Continuous modelling by ODEs

Numerical methods

Computational Biology

Adérito Araújo (alma@mat.uc.pt) June 27, 2024

ODE solvers: open the black-box

• Initial value problem: find x(t) such that

$$\begin{cases} \frac{dx}{dt} = f(t, x), \\ x(0) = x_0. \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Euler method: find $x_n \approx x(t_n)$ on $t_n = n\Delta t$, n = 0, 1, 2, ..., such that

$$\frac{x_{n+1}-x_n}{\Delta t}=f(t_n,x_n),$$

which is equivalent to

$$x_{n+1} = x_n + \Delta t f(t_n, x_n), \qquad n = 0, 1, 2, \dots$$

Note: For autonomous equations (f do not depend explicitly on t)

$$x_{n+1} = x_n + \Delta t f(x_n), \qquad n = 0, 1, 2, \dots$$

Euler method

Exercise 2.19: Consider the initial value problem

$$\begin{cases} \frac{dx}{dt} &= t+x\\ x(0) &= 1 \end{cases}$$

•

Find an approximate solution $x_n \approx x(t_n)$ on $t_n = n0.5$, n = 0, 1, 2.

Solution:

• For n = 0: $t_0 = 0$ and

$$x(0) = x_0 = 1.$$

• For n = 1: $t_1 = t_0 + \Delta t = 0.5$ and

$$x(t_1) \simeq x_1 = x_0 + \Delta t f(t_0, x_0) = 1 + 0.5 \times 1 = 1.5.$$

• For n = 2: $t_2 = t_1 + \Delta t = 1$ and

$$x(t_2) \simeq x_2 = x_1 + \Delta f(t_1, x_1) = 1.5 + 0.5 \times 2 = 2.5.$$

Figure: Left: initial condition; Right: exact solution.

▲□▶ ▲□▶ ▲ 国▶ ▲ 国▶ ▲ 国 ● のへで

Euler method: Matlab code

```
% Matlab code to solve an IVP with Euler method
f = Q(t,x) t + x; % function for the ODE
tint = [0 2]; dt = 0.5; % time interval and step size
x0 = 1;
                         % initial condition
[t, x] = euler(f, tint, x0, dt);
                         % plot the solution
plot(t, x)
function [t,x] = euler(f,tint,x0,dt)
% Euler method for
   dx/dt = f(t,x), x(t0) = x0
%
%
   on tint = [t0, tfinal]
t0 = tint(1); tfinal = tint(2);
t = t0:dt:tfinal;
x = zeros(size(t)); x(1) = x0;
for n = 1:length(t)-1
    x(n+1) = x(n) + dt*f(t(n),x(n));
end
end
                                     < ロ > < 同 > < 回 > < 回 > < □ > <
                                                      3
                                                        Sar
```

Runge-Kutta methods

RK4: the four-stage, fourth-order RK method

$$k_{1} = f(t_{n}, x_{n}), \quad k_{2} = f(t_{n} + \frac{\Delta t}{2}, x_{n} + \frac{\Delta t}{2}k_{1}),$$

$$k_{3} = f(t_{n} + \frac{\Delta t}{2}, x_{n} + \frac{\Delta t}{2}k_{2}), \quad k_{4} = f(t_{n} + \Delta t, x_{n} + \Delta tk_{3}),$$

$$x_{n+1} = x_{n} + \frac{\Delta t}{6}(k_{1} + 2k_{2} + 2k_{3} + k_{4}), \quad n = 0, 1, \dots, N - 1.$$

RK4 for
$$dx/dt = f(t, x), x(t_0) = x_0$$

Fix $T > 0$. Choose $\Delta t > 0$. Obtain N .
For $n = 0, 1, ..., N - 1$
1. $k_1 = f(t_n, x_n), k_2 = f(t_n + \Delta t/2, x_n + \Delta tk_1/2),$
 $k_3 = f(t_n + \Delta t/2, x_n + \Delta tk_2/2), k_4 = f(t_n + \Delta t, x_n + \Delta tk_3).$
2. $x_{n+1} = x_n + \Delta t (k_1 + 2k_2 + 2k_3 + k_4)/6.$
3. $t_{n+1} = t_n + \Delta t.$

