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Last lecture: scalar problems

Initial value problem: find xptq such that

$
&

%

dx

dt
“ f pxptqq,

xp0q “ x0.
(I)

Picard-Lindelöf theorem (˚)
Let f : D Ä R Ñ R a Lipchitz continuous function1, i.e., there
exists a positive constant L such that |f pxq ´ f pyq| § L|x ´ y |, for
all x , y P D. If the initial condition of (I) lies in D (x0 P D), there
exists T ° 0 such that (I) has a unique solution xptq for t P r0,T s.

Note: Solutions to di↵erent initial conditions never intersect. Why?

1A continuously di↵erentiable function is always Lipschitz continuous (on a
bounded domain D Ä R)



Today: systems of equations
System of di↵erential equations: find xptq “ px1ptq, . . . , xnptqq
such that

d

dt

¨

˚̋
x1ptq

...
xnptq

˛

‹‚“

¨

˚̋
f1px1, . . . , xnq

...
fnpx1, . . . , xnq

˛

‹‚

with appropriate initial conditions.

Note: The Picard-Lindelöf theorem holds true for systems of
di↵erential equations; in this case, the functions f1, . . . , fn must be
Lipchitz continuous in all its arguments. The same result also
holds, with small changes, for non autonomous equations.

We will consider three cases:

1. reaction kinetics;

2. interacting populations;

3. spread of an infection disease.

Case 1: Reaction kinetics

§ Consider x the concentration of a substrate X (e.g. mRNA,
protein, small molecule, metabolite, any reagent).

§ The decay dx{dt “ kx , k † 0 can be seen as a kinetic
reaction (in which we are not interested in the product of the
degradation):

X
kÑ

§ Law of Mass Action: when 2 or more reactants are involved in
a reaction step, the reaction rates are proportional to the
product of their concentrations.

§ Justification: macroscopic version of collision theory.

§ Validity: constant temperature; medium must be well-mixed;
# of molecules must be high.



Elementary reaction kinetics

§ Bimolecular reaction

X ` Y
kÑ Z ODE

$
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dx
dt “ ´kxy
dy
dt “ ´kxy
dz
dt “ kxy

§ Dissociation

Z
kÑ X ` Y ODE

$
&

%

dx
dt “ kz
dy
dt “ kz
dz
dt “ ´kz

§ Reversible dissociation

X ` Y
k`
Õ
k´

Z ODE

$
&

%

dx
dt “ ´k`xy ` k´z
dy
dt “ ´k`xy ` k´z
dz
dt “ k`xy ´ k´z

Elementary reaction kinetics
Conservation laws (e.g. mass conservation) can be used to reduce
the number of equations involved.

Example: for $
&

%

dx
dt “ ´k`xy ` k´z
dy
dt “ ´k`xy ` k´z
dz
dt “ k`xy ´ k´z

mass conservation implies
#

dpx`zq
dt “ 0

dpy`zq
dt “ 0

ñ
"

xptq ` zptq “ x0 ` z0 “ a0
yptq ` zptq “ y0 ` z0 “ b0

and hence the system of 3 ODEs reduces to the scalar ODE

dz

dt
“ k`pa0 ´ zqpb0 ´ zq ´ k´z .

Once we solve this ODE for zptq we can recover

xptq “ a0 ´ zptq and yptq “ b0 ´ zptq.



Matlab code
Exercise 2.10: Use the Matlab function ode45 to solve the initial
value problem (IVP)

#
dz
dt “ k`pa0 ´ zqpb0 ´ zq ´ k´z , t P p0, 3s,
zp0q “ 0.

with k` “ 1, k´ “ 1 and x0 “ 1, y0 “ 2.

