Continuous modelling by ODEs

Biological moduli as ODEs: systems of equations

Computational Biology

Adérito Araújo (alma@mat.uc.pt)

June 13, 2024

Last lecture: scalar problems

Initial value problem: find $x(t)$ such that

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=f(x(t)), \tag{I}\\
x(0)=x_{0}
\end{array}\right.
$$

Picard-Lindelöf theorem (*)

Let $f: D \subset \mathbb{R} \rightarrow \mathbb{R}$ a Lipchitz continuous function ${ }^{1}$, i.e., there exists a positive constant L such that $|f(x)-f(y)| \leqslant L|x-y|$, for all $x, y \in D$. If the initial condition of (1) lies in $D\left(x_{0} \in D\right)$, there exists $T>0$ such that (I) has a unique solution $x(t)$ for $t \in[0, T]$.

Note: Solutions to different initial conditions never intersect. Why?

[^0]
Today: systems of equations

System of differential equations: find $x(t)=\left(x_{1}(t), \ldots, x_{n}(t)\right)$ such that

$$
\frac{d}{d t}\left(\begin{array}{c}
x_{1}(t) \\
\vdots \\
x_{n}(t)
\end{array}\right)=\left(\begin{array}{c}
f_{1}\left(x_{1}, \ldots, x_{n}\right) \\
\vdots \\
f_{n}\left(x_{1}, \ldots, x_{n}\right)
\end{array}\right)
$$

with appropriate initial conditions.
Note: The Picard-Lindelöf theorem holds true for systems of differential equations; in this case, the functions f_{1}, \ldots, f_{n} must be Lipchitz continuous in all its arguments. The same result also holds, with small changes, for non autonomous equations.

We will consider three cases:

1. reaction kinetics;
2. interacting populations;
3. spread of an infection disease.

Case 1: Reaction kinetics

- Consider x the concentration of a substrate X (e.g. mRNA, protein, small molecule, metabolite, any reagent).
- The decay $d x / d t=k x, k<0$ can be seen as a kinetic reaction (in which we are not interested in the product of the degradation):

$$
X \xrightarrow{k}
$$

- Law of Mass Action: when 2 or more reactants are involved in a reaction step, the reaction rates are proportional to the product of their concentrations.
- Justification: macroscopic version of collision theory.
- Validity: constant temperature; medium must be well-mixed; \# of molecules must be high.

Elementary reaction kinetics

- Bimolecular reaction

$$
X+Y \xrightarrow{k} Z \quad \text { ODE } \quad\left\{\begin{aligned}
\frac{d x}{d t} & =-k x y \\
\frac{d y}{d t} & =-k x y \\
\frac{d z}{d t} & =k x y
\end{aligned}\right.
$$

- Dissociation

$$
Z \xrightarrow{k} X+Y \quad \text { ODE } \quad\left\{\begin{array}{l}
\frac{d x}{d t}=k z \\
\frac{d y}{d t}=k z \\
\frac{d z}{d t}=-k z
\end{array}\right.
$$

- Reversible dissociation

$$
X+Y \underset{k_{-}}{\stackrel{k_{+}}{\rightleftarrows}} Z \quad \text { ODE } \quad\left\{\begin{array}{l}
\frac{d x}{d t}=-k_{+} x y+k_{-} z \\
\frac{d y}{d t}=-k_{+} x y+k_{-} z \\
\frac{d z}{d t}=k_{+} x y-k_{-} z
\end{array}\right.
$$

Elementary reaction kinetics

Conservation laws (e.g. mass conservation) can be used to reduce the number of equations involved.

