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Preface

Numerical mathematics is the branch of mathematics that proposes, develops,
analyzes and applies methods from scientific computing to several fields in-
cluding analysis, linear algebra, geometry, approximation theory, functional
equations, optimization and differential equations. Other disciplines such as
physics, the natural and biological sciences, engineering, and economics and
the financial sciences frequently give rise to problems that need scientific com-
puting for their solutions.

As such, numerical mathematics is the crossroad of several disciplines of
great relevance in modern applied sciences, and can become a crucial tool for
their qualitative and quantitative analysis. This role is also emphasized by the
continual development of computers and algorithms, which make it possible
nowadays, using scientific computing, to tackle problems of such a large size
that real-life phenomena can be simulated providing accurate responses at
affordable computational cost.

The corresponding spread of numerical software represents an enrichment
for the scientific community. However, the user has to make the correct choice
of the method (or the algorithm) which best suits the problem at hand. As a
matter of fact, no black-box methods or algorithms exist that can effectively
and accurately solve all kinds of problems.

One of the purposes of this book is to provide the mathematical foun-
dations of numerical methods, to analyze their basic theoretical properties
(stability, accuracy, computational complexity), and demonstrate their per-
formances on examples and counterexamples which outline their pros and
cons. This is done using the MATLAB® ! software environment. This choice
satisfies the two fundamental needs of user-friendliness and wide-spread dif-
fusion, making it available on virtually every computer.

Every chapter is supplied with examples, exercises and applications of the
discussed theory to the solution of real-life problems. The reader is thus in
the ideal condition for acquiring the theoretical knowledge that is required to

1 MATLAB is a trademark of The MathWorks, Inc.



VI Preface

make the right choice among the numerical methodologies and make use of
the related computer programs.

This book is primarily addressed to undergraduate students, with partic-
ular focus on the degree courses in Engineering, Mathematics, Physics and
Computer Science. The attention which is paid to the applications and the
related development of software makes it valuable also for graduate students,
researchers and users of scientific computing in the most widespread profes-
sional fields.

The content of the volume is organized into four Parts and 13 chapters.

Part I comprises two chapters in which we review basic linear algebra and
introduce the general concepts of consistency, stability and convergence of a
numerical method as well as the basic elements of computer arithmetic.

Part IT is on numerical linear algebra, and is devoted to the solution of lin-
ear systems (Chapters 3 and 4) and eigenvalues and eigenvectors computation
(Chapter 5).

We continue with Part III where we face several issues about functions
and their approximation. Specifically, we are interested in the solution of non-
linear equations (Chapter 6), solution of nonlinear systems and optimization
problems (Chapter 7), polynomial approximation (Chapter 8) and numerical
integration (Chapter 9).

Part IV, which demands a mathematical background, is concerned with
approximation, integration and transforms based on orthogonal polynomials
(Chapter 10), solution of initial value problems (Chapter 11), boundary value
problems (Chapter 12) and initial-boundary value problems for parabolic and
hyperbolic equations (Chapter 13).

Part I provides the indispensable background. Each of the remaining Parts
has a size and a content that make it well suited for a semester course.

A guideline index to the use of the numerous MATLAB programs devel-
oped in the book is reported at the end of the volume. These programs are
also available at the web site address:

http://wwwi.mate.polimi.it/ calnum /programs.html.

For the reader’s ease, any code is accompanied by a brief description of its
input/output parameters.

We express our thanks to the staff at Springer-Verlag New York for their
expert guidance and assistance with editorial aspects, as well as to Dr. Martin
Peters from Springer-Verlag Heidelberg and Dr. Francesca Bonadei from
Springer-Italia for their advice and friendly collaboration all along this project.

We gratefully thank Professors L. Gastaldi and A. Valli for their useful
comments on Chapters 12 and 13.

We also wish to express our gratitude to our families for their forbearance
and understanding, and dedicate this book to them.

Lausanne, Milan Alfio Quarteroni
January 2000 Riccardo Sacco
Fausto Saleri



Preface to the Second Edition

This second edition is characterized by a thourough overall revision.
Regarding the styling of the book, we have improved the readibility of
pictures, tables and program headings.
Regarding the scientific contents, we have introduced several changes in
the chapter on iterative methods for the solution of linear systems as well as
in the chapter on polynomial approximation of functions and data.

Lausanne, Milan Alfio Quarteroni
September 2006 Riccardo Sacco
Fausto Saleri
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Getting Started



1

Foundations of Matrix Analysis

In this chapter we recall the basic elements of linear algebra which will be
employed in the remainder of the text. For most of the proofs as well as for
the details, the reader is referred to [Bra75], [Nob69], [Hal58]. Further results
on eigenvalues can be found in [Hou75] and [Wil65].

1.1 Vector Spaces

Definition 1.1 A wvector space over the numeric field K (K =R or K = C)
is a nonempty set V, whose elements are called wvectors and in which two
operations are defined, called addition and scalar multiplication, that enjoy
the following properties:

1.
2.

3.

addition is commutative and associative;

there exists an element 0 € V (the zero vector or null vector) such that
v+ 0=v for each v € V;

0-v=0,1-v=yv,for each v € V, where 0 and 1 are respectively the
zero and the unity of K;

for each element v € V there exists its opposite, —v, in V' such that
v+ (—-v)=0;

. the following distributive properties hold

Vae K, Vv,w eV, a(v+w)=av+ aw,

Vo, € K, YW eV, (a+ B)v=av+ fv;

. the following associative property holds

Va,p € K, Vv eV, (af)v = a(fV).



4 1 Foundations of Matrix Analysis

Example 1.1 Remarkable instances of vector spaces are:

- V = R" (respectively V' = C"): the set of the n-tuples of real (respectively
complex) numbers, n > 1;

- V = Py: the set of polynomials p,(z) = >} | apx”® with real (or complex)
coefficients a; having degree less than or equal to n, n > 0;

-V = CP?([a,b]): the set of real (or complex)-valued functions which are contin-
uous on [a, b] up to their p-th derivative, 0 < p < co. °

Definition 1.2 We say that a nonempty part W of V' is a vector subspace of
V iff W is a vector space over K. |

Example 1.2 The vector space P, is a vector subspace of C°°(R), which is the
space of infinite continuously differentiable functions on the real line. A trivial sub-
space of any vector space is the one containing only the zero vector. °

In particular, the set W of the linear combinations of a system of p vectors
of V., {v1,...,vp}, is a vector subspace of V, called the generated subspace or
span of the vector system, and is denoted by

W =span{vi,...,v,}
={v=avi+...+pv, witho €K, i=1,...,p}.

The system {v1,...,v,} is called a system of generators for W.
If Wy,...,W,, are vector subspaces of V', then the set

S={w: w=vi+...+v, withv, e W;, i=1,...,m}

is also a vector subspace of V. We say that S is the direct sum of the subspaces
W; if any element s € S admits a unique representation of the form s =
vi+...+ v, with v, € W, and ¢ = 1,...,m. In such a case, we shall write
S=W1®...oW,,.

Definition 1.3 A system of vectors {vy,...,v,,} of a vector space V is called
linearly independent if the relation

a1vy +agve + ...+ oy, =0

with aq,as,...,q,, € K implies that oy = as = ... = «,, = 0. Otherwise,
the system will be called linearly dependent. |

We call a basis of V' any system of linearly independent generators of V. If
{uy,...,u,} is a basis of V, the expression v = vju; +...+wv,u, is called the
decomposition of v with respect to the basis and the scalars vy, ...,v, € K are
the components of v with respect to the given basis. Moreover, the following
property holds.
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Property 1.1 LetV be a vector space which admits a basis of n vectors. Then
every system of linearly independent vectors of V' has at most n elements and
any other basis of V' has n elements. The number n is called the dimension of
V' and we write dim(V) = n.

If, instead, for any n there always exist n linearly independent vectors of V,
the vector space is called infinite dimensional.

Example 1.3 For any integer p the space C”([a,b]) is infinite dimensional. The
spaces R™ and C" have dimension equal to n. The usual basis for R" is the set of

unit vectors {ei,...,en} where (e;); = d;; for i,7 = 1,...n, where J;; denotes the
Kronecker symbol equal to 0 if i # j and 1 if i = j. This choice is of course not the
only one that is possible (see Exercise 2). °

1.2 Matrices

Let m and n be two positive integers. We call a matriz having m rows and
n columns, or a matrix m X n, or a matrix (m,n), with elements in K, a set
of mn scalars a;; € K, with ¢ =1,...,m and j = 1,...n, represented in the
following rectangular array

ai;r aig ... Qip
a21 a22 ... A2p

A= . (L.1)
am1 Am2 - - - Amn

When K =R or K = C we shall respectively write A € R™*" or A € C"™*",
to explicitly outline the numerical fields which the elements of A belong to.
Capital letters will be used to denote the matrices, while the lower case letters
corresponding to those upper case letters will denote the matrix entries.

We shall abbreviate (1.1) as A = (a;;) with ¢ = 1,...,mand j = 1,...n.
The index ¢ is called row index, while j is the column index. The set
(@i1, a2, ..., a;,) is called the i-th row of A; likewise, (a1, asj,...,am; ) is
the j-th column of A.

If n = m the matrix is called squared or having order n and the set of the
entries (a11,a99, .. .,any) is called its main diagonal.

A matrix having one row or one column is called a row wvector or column
vector respectively. Unless otherwise specified, we shall always assume that
a vector is a column vector. In the case n = m = 1, the matrix will simply
denote a scalar of K.

Sometimes it turns out to be useful to distinguish within a matrix the set
made up by specified rows and columns. This prompts us to introduce the
following definition.

Definition 1.4 Let A be amatrix mxn. Let 1 < i1 <9 < ... <14 <mand
1 <71 <jo <...< 7 <ntwo sets of contiguous indexes. The matrix S(k x 1)
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of entries sy, = a;,;, withp=1,...,k, ¢=1,...,1is called a submatriz of A.
Ifk=1land i, =j. forr=1,...,k, Sis called a principal submatriz of A. B

Definition 1.5 A matrix A(m x n) is called block partitioned or said to be
partitioned into submatrices if

Ay Ao Ay
Aoy Aoy .. Ay
where A;; are submatrices of A. [ |

Among the possible partitions of A, we recall in particular the partition by
columns

A =(aj, ag, ...,a,),

a; being the i-th column vector of A. In a similar way the partition by rows
of A can be defined. To fix the notations, if A is a matrix m X n, we shall
denote by

A(iy 2o, gu: Jo) = (aiz) i1 <0 <2, j1 <j < jo

the submatrix of A of size (iz — i1 + 1) X (j2 — j1 + 1) that lies between the
rows 71 and i3 and the columns j; and js. Likewise, if v is a vector of size n,
we shall denote by v(i; : i2) the vector of size io —i1 + 1 made up by the i;-th
to the i5-th components of v.

These notations are convenient in view of programming the algorithms
that will be presented throughout the volume in the MATLAB language.

1.3 Operations with Matrices

Let A = (a;;) and B = (b;;) be two matrices m x n over K. We say that A is
equal to B, if a;; = b for i =1,...,m, j =1,...,n. Moreover, we define the
following operations:

— matriz sum: the matrix sum is the matrix A +B = (a;; + b;;). The neutral
element in a matrix sum is the null matriz, still denoted by 0 and made
up only by null entries;

—  matriz multiplication by a scalar: the multiplication of A by A € K, is a
matrix AA = (Aai;);

— matriz product: the product of two matrices A and B of sizes (m,p) and
P

(p,n) respectively, is a matrix C(m,n) whose entries are ¢;; = Zaikbkj,
k=1
fore=1,...,m,j=1,...,n.
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The matrix product is associative and distributive with respect to the matrix
sum, but it is not in general commutative. The square matrices for which the
property AB = BA holds, will be called commutative.

In the case of square matrices, the neutral element in the matrix product is
a square matrix of order n called the unit matriz of order n or, more frequently,
the identity matriz given by I,, = (J;;). The identity matrix is, by definition,
the only matrix n x n such that Al, = I,A = A for all square matrices A.
In the following we shall omit the subscript n unless it is strictly necessary.
The identity matrix is a special instance of a diagonal matriz of order n, that
is, a square matrix of the type D = (d;;d;;). We will use in the following the
notation D = diag(dy1, daa, - . ., dnn)-
Finally, if A is a square matrix of order n and p is an integer, we define AP as
the product of A with itself iterated p times. We let A® = 1.
Let us now address the so-called elementary row operations that can be per-
formed on a matrix. They consist of:

— multiplying the i-th row of a matrix by a scalar a; this operation is equiv-
alent to pre-multiplying A by the matrix D = diag(1,...,1,a, 1,...,1),
where a occupies the i-th position;

— exchanging the i-th and j-th rows of a matrix; this can be done by pre-
multiplying A by the matrix P(»7) of elements

1 ifr=s=1,....i—1,i+1,...,5—1,5+1,...n,

pld) = {1 ifr=j,s=iorr=1,s=j, (1.2)

s
0 otherwise.

Matrices like (1.2) are called elementary permutation matrices. The prod-
uct of elementary permutation matrices is called a permutation matriz,
and it performs the row exchanges associated with each elementary per-
mutation matrix. In practice, a permutation matrix is a reordering by rows
of the identity matrix;

— adding « times the j-th row of a matrix to its i-th row. This operation

can also be performed by pre-multiplying A by the matrix I+Ng J ), where
N((Df 7) s a matrix having null entries except the one in position ¢, 7 whose

value is a.

1.3.1 Inverse of a Matrix

Definition 1.6 A square matrix A of order n is called invertible (or regular
or nonsingular) if there exists a square matrix B of order n such that A B =
B A =1. B is called the inverse matriz of A and is denoted by A=, A matrix
which is not invertible is called singular. |

If A is invertible its inverse is also invertible, with (A=!)~! = A. Moreover,
if A and B are two invertible matrices of order n, their product AB is also
invertible, with (A B)~! = B"A~!. The following property holds.
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Property 1.2 A square matrix is invertible iff its column vectors are linearly
independent.