% Matlab code to solve Exercise 1

x0 = 1; y0 = 2; z0 = 0; % initial conditions

a0 = x0 + z0; b0 = y0 + z0; % constants

kp = 1; km = 1; % rates

f = @(t,z) kp*(a0-z).*(b0-z)-km*z; % ODE function

[t, z] = ode45(f, [0 3], z0); % solve ODE

x = a0 - z; y = b0 -z;

plot(t, x, t, y, t, z) % plot the solutions

xlabel(’time’), ylabel(’concentrations’)

legend(’x’,’y’,’z’)

set(gca,’FontName’,’Helvetica’,’FontSize’,20)

Enzyme catalyzed reactions

Most reactions need to be catalyzed to take place at interesting
rates.

enzymes = proteins that convert specific reactants (called
substrates) into products while remaining basically unchanged.
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Enzyme catalyzed reactions

■ most reactions need to be catalyzed to take place at
interesting rates

■ enzymes = proteins that convert specific reactants (called
substrates) into products while remaining basically
unchanged

substrate
product

enzyme
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Enzyme catalyzed reactions

■ rate of production depends nonlinearly on the concentration
of the substrate

S + E
k1���������
k�1

C
k2���� P + E

◆ S = substrate
◆ E = enzyme
◆ C = complex (“ = [ES]”)
◆ P = product

S

C

E

P

k

k −1
k1

k2

k
k 2

1
−1+

■ ODEs
ds
dt = �k1se + k�1c
de
dt = �k1se + (k�1 + k2)c
dc
dt = k1se � (k�1 + k2)c
dp
dt = k2c



Enzyme catalyzed reactions
Rate of production depends nonlinearly on the concentration of the
substrate

S ` E
k1Õ
k´1

C
k2Ñ P ` E

§ S “ substrate
§ E “ enzyme
§ C “ complex (““ rESs”)
§ P “ product

Exercise 2.11: Obtain the system of ODEs
$
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ds
dt “ ´k1se ` k´1c
de
dt “ ´k1se ` pk´1 ` k2qc
dc
dt “ k1se ´ pk´1 ` k2qc
dp
dt “ k2c

that is complemented with the initial conditions

sp0q “ s0, ep0q “ e0 ! s0 cp0q “ 0 pp0q “ 0.

Enzyme catalyzed reactions
Simplifications:

§ last equation does not feedback ñ We can ignore it and get
pptq by integration once we have cptq;

§ conservation of mass for the enzyme:

de

dt
` dc

dt
“ 0 ñ eptq ` cptq “ const “ e0.

Then another equation can be eliminated
"

ds
dt “ ´k1spe0 ´ cq ` k´1c
dc
dt “ k1spe0 ´ cq ´ pk´1 ` k2qc

Exercise 2.12: Solve the previous system of di↵erential equations
for t P r0, 25s, considering the parameter

k1 “ 1 k´1 “ 0.15, k2 “ 0.4

and the initial conditions

s0 “ 1, e0 “ 0.5, c0 “ 0.



Matlab code

% Matlab code to solve Exercise 3
tint = [0, 25]; % time interval
s0 = 1; c0 = 0; x0 = [s0, c0]; % initial conditions
[t,x] = ode45(@fmm2, tint, x0); % solve ODE
plot(t,x,’LineWidth’,3) ; legend (’substrate’, ’complex’)
set(gca,’FontName’,’Helvetica’,’FontSize’,20)

function dxdt = fmm2(t,x)
% System of 2 ODEs for enzyme reaction
% with Michaelis-Menten kinetics
k1 = 1; k1m = 0.15; k2 = 0.4; e0 = 0.5; % parameters
s = x(1); c = x(2); % extract the states from the vector z
% ODEs
dsdt = - k1*s*(e0 - c) + k1m*c;
dcdt = k1*s*(e0 - c) - (k1m + k2)*c;
% output vector
dxdt = [dsdt; dcdt];

end

Michaelis-Menten kinetics: hyperbolic responses
The following system of equations can be further simplified

"
ds
dt “ ´k1spe0 ´ cq ` k´1c
dc
dt “ k1spe0 ´ cq ´ pk´1 ` k2qc

Quasi steady state approximation: after a transient period on
which the enzyme fills up, the amount of complex C stays (almost)
the same:

dc

dt
“ 0 ñ c “ e0s

Km ` s
where Km “ k´1 ` k2

k1loooomoooon
Michaelis const.

then reduces to a scalar ODE

ds

dt
“ ´ Vms

Km ` s
where Vm “ k2e0.

ˆ
dp

dt
“ k2c “ Vms

Km ` s

˙



Michaelis-Menten kinetics: hyperbolic responses

Exercise 2.13: Plot the the production rate of the reaction product

dp

dt
“ Vms

Km ` s

as a function of s, considering Vm “ 1, Km “ 1 and s P r0, 20s.
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Hyperbolic response

Note: 1. Vm “ upper bound for dp{dt; 2. Km “ value of s such
that dp{dt “ 1{2Vm; 3. Vm{Km “ initial slope of dp{dt.

