Continuous modelling by ODEs

Qualitative behaviour of a system of ODEs

Computational Biology

Adérito Araújo (alma@mat.uc.pt)
June 20, 2024

Qualitative analysis: scalar case

- What is the long time behaviour? $x(\infty)=$?

$$
\frac{d x}{d t}=f(x)
$$

- If we are lucky, it coincides with the steady state solution.
- Steady state solution of the ODE: the values x^{*} of x for which

$$
\frac{d x}{d t}=0 \quad \Leftrightarrow \quad f(x)=0
$$

- Since $d x / d t=0$, the rate does not change, the ODE "stays there" forever.
- The steady states are also called fixed points or equilibria.
- A steady state is stable if a solution which starts nearby stays nearby; a steady state which is not stable is unstable.
- A steady state is asymptotically stable if all solutions which start nearby converge to it.

Stability analysis: Malthus law

Malthus law:

$$
f(x)=r x \quad \Rightarrow \quad x^{*}=0
$$

What is the behaviour of $x(t)$ in a small neighbourhood of x^{*} (of size $\epsilon>0$)?

1. $r>0$:
$\left\{\begin{array}{lll}x=x^{*}-\epsilon & \Rightarrow f(x)<0 \\ x=x^{*}+\epsilon & \Rightarrow f(x)>0\end{array}\right.$
Then $x^{*}=0$ is unstable

2. $r<0$:
$\left\{\begin{array}{lll}r=0: \\ x=x^{*}-\epsilon & \Rightarrow & f(x)>0 \\ x=x^{*}+\epsilon & \Rightarrow & f(x)<0\end{array}\right.$
Then $x^{*}=0$ is stable

Phase line: Malthus law

For $r>0: \frac{d f}{d x}\left(x^{*}\right)=r>0$ and so x^{*} is unstable.
For $r<0: \frac{d f}{d x}\left(x^{*}\right)=r<0$ and so x^{*} is (asymptotically) stable.

Stability analysis: Verhulst law

Verhulst law:

$$
f(x)=r x\left(1-\frac{x}{K}\right) \quad \Rightarrow \quad x_{1}^{*}=0 \quad \text { and } \quad x_{1}^{*}=K
$$

Logistic growth

Phase line: Verhulst law
Phase line: Verhulst ($K=1$)

For $x_{1}^{*}=0$:

$$
\frac{d f}{d x}\left(x_{1}^{*}\right)=r-2 r x_{1}^{*} / K=r>0 \quad \Rightarrow \quad x_{1}^{*}=0 \quad \text { unstable. }
$$

For $x_{2}^{*}=K$:

$$
\frac{d f}{d x}\left(x_{2}^{*}\right)=r-2 r x_{2}^{*} / K=-r<0 \quad \Rightarrow \quad x_{2}^{*}=0 \quad \text { stable. }
$$

Qualitative analysis: general 2×2 system

$$
\left\{\begin{array}{l}
\frac{d x_{1}}{d t}=f_{1}\left(x_{1}, x_{2}\right) \\
\frac{d x_{2}}{d t}=f_{2}\left(x_{1}, x_{2}\right)
\end{array}\right.
$$

- At each $x=\left(x_{1}, x_{2}\right)$, the vector field $f(x)=\left(f_{1}(x), f_{2}(x)\right)$ gives a good representation of the overall dynamics.
- A solution $x(t)$ is a parametric curve in the $x_{1} x_{2}$-plane, is called the trajectory or an orbit whose tangent vector is specified by the vector field.
- The sketch of the $x_{1} x_{2}$-plane with a number of typical solutions is called the phase space.
- The x_{j}-nullcline n_{j} is the set of points $\left(x_{1}, x_{2}\right)$ such that

$$
\frac{d x_{j}}{d t}=f_{j}\left(x_{1}, x_{2}\right)=0, \quad j=1,2
$$

- In general, equilibria or steady state of the system are the solutions of

$$
f_{1}\left(x_{1}, x_{2}\right)=0, \quad f_{2}\left(x_{1}, x_{2}\right)=0 .
$$

Two species competing for the same prey

$$
\left\{\begin{array}{l}
\frac{d x_{1}}{d t}=x_{1}\left(1-x_{1}\right)-x_{1} x_{2} \\
\frac{d_{2}}{d t}=2 x_{2}\left(1-x_{2} / 2\right)-3 x_{1} x_{2}
\end{array}\right.
$$

