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ODE solvers: open the black-box

§ Initial value problem: find xptq such that
$
&

%

dx

dt
“ f pt, xq,

xp0q “ x0.

§ Euler method: find xn « xptnq on tn “ n�t, n “ 0, 1, 2, . . .,
such that

xn`1 ´ xn
�t

“ f ptn, xnq,
which is equivalent to

xn`1 “ xn ` �tf ptn, xnq, n “ 0, 1, 2, . . . .

Note: For autonomous equations (f do not depend explicitly on t)

xn`1 “ xn ` �tf pxnq, n “ 0, 1, 2, . . . .



Euler method

Exercise 2.19: Consider the initial value problem
"

dx
dt “ t ` x
xp0q “ 1

.

Find an approximate solution xn « xptnq on tn “ n0.5, n “ 0, 1, 2.

Solution:

§ For n “ 0: t0 “ 0 and

xp0q “ x0 “ 1.

§ For n “ 1: t1 “ t0 ` �t “ 0.5 and

xpt1q » x1 “ x0 ` �tf pt0, x0q “ 1 ` 0.5 ˆ 1 “ 1.5.

§ For n “ 2: t2 “ t1 ` �t “ 1 and

xpt2q » x2 “ x1 ` �f pt1, x1q “ 1.5 ` 0.5 ˆ 2 “ 2.5.

Euler method: geometric interpretation
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Figure: Left: initial condition; Right: exact solution.



Euler method: geometric interpretation

-3 -2 -1 0 1 2

t

-1

0

1

2

3

x

dx/dt = t+x, x(0)=1

0 0.5 1 1.5 2

t

0

2

4

6

8

10

12

x

dx/dt = t+x, x(0)=1

Exact

Euler (  t = 0,4)
Euler (  = 0,2)

Figure: Left: exact solution and Euler solution (�t “ 0.5); Right: Euler
solution (�t “ 0.2, 0.4).

Euler method: Matlab code
% Matlab code to solve an IVP with Euler method

f = @(t,x) t + x; % function for the ODE

tint = [0 2]; dt = 0.5; % time interval and step size

x0 = 1; % initial condition

[t, x] = euler(f, tint, x0, dt);

plot(t, x) % plot the solution

function [t,x] = euler(f,tint,x0,dt)

% Euler method for

% dx/dt = f(t,x), x(t0) = x0

% on tint = [t0, tfinal]

t0 = tint(1); tfinal = tint(2);

t = t0:dt:tfinal;

x = zeros(size(t)); x(1) = x0;

for n = 1:length(t)-1

x(n+1) = x(n) + dt*f(t(n),x(n));

end

end



Runge-Kutta methods

RK4: the four-stage, fourth-order RK method

k1 “ f ptn, xnq, k2 “ f ptn ` �t

2
, xn ` �t

2
k1q,

k3 “ f ptn ` �t

2
, xn ` �t

2
k2q, k4 “ f ptn ` �t, xn ` �tk3q,

xn`1 “ xn ` �t

6
pk1 ` 2k2 ` 2k3 ` k4q, n “ 0, 1, . . . ,N ´ 1.

RK4 for dx{dt “ f pt, xq, xpt0q “ x0
Fix T ° 0. Choose �t ° 0. Obtain N.
For n “ 0, 1, . . . ,N ´ 1

1. k1 “ f ptn, xnq, k2 “ f ptn ` �t{2, xn ` �tk1{2q,
k3 “ f ptn ` �t{2, xn ` �tk2{2q, k4 “ f ptn ` �t, xn ` �tk3q.

2. xn`1 “ xn ` �t pk1 ` 2k2 ` 2k3 ` k4q {6.

3. tn`1 “ tn ` �t.