Definition 1.7 We call the transpose of a matrix Ae R™*"™ the matrix n xm,
denoted by AT, that is obtained by exchanging the rows of A with the columns
of A. |

Clearly, (AT)T = A, (A+B)T = AT+B7T, (AB)T = BTAT and (aA)T = aAT
Va € R. If A is invertible, then also (AT)™1 = (A=1H)T = A-T,

Definition 1.8 Let A € C™*"; the matrix B = A¥ ¢ C" ™ is called the
conjugate transpose (or adjoint) of A if b;; = aj;, where a;; is the complex
conjugate of aj;. |

In analogy with the case of the real matrices, it turns out that (A +B)¥ =
AT+ BH (AB)Y = BHAH and (aA)H = aAf Va € C.

Definition 1.9 A matrix A € R"*" is called symmetricif A = AT, while it is
antisymmetric if A = —AT. Finally, it is called orthogonal if ATA = AAT =1,
that is A=! = AT, |

Permutation matrices are orthogonal and the same is true for their products.

Definition 1.10 A matrix A € C"*" is called hermitian or self-adjoint if
AT = A, that is, if A” = A, while it is called unitary if ATA = AAT = 1.
Finally, if AA” = ATA, A is called normal. |

As a consequence, a unitary matrix is one such that A=! = A,

Of course, a unitary matrix is also normal, but it is not in general hermitian.
For instance, the matrix of the Example 1.4 is unitary, although not symmetric
(if s # 0). We finally notice that the diagonal entries of an hermitian matrix
must necessarily be real (see also Exercise 5).

1.3.2 Matrices and Linear Mappings

Definition 1.11 A linear map from C" into C™ is a function f : C" — C™
such that f(ax + fy) = af(x) + 8f(y), Vo, 8 € K and Vx,y € C". [ |

The following result links matrices and linear maps.

Property 1.3 Let f : C* — C™ be a linear map. Then, there exists a
unique matric Ay € C™ ™ such that

f(x)=Arx vx € C". (1.3)

Conversely, if Ay € C™*" then the function defined in (1.3) is a linear map
from C™ into C™.
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Example 1.4 An important example of a linear map is the counterclockwise rota-
tion by an angle ¢ in the plane (z1,z2). The matrix associated with such a map is
given by

and it is called a rotation matriz. °

1.3.3 Operations with Block-Partitioned Matrices

All the operations that have been previously introduced can be extended to
the case of a block-partitioned matrix A, provided that the size of each single
block is such that any single matrix operation is well-defined.

Indeed, the following result can be shown (see, e.g., [Ste73]).

Property 1.4 Let A and B be the block matrices

A11 R All By ... Bln
A= Lo
A .. Ay B ... B
where A;; and By are matrices (k; x 1;) and (m; x nj). Then we have

1.

My . 0 MAy AT L A{l
AA = o . AeC; AT = S ;
M oo DAy Afl A{l

2. ifk=m,l=n, my =Fk; and nj =1;, then

Ay +Bii ... Ay + By
A+B= : : ;

Api+Bpi .. A+ By

3. ifl=m, l; =m; and k; = n,, then, letting C;; = ZAisst,

s=1
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1.4 Trace and Determinant of a Matrix

Let us consider a square matrix A of order n. The trace of a matrix is the sum
n
of the diagonal entries of A, that is tr(A) = Za“'

i=1
We call the determinant of A the scalar defined through the following formula

det(A) = z:sign(w)almag,r2 O,

TEP
where P = {m = (m1,...,m,)" } is the set of the n! vectors that are obtained
by permuting the index vector i = (1,...,n)T and sign() equal to 1 (respec-

tively, —1) if an even (respectively, odd) number of exchanges is needed to
obtain 7 from i.
The following properties hold

det(A) = det(AT), det(AB) = det(A)det(B), det(A~!) = 1/det(A),

det(Af) = det(A), det(aA) = a™det(A), YVa € K.

Moreover, if two rows or columns of a matrix coincide, the determinant van-
ishes, while exchanging two rows (or two columns) produces a change of sign
in the determinant. Of course, the determinant of a diagonal matrix is the
product of the diagonal entries.

Denoting by A;; the matrix of order n — 1 obtained from A by eliminating
the i-th row and the j-th column, we call the complementary minor associated
with the entry a;; the determinant of the matrix A;;. We call the k-th principal
(dominating) minor of A, dj, the determinant of the principal submatrix of
order k, Ay, = A(1 : k,1 : k). If we denote by Aj; = (—=1)""/det(A,;) the
cofactor of the entry a;j;, the actual computation of the determinant of A can
be performed using the following recursive relation

a1 if n= 1,

det(A) = n (1.4)
ZAijaij, forn > 1,
j=1

which is known as the Laplace rule. If A is a square invertible matrix of order
n, then

1

1 _
A= det(A)C’

where C is the matrix having entries Aj;, 4,5 =1,...,n.
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As a consequence, a square matrix is invertible iff its determinant is non-
vanishing. In the case of nonsingular diagonal matrices the inverse is still a
diagonal matrix having entries given by the reciprocals of the diagonal entries
of the matrix.

Every orthogonal matriz is invertible, its inverse is given by AT, moreover
det(A) = £1.

1.5 Rank and Kernel of a Matrix

Let A be a rectangular matrix m x n. We call the determinant of order q
(with ¢ > 1) extracted from matriz A, the determinant of any square matrix
of order ¢ obtained from A by eliminating m — ¢ rows and n — ¢ columns.

Definition 1.12 The rank of A (denoted by rank(A)) is the maximum order
of the nonvanishing determinants extracted from A. A matrix has complete
or full rank if rank(A) = min(m,n). [ |

Notice that the rank of A represents the maximum number of linearly in-
dependent column vectors of A that is, the dimension of the range of A,
defined as

range(A) = {y e R™: y = Ax for x € R"}. (1.5)

Rigorously speaking, one should distinguish between the column rank of A
and the row rank of A, the latter being the maximum number of linearly
independent row vectors of A. Nevertheless, it can be shown that the row
rank and column rank do actually coincide.

The kernel of A is defined as the subspace

ker(A) = {x € R": Ax=0}.
The following relations hold:

1. rank(A) = rank(A") (if A € C™*", rank(A) = rank(A™));
2. rank(A) + dim(ker(A)) = n.

In general, dim(ker(A)) # dim(ker(AT)). If A is a nonsingular square matrix,
then rank(A) = n and dim(ker(A)) = 0.

Example 1.5 Let
1 1 0
=4

Then, rank(A) = 2, dim(ker(A)) = 1 and dim(ker(A”T)) = 0. °
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We finally notice that for a matrix A € C™"*" the following properties are
equivalent:

1. A is nonsingular;

det(A) # 0;

ker(A) = {0};

rank(A) = n;

A has linearly independent rows and columns.

Al

1.6 Special Matrices

1.6.1 Block Diagonal Matrices

These are matrices of the form D = diag(D,...,D,,), where D; are square
matrices with ¢ = 1,...,n. Clearly, each single diagonal block can be of dif-
ferent size. We shall say that a block diagonal matrix has size n if n is the
number of its diagonal blocks. The determinant of a block diagonal matrix is
given by the product of the determinants of the single diagonal blocks.

1.6.2 Trapezoidal and Triangular Matrices

A matrix A(m x n) is called upper trapezoidal if a;; = 0 for ¢ > j, while it is
lower trapezoidal if a;; = 0 for 7 < j. The name is due to the fact that, in the
case of upper trapezoidal matrices, with m < n, the nonzero entries of the
matrix form a trapezoid.

A triangular matriz is a square trapezoidal matrix of order n of the form

111 0 ... 0 Uip U12 ... Uip
121 l22 ... 0 0 U292 ... Ugp
L= . . . |or U= .
lnllng...lnn 0 0 o Unpn

The matrix L is called lower triangular while U is upper triangular.
Let us recall some algebraic properties of triangular matrices that are easy to
check.

— The determinant of a triangular matrix is the product of the diagonal
entries;

— the inverse of a lower (respectively, upper) triangular matrix is still lower
(respectively, upper) triangular;

~  the product of two lower triangular (respectively, upper trapezoidal) ma-
trices is still lower triangular (respectively, upper trapezoidal);

— if we call unit triangular matriz a triangular matrix that has diagonal
entries equal to 1, then, the product of lower (respectively, upper) unit
triangular matrices is still lower (respectively, upper) unit triangular.
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1.6.3 Banded Matrices

The matrices introduced in the previous section are a special instance of
banded matrices. Indeed, we say that a matrix A € R™*" (or in C™*™)
has lower band p if a;; = 0 when ¢ > j + p and upper band ¢ if a;; = 0
when j > i + ¢q. Diagonal matrices are banded matrices for which p = ¢ = 0,
while trapezoidal matrices have p = m — 1, ¢ = 0 (lower trapezoidal), p = 0,
g =n — 1 (upper trapezoidal).

Other banded matrices of relevant interest are the tridiagonal matrices for
which p = ¢ = 1 and the upper bidiagonal (p = 0, ¢ = 1) or lower bidiagonal
(p=1, ¢ =0). In the following, tridiag, (b, d,c) will denote the triadiagonal
matrix of size n having respectively on the lower and upper principal diagonals
the vectors b = (by,...,b,_1)T and ¢ = (c1,...,¢,—1)T, and on the principal
diagonal the vector d = (di,...,d,)". If b; = 3, d; = 6 and ¢; = 7, 3, § and
~ being given constants, the matrix will be denoted by tridiag,, (3, J, 7).

We also mention the so-called lower Hessenberg matrices (p = m — 1,
g = 1) and upper Hessenberg matrices (p = 1, ¢ = n — 1) that have the
following structure

hir hio 0 hir hiz ... i
. ha1 h hop
o h21 h22 . or 1 — 21 1422 2
. . hm—ln
hml ...... hmn O hmn—l hmn

Matrices of similar shape can obviously be set up in the block-like format.

1.7 Eigenvalues and Eigenvectors

Let A be a square matrix of order n with real or complex entries; the number
A € C is called an eigenvalue of A if there exists a nonnull vector x € C™ such
that Ax = Ax. The vector x is the eigenvector associated with the eigenvalue
A and the set of the eigenvalues of A is called the spectrum of A, denoted
by o(A). We say that x and y are respectively a right eigenvector and a left
eigenvector of A, associated with the eigenvalue A, if

Ax = Xx, y7TA = \yH.

The eigenvalue A corresponding to the eigenvector x can be determined by
computing the Rayleigh quotient A = x Ax/(xx). The number \ is the
solution of the characteristic equation

py(A) =det(A — AI) =0,

where p, (A\) is the characteristic polynomial. Since this latter is a polynomial
of degree n with respect to A, there certainly exist n eigenvalues of A not
necessarily distinct. The following properties can be proved
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=1

and since det(AT — AI) = det((A — AI)T) = det(A — AI) one concludes that
o(A) = o(AT) and, in an analogous way, that o(A") = o(A).

From the first relation in (1.6) it can be concluded that a matrix is singular
iff it has at least one null eigenvalue, since pa (0) = det(A) = II7 | \;.

Secondly, if A has real entries, p, (A) turns out to be a real-coefficient
polynomial so that complex eigenvalues of A shall necessarily occur in complex
conjugate pairs.

Finally, due to the Cayley-Hamilton Theorem if p, ()) is the characteristic
polynomial of A, then p, (A) = 0, where p, (A) denotes a matrix polynomial
(for the proof see, e.g., [Axe94], p. 51).

The maximum module of the eigenvalues of A is called the spectral radius
of A and is denoted by

p(A) = max [A. (1.7)
Characterizing the eigenvalues of a matrix as the roots of a polynomial implies
in particular that X is an eigenvalue of A € C**™ iff ) is an eigenvalue of A,
An immediate consequence is that p(A) = p(Af). Moreover, YA € C"*",
Va € C, p(aA) = |a|p(A), and p(AF) = [p(A)])* Vk € N.
Finally, assume that A is a block triangular matrix

A11 A12 Alk
0 A22...A2k
A= . .

As p(A) = pa,, (AP, (A) - py,, (A), the spectrum of A is given by the
union of the spectra of each single diagonal block. As a consequence, if A is
triangular, the eigenvalues of A are its diagonal entries.

For each eigenvalue A of a matrix A the set of the eigenvectors associated with
A, together with the null vector, identifies a subspace of C™ which is called
the eigenspace associated with A and corresponds by definition to ker(A-AI).
The dimension of the eigenspace is

dim [ker(A — AI)] = n — rank(A — AI),

and is called geometric multiplicity of the eigenvalue A. It can never be greater
than the algebraic multiplicity of A, which is the multiplicity of A as a root
of the characteristic polynomial. Eigenvalues having geometric multiplicity
strictly less than the algebraic one are called defective. A matrix having at
least one defective eigenvalue is called defective.

The eigenspace associated with an eigenvalue of a matrix A is invariant
with respect to A in the sense of the following definition.
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Definition 1.13 A subspace S in C" is called invariant with respect to a
square matrix A if AS C S, where AS is the transformed of S through A. B

1.8 Similarity Transformations

Definition 1.14 Let C be a square nonsingular matrix having the same or-
der as the matrix A. We say that the matrices A and C~'AC are similar,
and the transformation from A to C™'AC is called a similarity transforma-
tion. Moreover, we say that the two matrices are unitarily similar if C is
unitary. |

Two similar matrices share the same spectrum and the same characteris-
tic polynomial. Indeed, it is easy to check that if (A, x) is an eigenvalue-
eigenvector pair of A, (\,C7!x) is the same for the matrix C~'AC since

(CT'AC)CIx =C'Ax = AC'x.