Maltab solvers ode23 and ode45

Solver	Method	CHARACTERISTICS
ode45	six-stage, fifth- order, RK method	ode45 does more work per step than ode45, but can take much larger steps. For differential equa- tions with smooth solutions, ode45 is often more accurate than ode23
ode23	three-stage, third- order, RK method	ode23 can be more efficient than ode45 at problems with crude tol- erances, or in the presence of mod- erate stiffness

https://blogs.mathworks.com/cleve/2014/05/26/ordinary-differential-equationsolvers-ode23-and-ode45/

Mathematical modelling flowchart

- 1. Collect the data
- 2. Derive the equations based on knowledge and assumptions
- 3. Solve equations numerically using initial guesses for parameters
- 4. Obtain values of some parameters from literature or previous studies
- 5. Use data to estimate the remaining model parameters
- 6. Test model fit and predictive ability
- 7. Are mode predictions satisfactory? If YES GOTO 8; if NO
 - 7.1 Revise model structure based on new knowledge and GOTO 2 or collect new/more/better data and GOTO 1
 - 7.2 Devise and conduct more experiments and GOTO 5
- 8. Use the model

Cell competition: G.F. Gause (1932) experiment

In two containers containing the same growth medium, populations of *Paramecium caudatum* and *Paramecium aurelia* are grown. Also, in a larger container, the two populations are mixed and grown together, competing for the same resources. The populations are measured once a day.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへの

- 1. Develop a model of the competition, and fit it to the given data.
- 2. What does your model predict about the long-term viability of the populations (will both populations survive, or will one population become extinct)?

・ロ・・日・・日・・日・ うへぐ

1. Collect the data

Day	Mean density (individuals per $cm^3/2$)		
	Paramecium aurelia	Paramecium caudatum	
0	2 (2)	2 (2)	
1	-	-	
2	14 (10)	10 (10)	
3	34 (21)	10 (11)	
4	56 (58)	11 (29)	
5	94 (92)	21 (50)	
6	189 (202)	56 (88)	
7	266 (163)	104 (102)	
8	330 (221)	137 (124)	
9	416 (293)	165 (93)	
10	507 (236)	194 (80)	
11	580(303)	217(66)	
12	610(302)	199 (83)	
13	513 (340)	201 (55)	
14	593 (387)	182 (67)	
15	557 (335)	192 (52)	
16	560 (363)	179 (55)	
17	522 (323)	190 (40)	
18	565 (358)	206 (48)	
19	517 (308)	209 (47)	
20	500 (350)	196 (50)	
21	585 (330)	195 (40)	
22	500 (350)	234 (20)	
23	495 (350)	210 (20)	
24	525 (330)	210 (35)	
25	510 (350)	180 (20)	

Table: Data collected by G.F. Gause (1932): in isolation (in competition).

```
・ロト・日本・ キャ・キャー かくの
```

Read data from an excel file

```
% read data
I = readmatrix('gause.xlsx', 'Sheet', 'isolation');
C = readmatrix('gause.xlsx', 'Sheet', 'competition');
% define lines and columns (optional)
lines = 1:25;
day = 1; aurelia = 2; caudatum = 3;
% define vectors with the collected data
t = I(lines,day);
x1i = I(lines,aurelia);
x2i = I(lines,caudatum);
x1c = C(lines,aurelia);
x2c = C(lines,caudatum);
% plot the data
subplot(211), plot(t,x1i,'p',t,x2i,'d')
legend('aurelia','caudatum'), title('isolation')
subplot(212), plot(t,x1c,'p',t,x2c,'d')
legend('aurelia','caudatum'), title('competition')
                                              电子 人名卡
                                     • • •
                                                     = nar
```


2. Derive the model

• Species x_1 and x_2 in isolation

$$\frac{dx_i}{dt} = r_i x_i \left(1 - \frac{x_i}{K_i}\right), \qquad i = 1, 2,$$

where $x_i(t)$ is the mean density (in individuals per 0.5 cm³) at time t (in days), r_i is the instantaneous rate of increase (births/deaths), and K_i is the carrying capacity per 0.5 cm³.

