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Adérito Araújo (alma@mat.uc.pt)
June 20, 2024

Qualitative analysis: scalar case

§ What is the long time behaviour? xp8q “?

dx

dt
“ f pxq

§ If we are lucky, it coincides with the steady state solution.

§ Steady state solution of the ODE: the values x˚ of x for which

dx

dt
“ 0 ô f pxq “ 0.

§ Since dx{dt “ 0, the rate does not change, the ODE “stays
there” forever.

§ The steady states are also called fixed points or equilibria.

§ A steady state is stable if a solution which starts nearby stays
nearby; a steady state which is not stable is unstable.

§ A steady state is asymptotically stable if all solutions which
start nearby converge to it.



Stability analysis: Malthus law

Malthus law:
f pxq “ rx ñ x˚ “ 0.

What is the behaviour of xptq in a small neighbourhood of x˚ (of
size ✏ ° 0)?

1. r ° 0:"
x “ x˚ ´ ✏ ñ f pxq † 0
x “ x˚ ` ✏ ñ f pxq ° 0

Then x˚ “ 0 is unstable

2. r † 0:"
x “ x˚ ´ ✏ ñ f pxq ° 0
x “ x˚ ` ✏ ñ f pxq † 0

Then x˚ “ 0 is stable
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For r ° 0: df
dx px˚q “ r ° 0 and so x˚ is unstable.

For r † 0: df
dx px˚q “ r † 0 and so x˚ is (asymptotically) stable.



Stability analysis: Verhulst law

Verhulst law:

f pxq “ rx
´
1 ´ x

K

¯
ñ x˚

1 “ 0 and x˚
1 “ K .
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For x˚
1 “ 0:

df

dx
px˚

1 q “ r ´ 2rx˚
1 {K “ r ° 0 ñ x˚

1 “ 0 unstable.

For x˚
2 “ K :

df

dx
px˚

2 q “ r ´ 2rx˚
2 {K “ ´r † 0 ñ x˚

2 “ 0 stable.



Qualitative analysis: general 2 ˆ 2 system
" dx1

dt “ f1px1, x2q
dx2
dt “ f2px1, x2q

§ At each x “ px1, x2q, the vector field f pxq “ pf1pxq, f2pxqq
gives a good representation of the overall dynamics.

§ A solution xptq is a parametric curve in the x1x2´plane, is
called the trajectory or an orbit whose tangent vector is
specified by the vector field.

§ The sketch of the x1x2´plane with a number of typical
solutions is called the phase space.

§ The xj -nullcline nj is the set of points px1, x2q such that

dxj
dt

“ fjpx1, x2q “ 0, j “ 1, 2.

§ In general, equilibria or steady state of the system are the
solutions of

f1px1, x2q “ 0, f2px1, x2q “ 0.

Two species competing for the same prey
" dx1

dt “ x1p1 ´ x1q ´ x1x2
dx2
dt “ 2x2p1 ´ x2{2q ´ 3x1x2

The equilibrium points are given by
"

x1p1 ´ x1q ´ x1x2 “ 0
2x2p1 ´ x2{2q ´ 3x1x2 “ 0

ñ
"

x1 “ 0 or 1 ´ x1 ´ x2 “ 0
x2 “ 0 or 2 ´ 3x1 ´ x2 “ 0

x1
0 0.2 0.4 0.6 0.8 1

x 2

0

0.5

1

1.5

2

Nullclines and equilibria



Two species competing for the same prey
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§ Along the x1´nullcline (magenta) the velocity vectors are
vertical while along the x2´nullcline (yellow) the velocity
vectors are horizontal.

§ As long as we are traveling along a nullcline without crossing
an equilibrium point, then the direction of the velocity vector
must be the same; once we cross an equilibrium point, then
we may have a change in the direction.

Two species competing for the same prey
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Linearization
We can determine the stability of a steady state by linearizing the
system around the steady state x˚ “ px˚

1 , x˚
2 q. Using Taylor

expansion

f px˚ ` zq “ f px˚q ` Df px˚qz ` higher-order terms,

where

Df px˚q “
„

a b
c d

⇢
“

« Bf1
Bx1 px˚q Bf1

Bx2 px˚q
Bf2
Bx1 px˚q Bf2

Bx2 px˚q

�

is the Jacobian matrix of f at x˚. Replacing in the equation and
dropping the higher-order terms, since f px˚q “ 0 we obtain a linear
system for the dependent variable z

d

dt

„
z1
z2

⇢
“

„
a b
c d

⇢ „
z1
z2

⇢

For most (but not all) steady states, conclusions obtained for the
linearized system indeed carry over to the original nonlinear system.

Some theoretical results

§ A steady state x˚ is called hyperbolic if all eigenvalues of the
Jacobian Df px˚q have nonzero real part.

§ (Hartman-Grobman Theorem) Assume that x˚ is a hyperbolic
equilibrium. Then, in a small neighbourhood of x˚, the phase
portrait of the nonlinear system is the same as that of the
linearized system.