We notice in particular that the product matrices AB and BA, with A € C**™
and B € C™*™ are not similar but satisfy the following property (see [Hac94],
p.18, Theorem 2.4.6)

o(AB\ {0} = o(BA)\ {0},

that is, AB and BA share the same spectrum apart from null eigenvalues so
that p(AB) = p(BA).

The use of similarity transformations aims at reducing the complexity of
the problem of evaluating the eigenvalues of a matrix. Indeed, if a given matrix
could be transformed into a similar matrix in diagonal or triangular form, the
computation of the eigenvalues would be immediate. The main result in this
direction is the following theorem (for the proof, see [Dem97], Theorem 4.2).

Property 1.5 (Schur decomposition) Given Ae C"*", there exists U
unitary such that

A big ... by,

o i 0 A2 ban
UlAU=UHAU= | . T T =,

0 ... 0 N\,

where \; are the eigenvalues of A.

It thus turns out that every matrix A is unitarily similar to an upper triangular
matrix. The matrices T and U are not necessarily unique [Hac94]. The Schur
decomposition theorem gives rise to several important results; among them,
we recall:
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1. every hermitian matrix is unitarily similar to a diagonal real matrix, that
is, when A is hermitian every Schur decomposition of A is diagonal. In
such an event, since

U'AU = A = diag(\1, ..., \n),

it turns out that AU = UA, that is, Au; = \ju; for i = 1,...,n so that
the column vectors of U are the eigenvectors of A. Moreover, since the
eigenvectors are orthogonal two by two, it turns out that an hermitian
matrix has a system of orthonormal eigenvectors that generates the whole
space C". Finally, it can be shown that a matrix A of order n is similar to
a diagonal matrix D iff the eigenvectors of A form a basis for C" [Axe94];

2. a matrix A € C™ " is normal iff it is unitarily similar to a diagonal
matrix. As a consequence, a normal matrix A € C"*" admits the following
spectral decomposition: A = UAUH = Dy Aiw;ul? being U unitary and
A diagonal [SS90];

3. let A and B be two normal and commutative matrices; then, the generic
eigenvalue p; of A+B is given by the sum \; +&;, where \; and &; are the
eigenvalues of A and B associated with the same eigenvector.

There are, of course, nonsymmetric matrices that are similar to diagonal ma-
trices, but these are not unitarily similar (see, e.g., Exercise 7).

The Schur decomposition can be improved as follows (for the proof see, e.g.,
[Str80], [God66]).

Property 1.6 (Canonical Jordan Form) Let A be any square matriz.
Then, there exists a monsingular matriz X which transforms A into a block
diagonal matriz J such that

XTAX = J = diag (Jr, (A1), Tey (A2)s oy T, (N))

which is called canonical Jordan form, A; being the eigenvalues of A and
Jr(\) € C*** a Jordan block of the form J1(\) = X if k =1 and

A1 0 ...0]
0Ax 1 :
TN =" " 10l; for k> 1.
A1
(0. ... 0 ]

If an eigenvalue is defective, the size of the corresponding Jordan block is
greater than one. Therefore, the canonical Jordan form tells us that a matrix
can be diagonalized by a similarity transformation iff it is nondefective. For
this reason, the nondefective matrices are called diagonalizable. In particular,
normal matrices are diagonalizable.
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Partitioning X by columns, X = (x1,...,Xy), it can be seen that the k; vectors
associated with the Jordan block Ji, (\;) satisfy the following recursive relation

1—1
Ax; = \iXy, 1= "m;+1,
= (1.8)

AXj :>\in+Xj_1,j:l+1,...,lf].+ki, if kl 7£ 1.
The vectors x; are called principal vectors or generalized eigenvectors of A.

Example 1.6 Let us consider the following matrix

7/4  3/4  —1/4 —1/4 —1/4 1/4
0 2 0 0 0 0
~1/2 -1/2  5/2 1/2  —1/2 1/2
~1/2 -1/2 —1/2 5/2 1/2 1/2
~1/4 —1/4 —1/4 —1/4 11/4 1/4
—3/2 —1/2 —1/2 1/2 1/2 7/2

A=

The Jordan canonical form of A and its associated matrix X are given by

2 1 0 0 0 O 1 0 0 0 0 1
0 2 0 0 0 O 0 1 0 0 0 1
J— 0O 0 3 1 0 O X — 0 0 1 0 0 1
0 o 0 3 1 0] 0 0 0 1 0 1
0 0 0 0 3 O 0 0 0 0 1 1
0O 0 0 0 0 2 11 1 1 1 1

Notice that two different Jordan blocks are related to the same eigenvalue (A = 2).
It is easy to check property (1.8). Consider, for example, the Jordan block associated
with the eigenvalue Ao = 3; we have

Ax3=1[003003"=3[001001]" = X\oxs,
Axs=1[001304"=3000101"+[00100 1" = \ox4 + x3,
Ax; =[000134"=3000011)"+[000101]" = X\ox5 + x4.

1.9 The Singular Value Decomposition (SVD)

Any matrix can be reduced in diagonal form by a suitable pre and post-
multiplication by unitary matrices. Precisely, the following result holds.

Property 1.7 Let Ae C™*". There exist two unitary matrices Ue C™*™
and V€ C™™" such that

UHAV = ¥ = diag(oy,...,0,) € R™*" with p = min(m,n) (1.9)

and o1 > ... > 0, > 0. Formula (1.9) is called Singular Value Decomposi-
tion or (SVD) of A and the numbers o; (or o;(A)) are called singular values
of A.
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If A is a real-valued matrix, U and V will also be real-valued and in (1.9) U7
must be written instead of U, The following characterization of the singular

values holds
O'Z(A> == \/)\i(AHA)7 1= 1,...,]). (110)

Indeed, from (1.9) it follows that A = UXVH AH = VYHUH g0 that, U
and V being unitary, ATA = VXHEXVH that is, \;(ATA) = \(ZHY) =
(0i(A))2. Since AA" and AT A are hermitian matrices, the columns of U,
called the left singular vectors of A, turn out to be the eigenvectors of AAH
(see Section 1.8) and, therefore, they are not uniquely defined. The same holds
for the columns of V, which are the right singular vectors of A.

Relation (1.10) implies that if A € C"*" is hermitian with eigenvalues given
by A1, A2,..., \,, then the singular values of A coincide with the modules
of the eigenvalues of A. Indeed because AAY = A2 o; = /A2 = |\ for
i=1,...,n. As far as the rank is concerned, if

012...20.>0,41=...=0,=0,

then the rank of A is r, the kernel of A is the span of the column vectors of
V, {vy41,-..,Vn}, and the range of A is the span of the column vectors of U,
{uy,...,u.}.

Definition 1.15 Suppose that A€ C™*™ has rank equal to r and that it
admits a SVD of the type U?AV = X. The matrix At = VITUH is called
the Moore-Penrose pseudo-inverse matrix, being

1 1
ZT:diag<,...,,o,...,O). (1.11)

g1 Or
|

The matrix AT is also called the generalized inverse of A (see Exercise 13).
Indeed, if rank(A) = n < m, then AT = (ATA)71AT while if n = m =
rank(A), AT = AL For further properties of AT, see also Exercise 12.

1.10 Scalar Product and Norms in Vector Spaces

Very often, to quantify errors or measure distances one needs to compute the
magnitude of a vector or a matrix. For that purpose we introduce in this
section the concept of a vector norm and, in the following one, of a matrix
norm. We refer the reader to [Ste73], [SS90] and [Axe94] for the proofs of the
properties that are reported hereafter.

Definition 1.16 A scalar product on a vector space V' defined over K is any
map (-, ) acting from V' x V into K which enjoys the following properties:
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1. it is linear with respect to the vectors of V, that is
(vx+ Az, y) =v(x,y) + Mz,y), Vx,y,2€ V, Vy,A € K;

2. it is hermitian, that is, (y,x) = (x,y), Vx,y € V;
3. it is positive definite, that is, (x,x) > 0, Vx # 0 (in other words, (x,x) >
0, and (x,x) = 0 if and only if x = 0).

In the case V' = C™ (or R™), an example is provided by the classical Euclidean
scalar product given by

n
(x,y) =y"'x= ingia
i=1
where z denotes the complex conjugate of z.

Moreover, for any given square matrix A of order n and for any x, ye C™
the following relation holds

(Ax,y) = (x, Afly). (1.12)
In particular, since for any matrix Q € C"*", (Qx, Qy) = (x, Q7 Qy), one gets

Property 1.8 Unitary matrices preserve the Fuclidean scalar product, that
is, (Qx,Qy) = (x,y) for any unitary matriz Q and for any pair of vectors x
andy.

Definition 1.17 Let V be a vector space over K. We say that the map || - ||
from V into R is a norm on V if the following axioms are satisfied:

1. (i) ||v|| > 0 ¥v € V and (i7) ||v]| = 0 if and only if v = 0;
2. |lav]] = |a||v|| Ya € K, Vv € V (homogeneity property);
3. [[v+wl| < ||v]+ ||w] Vv,w €V (triangular inequality),

where |a| denotes the absolute value of « if K = R, the module of « if
K =C. |

The pair (V|| - ||) is called a normed space. We shall distinguish among
norms by a suitable subscript at the margin of the double bar symbol. In the
case the map |-| from V into R enjoys only the properties 1(4), 2 and 3 we shall
call such a map a seminorm. Finally, we shall call a unit vector any vector of
V' having unit norm.

An example of a normed space is R™, equipped for instance by the p-norm
(or Hélder norm); this latter is defined for a vector x of components {xz;} as

n 1/p
%[l = (ZI%ﬂ) . forl1<p<occ. (1.13)
=1
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Notice that the limit as p goes to infinity of ||x||, exists, is finite, and equals
the maximum module of the components of x. Such a limit defines in turn a
norm, called the infinity norm (or mazimum norm), given by

e = ma [z

When p = 2, from (1.13) the standard definition of Fuclidean norm is
recovered

" 1/2
2 = (x,%)1/2 = (Z'xﬂ) = (x"x)""?,
=1

for which the following property holds.

Property 1.9 (Cauchy-Schwarz inequality) For any pair x,y € R",
(x,¥)] = [x"y| < [Ix]2 [Iyl2, (1.14)
where strict equality holds iff y = ax for some o € R.

We recall that the scalar product in R™ can be related to the p-norms intro-
duced over R™ in (1.13) by the Hélder inequality

S
Gyl < Ixllpllyllg, with =+ 2= 1.

In the case where V is a finite-dimensional space the following property holds
(for a sketch of the proof, see Exercise 14).

Property 1.10 Any vector norm || - || defined on V is a continuous function
of its argument, namely, Ve > 0, 3C > 0 such that if ||x — X|| < e then
| x| = IIX]| | < Ce, for anyx, X € V.

New norms can be easily built using the following result.

Property 1.11 Let || - || be a norm of R" and A € R"*™ be a matriz with n
linearly independent columns. Then, the function || - ||a2 acting from R™ into

R defined as
Ix|laz = [|AX]| vx € R",
is a norm of R™.

Two vectors x, y in V are said to be orthogonal if (x,y) = 0. This statement
has an immediate geometric interpretation when V = R? since in such a case

(6, y) = [Ix[l2]|y |2 cos(?),
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Table 1.1. Equivalence constants for the main norms of R™

g q=1qg=2qg=00 Cpg g=1g=2qg=c
p=1 1 1 1 p=1 1 n'/? n
p=2 n1? 1 1 p=2 1 1 na'/?
p=oo nt | p=oco 1 1 1

where ¥ is the angle between the vectors x and y. As a consequence, if (x,y) =
0 then 9 is a right angle and the two vectors are orthogonal in the geometric
sense.

Definition 1.18 Two norms ||-||, and ||-||4 on V' are equivalent if there exist
two positive constants ¢, and Cp, such that

cpgllXllg < Il < Cpqllxlly VX € V.

In a finite-dimensional normed space all norms are equivalent. In particular,
if V"= R" it can be shown that for the p-norms, with p = 1, 2, and oo, the
constants ¢, and Cj,, take the value reported in Table 1.1.

In this book we shall often deal with sequences of vectors and with their
convergence. For this purpose, we recall that a sequence of vectors {x(k)} in
a vector space V having finite dimension n, converges to a vector x, and we
write lim x®) = x if

k—o0
. k .
klg{)loxg ):xi,zzl,...7n, (1.15)
where xgk) and z; are the components of the corresponding vectors with re-

spect to a basis of V. If V. = R™, due to the uniqueness of the limit of a
sequence of real numbers, (1.15) implies also the uniqueness of the limit, if
existing, of a sequence of vectors.

We further notice that in a finite-dimensional space all the norms are topo-
logically equivalent in the sense of convergence, namely, given a sequence of
vectors x%) we have that

[x®][| =0 < [|x®| = 0if k — oo,

where ||| - ||| and || - || are any two vector norms. As a consequence, we can
establish the following link between norms and limits.

Property 1.12 Let || - || be a norm in a finite dimensional space V. Then
lim x® =x < lim ||x —x®| =0,
k—o0 k—o0

where x € V' and {X(k)} is a sequence of elements of V.
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1.11 Matrix Norms

Definition 1.19 A matriz norm is a mapping || - || : R™*™ — R such that:

1. JJA] > 0 VA € R™*™ and ||A|| = 0 if and only if A = 0;
2. [[aAll = |a|||A|] Ya € R, VA € R™*" (homogeneity);
3. JA+BJ| < JA|| + |B]| YA,B € R™*" (triangular inequality).

Unless otherwise specified we shall employ the same symbol || - ||, to denote
matrix norms and vector norms.