Example: for

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=-k_{+} x y+k_{-} z \\
\frac{d y}{d t}=-k_{+} x y+k_{-} z \\
\frac{d z}{d t}=k_{+} x y-k_{-} z
\end{array}\right.
$$

mass conservation implies

$$
\left\{\begin{array} { r l }
{ \frac { d (x + z) } { d t } } & { = 0 } \\
{ \frac { d (y + z) } { d t } } & { = 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
x(t)+z(t)=x_{0}+z_{0}=a_{0} \\
y(t)+z(t)=y_{0}+z_{0}=b_{0}
\end{array}\right.\right.
$$

and hence the system of 3 ODEs reduces to the scalar ODE

$$
\frac{d z}{d t}=k_{+}\left(a_{0}-z\right)\left(b_{0}-z\right)-k_{-} z
$$

Once we solve this ODE for $z(t)$ we can recover

$$
x(t)=a_{0}-z(t) \quad \text { and } \quad y(t)=b_{0}-z(t) .
$$

Matlab code

Exercise 2.10: Use the Matlab function ode45 to solve the initial value problem (IVP)

$$
\left\{\begin{array}{l}
\frac{d z}{d t}=k_{+}\left(a_{0}-z\right)\left(b_{0}-z\right)-k_{-} z, \quad t \in(0,3] \\
z(0)=0
\end{array}\right.
$$

with $k_{+}=1, k_{-}=1$ and $x_{0}=1, y_{0}=2$.

```
% Matlab code to solve Exercise 1
x0 = 1; y0 = 2; z0 = 0; % initial conditions
a0 = x0 + z0; b0 = y0 + z0; % constants
kp = 1; km = 1; % rates
f = @(t,z) kp*(a0-z).*(b0-z)-km*z; % ODE function
[t, z] = ode45(f, [0 3], z0); % solve ODE
x = a0 - z; y = b0 -z;
plot(t, x, t, y, t, z) % plot the solutions
xlabel('time'), ylabel('concentrations')
legend('x','y','z')
set(gca,'FontName', 'Helvetica', 'FontSize', 20)
```


Enzyme catalyzed reactions

Most reactions need to be catalyzed to take place at interesting rates.
enzymes $=$ proteins that convert specific reactants (called substrates) into products while remaining basically unchanged.

product

Enzyme catalyzed reactions

Rate of production depends nonlinearly on the concentration of the substrate

$$
S+E \underset{k_{-1}}{\stackrel{k_{1}}{\rightleftarrows}} C \xrightarrow{k_{2}} P+E
$$

- $S=$ substrate
- $E=$ enzyme
- $C=$ complex (" $=[E S]$ ")
- $P=$ product

Exercise 2.11: Obtain the system of ODEs

$$
\left\{\begin{array}{l}
\frac{d s}{d t}=-k_{1} s e+k_{-1} c \\
\frac{d e}{d t}=-k_{1} s e+\left(k_{-1}+k_{2}\right) c \\
\frac{d c}{d t}=k_{1} s e-\left(k_{-1}+k_{2}\right) c \\
\frac{d p}{d t}=k_{2} c
\end{array}\right.
$$

that is complemented with the initial conditions

$$
s(0)=s_{0}, \quad e(0)=e_{0} \ll s 0 \quad c(0)=0 \quad p(0)=0
$$

Enzyme catalyzed reactions

Simplifications:

- last equation does not feedback \Rightarrow We can ignore it and get $p(t)$ by integration once we have $c(t)$;
- conservation of mass for the enzyme:

$$
\frac{d e}{d t}+\frac{d c}{d t}=0 \Rightarrow e(t)+c(t)=\text { const }=e_{0} .
$$

Then another equation can be eliminated

$$
\left\{\begin{array}{l}
\frac{d s}{d t}=-k_{1} s\left(e_{0}-c\right)+k_{-1} c \\
\frac{d c}{d t}=k_{1} s\left(e_{0}-c\right)-\left(k_{-1}+k_{2}\right) c
\end{array}\right.
$$