Remarks:

§ At a hyperbolic equilibrium x˚, stability properties are
determined by the eigenvalues of the Jacobian matrix, Df px˚q
(see next slides). This method of linearization may fail for
nonhyperbolic equilibria.

§ The phrase “the same as” in the above theorem refers to
topological equivalence of vector fields.



Stability for linear systems

d

dt

„
z1
z2

⇢
“

„
a b
c d

⇢ „
z1
z2

⇢

§ First case: real eigenvalues �1 “ a, �2 “ b

„
a b
c d

⇢
“

„
�1 0
0 �2

⇢

§ Second case: complex eigenvalues ↵ ˘ i�

„
a b
c d

⇢
“

„
↵ �

´� ´↵

⇢

§ General case: consider

trpAq “ a ` b and detpAq “ ad ´ cb

First case: real eigenvalues �1 “ a, �2 “ b
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Figure 3.7. Three qualitatively di�erent phase portraits for system (3.15)
depending on the sign pattern of �1 and �2. (a) �1, �2 > 0; (b) �1 > 0, �2 < 0; (c)
�1, �2 < 0.

whose unique steady state is the origin, (x̄1, x̄2) = (0, 0). In matrix form, we can
write

d

dt

�
x1

x2

�
=

�
�1 0
0 �2

� �
x1

x2

�
.

Note that �1 and �2 are the eigenvalues of the matrix

A =

�
�1 0
0 �2

�
.

Solutions to (3.15) are

x1(t) = x1(0)e�1t, x2(t) = x2(0)e�2t.

Plotting the parametric curves (x1(t), x2(t)) for di�erent initial values (x1(0), x2(0)),
we arrive at three distinct phase portraits, depending on the signs of �1 and �2, as
shown in Figure 3.7.

Case (a): If both eigenvalues �1 and �2 are positive, then all solutions diverge from
the steady state (0, 0). In Figure 3.7 (a), several trajectories are shown for positive,
negative, or mixed initial conditions. In this case, the steady state (0, 0) is called a
source or an unstable node.

Case (b): If the eigenvalues have opposite signs, �1 > 0 and �2 < 0, say, then x1(t)
is exponentially increasing, while x2(t) is decreasing. All solutions approach the
x1-axis, as shown in Figure 3.7 (b). In this case, the steady state (0, 0) is called a
saddle.

Case (c): If both eigenvalues are negative, then all solutions converge to the steady
state (0, 0), as shown in Figure 3.7 (c). The steady state is called a sink or stable
node.



Second case: complex eigenvalues ↵ ˘ i�
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Figure 3.8. Three qualitatively di�erent cases for system (3.16), depending
on the value of the parameter ↵. (a) ↵ = 0; (b) ↵ > 0; (c) ↵ < 0. Graphs in the left
column show phase portraits. Graphs in the right column show a typical solution
for x1(t).

Step 2: General Linear Systems

We now consider a general linear system,

d

dt

�
x1

x2

�
=

�
a b
c d

� �
x1

x2

�
, A =

�
a b
c d

�
. (3.18)

If we make the transformation
�

y1

y2

�
= P �1

�
x1

x2

�
,

General case: Poincaré diagram pdetpAq, trpAqq´plane
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From (3.22), we see that it is necessary to have tr A < 0 in order to have a steady
state that is asymptotically stable (otherwise at least one eigenvalue would have a positive
real part). If tr A < 0, then the discriminant, (tr A)2 — 4 det A, is either negative or
smaller than (tr A)2. Hence the real part of the eigenvalues is always negative, and (0,0)
is asymptotically stable. We can summarize our conclusions in the following theorem.

Theorem 3.3. Fora linear system, (3.18), the following are equivalent:

• the equilibrium (0, 0) is asymptotically stable;

• all eigenvalues of A have negative real parts;

• det A = ad — be > 0 and tr A = a + d < 0.

We can treat all different combinations for the sign of trace and determinant and obtain
a complete picture of possible behavior near an equilibrium point. Figure 3.10 shows the
"zoo" of all possible types of behavior for steady states of two-dimensional systems.

We can summarize the possible types of behavior as follows:

1. Case det A < 0. Then (tr A)2 - 4 det A > (tr A)2. From formula (3.22), it follows
that there is one positive and one negative eigenvalue, X\ > 0 and X2 < 0, say.
Hence, (0,0) is a saddle point. Moreover, solutions grow as eX}t in the direction of
the eigenvector (p\ corresponding to X \ , and solutions decay as e^2' in the direction
of the eigenvector <p2 corresponding to A.2. In Figure 3.10, the stable and unstable
eigenvectors are shown.

Figure 3.10. The zoo for the general linear system, (3.18). This is a modified
version of Figure 5.14 in Edelstein-Keshet [51].



