Continuous modelling by ODEs

Numerical methods

Computational Biology

Adérito Araújo (alma@mat.uc.pt)
June 27, 2024

ODE solvers: open the black-box

- Initial value problem: find $x(t)$ such that

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=f(t, x) \\
x(0)=x_{0}
\end{array}\right.
$$

- Euler method: find $x_{n} \approx x\left(t_{n}\right)$ on $t_{n}=n \Delta t, n=0,1,2, \ldots$, such that

$$
\frac{x_{n+1}-x_{n}}{\Delta t}=f\left(t_{n}, x_{n}\right),
$$

which is equivalent to

$$
x_{n+1}=x_{n}+\Delta t f\left(t_{n}, x_{n}\right), \quad n=0,1,2, \ldots
$$

Note: For autonomous equations (f do not depend explicitly on t)

$$
x_{n+1}=x_{n}+\Delta t f\left(x_{n}\right), \quad n=0,1,2, \ldots
$$

Euler method

Exercise 2.19: Consider the initial value problem

$$
\left\{\begin{array}{ll}
\frac{d x}{d t} & =t+x \\
x(0) & =1
\end{array} .\right.
$$

Find an approximate solution $x_{n} \approx x\left(t_{n}\right)$ on $t_{n}=n 0.5, n=0,1,2$.

Solution:

- For $n=0: t_{0}=0$ and

$$
x(0)=x_{0}=1 .
$$

- For $n=1: t_{1}=t_{0}+\Delta t=0.5$ and

$$
x\left(t_{1}\right) \simeq x_{1}=x_{0}+\Delta t f\left(t_{0}, x_{0}\right)=1+0.5 \times 1=1.5 .
$$

- For $n=2: t_{2}=t_{1}+\Delta t=1$ and

$$
x\left(t_{2}\right) \simeq x_{2}=x_{1}+\Delta f\left(t_{1}, x_{1}\right)=1.5+0.5 \times 2=2.5 .
$$

Euler method: geometric interpretation

Figure: Left: initial condition; Right: exact solution.

Euler method: geometric interpretation

Figure: Left: exact solution and Euler solution ($\Delta t=0.5$); Right: Euler solution ($\Delta t=0.2,0.4$).

Euler method: Matlab code

```
% Matlab code to solve an IVP with Euler method
f = @(t,x) t + x; % function for the ODE
tint = [0 2]; dt = 0.5; % time interval and step size
x0 = 1; % initial condition
[t, x] = euler(f, tint, x0, dt);
plot(t, x) % plot the solution
function [t,x] = euler(f,tint,x0,dt)
% Euler method for
% dx/dt = f(t,x), x(t0) = x0
% on tint = [t0, tfinal]
t0 = tint(1); tfinal = tint(2);
t = t0:dt:tfinal;
x = zeros(size(t)); x(1) = x0;
for n = 1:length(t)-1
    x(n+1) = x(n) + dt*f(t(n), x(n));
end
end
```


Runge-Kutta methods

RK4: the four-stage, fourth-order RK method

$$
\begin{aligned}
& k_{1}=f\left(t_{n}, x_{n}\right), \quad k_{2}=f\left(t_{n}+\frac{\Delta t}{2}, x_{n}+\frac{\Delta t}{2} k_{1}\right), \\
& k_{3}=f\left(t_{n}+\frac{\Delta t}{2}, x_{n}+\frac{\Delta t}{2} k_{2}\right), \quad k_{4}=f\left(t_{n}+\Delta t, x_{n}+\Delta t k_{3}\right), \\
& x_{n+1}=x_{n}+\frac{\Delta t}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right), \quad n=0,1, \ldots, N-1 .
\end{aligned}
$$

RK4 for $d x / d t=f(t, x), x\left(t_{0}\right)=x_{0}$
Fix $T>0$. Choose $\Delta t>0$. Obtain N.
For $n=0,1, \ldots, N-1$

1. $k_{1}=f\left(t_{n}, x_{n}\right), k_{2}=f\left(t_{n}+\Delta t / 2, x_{n}+\Delta t k_{1} / 2\right)$,
$k_{3}=f\left(t_{n}+\Delta t / 2, x_{n}+\Delta t k_{2} / 2\right), k_{4}=f\left(t_{n}+\Delta t, x_{n}+\Delta t k_{3}\right)$.
2. $x_{n+1}=x_{n}+\Delta t\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right) / 6$.
3. $t_{n+1}=t_{n}+\Delta t$.