Exercise 2.12: Solve the previous system of differential equations for $t \in[0,25]$, considering the parameter

$$
k_{1}=1 \quad k_{-1}=0.15, \quad k_{2}=0.4
$$

and the initial conditions

$$
s_{0}=1, \quad e_{0}=0.5, \quad c_{0}=0
$$

Matlab code

```
% Matlab code to solve Exercise 3
tint = [0, 25]; % time interval
s0 = 1; cO = 0; x0 = [s0, c0]; % initial conditions
[t,x] = ode45(@fmm2, tint, x0); % solve ODE
plot(t,x,'LineWidth',3) ; legend ('substrate', 'complex')
set(gca,'FontName', 'Helvetica', 'FontSize', 20)
function dxdt = fmm2(t,x)
% System of 2 ODEs for enzyme reaction
% with Michaelis-Menten kinetics
k1 = 1; k1m = 0.15; k2 = 0.4; e0 = 0.5; % parameters
s = x(1); c = x(2); % extract the states from the vector z
% ODEs
dsdt = - k1*s*(e0 - c) + k1m*c;
dcdt = k1*s*(e0 - c) - (k1m + k2)*c;
% output vector
dxdt = [dsdt; dcdt];
end
```


Michaelis-Menten kinetics: hyperbolic responses

The following system of equations can be further simplified

$$
\left\{\begin{array}{l}
\frac{d s}{d t}=-k_{1} s\left(e_{0}-c\right)+k_{-1} c \\
\frac{d c}{d t}=k_{1} s\left(e_{0}-c\right)-\left(k_{-1}+k_{2}\right) c
\end{array}\right.
$$

Quasi steady state approximation: after a transient period on which the enzyme fills up, the amount of complex C stays (almost) the same:

$$
\frac{d c}{d t}=0 \Rightarrow c=\frac{e_{0} s}{K_{m}+s} \text { where } K_{m}=\underbrace{\frac{k_{-1}+k_{2}}{k_{1}}}_{\text {Michaelis const. }}
$$

then reduces to a scalar ODE

$$
\frac{d s}{d t}=-\frac{V_{m} s}{K_{m}+s} \quad \text { where } V_{m}=k_{2} e_{0} . \quad\left(\frac{d p}{d t}=k_{2} c=\frac{V_{m} s}{K_{m}+s}\right)
$$

Michaelis-Menten kinetics: hyperbolic responses
Exercise 2.13: Plot the the production rate of the reaction product

$$
\frac{d p}{d t}=\frac{V_{m} s}{K_{m}+s}
$$

as a function of s, considering $V_{m}=1, K m=1$ and $s \in[0,20]$.

Note: 1. $V_{m}=$ upper bound for $d p / d t ; 2 . K_{m}=$ value of s such that $d p / d t=1 / 2 V_{m} ; 3 . V_{m} / K_{m}=$ initial slope of $d p / d t$.

Michaelis-Menten kinetics: time-scales

Michaelis-Menten kinetics: time-scales

Cooperativity

When n molecules of substrate must fit together with the enzyme in order for the reaction to take place.

Examples: ligand binding to cell surface receptors; binding of transcriptor factors to DNA to control gene expression.

Kinetics

$$
n S+E \underset{k_{-1}}{\stackrel{k_{1}}{\rightleftarrows}} C \xrightarrow{k_{2}} P+E
$$

Cooperativity

Exercise 2.14: Obtain the system of ODEs

$$
\left\{\begin{array}{l}
\frac{d s}{d t}=-k_{1} s^{n} e+n k_{-1} c \\
\frac{d e}{d t}=-k_{1} s^{n} e+\left(k_{-1}+k_{2}\right) c \\
\frac{d c}{d t}=k_{1} s^{n} e-\left(k_{-1}+k_{2}\right) c \\
\frac{d p}{d t}=k_{2} c
\end{array}\right.
$$

After the quasi steady state approximation, we may prove

$$
\frac{d p}{d t}=V_{m} \frac{s^{n}}{K_{m}+s^{n}} .
$$

Modifying $K_{m}:=K_{m}^{n}$ and considering the (positive feedback) Hill function

$$
h^{+}\left(s, K_{m}, n\right)=\frac{s^{n}}{K_{m}^{n}+s^{n}}
$$

we have

$$
\frac{d p}{d t}=V_{m} h^{+}\left(s, K_{m}, n\right) .
$$

Hill kinetics: sigmoidal responses
Common modules for saturated growth rate:

$$
h^{+}\left(s, K_{m}, n\right)=\frac{s^{n}}{K_{m}^{n}+s^{n}}
$$

Note:

1. $K_{m}=$ value of s at which h^{+}reaches $1 / 2$ of the saturation value;
2. $n=$ Hill parameter.