We can better characterize the matrix norms by introducing the concepts
of compatible norm and norm induced by a vector norm.

Definition 1.20 We say that a matrix norm || - || is compatible or consistent
with a vector norm || - || if

[Ax[| < [[A]l [lx]l,  vx eR™ (1.16)
More generally, given three norms, all denoted by || - ||, albeit defined on
R™, R™ and R™*", respectively, we say that they are consistent if Vx € R",
Ax =y e R™ A € R™*" we have that |ly|| < [|A] ||x]|. [ |

In order to single out matrix norms of practical interest, the following property
is in general required

Definition 1.21 We say that a matrix norm || || is sub-multiplicative if VA €
RTLXTH’ VB € RmX4

[AB[| < [[A]l [[BI]. (1.17)
|
This property is not satisfied by any matrix norm. For example (taken from
[GL89]), the norm ||A||a = max|a;j| for i =1,...,n, j =1,...,m does not
satisfy (1.17) if applied to the matrices
11
A=B- [1 J ,

since 2 = ||ABJ|a > ||Al|alIBlla = 1.

Notice that, given a certain sub-multiplicative matrix norm |||, there always
exists a consistent vector norm. For instance, given any fixed vector y # 0 in
C™, it suffices to define the consistent vector norm as

Ix[l = [lxy o x€C"

As a consequence, in the case of sub-multiplicative matrix norms it is no
longer necessary to explicitly specify the vector norm with respect to the
matrix norm is consistent.
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Example 1.7 The norm

n

D ay | = V/tr(AAR) (1.18)

i,j=1

[AllF =

. . . . . 2 .
is a matrix norm called the Frobenius norm (or Euclidean norm in C™ ) and is

compatible with the Euclidean vector norm || - ||2. Indeed,
n
IAx]|3 = Z Za”x; < Z (me?Zmﬁ) = [|A 1 [Ix]3-
i=1 | j=1 j=1
Notice that for such a norm ||L,||r = v/n. o

In view of the definition of a natural norm, we recall the following theorem.

Theorem 1.1 Let ||-|| be a vector norm. The function
[Ax||
JA] = sup (1.19)
x#£0 |1x]|
18 a matriz norm called induced matriz norm or natural matriz norm.
Proof. We start by noticing that (1.19) is equivalent to
[All = sup [[Ax]. (1.20)

[x[[=1
Indeed, one can define for any x # 0 the unit vector u = x/||x||, so that (1.19)
becomes
Al = Sup [Aul = [[Aw]  with [jw]| = 1.
This being taken as given, let us check that (1.19) (or, equivalently, (1.20)) is actually
a norm, making direct use of Definition 1.19.

1. If ||Ax]|| > 0, then it follows that ||A|| = sup ||Ax|| > 0. Moreover

[Ix[[=1

Ax
IA] = sup”H ‘“ — 0 [Ax] = 0Vx £0,

and Ax = 0 Vx # 0 if and only if A=0; therefore [|[A|| =0< A =0.
2. Given a scalar «,
llecAll = sup leAx]| = || Sup [Ax[| = |af [|A]l.

3. Finally, triangular inequality holds. Indeed, by definition of supremum, if x # 0
then

A
1]
so that, taking x with unit norm, one gets
(A +B)x|| < [[Ax]| + [|Bx]|| < [[A]l + [IBI],
from which it follows that ||A + BJ| = sup (A +B)x| < ||A] + IB]-

lIxIl=

<Al = [[Ax]l < [[A[lllxIl,
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Relevant instances of induced matrix norms are the so-called p-norms de-
fined as

p 1Al

[All, =
wto IXllp

The 1-norm and the infinity norm are easily computable since
m n

1Al = max Y agl, [|Ale = max Y Jagl,
g:l,...,nizl 1:1,...,'rnj:1

and they are called the column sum norm and the row sum norm, respectively.
Moreover, we have ||[A|; = ||AT || and, if A is self-adjoint or real sym-
metric, [|All1 = [|A|co-
A special discussion is deserved by the 2-norm or spectral norm for which
the following theorem holds.

Theorem 1.2 Let 01(A) be the largest singular value of A. Then

|All2 = \/p(ATA) = /p(AAH) = 0y (A). (1.21)
In particular, if A is hermitian (or real and symmetric), then
[A]l2 = p(A), (1.22)
while, if A is unitary, ||All2 = 1.
Proof. Since A” A is hermitian, there exists a unitary matrix U such that
UPATAU = diag(pa, . . ., pin),

where p1; are the (positive) eigenvalues of AT A. Let y = U”x, then

(AHA UFAHAU
IAfls = supy [ A%) g, [(TTA_AUY.Y)
x#0 X X y#0 (y7 y)
2 2
sup § pilyil /E lyil” =/ max |ui
y#0 \| 5 i—1 =t

from which (1.21) follows, thanks to (1.10).
If A is hermitian, the same considerations as above apply directly to A.
Finally, if A is unitary, we have

IAX]3 = (Ax, Ax) = (x, A"Ax) = |||,
so that ||A]2 = 1. &

As a consequence, the computation of ||A|ly is much more expensive than
that of [|A|lec or ||A]l;. However, if only an estimate of ||A||2 is required, the
following relations can be profitably employed in the case of square matrices
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max|a;;| < [|Afl2 < n max|ai;l,
1,7 2,3
Al < [All2 < Val|Alls,
Z=lAllL < lIAll2 < valAll,

1Al < VAl Al

For other estimates of similar type we refer to Exercise 17. Moreover, if A is
normal then [|All2 < ||A||, for any n and all p > 2.

Theorem 1.3 Let ||| - ||| be a matriz norm induced by a vector norm || - ||.
Then, the following relations hold:

1A < |I|Al] 1], that is, ||| - ||| is @ norm compatible with || - ||;
21| = 1
3. I|ABI|| < |[|All] |IIBI|], that is, ||| - ||| is sub-multiplicative.

Proof. Part 1 of the theorem is already contained in the proof of Theorem 1.1,
while part 2 follows from the fact that |||I||| = sup||Ix||/||x|| = 1. Part 3 is simple to
x7#0

check. o

Notice that the p-norms are sub-multiplicative. Moreover, we remark that the
sub-multiplicativity property by itself would only allow us to conclude that
[Tl = 1. Indeed, ||[T][[ = [/[T-T||| < [|[Z}|>.

1.11.1 Relation between Norms and the Spectral Radius
of a Matrix

We next recall some results that relate the spectral radius of a matrix to
matrix norms and that will be widely employed in Chapter 4.

Theorem 1.4 Let || - || be a consistent matriz norm; then
p(A) <A vAeCTn.

Proof. Let A be an eigenvalue of A and v # 0 an associated eigenvector. As a
consequence, since || - || is consistent, we have

ALIVIE = IAvIE = [[AvI < AT v
so that |A] < [|A]]. &

More precisely, the following property holds (see for the proof [IK66], p. 12,
Theorem 3).

Property 1.13 Let A € C"*™ and ¢ > 0. Then, there exists an induced
matriz norm || - ||a.e (depending on ) such that

[Aflae < p(A) +e.
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As a result, having fixed an arbitrarily small tolerance, there always exists a
matrix norm which is arbitrarily close to the spectral radius of A, namely

p(A) = inf1A]. (1.23)

the infimum being taken on the set of all the consistent norms.

For the sake of clarity, we notice that the spectral radius is a sub-
multiplicative seminorm, since it is not true that p(A) = 0 iff A = 0. As an
example, any triangular matrix with null diagonal entries clearly has spectral
radius equal to zero. Moreover, we have the following result.

Property 1.14 Let A be a square matriz and let || - || be a consistent norm.
Then

Tim [[A™[ = ().

1.11.2 Sequences and Series of Matrices

A sequence of matrices {A(k)} € R™" is said to converge to a matrix A €
]Rn)(n if

lim |A®) — Al = 0.

k—o0
The choice of the norm does not influence the result since in R™*™ all norms
are equivalent. In particular, when studying the convergence of iterative meth-

ods for solving linear systems (see Chapter 4), one is interested in the so-called
convergent matrices for which

lim AF =

k—oo
0 being the null matrix. The following theorem holds.

Theorem 1.5 Let A be a square matriz; then

Jim AP =0s p(A) < 1. (1.24)
Moreover, the geometric series z:A]’C is convergent iff p(A) < 1. In such a
k=0

case
ZA’“ = . (1.25)

As a result, if p(A) < 1 the matriz T — A is invertible and the following
inequalities hold
1 1

where || - || is an induced matriz norm such that ||Al| < 1.
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Proof. Let us prove (1.24). Let p(A) < 1, then 3¢ > 0 such that p(A) <1 —¢ and
thus, thanks to Property 1.13, there exists an induced matrix norm | - || such that
Al < p(A)+4¢ < 1. From the fact that ||A*|| < [|A||* < 1 and from the definition of
convergence it turns out that as k — oo the sequence { A” ¢ tends to zero. Conversely,

assume that lim A® = 0 and let A denote an eigenvalue of A. Then, AFx = \x,

k— o0

being x(#0) an eigenvector associated with A, so that klim A = 0. As a consequence,
— 00

|A| < 1 and because this is true for a generic eigenvalue one gets p(A) < 1 as desired.
Relation (1.25) can be obtained noting first that the eigenvalues of I-A are given by
1—XA(A), A(A) being the generic eigenvalue of A. On the other hand, since p(A) < 1,
we deduce that I—A is nonsingular. Then, from the identity

I-A)(I+A+.. . +A") =(1-A"

and taking the limit for n tending to infinity the thesis follows since

oo

(-A)) AF =1

k=0
Finally, thanks to Theorem 1.3, the equality ||I|| = 1 holds, so that
L= I < T- Al A=A)7H < @+ [ADIT-A)7

giving the first inequality in (1.26). As for the second part, noting that [ =T1—A+ A
and multiplying both sides on the right by (I — A)™', one gets (I — A)™' =1+
A(I— A)™'. Passing to the norms, we obtain

IT=A) < T+ AL IA-A)71,

and thus the second inequality, since ||Al| < 1. &

Remark 1.1 The assumption that there exists an induced matrix norm such
that [|A]| < 1 is justified by Property 1.13, recalling that A is convergent and,
therefore, p(A) < 1. [

Notice that (1.25) suggests an algorithm to approximate the inverse of a ma-
trix by a truncated series expansion.

1.12 Positive Definite, Diagonally Dominant and
M-matrices

Definition 1.22 A matrix A € C"*" is positive definite in C" if the num-
ber (Ax,x) is real and positive Vx € C", x # 0. A matrix A € R™*" is
positive definite in R™ if (Ax,x) > 0 Vx € R, x # 0. If the strict inequal-
ity is substituted by the weak one (>) the matrix is called positive semi-
definite. |
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Example 1.8 Matrices that are positive definite in R™ are not necessarily symmet-
ric. An instance is provided by matrices of the form

2 a
] .

for a # —1. Indeed, for any nonnull vector x = (x1,z2)” in R?
(Ax,x) = 2(x] + 23 — z122) > 0.

Notice that A is not positive definite in C2. Indeed, if we take a complex vector x
we find out that the number (Ax, x) is not real-valued in general. °

Definition 1.23 Let A € R™*™. The matrices
1 1
Ag = i(A +AT), Ags = §(A —AT)

are respectively called the symmetric part and the skew-symmetric part of A.
Obviously, A = Ag + Agg. If A € C"*", the definitions modify as follows:
AS:%(A+AH) and ASS:%(AfAH) [ |

The following property holds

Property 1.15 A real matriz A of order n is positive definite iff its symmet-
ric part Ag is positive definite.

Indeed, it suffices to notice that, due to (1.12) and the definition of Agg,
xTAgsx = 0 Vx € R"™. For instance, the matrix in (1.27) has a positive
definite symmetric part, since

1 ™ _ | 2 -1

This holds more generally (for the proof see [Axe94]).

Property 1.16 Let A € C"*" (respectively, A € R™*"); if (Ax,x) is real-
valued Vx € C™, then A is hermitian (respectively, symmetric).

An immediate consequence of the above results is that matrices that are
positive definite in C™ do satisfy the following characterizing property.

Property 1.17 A square matriz A of order n is positive definite in C™ iff it
is hermitian and has positive eigenvalues. Thus, a positive definite matrix is
nonsingular.

In the case of positive definite real matrices in R™, results more specific than
those presented so far hold only if the matrix is also symmetric (this is the rea-
son why many textbooks deal only with symmetric positive definite matrices).
In particular
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Property 1.18 Let A € R™*"™ be symmetric. Then, A is positive definite iff
one of the following properties is satisfied:

1. (Ax,x) > 0 Vx # 0 with xe R™;

2. the eigenvalues of the principal submatrices of A are all positive;

3. the dominant principal minors of A are all positive (Sylvester criterion);
4. there exists a nonsingular matriz H such that A = HTH.

All the diagonal entries of a positive definite matrix are positive. Indeed, if e;
is the i-th vector of the canonical basis of R™, then e;fFAeZ— =a;; > 0.

Moreover, it can be shown that if A is symmetric positive definite, the entry
with the largest module must be a diagonal entry (these last two properties
are therefore necessary conditions for a matrix to be positive definite).

We finally notice that if A is symmetric positive definite and A/? is the
only positive definite matrix that is a solution of the matrix equation X2 = A,
the norm

Ix]la = |AY2x]|2 = (Ax, x)'/2 (1.28)

defines a vector norm, called the energy norm of the vector x. Related to the
energy norm is the energy scalar product given by (x,y)a = (Ax,y).

