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Qualitative analysis: scalar case
» What is the long time behaviour? x(o0) =7

dx
—=f
=X

» If we are lucky, it coincides with the steady state solution.

» Steady state solution of the ODE: the values x* of x for which

%zO <  f(x)=0.

» Since dx/dt = 0, the rate does not change, the ODE "“stays
there” forever.

» The steady states are also called fixed points or equilibria.

» A steady state is stable if a solution which starts nearby stays
nearby; a steady state which is not stable is unstable.

» A steady state is asymptotically stable if all solutions which
start nearby converge to it.




Stability analysis: Malthus law

Malthus law:

What is the behaviour of x(t) in a small neighbourhood of x* (of
size € > 0)7

Exponential growth

1. r>0:
x=x*—€e = f(x)<0
x=x"+e = f(x)>0
Then x* = 0 is unstable

2. r <O
x=x*—€¢ = f(x)>0 x
x=x"+e = f(x)<0 '
Then x* = 0 is stable

Phase line: Malthus law
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For r > 0: %(X*) = r > 0 and so x* is unstable.

For r < 0: §-(x*) = r <0 and so x* is (asymptotically) stable.




Verhulst law:

Stability analysis: Verhulst law
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Phase line: Verhulst law
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Phase line: Verhulst (K = 1)

X

xi =0 unstable.

r—2r/K=—-r<0 = x3 =0 stable.




Qualitative analysis: general 2 x 2 system

{ % = fl(X17X2)
% = ’:2(X17X2)

> At each x = (xy, x2), the vector field f(x) = (f(x), fa(x))
gives a good representation of the overall dynamics.

> A solution x(t) is a parametric curve in the x;xo—plane, is
called the trajectory or an orbit whose tangent vector is
specified by the vector field.

» The sketch of the x;xo—plane with a number of typical
solutions is called the phase space.

> The xj-nullcline n; is the set of points (xi,x2) such that

dxj
— = fi(x1,x2) = 0, =1,2.
dt J( 1 2) J
» In general, equilibria or steady state of the system are the

solutions of

f(x1,x) =0,  fa(x,x2) =0.

Two species competing for the same prey

dx
{ dd—: = x(1—x1)—x1x
X2 _
at = 2X2(1 X2/2) 3X1X2
The equilibrium points are given by
X1(1—X1)—X1X2 = 0 - X1=O or 1—X1—X2=0
2%(l —x2/2) =3xix2 = 0 xx=0 or 2—-3x1—x=0
Nullclines and equilibria
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Two species competing for the same prey

Nuliclines and equilibria
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> Along the x; —nullcline (magenta) the velocity vectors are

vertical while along the xp—nullcline (yellow) the velocity
vectors are horizontal.

» As long as we are traveling along a nullcline without crossing
an equilibrium point, then the direction of the velocity vector
must be the same; once we cross an equilibrium point, then
we may have a change in the direction.
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Linearization

We can determine the stability of a steady state by linearizing the
system around the steady state x* = (x{*, x5 ). Using Taylor
expansion

f(x* 4+ z) = f(x*) + Df (x*)z + higher-order terms,
where

of of
A B E T T

e (x*) 52 (x7)
is the Jacobian matrix of f at x*. Replacing in the equation and
dropping the higher-order terms, since f(x*) = 0 we obtain a linear

system for the dependent variable z

i zn| | a b 21

dt| | | ¢ d P
For most (but not all) steady states, conclusions obtained for the
linearized system indeed carry over to the original nonlinear system.

Some theoretical results

» A steady state x™ is called hyperbolic if all eigenvalues of the
Jacobian Df(x*) have nonzero real part.

» (Hartman-Grobman Theorem) Assume that x* is a hyperbolic
equilibrium. Then, in a small neighbourhood of x*, the phase
portrait of the nonlinear system is the same as that of the
linearized system.

Remarks:

» At a hyperbolic equilibrium x*, stability properties are
determined by the eigenvalues of the Jacobian matrix, Df (x*)
(see next slides). This method of linearization may fail for
nonhyperbolic equilibria.

» The phrase “the same as” in the above theorem refers to
topological equivalence of vector fields.




Stability for linear systems

i 4| . a b V4|
dt| | | ¢ d b
» First case: real eigenvalues A1 = a, Ao = b
a b| | A O
c d N 0 )\2

» Second case: complex eigenvalues a + i3

a b| | o p
c d| | -8 —«
» General case: consider

tr(A)=a+b and det(A) =ad—cb

First case: real eigenvalues \y = a, A\ = b

(a) X (©) X

source Sye/ \\\\ sink

X X

W 1

)\.1’7»2>0 ?\1>O, A, <0 7\1’7»2<0




Second case: complex eigenvalues o + i3

(a) a =0, center

Py
O

(b) >0, unstable spiral
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(©) a <0, stable spiral
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General case: Poincaré diagram (det(A),tr(A))—plane

~ Stable spiral

‘de(A Unstable spiral

2
(tr A)-4det A = 0

<

Unstable node

F—.