The equilibrium points are given by

$$
\left\{\begin{array} { r l }
{ x _ { 1 } (1 - x _ { 1 }) - x _ { 1 } x _ { 2 } } & { = 0 } \\
{ 2 x _ { 2 } (1 - x _ { 2 } / 2) - 3 x _ { 1 } x _ { 2 } } & { = 0 }
\end{array} \Rightarrow \left\{\begin{array}{lll}
x_{1}=0 & \text { or } & 1-x_{1}-x_{2}=0 \\
x_{2}=0 & \text { or } & 2-3 x_{1}-x_{2}=0
\end{array}\right.\right.
$$

Two species competing for the same prey

- Along the x_{1}-nullcline (magenta) the velocity vectors are vertical while along the x_{2}-nullcline (yellow) the velocity vectors are horizontal.
- As long as we are traveling along a nullcline without crossing an equilibrium point, then the direction of the velocity vector must be the same; once we cross an equilibrium point, then we may have a change in the direction.

Two species competing for the same prey

Linearization

We can determine the stability of a steady state by linearizing the system around the steady state $x^{*}=\left(x_{1}^{*}, x_{2}^{*}\right)$. Using Taylor expansion

$$
f\left(x^{*}+z\right)=f\left(x^{*}\right)+D f\left(x^{*}\right) z+\text { higher-order terms },
$$

where

$$
D f\left(x^{*}\right)=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
\frac{\partial f_{1}}{\partial x_{1}}\left(x^{*}\right) & \frac{\partial f_{1}}{\partial x_{2}}\left(x^{*}\right) \\
\frac{\partial f_{2}}{\partial x_{1}}\left(x^{*}\right) & \frac{\partial f_{2}}{\partial x_{2}}\left(x^{*}\right)
\end{array}\right]
$$

is the Jacobian matrix of f at x^{*}. Replacing in the equation and dropping the higher-order terms, since $f\left(x^{*}\right)=0$ we obtain a linear system for the dependent variable z

$$
\frac{d}{d t}\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right]
$$

For most (but not all) steady states, conclusions obtained for the linearized system indeed carry over to the original nonlinear system.

Some theoretical results

- A steady state x^{*} is called hyperbolic if all eigenvalues of the Jacobian $D f\left(x^{*}\right)$ have nonzero real part.
- (Hartman-Grobman Theorem) Assume that x^{*} is a hyperbolic equilibrium. Then, in a small neighbourhood of x^{*}, the phase portrait of the nonlinear system is the same as that of the linearized system.
Remarks:
- At a hyperbolic equilibrium x^{*}, stability properties are determined by the eigenvalues of the Jacobian matrix, $\operatorname{Df}\left(x^{*}\right)$ (see next slides). This method of linearization may fail for nonhyperbolic equilibria.
- The phrase "the same as" in the above theorem refers to topological equivalence of vector fields.