Maltab solvers ode23 and ode45

SOLVER	METHOD	ChARACTERISTICS
ode45	six-stage, order, RK method	ode45 does more work per step than ode45, but can take much larger steps. For differential equa- tions with smooth solutions, ode45 is often more accurate than ode23
ode23	three-stage, third- order, RK method	ode23 can be more efficient than ode45 at problems with crude tol- erances, or in the presence of mod- erate stiffness

Mathematical modelling flowchart

1. Collect the data
2. Derive the equations based on knowledge and assumptions
3. Solve equations numerically using initial guesses for parameters
4. Obtain values of some parameters from literature or previous studies
5. Use data to estimate the remaining model parameters
6. Test model fit and predictive ability
7. Are mode predictions satisfactory? If YES GOTO 8; if NO
7.1 Revise model structure based on new knowledge and GOTO 2 or collect new/more/better data and GOTO 1
7.2 Devise and conduct more experiments and GOTO 5
8. Use the model

Cell competition: G.F. Gause (1932) experiment

In two containers containing the same growth medium, populations of Paramecium caudatum and Paramecium aurelia are grown. Also, in a larger container, the two populations are mixed and grown together, competing for the same resources. The populations are measured once a day.

1. Develop a model of the competition, and fit it to the given data.
2. What does your model predict about the long-term viability of the populations (will both populations survive, or will one population become extinct)?

1. Collect the data

Day	Mean density (individuals per $\left.\mathrm{cm}^{3} / 2\right)$	
	Paramecium aurelia	Paramecium caudatum
0	$2(2)$	$2(2)$
1	-	-
2	$14(10)$	$10(10)$
3	$34(21)$	$10(11)$
4	$56(58)$	$11(29)$
5	$94(92)$	$21(50)$
6	$189(202)$	$56(88)$
7	$266(163)$	$104(102)$
8	$330(221)$	$137(124)$
9	$416(293)$	$165(93)$
10	$507(236)$	$194(80)$
11	$580(303)$	$217(66)$
12	$610(302)$	$199(83)$
13	$513(340)$	$201(55)$
14	$593(387)$	$182(67)$
15	$557(335)$	$192(52)$
16	$560(363)$	$179(55)$
17	$522(323)$	$190(40)$
18	$565(358)$	$206(48)$
19	$517(308)$	$209(47)$
20	$500(350)$	$196(50)$
21	$585(330)$	$195(40)$
22	$500(350)$	$234(20)$
23	$495(350)$	$210(20)$
24	$525(330)$	$210(35)$
25	$510(350)$	$180(20)$

Table: Data collected by G.F. Gause (1932): in isolation (in competition).

Read data from an excel file

```
% read data
I = readmatrix('gause.xlsx','Sheet','isolation');
C = readmatrix('gause.xlsx','Sheet','competition');
% define lines and columns (optional)
lines = 1:25;
day = 1; aurelia = 2; caudatum = 3;
% define vectors with the collected data
t = I(lines,day);
x1i = I(lines,aurelia);
x2i = I(lines,caudatum);
x1c = C(lines,aurelia);
x2c = C(lines,caudatum);
% plot the data
subplot(211), plot(t,x1i,'p',t,x2i,'d')
legend('aurelia','caudatum'), title('isolation')
subplot(212), plot(t,x1c,'p',t,x2c,'d')
legend('aurelia','caudatum'), title('competition')
```


Plot the collected data

Species in isolation

2. Derive the model

- Species x_{1} and x_{2} in isolation

$$
\frac{d x_{i}}{d t}=r_{i} x_{i}\left(1-\frac{x_{i}}{K_{i}}\right), \quad i=1,2
$$

where $x_{i}(t)$ is the mean density (in individuals per $0.5 \mathrm{~cm}^{3}$) at time t (in days), r_{i} is the instantaneous rate of increase (births/deaths), and K_{i} is the carrying capacity per $0.5 \mathrm{~cm}^{3}$.

