = k2C

After the quasi steady state approximation, we may prove
dp s
— =Vy,—.
dt Ky + s"

n

Modifying K, :== K] and considering the (positive feedback) Hill

function ;

h* (s, Km,n) = K”S—+s”

we have J
zﬁ:»%H@J%my

Hill kinetics: sigmoidal responses
Common modules for saturated growth rate:

Sn

h+(S, Km; n) = m

Sigmoidal response

Note: Lo

1. K, = value of s at
which h™* reaches 1/2
of the saturation value;

dp/dt

2. n = Hill parameter.

Exercise 2.15: Plot the (negative feedback) Hill function for

negative growth :

n n
s K

h (s, Km,n) =1— = .
(5, Kim, ) Ko +s" Ko+ sn




Hyperbolic vs Sigmoidal responses

Consider .

dp s
—=V,—.
dt K-+ s"

» For n = 1 the graph of the formation rate is hyperbolic.

» For n > 1 it is sigmoidal.

Hyperbolic vs Sigmoidal responses

—n=1|]
—n=3

Differences: n-5

"""""" —n=7

» n =1 graph is concave;

dp/dt

» n > 1 the graph changes
the concavity (different
stability properties).

When n grows the sharpness of the transition increases; tends to a
boolean switch (ultrasensitive response; “all or nothing” behaviour)

Case 2: General population interaction model

Consider the general two-species interaction model

{ % = Qax1+ 6X1X2

% = X2 + 0x1X2

alpB|v]| o

+ | + | + | — | Predator (x1) - prey (x2) model
o e

— _|_ — —

+ | + | + | + | Mutualism or symbiosis model
+ |+ |+

— |+ ||+

+ | = |+ | = Competition model

_|_ — — —




Predator/Prey or Lotka-Volterra model

Consider the dynamics of a closed ecological system, in which two
species interact: predator (variable x;) and prey (variable x»). The
behaviour of the population can be described by

d.

{ «a ,tl = —axi + Bx1x
d.
_c;? = X2 — 5X1X2

where
» o > 0 is the mortality rate of predators in absence of prey;
» 8 > 0 the reproduction rate of predators per unit prey;
» v > 0 is the prey reproduction rate and

» § > 0 the rate at which prey is eaten by predators (per unit
prey), which is equivalent to mortality rate of pray per unit of
predator.

Predator/Prey or Lotka-Volterra model

Exercise 2.16: Obtain the following plot.
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Case 3: Epidemic model SIR

Epidemic model for the spread of an infectious disease (e.g
influenza or covid19)

1. The dependent variables are: S = susceptible; | = infected;
R = recovered;

2. The independent variable is: t = time

3. Assume that the rate of infection is proportional to the
number of contacts between susceptible and infected
individuals.

Epidemic model SIR

Let:

» 5 > 0 be the infection rate

[ is the average number of contacts per person per time,
multiplied by the probability of disease transmission in a
contact between a susceptible and an infectious person.

» v > 0 be the recovery rate

If an individual is infectious for an average time period D,
then v =1/D.




Epidemic model SIR

The rate at which a susceptible individual becomes infected is
given by

BI/N)

where N is the total number of people in the population.

Classical SIR model:

( dS

= — _BSI/N
” pSl/
dl

S [/N — ~I
p” BSI/N —
R
7

Kermack-McKendrick model

Kermack-McKendrick model

([ dS 4
— = —fBSI/N 3
dt b /

] . AT
dl I
— = I/N — ~I §

4 BSI/N — :

o o

Exercise 8: Prove that, if
R()E <1, with Ry= é,
N Y

the infection deceases.

The value S = N/Ry is the critical population size to sustain an
epidemic.




Matlab code: Kermack-McKendrick mode

% Kermack-McKendrick model (N = 1)

tint = [0 6]; % time interval

SO = .9; I0 = .1; x0 = [SO I0]; % initial conditions
[t, x] = ode45(@KM, tint, x0); % solve ODE

plot(t, x,’LineWidth’,3) % plots

function dxdt = KM(t, x)

% Kermack-McKendrick system of ODEs
%» dS/dt = -beta SI

% dI/dt = beta SI - gama I

beta = 3; gama = 1;

S =x(1); I =x(2); % extract the values from x
% ODEs

dSdt = -betaxS*I;

dIdt = beta*S*xI - gamaxI;

%y output vector

dxdt = [dSdt; dIdt];

end

Basic/effective reproduction number

We proved that, if Ro% < 1, with Ry = g, the infection deceases.

Basic reproduction number: The value

indicates how contagious the disease is. Expresses the average
number of people who will contract the disease from one infected
person.

Effective reproduction number: The main goal is to keep

S
Rt: RON <].




Different values of Ry

RO (basic reproduction number) of diseases
A measure of how many people each sick person will infect on average
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Herd immunity

The main goal is to keep

S
Then
S s 1 S 1 S 1
R2<c]l e 2t e 2ot o1 229
N TN R T N R T N~ TR,
—

p

Herd immunity: The percentage p =1 — S/N of population
immune to the disease must be greater than 1 — 1/Ry.

For COVID-19 (delta variant): Ry = 5.08 and so
p>1-1/5.08~ 0.8,

i.e., 80% of the total population should be immune to the disease.

Homework #6: Brusselator (llya Prigogine)

Exercise 2.17: The Brusselator is a theoretical model for a type of
autocatalytic reaction. Is characterised by the reactions

molecular reaction | rate coefficient | rate of reaction
A— X kl rn = kla
B+X—Y+D| k rn = kobx

2X +Y — 3X k3 r3 = k3X2y

X —E k4 rg = k4X

1. Considering all the rate coefficients equal to 1 and
da/dt = db/dt = 0, prove that the system for the products

u(t) = x(t), v(t) = y(t) is

d 2
% = atuv—(b+1)u
% =  bu— u?v.

2. Prove that point P = (a, 2) is the unique equilibria of the
system (by linearization, we may conclude that it is unstable if
and only if b > a% +1).

3. Obtain the plots in the next pages, where u(0) =0, v(0) =1
and t € [0, 30].
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Homework #6: Stable case: a =1 and b
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Homework #6: Quasi-unstable case: a=1and b =2
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a=1and b=3

- Unstable case:

Homework #6
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