Michaelis-Menten kinetics: time-scales
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Michaelis-Menten kinetics: time-scales
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Cooperativity

When n molecules of substrate must fit together with the enzyme
in order for the reaction to take place.
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Cooperativity

■ when n molecules of substrate must fit together with the
enzyme in order for the reaction to take place

substrates

enzyme

product

■ ex:
◆ ligand binding to cell surface receptors
◆ binding of transcriptor factors to DNA to control gene
expression

■ kinetics

nS + E
k1���������
k�1

C
k2���� P + E
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Cooperativity

■ ODEs
ds
dt = �k1sne + nk�1c
de
dt = �k1sne + (k�1 + k2)c
dc
dt = k1sne � (k�1 + k2)c
dp
dt = k2c

■ after the quasi steady state approximation dp
dt = Vm

sn

�+sn

■ modifying � � �n: Hill function h+(s, �, n)

dp

dt
= Vm

sn

�n + sn
=: Vm h+(s, �, n)

Examples: ligand binding to cell surface receptors; binding of
transcriptor factors to DNA to control gene expression.

Kinetics

nS ` E
k1Õ
k´1

C
k2Ñ P ` E



Cooperativity
Exercise 2.14: Obtain the system of ODEs

$
’’&

’’%

ds
dt “ ´k1sne ` nk´1c
de
dt “ ´k1sne ` pk´1 ` k2qc
dc
dt “ k1sne ´ pk´1 ` k2qc
dp
dt “ k2c

After the quasi steady state approximation, we may prove

dp

dt
“ Vm

sn

Km ` sn
.

Modifying Km :“ K n
m and considering the (positive feedback) Hill

function

h`ps,Km, nq “ sn

K n
m ` sn

we have
dp

dt
“ Vmh

`ps,Km, nq.

Hill kinetics: sigmoidal responses
Common modules for saturated growth rate:

h`ps,Km, nq “ sn

K n
m ` sn

.

Note:

1. Km “ value of s at
which h` reaches 1/2
of the saturation value;

2. n “ Hill parameter.
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Sigmoidal response

Exercise 2.15: Plot the (negative feedback) Hill function for
negative growth :

h´ps,Km, nq “ 1 ´ sn

K n
m ` sn

“ K n
m

K n
m ` sn

.



Hyperbolic vs Sigmoidal responses

Consider
dp

dt
“ Vm

sn

K n
m ` sn

.

§ For n “ 1 the graph of the formation rate is hyperbolic.

§ For n ° 1 it is sigmoidal.

Di↵erences:

§ n “ 1 graph is concave;

§ n ° 1 the graph changes
the concavity (di↵erent
stability properties).
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Hyperbolic vs Sigmoidal responses

n = 1
n = 3
n = 5
n = 7

When n grows the sharpness of the transition increases; tends to a
boolean switch (ultrasensitive response; “all or nothing” behaviour)

Case 2: General population interaction model

Consider the general two-species interaction model

" dx1
dt “ ↵x1 ` �x1x2
dx2
dt “ �x2 ` �x1x2

↵ � � �
` ` ` ´ Predator (x1) - prey (x2) model
` ` ´ ´
´ ` ` ´
´ ` ´ ´
` ` ` ` Mutualism or symbiosis model
` ` ´ `
´ ` ´ `
` ´ ` ´ Competition model
` ´ ´ ´
´ ´ ´ ´



Predator/Prey or Lotka-Volterra model

Consider the dynamics of a closed ecological system, in which two
species interact: predator (variable x1) and prey (variable x2). The
behaviour of the population can be described by

" dx1
dt “ ´↵x1 ` �x1x2
dx2
dt “ �x2 ´ �x1x2

where

§ ↵ ° 0 is the mortality rate of predators in absence of prey;

§ � ° 0 the reproduction rate of predators per unit prey;

§ � ° 0 is the prey reproduction rate and

§ � ° 0 the rate at which prey is eaten by predators (per unit
prey), which is equivalent to mortality rate of pray per unit of
predator.