Stability for linear systems

$$
\frac{d}{d t}\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right]
$$

- First case: real eigenvalues $\lambda_{1}=a, \lambda_{2}=b$

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right]
$$

- Second case: complex eigenvalues $\alpha \pm i \beta$

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{cc}
\alpha & \beta \\
-\beta & -\alpha
\end{array}\right]
$$

- General case: consider

$$
\operatorname{tr}(A)=a+b \quad \text { and } \quad \operatorname{det}(A)=a d-c b
$$

First case: real eigenvalues $\lambda_{1}=a, \lambda_{2}=b$

Second case: complex eigenvalues $\alpha \pm i \beta$
(a)
$\alpha=0$, center

(b) $\alpha>0$, unstable spiral

(c) $\alpha<0$, stable spiral

General case: Poincaré diagram $(\operatorname{det}(A), \operatorname{tr}(A))$-plane

General case: $\tau=\operatorname{tr}(A), \Delta=\operatorname{det}(A)$

$$
\begin{aligned}
& A_{1}=\left[\begin{array}{cc}
0 & -0.2 \\
0.8 & 0
\end{array}\right], \quad A_{2}=\left[\begin{array}{cc}
0.1 & 0.1 \\
-0.2 & -0.3
\end{array}\right], \quad A_{3}=\left[\begin{array}{cc}
0.1 & -0.1 \\
0.8 & 0
\end{array}\right] \\
& \operatorname{tr}\left(A_{1}\right)=0, \operatorname{det}\left(A_{1}\right)=0.16, \quad \operatorname{tr}\left(A_{2}\right)=-0.2, \operatorname{det}\left(A_{1}\right)=-0.01, \quad \operatorname{tr}\left(A_{3}\right)=0.1, \operatorname{det}\left(A_{1}\right)=0.8
\end{aligned}
$$

General population interaction model

Consider the general population interaction model

$$
\left\{\begin{array}{l}
\frac{d x_{1}}{d t}=\alpha x_{1}+\beta x_{1} x_{2} \\
\frac{d x_{2}}{d t}=\gamma x_{2}+\delta x_{1} x_{2}
\end{array}\right.
$$

and example for predator-prey, one example for mutualism and one example for competition:

α	β	γ	δ	
-	+	+	-	Predator $\left(x_{1}\right)$ - prey $\left(x_{2}\right)$ model
-	+	-	+	Mutualism of symbiosis model
+	-	-	-	Competition model

General population interaction model

1. The equilibrium points are given by

$$
\left\{\begin{array} { r l }
{ \alpha x _ { 1 } + \beta x _ { 1 } x _ { 2 } } & { = 0 } \\
{ \gamma x _ { 2 } + \delta x _ { 1 } x _ { 2 } } & { = 0 }
\end{array} \Rightarrow \left\{\begin{array}{lll}
x_{1}=0 & \text { or } & x_{2}=-\frac{\alpha}{\beta} \\
x_{2}=0 & \text { or } & x_{1}=-\frac{\gamma}{\delta}
\end{array}\right.\right.
$$

The equilibrium points are $P_{1}=(0,0)$ and $P_{2}=\left(-\frac{\gamma}{\delta},-\frac{\alpha}{\beta}\right)$.
2. The linearization is given by

$$
\frac{d}{d t}\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
\alpha+\beta x_{2}^{*} & \beta x^{*} \\
\delta x_{2}^{*} & \gamma+\delta x_{1}^{*}
\end{array}\right]}_{D f\left(x^{*}\right)}\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right]
$$

3. The eigenvalues of $\operatorname{Df}\left(P_{1}\right)$ are $\lambda_{1}=\alpha$ and $\lambda_{2}=\gamma$; the eigenvalues of $\operatorname{Df}\left(P_{2}\right)$ are $\lambda_{j}= \pm \sqrt{\alpha \gamma}, j=1,2$.

Predator-prey model

- For P_{1} the eigenvalues are $\lambda_{1}=\alpha<0$ and $\lambda_{2}=\gamma>0$ which implies that P_{1} is a saddle.
- For P_{2} (verify that is biological relevant) the eigenvalues are $\lambda_{j}= \pm i \sqrt{|\alpha \gamma|}, j=1,2$ which implies that P_{2} is a center.