- Species x_{1} and x_{2} in competition (see HW\#3)

$$
\left\{\begin{aligned}
\frac{d x_{1}}{d t} & =r_{1} x_{1}\left(1-\frac{x_{1}}{K_{1}}-\alpha \frac{x_{2}}{K_{1}}\right) \\
\frac{d x_{2}}{d t} & =r_{2} x_{2}\left(1-\frac{x_{2}}{K_{2}}-\beta \frac{x_{1}}{K_{2}}\right)
\end{aligned}\right.
$$

where α and β are competition coefficients.
3. Solve numerically: isolation (phase 1)

```
% initial guesses: rate and carrying capacity
r10 = 1; K10 = 540; p10 = [r10,K10];
r20 = 0.3; K20 = 200; p20 = [r20,K20];
% solve numerically
tfit = linspace(t(1),t(end),100); % 100 points
x1fit = flogistic(p10,tfit);
x2fit = flogistic(p20,tfit);
plot(tfit,x1fit,tfit,x2fit)
function x = flogistic(p,t)
% solve the logistic model
r = p(1); K = p(2);
logistic = @(t,x) r*x.*(1-x/K);
x0 = 2; % initial condition
[t,x] = ode45(logistic,t,x0);
end
```

Solution for the initial parameters: isolation

Species in isolation

Figure: $r_{1}=1, K_{1}=540, r_{2}=0.3, K_{2}=200$.
4. Parameter optimization: least squares method (phase 1)

- System of ODEs

$$
\frac{d x}{d t}=f(x ; p), \quad x(0)=x_{0}
$$

where $p=\left(p_{1}, \ldots, p_{n}\right)$ a set on unknown parameters.

- Goal: obtain p such that $x(t ; p)$ (that depends on p) fits the experimental data

$$
\left\{\left(t_{0}, x_{0}\right),\left(t_{1}, x_{1}\right), \ldots,\left(t_{m}, x_{m}\right)\right\}
$$

where x_{i} is the collected data for $t_{i}, i=1, \ldots, m(m \gg n)$.

- Least squares method: minimize the total quadratic error

$$
E(p)=\sum_{i=0}^{m}\left(x_{i}-x\left(t_{i} ; p\right)\right)^{2} .
$$

- Matlab code for the least squares method p1 = lsqcurvefit(@flogistic,p10,t,x1i);
p2 = lsqcurvefit(@flogistic,p20,t,x2i);

Solution for the optimized parameters: isolation
Species in isolation

Figure: $r_{1}=0.79, K_{1}=542.94, r_{2}=0.66, K_{2}=202.50$.
5. The competition model (phase 2)

```
% competition coefficients
alpha0 = 1; beta0 = 1; pcomp0 = [alpha0,beta0];
% parameter optimization
xc = [x1c x2c]; % both species together
pcomp = lsqcurvefit(@fcompetition,pcomp0,t,xc);
xcfit = fcompetition(pcomp,tfit); plot(tfit,xcfit);
function x = fcompetition(pcomp,t)
% solve the competition model
x0 = [2; 2]; [t,x] = ode45(@competition,t,x0);
    function dxdt = competition(t,x)
    global p1 p2
    alpha = pcomp(1); beta = pcomp(2);
    r1 = p1(1); K1 = p1(2); r2 = p2(1); K2 = p2(2);
    dx1dt = r1*x(1).*(1-x(1)/K1-alpha*x(2)/K1);
    dx2dt = r2*x(2).*(1-x(2)/K2-beta*x(1)/K2);
    dxdt = [dx1dt;dx2dt];
    end
end
```

Solution for the optimized parameters: competition
Species in isolation

Figure: $\alpha=2.36, \beta=0.39$.