Exercise 2.15: Plot the (negative feedback) Hill function for negative growth :

$$
h^{-}\left(s, K_{m}, n\right)=1-\frac{s^{n}}{K_{m}^{n}+s^{n}}=\frac{K_{m}^{n}}{K_{m}^{n}+s^{n}} .
$$

Hyperbolic vs Sigmoidal responses

Consider

$$
\frac{d p}{d t}=V_{m} \frac{s^{n}}{K_{m}^{n}+s^{n}}
$$

- For $n=1$ the graph of the formation rate is hyperbolic.
- For $n>1$ it is sigmoidal.

Differences:

- $n=1$ graph is concave;
- $n>1$ the graph changes the concavity (different stability properties).

When n grows the sharpness of the transition increases; tends to a boolean switch (ultrasensitive response; "all or nothing" behaviour)

Case 2: General population interaction model

Consider the general two-species interaction model

$$
\left\{\begin{array}{l}
\frac{d x_{1}}{d t}=\alpha x_{1}+\beta x_{1} x_{2} \\
\frac{d x_{2}}{d t}=\gamma x_{2}+\delta x_{1} x_{2}
\end{array}\right.
$$

α	β	γ	δ	
+	+	+	-	Predator $\left(x_{1}\right)$ - prey $\left(x_{2}\right)$ model
+	+	-	-	
-	+	+	-	
-	+	-	-	
+	+	+	+	Mutualism or symbiosis model
+	+	-	+	
-	+	-	+	
+	-	+	-	Competition model
+	-	-	-	
-	-	-	-	

Predator/Prey or Lotka-Volterra model

Consider the dynamics of a closed ecological system, in which two species interact: predator (variable x_{1}) and prey (variable x_{2}). The behaviour of the population can be described by

$$
\left\{\begin{array}{l}
\frac{d x_{1}}{d t}=-\alpha x_{1}+\beta x_{1} x_{2} \\
\frac{d x_{2}}{d t}=\gamma x_{2}-\delta x_{1} x_{2}
\end{array}\right.
$$

where

- $\alpha>0$ is the mortality rate of predators in absence of prey;
- $\beta>0$ the reproduction rate of predators per unit prey;
- $\gamma>0$ is the prey reproduction rate and
- $\delta>0$ the rate at which prey is eaten by predators (per unit prey), which is equivalent to mortality rate of pray per unit of predator.

Predator/Prey or Lotka-Volterra model

Exercise 2.16: Obtain the following plot.

Case 3: Epidemic model SIR

Epidemic model for the spread of an infectious disease (e.g influenza or covid19)

1. The dependent variables are: $S=$ susceptible; $I=$ infected; $R=$ recovered;
2. The independent variable is: $t=$ time
3. Assume that the rate of infection is proportional to the number of contacts between susceptible and infected individuals.

Epidemic model SIR

Let:

- $\beta>0$ be the infection rate
β is the average number of contacts per person per time, multiplied by the probability of disease transmission in a contact between a susceptible and an infectious person.
- $\gamma>0$ be the recovery rate

If an individual is infectious for an average time period D, then $\gamma=1 / D$.

Epidemic model SIR

The rate at which a susceptible individual becomes infected is given by

$$
\beta(I / N)
$$

where N is the total number of people in the population.
Classical SIR model:

$$
\left\{\begin{aligned}
\frac{d S}{d t} & =-\beta S I / N \\
\frac{d I}{d t} & =\beta S I / N-\gamma I \\
\frac{d R}{d t} & =\gamma I
\end{aligned}\right.
$$

Kermack-McKendrick model

$$
\left\{\begin{aligned}
\frac{d S}{d t} & =-\beta S I / N \\
\frac{d I}{d t} & =\beta S I / N-\gamma I
\end{aligned}\right.
$$

Exercise 8: Prove that, if

$$
R_{0} \frac{S}{N}<1, \quad \text { with } \quad R_{0}=\frac{\beta}{\gamma}
$$

the infection deceases.
The value $S=N / R_{0}$ is the critical population size to sustain an epidemic.