Maltab solvers ode23 and ode45

Solver Method Characteristics

ode45 six-stage, fifth-
order, RK method

ode45 does more work per step
than ode45, but can take much
larger steps. For di↵erential equa-
tions with smooth solutions, ode45
is often more accurate than ode23

ode23 three-stage, third-
order, RK method

ode23 can be more e�cient than
ode45 at problems with crude tol-
erances, or in the presence of mod-
erate sti↵ness

https://blogs.mathworks.com/cleve/2014/05/26/ordinary-di↵erential-equation-

solvers-ode23-and-ode45/



Mathematical modelling flowchart

1. Collect the data

2. Derive the equations based on knowledge and assumptions

3. Solve equations numerically using initial guesses for
parameters

4. Obtain values of some parameters from literature or previous
studies

5. Use data to estimate the remaining model parameters

6. Test model fit and predictive ability

7. Are mode predictions satisfactory? If YES GOTO 8; if NO
7.1 Revise model structure based on new knowledge and GOTO 2

or collect new/more/better data and GOTO 1
7.2 Devise and conduct more experiments and GOTO 5

8. Use the model

Cell competition: G.F. Gause (1932) experiment

In two containers containing the
same growth medium,
populations of Paramecium
caudatum and Paramecium
aurelia are grown. Also, in a
larger container, the two
populations are mixed and grown
together, competing for the same
resources. The populations are
measured once a day.

1. Develop a model of the competition, and fit it to the given
data.

2. What does your model predict about the long-term viability of
the populations (will both populations survive, or will one
population become extinct)?



1. Collect the data

Day
Mean density (individuals per cm3{2)

Paramecium aurelia Paramecium caudatum
0 2 (2) 2 (2)
1 - -
2 14 (10) 10 (10)
3 34 (21) 10 (11)
4 56 (58) 11 (29)
5 94 (92) 21 (50)
6 189 (202) 56 (88)
7 266 (163) 104 (102)
8 330 (221) 137 (124)
9 416 (293) 165 (93)
10 507 (236) 194 (80)
11 580(303) 217(66)
12 610(302) 199 (83)
13 513 (340) 201 (55)
14 593 (387) 182 (67)
15 557 (335) 192 (52)
16 560 (363) 179 (55)
17 522 (323) 190 (40)
18 565 (358) 206 (48)
19 517 (308) 209 (47)
20 500 (350) 196 (50)
21 585 (330) 195 (40)
22 500 (350) 234 (20)
23 495 (350) 210 (20)
24 525 (330) 210 (35)
25 510 (350) 180 (20)

Table: Data collected by G.F. Gause (1932): in isolation (in competition).

Read data from an excel file

% read data

I = readmatrix(’gause.xlsx’,’Sheet’,’isolation’);

C = readmatrix(’gause.xlsx’,’Sheet’,’competition’);

% define lines and columns (optional)

lines = 1:25;

day = 1; aurelia = 2; caudatum = 3;

% define vectors with the collected data

t = I(lines,day);

x1i = I(lines,aurelia);

x2i = I(lines,caudatum);

x1c = C(lines,aurelia);

x2c = C(lines,caudatum);

% plot the data

subplot(211), plot(t,x1i,’p’,t,x2i,’d’)

legend(’aurelia’,’caudatum’), title(’isolation’)

subplot(212), plot(t,x1c,’p’,t,x2c,’d’)

legend(’aurelia’,’caudatum’), title(’competition’)



Plot the collected data
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2. Derive the model

§ Species x1 and x2 in isolation

dxi
dt

“ rixi

ˆ
1 ´ xi

Ki

˙
, i “ 1, 2,

where xi ptq is the mean density (in individuals per 0.5 cm3) at
time t (in days), ri is the instantaneous rate of increase
(births/deaths), and Ki is the carrying capacity per 0.5 cm3.

§ Species x1 and x2 in competition (see HW#3)

$
’’’&

’’’%

dx1
dt

“ r1x1

ˆ
1 ´ x1

K1
´ ↵

x2
K1

˙

dx2
dt

“ r2x2

ˆ
1 ´ x2

K2
´ �

x1
K2

˙ ,

where ↵ and � are competition coe�cients.



3. Solve numerically: isolation (phase 1)

% initial guesses: rate and carrying capacity

r10 = 1; K10 = 540; p10 = [r10,K10];

r20 = 0.3; K20 = 200; p20 = [r20,K20];

% solve numerically

tfit = linspace(t(1),t(end),100); % 100 points

x1fit = flogistic(p10,tfit);

x2fit = flogistic(p20,tfit);

plot(tfit,x1fit,tfit,x2fit)

function x = flogistic(p,t)

% solve the logistic model

r = p(1); K = p(2);

logistic = @(t,x) r*x.*(1-x/K);

x0 = 2; % initial condition

[t,x] = ode45(logistic,t,x0);

end

Solution for the initial parameters: isolation
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Figure: r1 “ 1, K1 “ 540, r2 “ 0.3, K2 “ 200.