General case: ⌧ “ trpAq, � “ detpAq

A1 “
„

0 ´0.2
0.8 0

⇢
, A2 “

„
0.1 0.1

´0.2 ´0.3

⇢
, A3 “

„
0.1 ´0.1
0.8 0

⇢

trpA1q “ 0, detpA1q “ 0.16, trpA2q “ ´0.2, detpA1q “ ´0.01, trpA3q “ 0.1, detpA1q “ 0.8
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General population interaction model

Consider the general population interaction model

" dx1
dt “ ↵x1 ` �x1x2
dx2
dt “ �x2 ` �x1x2

and example for predator-prey, one example for mutualism and one
example for competition:

↵ � � �
´ + + ´ Predator (x1) - prey (x2) model
´ + ´ + Mutualism of symbiosis model
+ ´ ´ ´ Competition model



General population interaction model

1. The equilibrium points are given by

"
↵x1 ` �x1x2 “ 0
�x2 ` �x1x2 “ 0

ñ
"

x1 “ 0 or x2 “ ´↵
�

x2 “ 0 or x1 “ ´�
�

The equilibrium points are P1 “ p0, 0q and P2 “
´

´�
� , ´↵

�

¯
.

2. The linearization is given by

d

dt

„
z1
z2

⇢
“

„
↵ ` �x˚

2 �x˚

�x˚
2 � ` �x˚

1

⇢

looooooooooooomooooooooooooon
Df px˚q

„
z1
z2

⇢
.

3. The eigenvalues of Df pP1q are �1 “ ↵ and �2 “ �; the
eigenvalues of Df pP2q are �j “ ˘?

↵�, j “ 1, 2.

Predator-prey model
§ For P1 the eigenvalues are �1 “ ↵ † 0 and �2 “ � ° 0 which

implies that P1 is a saddle.
§ For P2 (verify that is biological relevant) the eigenvalues are

�j “ ˘i
a

|↵�|, j “ 1, 2 which implies that P2 is a center.
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Mutualism model
§ For P1 the eigenvalues are �1 “ ↵ † 0 and �2 “ � † 0 which

implies that P1 is a stable node.
§ For P2 (verify that is biological relevant) the eigenvalues are

�j “ ˘?
↵�, j “ 1, 2 which implies that P2 is a saddle.
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Competition model
§ For P1 the eigenvalues are �1 “ ↵ ° 0 and �2 “ � † 0 which

implies that P1 is a saddle.

§ The equilibrium P2 is not biological relevant (´�{� † 0).
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Homework %7: Two species competing for the same prey
Exercise 2.18: Consider a model of two species competing for the
same resource

$
’’’&

’’’%

dx1
dt

“ r1x1

ˆ
1 ´ x1

K1
´ ↵

x2
K1

˙

dx2
dt

“ r2x2

ˆ
1 ´ x2

K2
´ �

x1
K2

˙ ,

where ↵ and � are competition coe�cients.

1. Considering

u1 “ x1
K1

, u2 “ x2
K2

, ⌧ “ r1t, ⇢ “ r2
r1

, a “ ↵
K2

K1
, b “ �

K1

K2
,

prove that the system is equivalent to
$
’’&

’’%

du1
d⌧

“ u1 p1 ´ u1 ´ au2q
du2
d⌧

“ ⇢u2 p1 ´ u2 ´ bu1q
.

Homework %7: Two species competing for the same prey

2. Prove that the previous system has the following equilibria

p0, 0q, p1, 0q, p0, 1q,
ˆ

1 ´ a

1 ´ ab
,

1 ´ b

1 ´ ab

˙
,

assuming that ab ‰ 1.

Note: The coexistence state is only in the positive quadrant
and therefore biologic realistic if either a † 1 and b † 1, or
a ° 1 and b ° 1.

3. Prove that the Jacobian matriz for the equilibria pu˚
1 , u˚

2 q is

»

–
1 ´ 2u˚

1 ´ au˚
2 ´au˚

1

´ ⇢bu˚
2 ⇢p1 ´ 2u˚

2 ´ bu˚
1 q

fi

fl .



Homework %7: Two species competing for the same prey

4. Prove that:
4.1 p0, 0q is unstable (e.v. �1 “ 1, �2 “ ⇢);
4.2 p1, 0q is stable if b ° 1 and is unstable if b † 1 (e.v.

�1 “ ´1, �2 “ ⇢p1 ´ bqq; (x1 wins)
4.3 p0, 1q is stable if a ° 1 and unstable if a † 1 (e.v.

�1 “ ´1, �2 “ ⇢p1 ´ aq); (x2 wins)
4.4 The steady state of coexistence is stable if a † 1 and b † 1

(stable coexistence) and unstable if a ° 1 and b ° 1.

Evolutionary point of view: As species x1, your best evolutionary
strategy must be based on increasing b “ � K1

K2
or decreasing

a “ ↵K2
K1

, i.e. increasing your carrying capacity K1 relative to your
competitors (a so-called K´strategy), or increasing your
competition coe�cient � relative to your competitor’s.
There is no advantage in increasing your growth rate r1 (a
so-called r´strategy).


