Continuous modelling by ODEs Qualitative behaviour of a system of ODEs

Computational Biology

Adérito Araújo (alma@mat.uc.pt) June 20, 2024

Qualitative analysis: scalar case

• What is the long time behaviour? $x(\infty) = ?$

$$\frac{dx}{dt} = f(x)$$

- If we are lucky, it coincides with the steady state solution.
- Steady state solution of the ODE: the values x^* of x for which

$$\frac{dx}{dt} = 0 \quad \Leftrightarrow \quad f(x) = 0.$$

- Since dx/dt = 0, the rate does not change, the ODE "stays there" forever.
- The steady states are also called fixed points or equilibria.
- A steady state is stable if a solution which starts nearby stays nearby; a steady state which is not stable is unstable.
- A steady state is asymptotically stable if all solutions which start nearby converge to it.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Stability analysis: Malthus law

Malthus law:

 $f(x) = rx \quad \Rightarrow \quad x^* = 0.$

What is the behaviour of x(t) in a small neighbourhood of x^* (of size $\epsilon > 0$)?

Phase line: Malthus law

For r > 0: $\frac{df}{dx}(x^*) = r > 0$ and so x^* is unstable.

For r < 0: $\frac{df}{dx}(x^*) = r < 0$ and so x^* is (asymptotically) stable.

Stability analysis: Verhulst law

Verhulst law:

$$f(x) = rx\left(1 - \frac{x}{K}\right) \quad \Rightarrow \quad x_1^* = 0 \quad \text{and} \quad x_1^* = K.$$

Qualitative analysis: general 2 \times 2 system

$$\begin{cases} \frac{dx_1}{dt} = f_1(x_1, x_2) \\ \frac{dx_2}{dt} = f_2(x_1, x_2) \end{cases}$$

- At each x = (x₁, x₂), the vector field f(x) = (f₁(x), f₂(x)) gives a good representation of the overall dynamics.
- A solution x(t) is a parametric curve in the x₁x₂-plane, is called the trajectory or an orbit whose tangent vector is specified by the vector field.
- The sketch of the x₁x₂-plane with a number of typical solutions is called the phase space.
- The x_j -nullcline n_j is the set of points (x_1, x_2) such that

$$\frac{dx_j}{dt} = f_j(x_1, x_2) = 0, \qquad j = 1, 2.$$

In general, equilibria or steady state of the system are the solutions of

$$f_1(x_1, x_2) = 0,$$
 $f_2(x_1, x_2) = 0.$

Linearization

We can determine the stability of a steady state by linearizing the system around the steady state $x^* = (x_1^*, x_2^*)$. Using Taylor expansion

$$f(x^* + z) = f(x^*) + Df(x^*)z +$$
 higher-order terms,

where

$$Df(x^*) = \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(x^*) & \frac{\partial f_1}{\partial x_2}(x^*) \\ \frac{\partial f_2}{\partial x_1}(x^*) & \frac{\partial f_2}{\partial x_2}(x^*) \end{bmatrix}$$

is the Jacobian matrix of f at x^* . Replacing in the equation and dropping the higher-order terms, since $f(x^*) = 0$ we obtain a linear system for the dependent variable z

$$\frac{d}{dt} \left[\begin{array}{c} z_1 \\ z_2 \end{array} \right] = \left[\begin{array}{c} a & b \\ c & d \end{array} \right] \left[\begin{array}{c} z_1 \\ z_2 \end{array} \right]$$

For most (but not all) steady states, conclusions obtained for the linearized system indeed carry over to the original nonlinear system.

Some theoretical results

- A steady state x^* is called hyperbolic if all eigenvalues of the Jacobian $Df(x^*)$ have nonzero real part.
- (Hartman-Grobman Theorem) Assume that x^* is a hyperbolic equilibrium. Then, in a small neighbourhood of x^* , the phase portrait of the nonlinear system is the same as that of the linearized system.

Remarks:

- At a hyperbolic equilibrium x^* , stability properties are determined by the eigenvalues of the Jacobian matrix, $Df(x^*)$ (see next slides). This method of linearization may fail for nonhyperbolic equilibria.
- The phrase "the same as" in the above theorem refers to topological equivalence of vector fields.

Stability for linear systems

$$\frac{d}{dt} \left[\begin{array}{c} z_1 \\ z_2 \end{array} \right] = \left[\begin{array}{c} a & b \\ c & d \end{array} \right] \left[\begin{array}{c} z_1 \\ z_2 \end{array} \right]$$

• First case: real eigenvalues $\lambda_1 = a$, $\lambda_2 = b$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$

• Second case: complex eigenvalues $\alpha \pm i\beta$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} \alpha & \beta \\ -\beta & -\alpha \end{bmatrix}$$

• General case: consider

$$tr(A) = a + b$$
 and $det(A) = ad - cb$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めへぐ

Saddle

▲□▶▲圖▶▲≣▶▲≣▶ ≣ めへぐ

Saddle

General population interaction model

Consider the general population interaction model

$$\begin{cases} \frac{dx_1}{dt} = \alpha x_1 + \beta x_1 x_2\\ \frac{dx_2}{dt} = \gamma x_2 + \frac{\delta}{\delta} x_1 x_2 \end{cases}$$

and example for predator-prey, one example for mutualism and one example for competition:

lpha	eta	γ	δ	
—	+	+	—	Predator (x_1) - prey (x_2) model
—	+	—	+	Mutualism of symbiosis model
+	—	—	—	Competition model