4. Parameter optimization: least squares method (phase 1)
§ System of ODEs

dx

dt
“ f px ; pq, xp0q “ x0,

where p “ pp1, . . . , pnq a set on unknown parameters.
§ Goal: obtain p such that xpt; pq (that depends on p) fits the

experimental data

tpt0, x0q, pt1, x1q, . . . , ptm, xmqu,
where xi is the collected data for ti , i “ 1, ...,m (m " n).

§ Least squares method: minimize the total quadratic error

E ppq “
mÿ

i“0

pxi ´ xpti ; pqq2.

§ Matlab code for the least squares method
p1 = lsqcurvefit(@flogistic,p10,t,x1i);

p2 = lsqcurvefit(@flogistic,p20,t,x2i);

Solution for the optimized parameters: isolation
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Figure: r1 “ 0.79, K1 “ 542.94, r2 “ 0.66, K2 “ 202.50.



5. The competition model (phase 2)
% competition coefficients

alpha0 = 1; beta0 = 1; pcomp0 = [alpha0,beta0];

% parameter optimization

xc = [x1c x2c]; % both species together

pcomp = lsqcurvefit(@fcompetition,pcomp0,t,xc);

xcfit = fcompetition(pcomp,tfit); plot(tfit,xcfit);

function x = fcompetition(pcomp,t)

% solve the competition model

x0 = [2; 2]; [t,x] = ode45(@competition,t,x0);

function dxdt = competition(t,x)

global p1 p2

alpha = pcomp(1); beta = pcomp(2);

r1 = p1(1); K1 = p1(2); r2 = p2(1); K2 = p2(2);

dx1dt = r1*x(1).*(1-x(1)/K1-alpha*x(2)/K1);

dx2dt = r2*x(2).*(1-x(2)/K2-beta*x(1)/K2);

dxdt = [dx1dt;dx2dt];

end

end

Solution for the optimized parameters: competition
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Figure: ↵ “ 2.36, � “ 0.39.



5. Conclusion

§ Agreement between the data and the model is good.

§ It appears that P. caudatum is heading towards either
extinction or a small steady-state population. Consequently,
P. aurelia would grow towards its carrying capacity in isolation
or close to it.

§ Is the coexistence possible? Following HW#3

a “ ↵
K2

K1
“ 2.36

202.50

542.94
“ 0.88 † 1

b “ �
K1

K2
“ 0.39

542.94

202.50
“ 1.05 ° 1,

and so the answer is (maybe) no.

Note: In book [1, chapter 10] (see Lecture 1), the authors
obtained a value of � “ 0.36 and so both a † 1 and b † 1,
which corresponds to a coexistence of both species.

Case study

Modelling circadian rhythms
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Arabidopsis thaliana

The plants cannot escape the external environment conditions
since they are immobile organisms.

Arabidopsis thaliana: small plant; relative short life cycle; produces
many seeds; its genome in known.

Basic model of a clock: Arabidopsis thaliana



Biological clocks

An harmonic oscillator is a system that executes a periodic
behavior.

Harmonic-like oscillators
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Figure: The Lotka-Volterra model behaves like a harmonic oscillator:
changing the initial number of preys/predators changes the amplitude of
the oscillations.



Biological oscillators
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Figure: Biological oscillators tend to have not only a characteristic period,
but also a characteristic amplitude. If a perturbation is exerted on such a
system, they will automatically come back to their normal behavior (limit
cycle).

How to build a limit-cycle oscillator?

X Y
K1 K2 K3

Law of Mass Action

$
&

%

dX
dt “ k1 ´ k2X

dY
dt “ k2X ´ k3Y



How to build a limit-cycle oscillator?

Sustained limit cycle behaviours are generated from two necessary
ingredients: feedback loops and nonlinearity.

X Y
K1 K2 K3

$
&

%

dX
dt “ k1 ´ k2XY

dY
dt “ k2XY ´ k3Y

How to build a limit-cycle oscillator?

Sustained limit cycle behaviours are generated from two necessary
ingredients: feedback loops and nonlinearity.

X Y
K1 K2 K3

$
&

%

dX
dt “ k1 ´ k2Xf pY q

dY
dt “ k2Xf pY q ´ k3Y



How to build a limit-cycle oscillator?