Mutualism model

- For P_{1} the eigenvalues are $\lambda_{1}=\alpha<0$ and $\lambda_{2}=\gamma<0$ which implies that P_{1} is a stable node.
- For P_{2} (verify that is biological relevant) the eigenvalues are $\lambda_{j}= \pm \sqrt{\alpha \gamma}, j=1,2$ which implies that P_{2} is a saddle.

Competition model

- For P_{1} the eigenvalues are $\lambda_{1}=\alpha>0$ and $\lambda_{2}=\gamma<0$ which implies that P_{1} is a saddle.
- The equilibrium P_{2} is not biological relevant $(-\gamma / \delta<0)$.

Homework \%7: Two species competing for the same prey Exercise 2.18: Consider a model of two species competing for the same resource

$$
\left\{\begin{array}{rl}
\frac{d x_{1}}{d t} & =r_{1} x_{1}\left(1-\frac{x_{1}}{K_{1}}-\alpha \frac{x_{2}}{K_{1}}\right) \\
\frac{d x_{2}}{d t} & =r_{2} x_{2}\left(1-\frac{x_{2}}{K_{2}}-\beta \frac{x_{1}}{K_{2}}\right)
\end{array},\right.
$$

where α and β are competition coefficients.

1. Considering

$$
u_{1}=\frac{x_{1}}{K_{1}}, u_{2}=\frac{X_{2}}{K_{2}}, \tau=r_{1} t, \rho=\frac{r_{2}}{r_{1}}, a=\alpha \frac{K_{2}}{K_{1}}, b=\beta \frac{K_{1}}{K_{2}},
$$

prove that the system is equivalent to

$$
\left\{\begin{array}{l}
\frac{d u_{1}}{d \tau}=u_{1}\left(1-u_{1}-a u_{2}\right) \\
\frac{d u_{2}}{d \tau}=\rho u_{2}\left(1-u_{2}-b u_{1}\right)
\end{array} .\right.
$$

Homework \%7: Two species competing for the same prey
2. Prove that the previous system has the following equilibria

$$
(0,0),(1,0),(0,1),\left(\frac{1-a}{1-a b}, \frac{1-b}{1-a b}\right),
$$

assuming that $a b \neq 1$.
Note: The coexistence state is only in the positive quadrant and therefore biologic realistic if either $a<1$ and $b<1$, or $a>1$ and $b>1$.
3. Prove that the Jacobian matriz for the equilibria $\left(u_{1}^{*}, u_{2}^{*}\right)$ is

$$
\left[\begin{array}{cc}
1-2 u_{1}^{*}-a u_{2}^{*} & -a u_{1}^{*} \\
-\rho b u_{2}^{*} & \rho\left(1-2 u_{2}^{*}-b u_{1}^{*}\right)
\end{array}\right] .
$$

Homework \%7: Two species competing for the same prey
4. Prove that:
$4.1(0,0)$ is unstable (e.v. $\lambda_{1}=1, \lambda_{2}=\rho$);
$4.2(1,0)$ is stable if $b>1$ and is unstable if $b<1$ (e.v. $\left.\lambda_{1}=-1, \lambda_{2}=\rho(1-b)\right) ;\left(x_{1}\right.$ wins $)$
$4.3(0,1)$ is stable if $a>1$ and unstable if $a<1$ (e.v. $\left.\lambda_{1}=-1, \lambda_{2}=\rho(1-a)\right) ;\left(x_{2}\right.$ wins $)$
4.4 The steady state of coexistence is stable if $a<1$ and $b<1$ (stable coexistence) and unstable if $a>1$ and $b>1$.

Evolutionary point of view: As species x_{1}, your best evolutionary strategy must be based on increasing $b=\beta \frac{K_{1}}{K_{2}}$ or decreasing $a=\alpha \frac{K_{2}}{K_{1}}$, i.e. increasing your carrying capacity K_{1} relative to your competitors (a so-called K-strategy), or increasing your competition coefficient β relative to your competitor's.
There is no advantage in increasing your growth rate r_{1} (a so-called r-strategy).