General population interaction model

1. The equilibrium points are given by

$$\begin{cases} \alpha x_1 + \beta x_1 x_2 &= 0\\ \gamma x_2 + \delta x_1 x_2 &= 0 \end{cases} \Rightarrow \begin{cases} x_1 = 0 \text{ or } x_2 = -\frac{\alpha}{\beta}\\ x_2 = 0 \text{ or } x_1 = -\frac{\gamma}{\delta} \end{cases}$$

The equilibrium points are $P_1 = (0,0)$ and $P_2 = \left(-\frac{\gamma}{\delta}, -\frac{\alpha}{\beta}\right)$.

2. The linearization is given by

$$\frac{d}{dt} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = \underbrace{\begin{bmatrix} \alpha + \beta x_2^* & \beta x^* \\ \delta x_2^* & \gamma + \delta x_1^* \end{bmatrix}}_{Df(x^*)} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ● ○ ○ ○ ○ ○

3. The eigenvalues of $Df(P_1)$ are $\lambda_1 = \alpha$ and $\lambda_2 = \gamma$; the eigenvalues of $Df(P_2)$ are $\lambda_j = \pm \sqrt{\alpha \gamma}$, j = 1, 2.

Predator-prey model

- For P₁ the eigenvalues are λ₁ = α < 0 and λ₂ = γ > 0 which implies that P₁ is a saddle.
- For P_2 (verify that is biological relevant) the eigenvalues are $\lambda_j = \pm i \sqrt{|\alpha \gamma|}$, j = 1, 2 which implies that P_2 is a center.

Mutualism model

- For P₁ the eigenvalues are λ₁ = α < 0 and λ₂ = γ < 0 which implies that P₁ is a stable node.
- For P_2 (verify that is biological relevant) the eigenvalues are
 - $\lambda_j = \pm \sqrt{\alpha \gamma}$, j = 1, 2 which implies that P_2 is a saddle.

Competition model

- For P₁ the eigenvalues are λ₁ = α > 0 and λ₂ = γ < 0 which implies that P₁ is a saddle.
- The equilibrium P_2 is not biological relevant $(-\gamma/\delta < 0)$.

Homework %7: Two species competing for the same prey Exercise 2.18: Consider a model of two species competing for the same resource

$$\frac{dx_1}{dt} = r_1 x_1 \left(1 - \frac{x_1}{K_1} - \alpha \frac{x_2}{K_1} \right)$$
$$\frac{dx_2}{dt} = r_2 x_2 \left(1 - \frac{x_2}{K_2} - \beta \frac{x_1}{K_2} \right)$$

where α and β are competition coefficients.

1. Considering

$$u_1 = \frac{x_1}{K_1}, \ u_2 = \frac{x_2}{K_2}, \ \tau = r_1 t, \ \rho = \frac{r_2}{r_1}, \ a = \alpha \frac{K_2}{K_1}, \ b = \beta \frac{K_1}{K_2}$$

prove that the system is equivalent to

$$\begin{cases} \frac{du_1}{d\tau} = u_1 \left(1 - u_1 - au_2 \right) \\ \frac{du_2}{d\tau} = \rho u_2 \left(1 - u_2 - bu_1 \right) \end{cases}$$

(1日) (1日) (1日)

Sac

э.

Homework %7: Two species competing for the same prey

2. Prove that the previous system has the following equilibria

$$(0,0), (1,0), (0,1), \left(\frac{1-a}{1-ab}, \frac{1-b}{1-ab}\right),$$

assuming that $ab \neq 1$.

Note: The coexistence state is only in the positive quadrant and therefore biologic realistic if either a < 1 and b < 1, or a > 1 and b > 1.

3. Prove that the Jacobian matriz for the equilibria (u_1^*, u_2^*) is

$$\begin{bmatrix} 1 - 2u_1^* - au_2^* & -au_1^* \\ & -\rho bu_2^* & \rho(1 - 2u_2^* - bu_1^*) \end{bmatrix}$$

Homework %7: Two species competing for the same prey

4. Prove that:

- 4.1 (0,0) is unstable (e.v. $\lambda_1 = 1, \lambda_2 = \rho$);
- 4.2 (1,0) is stable if b > 1 and is unstable if b < 1 (e.v. $\lambda_1 = -1, \lambda_2 = \rho(1-b)$); (x₁ wins)
- 4.3 (0,1) is stable if a > 1 and unstable if a < 1 (e.v. $\lambda_1 = -1, \lambda_2 = \rho(1-a)$); (x₂ wins)
- 4.4 The steady state of coexistence is stable if a < 1 and b < 1 (stable coexistence) and unstable if a > 1 and b > 1.

Evolutionary point of view: As species x_1 , your best evolutionary strategy must be based on increasing $b = \beta \frac{K_1}{K_2}$ or decreasing $a = \alpha \frac{K_2}{K_1}$, i.e. increasing your carrying capacity K_1 relative to your competitors (a so-called *K*-strategy), or increasing your competition coefficient β relative to your competitor's. There is no advantage in increasing your growth rate r_1 (a so-called *r*-strategy).

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