Sustained limit cycle behaviours are generated from two necessary
ingredients: feedback loops and nonlinearity.

X Y
K1 K2 K3

$
&

%

dX
dt “ k1 ´ k2X p1 ` Y qn

dY
dt “ k2X p1 ` Y qn ´ k3Y

How to build a limit-cycle oscillator?

$
&

%

dX
dt “ k1 ´ k2X p1 ` Y qn

dY
dt “ k2X p1 ` Y qn ´ k3Y
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Figure: Left: n “ 2 (damped oscillations). Right: n “ 2.5 (limit cycle)



Gene regulatory network
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Figure: Transcription of the gene results in the formation of mRNA
molecules, which can then be translated by ribosomes to produce
proteins. These production processes are balanced by degradation of
mRNA and protein molecules.

Goodwin model (1968)

$
’’’’&
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dX
dt “ k1f pZ q ´ k2X

dY
dt “ k3X ´ k4Y

dZ
dt “ k5Y ´ k6Z

f pZ q “ 1

1 ` Zn
(Hill function)

Figure: Goodwin model and Hill function.



Goodwin model (1968)
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Figure: Goodwin model for n “ 6 (left) and n “ 10 (right).

Homework #8: Arabidopsis thaliana (simplified model)
340

of mRNAs and proteins. We model the temporal evolution of the 
dynamical variables ML,PL, MT, and PT as follows: 
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Concentrations are typically expressed in units of nanomolar (nM) 
and time in units of hours (h) [23]. The specific kinetic functions 
applied in this model are based on the subsequent considerations:

 1. Transcriptional Regulation: The effect of transcription fac-
tors on the transcription rate of its target gene is commonly 
described by means of Hill functions: In the absence of LHY/
CCA1 proteins, i.e., PL = 0, TOC1 is transcribed by its maxi-
mal transcription rate v2. In presence of LHY/CCA1 protein 

Fig. 1 Schematic representation of our simple two-gene negative feedback loop model. Numbers indicate 
biochemical reactions as described in the correspondingly numbered paragraph of Subheading 2

Christoph Schmal et al.

Figure: Schematic representation of our simple two-gene negative
feedback loop model. Numbers indicate biochemical reactions: (1)
transcription; (2) translation; (3) degradation; (4) light input.



Homework #8: Arabidopsis thaliana (simplified model)
Consider:

§ the transcription factors TOC and lump together LHY {CCA1.

§ only the mRNA concentration (ML and MT ) and protein
concentration (PL and PT ).

The temporal evolution of the dynamical variables is given by:

dML

dt
“ Lptq ` v1

P2
T

a2 ` P2
T

´ d1ML

k1 ` ML

dPL

dt
“ p1ML ´ d2PL

k2 ` PL

dMT

dt
“ v2

b2

b2 ` P2
L

´ d3MT

k3 ` MT

dPT

dt
“ p2MT ´ d4PT

k4 ` PT

Color code: transcription; translation; degradation; light input.

Initial conditions: MLp0q “ 0.1, PLp0q “ 0.5, MT p0q “ 0.1, PT p0q “ 0.1.

Homework #8: Arabidopsis thaliana (simplified model)
1. Considering v1 “ 0.3, a “ 0.5, d1 “ 0.4, k1 “ 1, p1 “ 0.5,

d2 “ 0.6, k2 “ 0.5, v2 “ 0.6, b “ 0.1, d3 “ 0.6, k3 “ 1,
p2 “ 0.3, d4 “ 0.3, k4 “ 1, simulate the time evolution of the
four dynamical variables, as well as the limit-cycle oscillations
plotted in the ML ´ PL and MT ´ PT phase spaces.
Note: for the function Lptq use
amp = 0.5; php = 0.5; per = 24;

tm = mod(t,per); tmtest = per*(1-php)-tm;

F = heaviside(tmtest); L =

amp*(tmtest>0).*exp(-tm);

where per is the photoperiod and php the percentage of light
during a day period.

2. Change the parameters of light (php and/or amp) and analyse
the behaviour of the dynamical system.

3. Simulate what happens when a mutation occurs in TOC or
LHY {CCA1 (as you wish) that a↵ect the transcription (v1 or
v2) or the translation (p1 or p2).

4. Take a look on: http://www.ebi.ac.uk/biomodels/.