5. Conclusion

- Agreement between the data and the model is good.
- It appears that P. caudatum is heading towards either extinction or a small steady-state population. Consequently, P. aurelia would grow towards its carrying capacity in isolation or close to it.
- Is the coexistence possible? Following HW\#3

$$
\begin{aligned}
& a=\alpha \frac{K_{2}}{K_{1}}=2.36 \frac{202.50}{542.94}=0.88<1 \\
& b=\beta \frac{K_{1}}{K_{2}}=0.39 \frac{542.94}{202.50}=1.05>1
\end{aligned}
$$

and so the answer is (maybe) no.
Note: In book [1, chapter 10] (see Lecture 1), the authors obtained a value of $\beta=0.36$ and so both $a<1$ and $b<1$, which corresponds to a coexistence of both species.

Case study

Modelling circadian rhythms

Computational Biology
Adérito Araújo (alma@mat.uc.pt)
June 27, 2024

Arabidopsis thaliana

The plants cannot escape the external environment conditions since they are immobile organisms.

Arabidopsis thaliana: small plant; relative short life cycle; produces many seeds; its genome in known.

Basic model of a clock: Arabidopsis thaliana

Biological clocks

An harmonic oscillator is a system that executes a periodic behavior.

Harmonic-like oscillators

Figure: The Lotka-Volterra model behaves like a harmonic oscillator: changing the initial number of preys/predators changes the amplitude of the oscillations.

Biological oscillators

Figure: Biological oscillators tend to have not only a characteristic period, but also a characteristic amplitude. If a perturbation is exerted on such a system, they will automatically come back to their normal behavior (limit cycle).

How to build a limit-cycle oscillator?

Law of Mass Action

$$
\left\{\begin{array}{l}
\frac{d X}{d t}=k_{1}-k_{2} X \\
\frac{d Y}{d t}=k_{2} X-k_{3} Y
\end{array}\right.
$$

How to build a limit-cycle oscillator?

Sustained limit cycle behaviours are generated from two necessary ingredients: feedback loops and nonlinearity.

$$
\begin{gathered}
\xrightarrow[K_{1}]{K_{1}} \quad X \xrightarrow{\substack{K_{2}}} \begin{array}{l}
K_{3} \\
\left\{\begin{array}{l}
\frac{d X}{d t}=k_{1}-k_{2} X Y \\
\frac{d Y}{d t}=k_{2} X Y-k_{3} Y
\end{array}\right.
\end{array}
\end{gathered}
$$

How to build a limit-cycle oscillator?

Sustained limit cycle behaviours are generated from two necessary ingredients: feedback loops and nonlinearity.

$$
\begin{gathered}
\xrightarrow[K_{1}]{\longrightarrow} \xrightarrow{\downarrow} \quad Y \xrightarrow{K_{2}} \xrightarrow{K_{3}} \xrightarrow{\frac{d X}{d t}=k_{1}-k_{2} X f(Y)} \begin{array}{l}
\frac{d Y}{d t}=k_{2} X f(Y)-k_{3} Y
\end{array}
\end{gathered}
$$

How to build a limit-cycle oscillator?