Q\,X\f

Saddle




General case: 7 = tr(A), A = det(A)

A 0 -0.2 A 0.1 0.1 A 0.1 -0.1
0.8 0 ’ -0.2 -03 |’ 0.8 0
tr(Ay) = 0, det(A;) = 0.16, tr(Ap) = —0.2, det(A;) = —0.01, tr(A3) = 0.1, det(A;) = 0.8
Time evolution © Time evolution
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General population interaction model

Consider the general population interaction model

% = axi + Bx1x
% = X2 + 0X1X2

and example for predator-prey, one example for mutualism and one
example for competition:

a [ v 0
— + 4+ — Predator (x1) - prey (x2) model
— + — 4+ Mutualism of symbiosis model

+ - - — Competition model




General population interaction model

1. The equilibrium points are given by

axy + fxixa = 0 x1=0 or xp=-F
=
X2 +ox1x2 = 0 =0 or xg=-%
The equilibrium points are P; = (0,0) and P = (—%, —%)

2. The linearization is given by

i 721 | | a+Bxy Bx* 71
dt | z B (SXz* v+ 5Xik 2 |

o /

DF (x*)

3. The eigenvalues of Df (P1) are A1 = a and Ay = =; the
eigenvalues of Df (P>) are \; = =, /a7y, j = 1,2.

Predator-prey model

» For P; the eigenvalues are A\; = a < 0 and A = v > 0 which
implies that P is a saddle.

» For P, (verify that is biological relevant) the eigenvalues are
Aj = £iv/|ay|, j = 1,2 which implies that P, is a center.
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Mutualism model
» For P; the eigenvalues are \; = a < 0 and A = v < 0 which
implies that P; is a stable node.

» For P, (verify that is biological relevant) the eigenvalues are
Aj = /a7, j = 1,2 which implies that P, is a saddle.

Phase space Orbits
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Competition model

» For P; the eigenvalues are A\; = a > 0 and Ay = v < 0 which
implies that P is a saddle.

» The equilibrium P; is not biological relevant (—v/§ < 0).

Phase space Orbits
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Homework %7: Two species competing for the same prey
Exercise 2.18: Consider a model of two species competing for the

same resource
[ dxq X Xo
—=nxi|1l—- > —a—
dt Ki Ki

dx> X2 X1
e 122 _ g%
dt r2%2 ( K> 8 K2)

where oo and 5 are competition coefficients.

)

\

1. Considering

X1 X2 . r K> b 5K1
uy = =, u=—-—,7=nt, = — d= 0, =P
KT K 1h P r K1 K>
prove that the system is equivalent to

du1

— =wu (1 —u —au

ar 1( 1 2)

dU2

— = pupr (1 — up» — bu

. P 2 ( 2 1)

Homework %7: Two species competing for the same prey

2. Prove that the previous system has the following equilibria

0.0, (1.0), 0.1, (1= 7= ):

1—ab’'1—ab
assuming that ab # 1.

Note: The coexistence state is only in the positive quadrant
and therefore biologic realistic if either a <1 and b < 1, or
a>1andb>1.

3. Prove that the Jacobian matriz for the equilibria (uf, u3) is

*k £ %k
1—2u7 — au; —auj

—pbu  p(L - 2u} — bu})




Homework %7: Two species competing for the same prey

4. Prove that:

4.1 (0,0) is unstable (e.v. Ay =1, A = p);

4.2 (1,0) is stable if b > 1 and is unstable if b < 1 (e.v.
A1 = -1, =p(1—b)); (x1 wins)

4.3 (0,1) is stable if a > 1 and unstable if a < 1 (e.v.
A1 = -1, = p(1—2a)); (x wins)

4.4 The steady state of coexistence is stable if a <1 and b< 1
(stable coexistence) and unstable if a> 1 and b > 1.

Evolutionary point of view: As species xi, your best evolutionary

strategy must be based on increasing b = B% or decreasing

Ky . . . . .
a = ag?, i.e. increasing your carrying capacity K1 relative to your

competitors (a so-called K—strategy), or increasing your
competition coefficient 3 relative to your competitor's.
There is no advantage in increasing your growth rate r; (a
so-called r—strategy).