Definition 1.24 A matrix A€ R™*" is called diagonally dominant by rows if
n
|aii| > Z \aij|, with ¢ = 1,. ey Ny
J=1.5#i
while it is called diagonally dominant by columns if

n
|aii| > Z ‘aji|7 withi=1,...,n.
j=1.j#i
If the inequalities above hold in a strict sense, A is called strictly diagonally
dominant (by rows or by columns, respectively). |

A strictly diagonally dominant matrix that is symmetric with positive diago-
nal entries is also positive definite.

Definition 1.25 A nonsingular matrix A € R"*" is an M-matriz if a;; < 0
for i # j and if all the entries of its inverse are nonnegative. |

M-matrices enjoy the so-called discrete mazimum principle, that is, if A is
an M-matrix and Ax < 0, then x < 0 (where the inequalities are meant
componentwise). In this connection, the following result can be useful.

Property 1.19 (M-criterion) Let a matriz A satisfy a;; < 0 for i # j.
Then A is an M-matriz if and only if there exists a vector w > 0 such that
Aw > 0.
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Finally, M-matrices are related to strictly diagonally dominant matrices
by the following property.

Property 1.20 A matriz A € R™*™ that is strictly diagonally dominant by
rows and whose entries satisfy the relations a;; < 0 for i # j and a;; > 0, is
an M-matriz.

For further results about M-matrices, see for instance [Axe94] and [Var62].

1.13 Exercises

1. Let W1 and W5 be two subspaces of R". Prove that if V = W7 & Wa, then
dim(V) = dim(W1) + dim(W?), while in general

dim(W1 + Wg) = dim(W1) + dim(WQ) — dim(W1 N WQ).

[Hint : Consider a basis for Wi N W» and first extend it to Wi, then to Wa,
verifying that the basis formed by the set of the obtained vectors is a basis for
the sum space.]

2. Check that the following set of vectors

(i1 i1 -1\ -
vi—(xl 2 ),1—1,27...,n7

forms a basis for R", x1,...,z, being a set of n distinct points of R.

3. Exhibit an example showing that the product of two symmetric matrices may
be nonsymmetric.

4. Let B be a skew-symmetric matrix, namely, BY = —B. Let A = (I+B)(I-B)™!
and show that A=! = AT,

5. A matrix A € C™*" is called skew-hermitian if A = —A. Show that the
diagonal entries of A must be purely imaginary numbers.

6. Let A, B and A+B be invertible matrices of order n. Show that also A~' +B~?
is nonsingular and that

(A7 +B™) ' =A(A+B)'B=B(A+B)'A.

[Solution : (Af1 + B71)71 =A (I + BflA)i1 = A(B+A) ' B. The second
equality is proved similarly by factoring out B and A, respectively from left and
right.]

7. Given the nonsymmetric real matrix

A=
-1-1 0

0 1 1
1 0-1],

check that it is similar to the diagonal matrix D = diag(1,0,—1) and find its
eigenvectors. Is this matrix normal?
[Solution : the matrix is not normal.]
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n

Let A be a square matrix of order n. Check that if P(A) = chAk and A\(A)
k=0

are the eigenvalues of A, then the eigenvalues of P(A) are given by A(P(A)) =

P(A(A)). In particular, prove that p(A?) = [p(A)]%.

Prove that a matrix of order n having n distinct eigenvalues cannot be defective.

Moreover, prove that a normal matrix cannot be defective.

Commutativity of matriz product. Show that if A and B are square matrices that

share the same set of eigenvectors, then AB = BA. Prove, by a counterexample,

that the converse is false.

Let A be a normal matrix whose eigenvalues are A1,...,\,. Show that the
singular values of A are [A1],...,|An].
Let A € C™*" with rank(A) = n. Show that AT = (ATA)7*AT enjoys the

following properties:
()ATA =1,; (2) ATAAT = AT AATA = A; 3)if m=n, AT=A"1.

Show that the Moore-Penrose pseudo-inverse matrix A' is the only matrix that
minimizes the functional

min ||AX — L, ||r,

XGC"LX”YL
where || - || is the Frobenius norm.
Prove Property 1.10.
[Solution : For any x, X € V show that | ||x|| — [|X]| | < ||x —X]|. Assuming that

dim(V) = n and expanding the vector w = x — X on a basis of V, show that
[[w|| < C||W||oo, from which the thesis follows by imposing in the first obtained
inequality that [|[w]|e < €]

Prove Property 1.11 in the case A € R™*™ with m linearly independent columns.
[Hint : First show that || - ||a fulfills all the properties characterizing a norm:
positiveness (A has linearly independent columns, thus if x # 0, then Ax # 0,
which proves the thesis), homogeneity and triangular inequality.]

Show that for a rectangular matrix A € R™*"

||A||P2~ :Uer...Jrai,

where p is the minimum between m and n, o; are the singular values of A and
|l - |lr is the Frobenius norm.

Assuming p,q = 1,2, 00, F', recover the following table of equivalence constants
cpq such that VA € R™*™, [|All, < cpqllAllg-

Cpg q=1g=2g=oc0q=F
p=1 noVn
p=2 /n 1 Vn 1
p=oco n yn 1 n

1

A matrix norm for which ||A|| = || |A] || is called absolute norm, having denoted
by |A| the matrix of the absolute values of the entries of A. Prove that || - |1,
|||l and || - || are absolute norms, while || - ||2 is not. Show that for this latter

1
— Al < || |A < All2.
\/ﬁll 2 < I Al 2 < v/nllAll2
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Principles of Numerical Mathematics

The basic concepts of consistency, stability and convergence of a numerical
method will be introduced in a very general context in the first part of the
chapter: they provide the common framework for the analysis of any method
considered henceforth. The second part of the chapter deals with the computer
finite representation of real numbers and the analysis of error propagation in
machine operations.

2.1 Well-posedness and Condition Number of a Problem

Consider the following problem: find = such that
F(z,d) =0, (2.1)

where d is the set of data which the solution depends on and F' is the func-
tional relation between z and d. According to the kind of problem that is
represented in (2.1), the variables x and d may be real numbers, vectors or
functions. Typically, (2.1) is called a direct problem if F' and d are given and x
is the unknown, inverse problem if ' and x are known and d is the unknown,
identification problem when x and d are given while the functional relation F’
is the unknown (these latter problems will not be covered in this volume).

Problem (2.1) is well posed if it admits a unique solution & which depends
with continuity on the data. We shall use the terms well posed and stable in
an interchanging manner and we shall deal henceforth only with well-posed
problems.

A problem which does not enjoy the property above is called ll posed or
unstable and before undertaking its numerical solution it has to be regular-
ized, that is, it must be suitably transformed into a well-posed problem (see,
for instance [Mor84]). Indeed, it is not appropriate to pretend the numerical
method can cure the pathologies of an intrinsically ill-posed problem.

Example 2.1 A simple instance of an ill-posed problem is finding the number

of real roots of a polynomial. For example, the polynomial p(z) = zt — 22
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(2a — 1) + a(a — 1) exhibits a discontinuous variation of the number of real roots as
a continuously varies in the real field. We have, indeed, 4 real roots if a > 1, 2 if
a € [0,1) while no real roots exist if a < 0. °

Let D be the set of admissible data, i.e. the set of the values of d in
correspondance of which problem (2.1) admits a unique solution. Continuous
dependence on the data means that small perturbations on the data d of D
yield “small” changes in the solution x. Precisely, let d € D and denote by
0d a perturbation admissible in the sense that d + dd € D and by dz the
corresponding change in the solution, in such a way that

F(x + dx,d+dd) = 0. (2.2)
Then, we require that

Ino = no(d) > 0, 3Ky = Ko(d) such that

(2.3)
if [[0d]| < no then ||dz]| < Kol dd||.

The norms used for the data and for the solution may not coincide, whenever
d and x represent variables of different kinds.

Remark 2.1 The property of continuous dependence on the data could have
been stated in the following alternative way, which is more akin to the classical
form of Analysis

Ve > 0 3§ = d(e) such that if ||dd|| < 6 then [|éz| <e.

The form (2.3) is however more suitable to express in the following the concept
of numerical stability, that is, the property that small perturbations on the
data yield perturbations of the same order on the solution. |

With the aim of making the stability analysis more quantitative, we introduce
the following definition.

Definition 2.1 For problem (2.1) we define the relative condition number
to be
[6|[/1]]]
K(d)—sup{, 0d#0, d+dde D ;. (2.4)
1dll/ldl

Whenever d = 0 or « = 0, it is necessary to introduce the absolute condition
number, given by

5
Kabs(d):sup{Héz”, 5d # 0, d+6deD}. (2.5)
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Problem (2.1) is called ill-conditioned if K(d) is “big” for any admissi-
ble datum d (the precise meaning of “small” and “big” is going to change
depending on the considered problem).

The property of a problem of being well-conditioned is independent of the
numerical method that is being used to solve it. In fact, it is possible to gener-
ate stable as well as unstable numerical schemes for solving well-conditioned
problems. The concept of stability for an algorithm or for a numerical method
is analogous to that used for problem (2.1) and will be made precise in the
next section.

Remark 2.2 (Ill-posed problems) Even in the case in which the condition
number does not exist (formally, it is infinite), it is not necessarily true that the
problem is ill-posed. In fact there exist well posed problems (for instance, the
search of multiple roots of algebraic equations, see Example 2.2) for which
the condition number is infinite, but such that they can be reformulated in
equivalent problems (that is, having the same solutions) with a finite condition
number. |

If problem (2.1) admits a unique solution, then there necessarily exists a
mapping G, that we call resolvent, between the sets of the data and of the
solutions, such that

z = G(d), that is F(G(d),d) = 0. (2.6)

According to this definition, (2.2) yields z+dz = G(d+dd). Assuming that G
is differentiable in d and denoting formally by G’(d) its derivative with respect
to d (if G : R™ — R™, G'(d) will be the Jacobian matrix of G evaluated at
the vector d), a Taylor’s expansion of G truncated at first order ensures that

G(d +dd) — G(d) = G'(d)6d + o(||6d]|))  for d — 0,

where ||-|| is a suitable vector norm and o(-) is the classical infinitesimal symbol
denoting an infinitesimal term of higher order with respect to its argument.
Neglecting the infinitesimal of higher order with respect to ||dd||, from (2.4)
and (2.5) we respectively deduce that

1]
IG()I”

K(d) ~ [|G'(d)]] Kaps(d) = [|G'(d)]), (2.7)
where the symbol || - ||, when applied to a matrix, denotes the induced matrix
norm (1.19) associated with the vector norm introduced above. The estimates
in (2.7) are of great practical usefulness in the analysis of problems in the
form (2.6), as shown in the forthcoming examples.

Example 2.2 (Algebraic equations of second degree) The solutions to the
algebraic equation x*> — 2pxz + 1 = 0, with p > 1, are 4+ = p + 1/p? — 1. In this
case, F(z,p) = 22 — 2pz + 1, the datum d is the coefficient p, while z is the vector
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of components {x4,z_}. As for the condition number, we notice that (2.6) holds
by taking G : R — R? G(p) = {z,z_}. Letting G+(p) = x, it follows that

Gl4(p) =1+p/+/p? — 1. Using (2.7) with || - || = || - ||2 we get

Ip|

V-1

From (2.8) it turns out that in the case of separated roots (say, if p > +/2) problem
F(z,p) = 0 is well conditioned. The behavior dramatically changes in the case
of multiple roots, that is when p = 1. First of all, one notices that the function
G+(p) = p+ /p?>—1 is no longer differentiable for p = 1, which makes (2.8)
meaningless. On the other hand, equation (2.8) shows that, for p close to 1, the
problem at hand is ill conditioned. However, the problem is not #ll posed. Indeed,
following Remark 2.2, it is possible to reformulate it in an equivalent manner as
F(x,t) = 2% — (1 +t*) /) +1 =0, with t = p+ /p? — 1, whose roots z_ = t and
24+ = 1/t coincide for ¢ = 1. The change of parameter thus removes the singularity
that is present in the former representation of the roots as functions of p. The two
roots x— = x_(¢) and x4 = x4 (t) are now indeed regular functions of ¢ in the
neighborhood of ¢ = 1 and evaluating the condition number by (2.7) yields K (t) ~ 1
for any value of ¢t. The transformed problem is thus well conditioned. °

K(p) ~ p>1 (2.8)

Example 2.3 (Systems of linear equations) Consider the linear system Ax =
b, where x and b are two vectors in R™, while A is the matrix (n X n) of the real
coefficients of the system. Suppose that A is nonsingular; in such a case x is the
unknown solution x, while the data d are the right-hand side b and the matrix A,
that is, d = {bs, as;,1 < 4,5 < n}.

Suppose now that we perturb only the right-hand side b. We have d = b,
x = G(b) = A 'b so that, G’(b) = A™', and (2.7) yields

(d) ~ [ATH el _ [lax]
[A=*D]| [l

AT < AN AT = K(A), (2.9)

where K(A) is the condition number of matrix A (see Sect.3.1.1) and the use of a
consistent matrix norm is understood. Therefore, if A is well conditioned, solving
the linear system Ax=Db is a stable problem with respect to perturbations of the
right-hand side b. Stability with respect to perturbations on the entries of A will be
analyzed in Sect. 3.10. °

Example 2.4 (Nonlinear equations) Let f : R — R be a function of class C"*
and consider the nonlinear equation

F(z,d) = f(z) = ¢(z) —d =0,

where ¢ : R — R is a suitable function and d € R a datum (possibly equal to zero).

The problem is well defined only if ¢ is invertible in a neighborhood of d: in such a
case, indeed, # = ¢~ !(d) and the resolvent is G = ¢~ !. Since (¢ ') (d) = [¢(z)] ",

the first relation in (2.7) yields, for d # 0,
|d]

K(d) ~ \[@'(w)]71|m7 (2.10)
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while if d = 0 or x = 0 we have
Kaps(d) ~ [[ ()] 7. (2.11)

The problem is thus ill posed if x is a multiple root of p(x) — d; it is ill conditioned
when ¢'(z) is “small”, well conditioned when ¢'(z) is “large”. We shall further
address this subject in Secttion6.1. °

In view of (2.7), the quantity ||G’(d)]| is an approximation of K,ps(d) and is
sometimes called first order absolute condition number. This latter represents
the limit of the Lipschitz constant of G (see Section 11.1) as the perturbation
on the data tends to zero.