Sustained limit cycle behaviours are generated from two necessary ingredients: feedback loops and nonlinearity.

$$
\begin{gathered}
\xrightarrow[K_{1}]{ } X \xrightarrow{\downarrow} \xrightarrow{K_{2}} \xrightarrow{K_{3}} \xrightarrow{\frac{K_{2}}{d t}=k_{1}-k_{2} X(1+Y)^{n}} \begin{array}{l}
\frac{d Y}{d t}=k_{2} X(1+Y)^{n}-k_{3} Y
\end{array}
\end{gathered}
$$

How to build a limit-cycle oscillator?

$$
\left\{\begin{array}{l}
\frac{d X}{d t}=k_{1}-k_{2} X(1+Y)^{n} \\
\frac{d Y}{d t}=k_{2} X(1+Y)^{n}-k_{3} Y
\end{array}\right.
$$

Figure: Left: $n=2$ (damped oscillations). Right: $n=2.5$ (limit cycle)

Gene regulatory network

Figure: Transcription of the gene results in the formation of mRNA molecules, which can then be translated by ribosomes to produce proteins. These production processes are balanced by degradation of mRNA and protein molecules.

Goodwin model (1968)

$$
\left\{\begin{array}{l}
\frac{d X}{d t}=k_{1} f(Z)-k_{2} X \\
\frac{d Y}{d t}=k_{3} X-k_{4} Y \\
\frac{d Z}{d t}=k_{5} Y-k_{6} Z
\end{array}\right.
$$

$$
\left.f(Z)=\frac{1}{1+Z^{n}} \quad \text { (Hill function }\right)
$$

Figure: Goodwin model and Hill function.

Goodwin model (1968)

Homework \#8: Arabidopsis thaliana (simplified model)

Figure: Schematic representation of our simple two-gene negative feedback loop model. Numbers indicate biochemical reactions: (1) transcription; (2) translation; (3) degradation; (4) light input.

Homework \#8: Arabidopsis thaliana (simplified model)
Consider:

- the transcription factors TOC and lump together LHY/CCA1.
- only the mRNA concentration (M_{L} and M_{T}) and protein concentration (P_{L} and P_{T}).
The temporal evolution of the dynamical variables is given by:

$$
\begin{aligned}
\frac{d M_{L}}{d t} & =L(t)+v_{1} \frac{P_{T}^{2}}{a^{2}+P_{T}^{2}}-\frac{d_{1} M_{L}}{k_{1}+M_{L}} \\
\frac{d P_{L}}{d t} & =p_{1} M_{L}-\frac{d_{2} P_{L}}{k_{2}+P_{L}} \\
\frac{d M_{T}}{d t} & =v_{2} \frac{b^{2}}{b^{2}+P_{L}^{2}}-\frac{d_{3} M_{T}}{k_{3}+M_{T}} \\
\frac{d P_{T}}{d t} & =p_{2} M_{T}-\frac{d_{4} P_{T}}{k_{4}+P_{T}}
\end{aligned}
$$

Color code: transcription; translation; degradation; light input.
Initial conditions: $M_{L}(0)=0.1, P_{L}(0)=0.5, M_{T}(0)=0.1, P_{T}(0)=0.1$.

Homework \#8: Arabidopsis thaliana (simplified model)

1. Considering $v_{1}=0.3, a=0.5, d_{1}=0.4, k_{1}=1, p_{1}=0.5$, $d_{2}=0.6, k_{2}=0.5, v_{2}=0.6, b=0.1, d_{3}=0.6, k_{3}=1$, $p_{2}=0.3, d_{4}=0.3, k_{4}=1$, simulate the time evolution of the four dynamical variables, as well as the limit-cycle oscillations plotted in the $M_{L}-P_{L}$ and $M_{T}-P_{T}$ phase spaces.
Note: for the function $L(t)$ use
```
amp = 0.5; php = 0.5; per = 24;
tm = mod(t,per); tmtest = per*(1-php)-tm;
F = heaviside(tmtest); L =
amp*(tmtest>0).*exp(-tm);
```

where per is the photoperiod and php the percentage of light during a day period.
2. Change the parameters of light (php and/or amp) and analyse the behaviour of the dynamical system.
3. Simulate what happens when a mutation occurs in TOC or LHY /CCA1 (as you wish) that affect the transcription (v_{1} or v_{2}) or the translation (p_{1} or p_{2}).
4. Take a look on: http://www.ebi.ac.uk/biomodels/.