▶ Species *x*₁ and *x*₂ in competition (see HW#3)

$$\begin{cases} \frac{dx_1}{dt} = r_1 x_1 \left(1 - \frac{x_1}{K_1} - \alpha \frac{x_2}{K_1} \right) \\ \frac{dx_2}{dt} = r_2 x_2 \left(1 - \frac{x_2}{K_2} - \beta \frac{x_1}{K_2} \right) \end{cases}$$

,

4 E b

4 E b

San

э

< □ > < A > >

where α and β are competition coefficients.

3. Solve numerically: isolation (phase 1)

```
% initial guesses: rate and carrying capacity
r10 = 1; K10 = 540; p10 = [r10,K10];
r20 = 0.3; K20 = 200; p20 = [r20, K20];
% solve numerically
tfit = linspace(t(1),t(end),100); % 100 points
x1fit = flogistic(p10,tfit);
x2fit = flogistic(p20,tfit);
plot(tfit,x1fit,tfit,x2fit)
function x = flogistic(p,t)
% solve the logistic model
r = p(1); K = p(2);
logistic = Q(t,x) r*x.*(1-x/K);
x0 = 2; % initial condition
[t,x] = ode45(logistic,t,x0);
end
                                     ▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで
```


4. Parameter optimization: least squares method (phase 1)

System of ODEs

$$\frac{dx}{dt} = f(x; p), \qquad x(0) = x_0,$$

where $p = (p_1, \ldots, p_n)$ a set on unknown parameters.

Goal: obtain p such that x(t; p) (that depends on p) fits the experimental data

$$\{(t_0, x_0), (t_1, x_1), \dots, (t_m, x_m)\},\$$

where x_i is the collected data for t_i , i = 1, ..., m ($m \gg n$).

Least squares method: minimize the total quadratic error

$$E(p) = \sum_{i=0}^{m} (x_i - x(t_i; p))^2.$$

Sac

- Matlab code for the least squares method
 - p1 = lsqcurvefit(@flogistic,p10,t,x1i);
 - p2 = lsqcurvefit(@flogistic,p20,t,x2i);


```
5. The competition model (phase 2)
   % competition coefficients
   alpha0 = 1; beta0 = 1; pcomp0 = [alpha0,beta0];
   % parameter optimization
   xc = [x1c x2c];
                      % both species together
   pcomp = lsqcurvefit(@fcompetition,pcomp0,t,xc);
   xcfit = fcompetition(pcomp,tfit); plot(tfit,xcfit);
   function x = fcompetition(pcomp,t)
   \% solve the competition model
   x0 = [2; 2]; [t,x] = ode45(@competition,t,x0);
     function dxdt = competition(t,x)
     global p1 p2
     alpha = pcomp(1); beta = pcomp(2);
     r1 = p1(1); K1 = p1(2); r2 = p2(1); K2 = p2(2);
     dx1dt = r1*x(1).*(1-x(1)/K1-alpha*x(2)/K1);
     dx2dt = r2*x(2).*(1-x(2)/K2-beta*x(1)/K2);
     dxdt = [dx1dt;dx2dt];
     end
   end
                                        ◆□▶ ◆□▶ ▲三▶ ▲三▶ ▲□▶ ◆□
```


5. Conclusion

- Agreement between the data and the model is good.
- It appears that *P. caudatum* is heading towards either extinction or a small steady-state population. Consequently, *P. aurelia* would grow towards its carrying capacity in isolation or close to it.
- ▶ Is the coexistence possible? Following HW#3

$$a = \alpha \frac{K_2}{K_1} = 2.36 \frac{202.50}{542.94} = 0.88 < 1$$

$$b = \beta \frac{K_1}{K_2} = 0.39 \frac{542.94}{202.50} = 1.05 > 1,$$

and so the answer is (maybe) no.