Such a number does not always provide a sound estimate of the condition
number K,ps(d). This happens, for instance, when G’ vanishes at a point
whilst G is nonnull in a neighborhood of the same point. For example, take
x = G(d) = cos(d) — 1 for d € (—m/2,7/2); we have G'(0) = 0, while
Kabs(O) = 2/71’.

2.2 Stability of Numerical Methods

We shall henceforth suppose the problem (2.1) to be well posed. A numerical
method for the approximate solution of (2.1) will consist, in general, of a
sequence of approximate problems

Fo(n,dy) =0 n>1 (2.12)

depending on a certain parameter n (to be defined case by case). The under-
stood expectation is that x,, — x as n — oo, i.e. that the numerical solution
converges to the exact solution. For that, it is necessary that d,, — d and that
F,, “approximates” F', as n — oo. Precisely, if the datum d of problem (2.1)
is admissible for F),, we say that (2.12) is consistent if

F,(z,d) = F,(x,d) — F(x,d) — 0 for n — o0, (2.13)

where z is the solution to problem (2.1) corresponding to the datum d.

The meaning of this definition will be made precise in the next chapters
for any single class of considered problems.

A method is said to be strongly consistent if F,,(z,d) = 0 for any value of
n and not only for n — oco.

In some cases (e.g., when iterative methods are used) problem (2.12) could
take the following form

Fo(Tn, Tp-1,---,Tn—gq,dn) =0 n > q, (2.14)

where xg,x1,...,24—1 are given. In such a case, the property of strong con-
sistency becomes F,(x,x,...,x,d) =0 for all n > q.
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Example 2.5 Let us consider the following iterative method (known as Newton’s
method and discussed in Section 6.2.2) for approximating a simple root a of a
function f: R — R,

f(zn-1)
fan)’
The method (2.15) can be written in the form (2.14) by setting Fy(Tn,Tn—1, f) =
Tn — Tn-1 + f(Tn-1)/f' (zn-1) and is strongly consistent since F},(«a,a, f) = 0 for
alln > 1.

Consider now the following numerical method (known as the composite midpoint

n>1. (2.15)

given xo, Tp = Tn—1 —

rule discussed in Section 9.2) for approximating = = f: (@) dt,

mn:HZf(%)’ n>1,
k=1

where H = (b—a)/n and ¢, = a+ (k — 1)H, k = 1,...,n + 1. This method
is consistent; it is also strongly consistent provided that f is a piecewise linear
polynomial.

More generally, all numerical methods obtained from the mathematical problem
by truncation of limit operations (such as integrals, derivatives, series, ...) are not
strongly consistent. °

Recalling what has been previously stated about problem (2.1), in order
for the numerical method to be well posed (or stable) we require that for any
fixed n, there exists a unique solution x,, corresponding to the datum d,,, that
the computation of z,, as a function of d, is unique and, furthermore, that
x, depends continuously on the data. More precisely, let d,, be an arbitrary
element of D,,, where D,, is the set of all admissible data for (2.12). Let dd,,
be a perturbation admissible in the sense that d,, + dd, € D,, and let dx,
denote the corresponding perturbation on the solution, that is

F.(zy + 0xp,dy + 0dy,) = 0.
Then we require that

Ing = no(dy,) > 0, Ky = Ko(d,,) such that

(2.16)
if [|0dn|| < 10 then ||0z, || < Ko|[6ds]-

As done in (2.4), we introduce for each problem in the sequence (2.12) the
quantities

62| /1l2n |
Kn dn = 775dn 7dn 5dn Dn P
() = sup { GRG0 0. o+ b

162 |
15dnl”

(2.17)

Kopsn(dy) = sup{ od, #0, d, +dd, € Dn} .

The numerical method is said to be well conditioned if K, (d,) is “small” for
any admissible datum d,,, ill conditioned otherwise. As in (2.6), let us consider



2.2 Stability of Numerical Methods 39

the case where, for each n, the functional relation (2.12) defines a mapping
G, between the sets of the numerical data and the solutions

xn = Gp(dy), thatis F,(Gn(dy),d,) =0. (2.18)
Assuming that G, is differentiable, we can obtain from (2.17)

o) = Gl Kapenld) = |G @) (219)

We observe that, in the case where the sets of admissible data in problems (2.1)
and (2.12) coincide, we can use in (2.16) and (2.17) the quantity d instead of
d,. In such a case, we can define the relative and absolute asymptotic condition
number corresponding to the datum d as follows

K™™(d) = lim sup K,(d), num(d) = lim sup Kops,n(d).

k—o0 n>k abs k—o00 n>k

Example 2.6 (Sum and subtraction) The function f : R*> — R, f(a,b) = a+b,
is a linear mapping whose gradient is the vector f'(a,b) = (1,1)”. Using the vector
norm || - |1 defined in (1.13) yields K(a,b) ~ (|a] + |b])/(Ja + b]), from which it
follows that summing two numbers of the same sign is a well conditioned opera-
tion, being K (a,b) ~ 1. On the other hand, subtracting two numbers almost equal
is ill conditioned, since |a 4+ b| < |a| + |b|. This fact, already pointed out in Ex-
ample 2.2, leads to the cancellation of significant digits whenever numbers can be
represented using only a finite number of digits (as in floating-point arithmetic, see
Sect. 2.5). °

Example 2.7 Consider again the problem of computing the roots of a polynomial
of second degree analyzed in Example 2.2. When p > 1 (separated roots), such
a problem is well conditioned. However, we generate an unstable algorithm if we
evaluate the root z_ by the formula z_ = p — y/p? — 1. This formula is indeed
subject to errors due to numerical cancellation of significant digits (see Sect.2.4)
that are introduced by the finite arithmetic of the computer. A possible remedy to
this trouble consists of computing x4 = p + /p? — 1 at first, then z— = 1/z4.
Alternatively, one can solve F(z,p) = 22 — 2pz + 1 = 0 using Newton’s method
(proposed in Example 2.5), which reads:

given o, Tn = &n_1 — (@o_1 — 2pTn_1+1)/(22n_1 —2p) = fu(p), n > 1.

Applying (2.19) for p > 1 yields K, (p) ~ |p|/|z»—p|. To compute K™"™(p) we notice
that, in the case when the algorithm converges, the solution x,, would converge to one
of the roots x4 or xz_; therefore, |z, —p| — /p? — 1 and thus K, (p) — K""™(p) ~

Ipl/ \/1)27—1, in perfect agreement with the value (2.8) of the condition number of
the exact problem.

We can conclude that Newton’s method for the search of simple roots of a second
order algebraic equation is ill conditioned if |p| is very close to 1, while it is well
conditioned in the other cases. °
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The final goal of numerical approximation is, of course, to build, through
numerical problems of the type (2.12), solutions z,, that “get closer” to the
solution of problem (2.1) as much as n gets larger. This concept is made
precise in the next definition.

Definition 2.2 The numerical method (2.12) is convergent iff

Ve > 0 Ing = no(e), 36 = d(ng,&) > 0 such that
(2.20)
Vn > ng(e), Yod, : ||0d,| < ¢ = ||lx(d) — zn(d+ ddy)|| < e,

where d is an admissible datum for the problem (2.1), z(d) is the corresponding
solution and x,(d + dd,,) is the solution of the numerical problem (2.12) with
datum d + dd,,. [ |

To verify the implication (2.20) it suffices to check that under the same
assumptions

|(d + 8dy) — 2 (d + 0dy)|| < (2.21)

DO ™

Indeed, thanks to (2.3) we have
2(d) — 2 (d + bdn)|| < [|2(d) — x(d + ddn) |
2 (d 4 6dn) — zn(d + 6dy)|| < Kollod, || + 5.

Choosing ¢ = min{ng,e/(2K)} one obtains (2.20).
Measures of the convergence of x,, to x are given by the absolute error or
the relative error, respectively defined as
|z — x|

E(xn) = |‘T - xn|7 Erel(xn) = (lfl’ 7é 0)' (2'22)

||

In the cases where x and x, are matrix or vector quantities, in addition to
the definitions in (2.22) (where the absolute values are substituted by suitable
norms) it is sometimes useful to introduce the relative error by component
defined as

C

irj |41

(2.23)

2.2.1 Relations between Stability and Convergence

The concepts of stability and convergence are strongly connected.
First of all, if problem (2.1) is well posed, a necessary condition in order for
the numerical problem (2.12) to be convergent is that it is stable.

Let us thus assume that the method is convergent, that is, (2.20) holds for
an arbitrary € > 0. We have
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[0zl = [[n(d + ddn) — 2 (d)|| < [lzn(d) — z(d)]|
+|lz(d) — z(d + 6dy) || + [|x(d + 0dy,) — xn(d + 6dy)||  (2.24)
< K(0(no,€),d)]|ody || + &,

having used (2.3) and (2.21) twice. Choosing now dd,, such that ||dd,| < no,
we deduce that ||dz,|/||0d,| can be bounded by Ko = K(d(ng,e),d) + 1,
provided that € < ||dd,,]|, so that the method is stable. Thus, we are interested
in stable numerical methods since only these can be convergent.

The stability of a numerical method becomes a sufficient condition for
the numerical problem (2.12) to converge if this latter is also consistent with
problem (2.1). Indeed, under these assumptions we have

|2(d + ddn) — zn(d + ddy)|| < ||lz(d + 0dy,) — z(d)||
+z(d) — 2 (d)|| + |20 (d) — zn(d + 0d,)||.

Thanks to (2.3), the first term at right-hand side can be bounded by ||0d,]|
(up to a multiplicative constant independent of dd,,). A similar bound holds
for the third term, due to the stability property (2.16). Finally, concerning
the remaining term, if F;, is differentiable with respect to the variable z, an
expansion in a Taylor series gives

Fuo(d),d) — Falara(d),d) = 5 5. (2(d) — ().

for a suitable Z “between” x(d) and z,(d). Assuming also that JF, /Ox is
invertible, we get

-1
x(d) — x,(d) = (aalj;n) o [Fr(z(d),d) — Fp(zn(d),d)]. (2.25)

On the other hand, replacing F,,(z,(d),d) with F(x(d),d) (since both terms
are equal to zero) and passing to the norms, we find

(aFn ) )

07 /\@.a)
Thanks to (2.13) we can thus conclude that ||z(d) — 2, (d)|| — 0 for n — oc.
The result that has just been proved, although stated in qualitative terms,
is a milestone in numerical analysis, known as equivalence theorem (or Lax-
Richtmyer theorem): “for a consistent numerical method, stability is equivalent
to convergence”. A rigorous proof of this theorem is available in [Dah56] for

the case of linear Cauchy problems, or in [Lax65] and in [RMG67] for linear
well-posed initial value problems.

[2(d) — zn(d)]| <

[ (x(d), d) — F(x(d), d)|.
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2.3 A priori and a posteriori Analysis

The stability analysis of a numerical method can be carried out following
different strategies:

1. forward analysis, which provides a bound to the variations ||dz,| on the
solution due to both perturbations in the data and to errors that are
intrinsic to the numerical method;

2. backward analysis, which aims at estimating the perturbations that should
be “impressed” to the data of a given problem in order to obtain the
results actually computed under the assumption of working in exact
arithmetic. Equivalently, given a certain computed solution Z,,, backward
analysis looks for the perturbations dd,, on the data such that F, (Z,,,d, +
dd,,) = 0. Notice that, when performing such an estimate, no account at
all is taken into the way Z,, has been obtained (that is, which method has
been employed to generate it).

Forward and backward analyses are two different instances of the so called
a priori analysis. This latter can be applied to investigate not only the stability
of a numerical method, but also its convergence. In this case it is referred to as
a priort error analysis, which can again be performed using either a forward
or a backward technique.

A priori error analysis is distincted from the so called a posteriori error
analysis, which aims at producing an estimate of the error on the grounds of
quantities that are actually computed by a specific numerical method. Typi-
cally, denoting by Z,, the computed numerical solution, approximation to the
solution z of problem (2.1), the a posteriori error analysis aims at evaluating
the error x — Z,, as a function of the residual r, = F(Z,,d) by means of
constants that are called stability factors (see [EEHJ96]).

Example 2.8 For the sake of illustration, consider the problem of finding the zeros
a1, ...,an of a polynomial p,(z) = Z::o apz® of degree n.

Denoting by pn(x) = ZZ:O arz® a perturbed polynomial whose zeros are d;,
forward analysis aims at estimating the error between two corresponding zeros «;
and &;, in terms of the variations on the coefficients ar — ax, kK =0,1,...,n.

On the other hand, let {&; } be the approximate zeros of p,, (computed somehow).
Backward analysis provides an estimate of the perturbations dar which should be
impressed to the coefficients so that ZZ:O(ak +dax)aF = 0, for a fixed G&;. The goal
of a posteriori error analysis would rather be to provide an estimate of the error
a; — &; as a function of the residual value p,(&;).

This analysis will be carried out in Section 6.1. °

Example 2.9 Consider the linear system Ax=b, where A€ R™*" is a nonsingular
matrix.

For the perturbed system Ax = B, forward analysis provides an estimate of the
error x — X in terms of A — A and b — b, while backward analysis estimates the
perturbations A = (da;;) and db = (db;) which should be impressed to the entries
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of A and b in order to get (A + dA)X, = b + éb, X, being the solution of the
linear system (computed somehow). Finally, a posteriori error analysis looks for an
estimate of the error x — X,, as a function of the residual r,, = b — AX,,.