Matlab code: Kermack-McKendrick mode

```
% Kermack-McKendrick model (N = 1)
tint = [0 6]; % time interval
SO = .9; IO = .1; x0 = [SO IO]; % initial conditions
[t, x] = ode45(@KM, tint, x0); % solve ODE
plot(t, x,'LineWidth',3) % plots
function dxdt = KM(t, x)
% Kermack-McKendrick system of ODEs
% dS/dt = -beta SI
% dI/dt = beta SI - gama I
beta = 3; gama = 1;
S = x(1); I = x(2); % extract the values from x
% ODEs
dSdt = -beta*S*I;
dIdt = beta*S*I - gama*I;
% output vector
dxdt = [dSdt; dIdt];
end
```


Basic/effective reproduction number

We proved that, if $R_{0} \frac{S}{N}<1$, with $R_{0}=\frac{\beta}{\gamma}$, the infection deceases.
Basic reproduction number: The value

$$
R_{0}=\frac{\beta}{\gamma}
$$

indicates how contagious the disease is. Expresses the average number of people who will contract the disease from one infected person.

Effective reproduction number: The main goal is to keep

$$
R_{t}=R_{0} \frac{S}{N}<1
$$

Different values of R_{0}

$$
\begin{aligned}
& \text { RO (basic reproduction number) of diseases } \\
& \text { A measure of how many people each sck person will inect on overase } \\
& \text { (2) } \\
& \text { (2) }
\end{aligned}
$$

Keep $R_{t}<1$

R < 1
contained!

Herd immunity
The main goal is to keep

$$
R_{t}=R_{0} \frac{S}{N}<1
$$

Then

$$
R_{0} \frac{S}{N}<1 \Leftrightarrow \frac{S}{N}<\frac{1}{R_{0}} \Leftrightarrow-\frac{S}{N}>-\frac{1}{R_{0}} \Leftrightarrow \underbrace{1-\frac{S}{N}}_{p}>1-\frac{1}{R_{0}} .
$$

Herd immunity: The percentage $p=1-S / N$ of population immune to the disease must be greater than $1-1 / R_{0}$.

For COVID-19 (delta variant): $R_{0}=5.08$ and so

$$
p>1-1 / 5.08 \approx 0.8
$$

i.e., 80% of the total population should be immune to the disease.

Homework \#6: Brusselator (Ilya Prigogine)

Exercise 2.17: The Brusselator is a theoretical model for a type of autocatalytic reaction. Is characterised by the reactions

molecular reaction	rate coefficient	rate of reaction
$A \longrightarrow X$	k_{1}	$r_{1}=k_{1} a$
$B+X \longrightarrow Y+D$	k_{2}	$r_{2}=k_{2} b x$
$2 X+Y \longrightarrow 3 X$	k_{3}	$r_{3}=k_{3} x^{2} y$
$X \longrightarrow E$	k_{4}	$r_{4}=k_{4} x$

1. Considering all the rate coefficients equal to 1 and $d a / d t=d b / d t=0$, prove that the system for the products $u(t)=x(t), v(t)=y(t)$ is

$$
\left\{\begin{aligned}
\frac{d u}{d t} & =a+u^{2} v-(b+1) u \\
\frac{d v}{d t} & =b u-u^{2} v .
\end{aligned}\right.
$$

2. Prove that point $P=\left(a, \frac{b}{a}\right)$ is the unique equilibria of the system (by linearization, we may conclude that it is unstable if and only if $b>a^{2}+1$).
3. Obtain the plots in the next pages, where $u(0)=0, v(0)=1$ and $t \in[0,30]$.

Homework \#6: Stable case: $a=1$ and $b=1$

Homework \#6: Quasi-unstable case: $a=1$ and $b=2$

Homework \#6: Unstable case: $a=1$ and $b=3$

[^0]: ${ }^{1}$ A continuously differentiable function is always Lipschitz continuous (on a bounded domain $D \subset \mathbb{R}$)