Note: In book [1, chapter 10] (see Lecture 1), the authors obtained a value of $\beta = 0.36$ and so both a < 1 and b < 1, which corresponds to a coexistence of both species.

Arabidopsis thaliana

The plants cannot escape the external environment conditions since they are immobile organisms.

Arabidopsis thaliana: small plant; relative short life cycle; produces many seeds; its genome in known.

Basic model of a clock: Arabidopsis thaliana

▲□▶ ▲□▶ ▲ 国▶ ▲ 国▶ ▲ 国 ● のへで

Biological clocks

An harmonic oscillator is a system that executes a periodic behavior.

Figure: The Lotka-Volterra model behaves like a harmonic oscillator: changing the initial number of preys/predators changes the amplitude of the oscillations.

How to build a limit-cycle oscillator?

Sustained limit cycle behaviours are generated from two necessary ingredients: feedback loops and nonlinearity.

How to build a limit-cycle oscillator?

Sustained limit cycle behaviours are generated from two necessary ingredients: feedback loops and nonlinearity.

How to build a limit-cycle oscillator?

Sustained limit cycle behaviours are generated from two necessary ingredients: feedback loops and nonlinearity.

▲□▶▲□▶▲□▶▲□▶ ▲□ ♪ のへの

Homework #8: Arabidopsis thaliana (simplified model)

Figure: Schematic representation of our simple two-gene negative feedback loop model. Numbers indicate biochemical reactions: (1) transcription; (2) translation; (3) degradation; (4) light input.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Homework #8: Arabidopsis thaliana (simplified model)

Consider:

- the transcription factors TOC and lump together LHY/CCA1.
- only the mRNA concentration (*M_L* and *M_T*) and protein concentration (*P_L* and *P_T*).

The temporal evolution of the dynamical variables is given by:

$$\frac{dM_L}{dt} = L(t) + v_1 \frac{P_T^2}{a^2 + P_T^2} - \frac{d_1 M_L}{k_1 + M_L}$$
$$\frac{dP_L}{dt} = p_1 M_L - \frac{d_2 P_L}{k_2 + P_L}$$
$$\frac{dM_T}{dt} = v_2 \frac{b^2}{b^2 + P_L^2} - \frac{d_3 M_T}{k_3 + M_T}$$
$$\frac{dP_T}{dt} = p_2 M_T - \frac{d_4 P_T}{k_4 + P_T}$$

Color code: transcription; translation; degradation; light input.

Initial conditions: $M_L(0) = 0.1$, $P_L(0) = 0.5$, $M_T(0) = 0.1$, $P_T(0) = 0.1$.

Homework #8: Arabidopsis thaliana (simplified model)

1. Considering $v_1 = 0.3$, a = 0.5, $d_1 = 0.4$, $k_1 = 1$, $p_1 = 0.5$, $d_2 = 0.6$, $k_2 = 0.5$, $v_2 = 0.6$, b = 0.1, $d_3 = 0.6$, $k_3 = 1$, $p_2 = 0.3$, $d_4 = 0.3$, $k_4 = 1$, simulate the time evolution of the four dynamical variables, as well as the limit-cycle oscillations plotted in the $M_L - P_L$ and $M_T - P_T$ phase spaces. Note: for the function L(t) use

```
amp = 0.5; php = 0.5; per = 24;
tm = mod(t,per); tmtest = per*(1-php)-tm;
F = heaviside(tmtest); L =
```

amp*(tmtest>0).*exp(-tm);

where per is the photoperiod and php the percentage of light during a day period.

- 2. Change the parameters of light (php and/or amp) and analyse the behaviour of the dynamical system.
- 3. Simulate what happens when a mutation occurs in *TOC* or LHY/CCA1 (as you wish) that affect the transcription (v_1 or v_2) or the translation (p_1 or p_2).
- 4. Take a look on: http://www.ebi.ac.uk/biomodels/. = . . = . . .