Predator/Prey or Lotka-Volterra model

Exercise 2.16: Obtain the following plot.
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Case 3: Epidemic model SIR

Epidemic model for the spread of an infectious disease (e.g
influenza or covid19)

1. The dependent variables are: S “ susceptible; I “ infected;
R “ recovered;

2. The independent variable is: t “ time

3. Assume that the rate of infection is proportional to the
number of contacts between susceptible and infected
individuals.

Epidemic model SIR

Let:

§ � ° 0 be the infection rate

� is the average number of contacts per person per time,
multiplied by the probability of disease transmission in a
contact between a susceptible and an infectious person.

§ � ° 0 be the recovery rate

If an individual is infectious for an average time period D,
then � “ 1{D.



Epidemic model SIR

The rate at which a susceptible individual becomes infected is
given by

�pI {Nq
where N is the total number of people in the population.

Classical SIR model:
$
’’’’’’’’&

’’’’’’’’%

dS

dt
“ ´�SI {N

dI

dt
“ �SI {N ´ �I

dR

dt
“ �I

Kermack-McKendrick model

$
’’’&

’’’%

dS

dt
“ ´�SI {N

dI

dt
“ �SI {N ´ �I
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Exercise 8: Prove that, if

R0
S

N
† 1, with R0 “ �

�
,

the infection deceases.

The value S “ N{R0 is the critical population size to sustain an
epidemic.



Matlab code: Kermack-McKendrick mode
% Kermack-McKendrick model (N = 1)

tint = [0 6]; % time interval

S0 = .9; I0 = .1; x0 = [S0 I0]; % initial conditions

[t, x] = ode45(@KM, tint, x0); % solve ODE

plot(t, x,’LineWidth’,3) % plots

function dxdt = KM(t, x)

% Kermack-McKendrick system of ODEs

% dS/dt = -beta SI

% dI/dt = beta SI - gama I

beta = 3; gama = 1;

S = x(1); I = x(2); % extract the values from x

% ODEs

dSdt = -beta*S*I;

dIdt = beta*S*I - gama*I;

% output vector

dxdt = [dSdt; dIdt];

end

Basic/e↵ective reproduction number

We proved that, if R0
S
N † 1, with R0 “ �

� , the infection deceases.

Basic reproduction number: The value

R0 “ �

�

indicates how contagious the disease is. Expresses the average
number of people who will contract the disease from one infected
person.

E↵ective reproduction number: The main goal is to keep

Rt “ R0
S

N
† 1.



Di↵erent values of R0

Keep Rt † 1



Herd immunity

The main goal is to keep

Rt “ R0
S

N
† 1.

Then

R0
S

N
† 1 ô S

N
† 1

R0
ô ´ S

N
° ´ 1

R0
ô 1 ´ S

Nloomoon
p

° 1 ´ 1

R0
.

Herd immunity: The percentage p “ 1 ´ S{N of population
immune to the disease must be greater than 1 ´ 1{R0.

For COVID-19 (delta variant): R0 “ 5.08 and so

p ° 1 ´ 1{5.08 « 0.8,

i.e., 80% of the total population should be immune to the disease.

Homework #6: Brusselator (Ilya Prigogine)
Exercise 2.17: The Brusselator is a theoretical model for a type of
autocatalytic reaction. Is characterised by the reactions

molecular reaction rate coe�cient rate of reaction
A ›Ñ X k1 r1 “ k1a
B ` X ›Ñ Y ` D k2 r2 “ k2bx
2X ` Y ›Ñ 3X k3 r3 “ k3x2y
X ›Ñ E k4 r4 “ k4x

1. Considering all the rate coe�cients equal to 1 and
da{dt “ db{dt “ 0, prove that the system for the products
uptq “ xptq, vptq “ yptq is

"
du
dt “ a ` u2v ´ pb ` 1qu
dv
dt “ bu ´ u2v .

2. Prove that point P “
`
a, b

a

˘
is the unique equilibria of the

system (by linearization, we may conclude that it is unstable if
and only if b ° a2 ` 1).

3. Obtain the plots in the next pages, where up0q “ 0, vp0q “ 1
and t P r0, 30s.



Homework #6: Stable case: a “ 1 and b “ 1
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Homework #6: Quasi-unstable case: a “ 1 and b “ 2

0 0.5 1 1.5 2

1

2

3

0 5 10 15 20 25 30
0

1

2

3
u

v



Homework #6: Unstable case: a “ 1 and b “ 3
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