We will develop this analysis in Section 3.1. °

It is important to point out the role played by the a posteriori analysis in devis-
ing strategies for adaptive error control. These strategies, by suitably changing
the discretization parameters (for instance, the spacing between nodes in the
numerical integration of a function or a differential equation), employ the a
posteriori analysis in order to ensure that the error does not exceed a fixed
tolerance.

A numerical method that makes use of an adaptive error control is called
adaptive numerical method. In practice, a method of this kind applies in the
computational process the idea of feedback, by activating on the grounds of
a computed solution a convergence test which ensures the control of error
within a fixed tolerance. In case the convergence test fails, a suitable strategy
for modifying the discretization parameters is automatically adopted in order
to enhance the accuracy of the solution to be newly computed, and the overall
procedure is iterated until the convergence check is passed.

2.4 Sources of Error in Computational Models

Whenever the numerical problem (2.12) is an approximation to the mathe-
matical problem (2.1) and this latter is in turn a model of a physical problem
(which will be shortly denoted by PP), we shall say that (2.12) is a computa-
tional model for PP.

In this process the global error, denoted by e, is expressed by the difference
between the actually computed solution, Z,, and the physical solution, xpp,
of which x provides a model. The global error e can thus be interpreted as
being the sum of the error e,, of the mathematical model, given by x — zpy,
and the error e, of the computational model, Z,, — x, that is e = e,, + e, (see
Figure 2.1).

The error e, will in turn take into account the error of the mathematical
model in strict sense (that is, the extent at which the functional equation (2.1)
does realistically describe the problem PP) and the error on the data (that is,
how much accurately does d provide a measure of the real physical data). In
the same way, e, turns out to be the combination of the numerical discretiza-
tion error e, = x, — x, the error ¢, introduced by the numerical algorithm
and the roundoff error introduced by the computer during the actual solution
of problem (2.12) (see Sect.2.5).

In general, we can thus outline the following sources of error:

1. errors due to the model, that can be controlled by a proper choice of the
mathematical model,
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PP : z,,
F(z,d) =0 e - Ty
k‘ /ea'
F.(x,,d,) =0

Fig. 2.1. Errors in computational models

2. errors in the data, that can be reduced by enhancing the accuracy in the
measurement of the data themselves;

3. truncation errors, arising from having replaced in the numerical model
limits by operations that involve a finite number of steps;

4. rounding errors.

The errors at the items 3. and 4. give rise to the computational error. A
numerical method will thus be convergent if this error can be made arbitrarily
small by increasing the computational effort. Of course, convergence is the
primary, albeit not unique, goal of a numerical method, the others being
accuracy, reliability and efficiency.

Accuracy means that the errors are small with respect to a fixed tolerance.
It is usually quantified by the order of infinitesimal of the error e,, with respect
to the discretization characteristic parameter (for instance the largest grid
spacing between the discretization nodes). By the way, we notice that machine
precision does not limit, on theoretical grounds, the accuracy.

Reliability means it is likely that the global error can be guaranteed to be
below a certain tolerance. Of course, a numerical model can be considered to
be reliable only if suitably tested, that is, successfully applied to several test
cases.

Efficiency means that the computational complexity that is needed to con-
trol the error (that is, the amount of operations and the size of the memory
required) is as small as possible.

Having encountered the term algorithm several times in this section, we can-
not refrain from providing an intuitive description of it. By algorithm we
mean a directive that indicates, through elementary operations, all the pas-
sages that are needed to solve a specific problem. An algorithm can in turn
contain sub-algorithms and must have the feature of terminating after a fi-
nite number of elementary operations. As a consequence, the executor of the
algorithm (machine or human being) must find within the algorithm itself all
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the instructions to completely solve the problem at hand (provided that the
necessary resources for its execution are available).

For instance, the statement that a polynomial of second degree surely
admits two roots in the complex plane does not characterize an algorithm,
whereas the formula yielding the roots is an algorithm (provided that the sub-
algorithms needed to correctly execute all the operations have been defined
in turn).

Finally, the complexity of an algorithm is a measure of its executing time.
Calculating the complexity of an algorithm is therefore a part of the analysis
of the efficiency of a numerical method. Since several algorithms, with differ-
ent complexities, can be employed to solve the same problem P, it is useful to
introduce the concept of complexity of a problem, this latter meaning the com-
plexity of the algorithm that has minimum complexity among those solving
P. The complexity of a problem is typically measured by a parameter directly
associated with P. For instance, in the case of the product of two square
matrices, the computational complexity can be expressed as a function of a
power of the matrix size n (see, [Str69]).

2.5 Machine Representation of Numbers

Any machine operation is affected by rounding errors or roundoff. They are
due to the fact that on a computer only a finite subset of the set of real
numbers can be represented. In this section, after recalling the positional
notation of real numbers, we introduce their machine representation.

2.5.1 The Positional System

Let a base 8 € N be fixed with 8 > 2, and let x be a real number with a
finite number of digits x; with 0 < x < g for kK = —m, ..., n. The notation
(conventionally adopted)

z3 = (1) [zpTp_1...2120.C1Z_2... T p], Tp # 0 (2.26)

is called the positional representation of x with respect to the base 3. The
point between zy and z_; is called decimal point if the base is 10, binary
point if the base is 2, while s depends on the sign of (s = 0 if x is positive,
1 if negative). Relation (2.26) actually means

xTp = (—1)8 ( i mkﬁk> .
k=—m

Example 2.10 The conventional writing x10 = 425.33 denotes the number z =
4-10°42-104+54+3-10"* +3-10"2, while s = 425.33 would denote the real
number z =4-62+2-6+5+3-6"1+3-672. A rational number can of course have
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a finite number of digits in a base and an infinite number of digits in another base.
For example, the fraction 1/3 has infinite digits in base 10, being x19 = 0.3, while
it has only one digit in base 3, being z3 = 0.1. °

Any real number can be approximated by numbers having a finite represen-
tation. Indeed, having fixed the base (3, the following property holds

Ve >0, Vzg € R, Jyg € Rsuch that |yg — 23| < e,

where yg has finite positional representation.
In fact, given the positive number g = v,2p—1...20.2_1...2_p, ... With a
number of digits, finite or infinite, for any » > 1 one can build two numbers

r—1
x(ﬁl) — an,kﬂnikv x(gu) — x(ﬁl) + anrjtl’
k=0

having r digits, such that xg) < zg < xgu) and xgu) — xg) = prortlOf

r is chosen in such a way that 8" "*! < &, then taking yg equal to xg)
or x(ﬁu) yields the desired inequality. This result legitimates the computer

representation of real numbers (and thus by a finite number of digits).

Although theoretically speaking all the bases are equivalent, in the com-
putational practice three are the bases generally employed: base 2 or binary,
base 10 or decimal (the most natural) and base 16 or hexadecimal. Almost all
modern computers use base 2, apart from a few which traditionally employ
base 16. In what follows, we will assume that [ is an even integer.

In the binary representation, digits reduce to the two symbols 0 and 1,
called bits (binary digits), while in the hexadecimal case the symbols used
for the representation of the digits are 0,1,...,9,A,B,C,D,E,F. Clearly, the
smaller the adopted base, the longer the string of characters needed to repre-
sent the same number.

To simplify notations, we shall write = instead of x3, leaving the base 3
understood.

2.5.2 The Floating-point Number System

Assume a given computer has N memory positions in which to store any
number. The most natural way to make use of these positions in the repre-
sentation of a real number x different from zero is to fix one of them for its
sign, N — k — 1 for the integer digits and k for the digits beyond the point, in
such a way that

r = (—1)S . [aN_gaN_g...ak.ak_l...ao] s (2.27)

s being equal to 1 or 0. Notice that one memory position is equivalent to
one bit storage only when § = 2. The set of numbers of this kind is called
fized-point system. Equation (2.27) stands for
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N-—-2

r=(=1)"- "> a;5 (2.28)
j=0

and therefore this representation amounts to fixing a scaling factor for all the
representable numbers.

The use of fixed point strongly limits the value of the minimum and maximum
numbers that can be represented on the computer, unless a very large number
N of memory positions is employed. This drawback can be easily overcome
if the scaling in (2.28) is allowed to be varying. In such a case, given a non
vanishing real number z, its floating-point representation is given by

r= (-1 (0.a1az...a) - ¢ = (=1)% -m -, (2.29)

where ¢ € N is the number of allowed significant digits a; (with 0 < a; < 8—1),
m = aias . ..a; an integer number called mantissa such that 0 < m < 8¢ — 1
and e an integer number called exponent. Clearly, the exponent can vary
within a finite interval of admissible values: we let L < e < U (typically
L <0and U > 0). The N memory positions are now distributed among the
sign (one position), the significant digits (¢ positions) and the digits for the
exponent (the remaining N —¢— 1 positions). The number zero has a separate
representation.

Typically, on the computer there are two formats available for the floating-
point number representation: single and double precision. In the case of binary
representation, these formats correspond in the standard version to the rep-
resentation with N = 32 bits (single precision)

1 8 bits 23 bits

[sIL_e ] m

and with N = 64 bits (double precision)

1 11 bits 52 bits

| e | m |

Let us denote by

F(B,t,L,U) = {0} U {m ER: z= (—1)5,662%62}

the set of floating-point numbers with t significant digits, base > 2,0 < a; <
B —1, and range (L,U) with L <e < U.

In order to enforce uniqueness in a number representation, it is typically
assumed that a; # 0 and m > 3'~!. In such an event a; is called the principal
significant digit, while a; is the last significant digit and the representation
of z is called normalized. The mantissa m is now varying between 3*~! and

Bt —1.
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For instance, in the case § = 10, t =4, L = —1 and U = 4, without the as-
sumption that a; # 0, the number 1 would admit the following representations

0.1000 - 10, 0.0100 - 102, 0.0010 - 103, 0.0001 - 10*.

To always have uniqueness in the representation, it is assumed that also the
number zero has its own sign (typically s = 0 is assumed).

It can be immediately noticed that if x € F(8,¢,L,U) then also —z €
F(6,t,L,U). Moreover, the following lower and upper bounds hold for the
absolute value of x

Lmin = BLil S |:E| S /GU(]- - Bit) = Tmaz- (230)
The cardinality of F(3,t, L,U) (henceforth shortly denoted by F) is
card F =2(8—-1)3" (U~ L+1)+1.

From (2.30) it turns out that it is not possible to represent any number (apart
from zero) whose absolute value is less than z,,;,. This latter limitation can
be overcome by completing F by the set Fp of the floating-point de-normalized
numbers obtained by removing the assumption that a; is non null, only for
the numbers that are referred to the minimum exponent L. In such a way
the uniqueness in the representation is not lost and it is possible to generate
numbers that have mantissa between 1 and 3¢~ —1 and belong to the interval
(—BL=1,BL=1). The smallest number in this set has absolute value equal
to gLt

Example 2.11 The positive numbers in the set F(2,3, —1,2) are

(0.111) - 2% = g (0.110) - 22 =3, (0.101) - 2% = g (0.100) - 22 = 2,

(0.111) -2 = Z, (0.110) - 2 = g (0.101) -2 = g, (0.100) -2 =1,

7 3 5 1
A11) = - 110) = - 101) = = 1 ==
un=1  uo=>2  ©on=2,  (©0100)=

1 7 .3 1 5 1

(0.111) - 27" = 6’ (0.110) - 27" = 3’ (0.101)-27" = 6’ (0.100) - 27" = 1
They are included between xin = gt =2"2= 1/4 and Tmaz = BU(I -8 =
22(1-27%) = 7/2. As a whole, we have (6—1)3"H(U~L+1) = (2-1)2°7}(2+1+1) =
16 strictly positive numbers. Their opposites must be added to them, as well as the
number zero. We notice that when 3 = 2, the first significant digit in the normalized
representation is necessarily equal to 1 and thus it may not be stored in the computer
(in such an event, we call it hidden bit).

When considering also the positive de-normalized numbers, we should complete
the above set by adding the following numbers
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1
, ((001)g - 271 = =,

3
011)-271 =
(011)2 16

= (.010)2 - 27t =
157 (010)2

0| =

According to what previously stated, the smallest de-normalized number is X~ =
27173 = 1/16. o

2.5.3 Distribution of Floating-point Numbers

The floating-point numbers are not equally spaced along the real line, but they
get dense close to the smallest representable number. It can be checked that
the spacing between a number x € F and its next nearest y € F, where both
x and y are assumed to be non null, is at least 3~ leys|z| and at most ep|z|,
being ey = 't the machine epsilon. This latter represents the distance
between the number 1 and the nearest floating-point number, and therefore it
is the smallest number of F such that 1+ e;; > 1.
Having instead fixed an interval of the form [3¢, 3°*1], the numbers of F that
belong to such an interval are equally spaced and have distance equal to 5.
Decreasing (or increasing) by one the exponent gives rise to a decrement (or
increment) of a factor [ of the distance between consecutive numbers.

Unlike the absolute distance, the relative distance between two consecutive
numbers has a periodic behavior which depends only on the mantissa m.
Indeed, denoting by (—1)*m(x)3°~¢ one of the two numbers, the distance Az
from the successive one is equal to (—1)*3¢~t, which implies that the relative
distance is

Ax (=1)#8e—t 1

T T Cm@s - m) =

Within the interval [3¢, 3¢*1], the ratio in (2.31) is decreasing as x increases
since in the normalized representation the mantissa varies from 8¢~! to gt —1
(not included). However, as soon as x = 3°*1, the relative distance gets back
to the value 37! and starts decreasing on the successive intervals, as shown
in Figure 2.2. This oscillatory phenomenon is called wobbling precision and
the greater the base (3, the more pronounced the effect. This is another reason
why small bases are preferably employed in computers.

2.5.4 IEC/IEEE Arithmetic

The possibility of building sets of floating-point numbers that differ in base,
number of significant digits and range of the exponent has prompted in the
past the development, for almost any computer, of a particular system F. In
order to avoid this proliferation of numerical systems, a standard has been
fixed that is nowadays almost universally accepted. This standard was devel-
oped in 1985 by the Institute of Electrical and Electronics Engineers (shortly,
IEEE) and was approved in 1989 by the International Electronical Commis-
sion (IEC) as the international standard IEC559 and it is now known by this
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2- 23

2- 24 |

Fig. 2.2. Variation of relative distance for the set of numbers F(2,24, —125,128)
IEC/IEEE in single precision

Table 2.1. Lower or upper limits in the standard IEC559 for the extended format
of floating-point numbers

single double single  double

N >43 bits > 79 bits t > 32 > 64
L < -1021 <16381 U >1024 > 16384

Table 2.2. IEC559 codings of some exceptional values

value exponent mantissa
+0 L—-1 0
+oo U+1 0
NaN U—+1 #0

name (IEC is an organization analogue to the International Standardization
Organization (ISO) in the field of electronics). The standard IEC559 endorses
two formats for the floating-point numbers: a basic format, made by the sys-
tem F(2,24,—125,128) for the single precision, and by F(2,53, —1021,1024)
for the double precision, both including the de-normalized numbers, and an
extended format, for which only the main limitations are fixed (see Table 2.1).
Almost all the computers nowadays satisfy the requirements above. We sum-
marize in Table 2.2 the special codings that are used in IEC559 to deal with
the values +0, +00 and with the so-called non numbers (shortly, NaN, that
is not a number), which correspond for instance to 0/0 or to other exceptional
operations.

2.5.5 Rounding of a Real Number in its Machine Representation

The fact that on any computer only a subset F(f3,t,L,U) of R is actually
available poses several practical problems, first of all the representation in F
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of any given real number. To this concern, notice that, even if z and y were
two numbers in [F, the result of an operation on them does not necessarily
belong to F. Therefore, we must define an arithmetic also on F.

The simplest approach to solve the first problem consists of rounding z € R
in such a way that the rounded number belongs to F. Among all the possible
rounding operations, let us consider the following one. Given z € R in the
normalized positional notation let us substitute x by its representant fi(z) in
F, defined as

Fl(x) = (=1)°(0.avas ... @) - B°, @ — {ZZ o ! e ;g?g (2.32)

The mapping fl : R — F is the most commonly used and is called rounding
(in the chopping one would take more trivially a; = a;). Clearly, fi(z) = « if
2 € F and moreover fl(x) < fl(y) if x <y Vz,y € R (monotonicity property).

Remark 2.3 (Overflow and underflow) Everything written so far holds
only for the numbers that in (2.29) have exponent e within the range of F. If,
indeed, x € (—00, —Tmaz) U (Tmaz, 00) the value fl(x) is not defined, while
if € (—%min, Tmin) the operation of rounding is defined anyway (even in
absence of de-normalized numbers). In the first case, if = is the result of an
operation on numbers of F, we speak about overflow, in the second case about
underflow (or graceful underflow if de-normalized numbers are accounted for).
The overflow is handled by the system through an interrupt of the executing
program. |

Apart from exceptional situations, we can easily quantify the error, ab-
solute and relative, that is made by substituting fI(x) for z. The following
result can be shown (see for instance [Hig96], Theorem 2.2).

Property 2.1 If x € R is such that ., < |2| < Tmas, then

fl(xz) = x(1+9) with |0] <u (2.33)
where
Ll 1
u= 26 = 5eu (2.34)

is the so-called roundoff unit (or machine precision).

As a consequence of (2.33), the following bound holds for the relative error

Erel(x) = |x|£l(m)| <u, (235)

while, for the absolute error, one gets

E(x) =z — fl(x)| < B8 (a1 ...ar.ai41...) — (ay...a4)|.
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From (2.32), it follows that

|(a1...at.at+1...)f(al...dt)|§ﬂ71 y

B
2
from which
1
E(l') § 557t+e.

Remark 2.4 In the MATLAB environment it is possible to know immedi-
ately the value of €);, which is given by the system variable eps. |

2.5.6 Machine Floating-point Operations

As previously stated, it is necessary to define on the set of machine numbers
an arithmetic which is analogous, as far as possible, to the arithmetic in R.
Thus, given any arithmetic operation o : R x R — R on two operands in R
(the symbol o may denote sum, subtraction, multiplication or division), we
shall denote by [o] the corresponding machine operation

[0c]:RxR —TF, z[o]y= fl(fl(x) o fl(y)).

From the properties of floating-point numbers one could expect that for the
operations on two operands, whenever well defined, the following property
holds: Vz,y € F, 30 € R such that

z[o]y=(zxoy)(l+9) with |§] < u. (2.36)

In order for (2.36) to be satisfied when o is the operator of subtraction, it will
require an additional assumption on the structure of the numbers in F, that
is the presence of the so-called round digit (which is addressed at the end of
this section). In particular, when o is the sum operator, it follows that for all
x,y € F (see Exercise 10)

@ [+]y — (= + )

|z + y|

2| + |yl
|z + 9]

<u(l+u) u, (2.37)
so that the relative error associated with every machine operation will be
small, unless = + y is not small by itself. An aside comment is deserved by
the case of the sum of two numbers close in module, but opposite in sign.
In fact, in such a case x + y can be quite small, this generating the so-called
cancellation errors (as evidenced in Example 2.6).

It is important to notice that, together with properties of standard arith-
metic that are preserved when passing to floating-point arithmetic (like, for
instance, the commutativity of the sum of two addends, or the product of two
factors), other properties are lost. An example is given by the associativity of
sum: it can indeed be shown (see Exercise 11) that in general
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Table 2.3. Results for some exceptional operations

exception examples result
non valid operation 0/0,0-c0 NaN
over flow +o0
division by zero 1/0 +oo
under flow subnormal numbers

a[+] y[+]2) # @[+]y) [+] 2

We shall denote by flop the single elementary floating-point operation (sum,
subtraction, multiplication or division) (the reader is warned that in some
texts flop identifies an operation of the form a + b - ¢). According to the
previous convention, a scalar product between two vectors of length n will
require 2n — 1 flops, a product matrix-vector 2(m — 1)n flops if the matrix
is n x m and finally, a product matrix-matrix 2(r — 1)mn flops if the two
matrices are m x r and r X n respectively.

Remark 2.5 (IEC559 arithmetic) The IEC559 standard also defines a
closed arithmetic on F, this meaning that any operation on it produces a
result that can be represented within the system itself, although not neces-
sarily being expected from a pure mathematical standpoint. As an example,
in Table 2.3 we report the results that are obtained in exceptional situations.
The presence of a NaN (Not a Number) in a sequence of operations automat-
ically implies that the result is a NaN. General acceptance of this standard
is still ongoing. |

We mention that not all the floating-point systems satisfy (2.36). One of the
main reasons is the absence of the round digit in subtraction, that is, an extra-
bit that gets into action on the mantissa level when the subtraction between
two floating-point numbers is performed. To demonstrate the importance of
the round digit, let us consider the following example with a system F having
(=10 and t = 2. Let us subtract 1 and 0.99. We have

10t - 0.1 10* - 0.10
10°-0.99 = 10! - 0.09

101 -0.01 —[10°-0.10

that is, the result differs from the exact one by a factor 10. If we now execute
the same subtraction using the round digit, we obtain the exact result. Indeed

10'-0.1  10'-0.10
10°-0.99 = 10" - 0.09[9 ]

10" -0.0001] — [10° - 0.01

In fact, it can be shown that addition and subtraction, if executed without
round digit, do not satisfy the property
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fllz £ y) = (£ y)(1+6) with 8] < u,
but the following one
fllz+y) =21+ a) £y(l+B) with || +|8] < u.

An arithmetic for which this latter event happens is called aberrant. In some
computers the round digit does not exist, most of the care being spent on
velocity in the computation. Nowadays, however, the trend is to use even two
round digits (see [HP94] for technical details about the subject).

2.6 Exercises

1. Use (2.7) to compute the condition number K (d) of the following expressions
MNz-a"=0,a>0(2)d—z+1=0,

d being the datum, a a parameter and = the “unknown”.
[Solution : (1) K(d) ~ |d||logal, (2) K(d) =|d|/|d + 1].]

2. Study the well posedness and the conditioning in the infinity norm of the fol-
lowing problem as a function of the datum d: find z and y such that

r+dy =1,
der+y=0.

d

NE
It is well-posed if A is nonsingular, i.e., if d # 1. In such a case, Koo (A) =
(1] +1)/(Id] = 1)|.]

3. Study the conditioning of the solving formula z+ = —p++/p? + ¢ for the second
degree equation x® + 2px — ¢ with respect to changes in the parameters p and
q separately.

[Solution : K(p) = |p|/\/P* + ¢, K(q) = |a|/(2lz+|\/P?> +q)]

4. Consider the following Cauchy problem

Qo

[Solution : the given problem is a linear system whose matrix is A = {

{w’@) — e (acos(t) — sin(t)) , ¢ > 0, (2.38)

z(0) = o,

whose solution is z(t) = zoe® cos(t) (a is a given real number). Study the con-
ditioning of (2.38) with respect to the choice of the initial datum and check that
on unbounded intervals it is well conditioned if a < 0, while it is ill conditioned
ifa>0.
[Hint : consider the definition of Kaps(a).]

5. Let T # 0 be an approximation of a nonnull quantity z. Find the relation
between the relative error € = |z — Z|/|z| and E = |z — Z|/|z].

6. Determine all the elements of the set F = (10,6, —9,9), in both normalized and
de-normalized cases.
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Consider the set of the de-normalized numbers Fp and study the behavior of
the absolute distance and of the relative distance between two of these numbers.
Does the wobbling precision effect arise again?

[Hint : for these numbers, uniformity in the relative density is lost. As a con-
sequence, the absolute distance remains constant (equal to ﬂfrt), while the
relative one rapidly grows as = tends to zero.]

What is the value of 0° in IEEE arithmetic?

[Solution : ideally, the outcome should be NaN. In practice, IEEE systems
recover the value 1. A motivation of this result can be found in [Gol91].]

Show that, due to cancellation errors, the following sequence

1
Iy = log Iy +51_ 1= —

= 2.39
5 ka k 1323 , 1, ( )

is not well suited to finite arithmetic computations of the integral I,, =

n
fol er 5das when n is sufficiently large, although it works in infinite arithmetic.
x

[Hint : consider the initial perturbed datum In=1Iy+ po and study the propa-
gation of the error po within (2.39).]

Prove (2.37).

[Solution : notice that

o+ — (z +v)| I:cy D+ AW | |fi(@) - a+ fiy) —

[z + yl u+m |z + yl

Then, use (2.36) and (2.35).]
Given z,y, z € F with z + y, y + 2z, * + y + z that fall into the range of F, show
that

I(xy)z—(a:+y+z)|sclz(2|x+y|+\z\)u
e [+] (y —(z+y+2)| < Ca = (2] +2Jy + 2|)u.

Which among the following approximations of 7,

11 1 1
41— 4= .
T ( 37577 )

(0.5)3 (0.5)>  3-5(0.5)
3+245+2467+”>

(2.40)

7r—6<0.5—|—

better limits the propagation of rounding errors? Compare using MATLAB the
obtained results as a function of the number of the terms in each sum in (2.40).
Analyze the stability, with respect to propagation of rounding errors, of the
following two MATLAB codes to evaluate f(z) = (e* —1)/z for |z] < 1

% Algorithm 1 % Algorithm 2

if x == y = exp (x);

else f=1
f=(exp(x)-1)/x; else

end f=(y-1)/log(v)

end
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[Solution : the first algorithm is inaccurate due to cancellation errors, while the
second one (in presence of round digit) is stable and accurate.]

In binary arithmetic one can show [Dek71] that the rounding error in the sum
of two numbers a and b, with a > b, can be computed as

(@[+]v) [=]a)[=]b).

Based on this property, a method has been proposed, called Kahan compensated
sum, to compute the sum of n addends a; in such a way that the rounding
errors are compensated. In practice, letting the initial rounding error e; = 0
and s; = a1, at the i-th step, with ¢ > 2, the algorithm evaluates y; = x; —e;_1,
the sum is updated setting s; = s;—1+v; and the new rounding error is computed
as e; = (8;i — si—1) — ¥;. Implement this algorithm in MATLAB and check its
accuracy by evaluating again the second expression in (2.40).

The area A(T') of a triangle T with sides a, b and ¢, can be computed using the
following formula

A(T) = V/p(p = a)p — D)(p — ),
where p is half the perimeter of 7. Show that in the case of strongly deformed
triangles (a ~ b+ ¢), this formula lacks accuracy and check this experimentally.
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3

Direct Methods for the Solution of Linear
Systems

A system of m linear equations in n unknowns consists of a set of algebraic
relations of the form

n
Zai]‘.ﬁj =b;,i=1,...,m, (3]_)
J=1

where z; are the unknowns, a;; are the coefficients of the system and b; are
the components of the right hand side. System (3.1) can be more conveniently
written in matrix form as

Ax = b, (3.2)

where we have denoted by A = (a;;) € C™*™ the coefficient matrix, by
b=(b;) € C™ the right side vector and by x=(z;) € C™ the unknown vector,
respectively. We call a solution of (3.2) any n-tuple of values x; which satisfies
(3.1).

In this chapter we shall be mainly dealing with real-valued square systems
of order n, that is, systems of the form (3.2) with A € R™*" and b € R". In
such cases existence and uniqueness of the solution of (3.2) are ensured if one
of the following (equivalent) hypotheses holds:

1. A is invertible;
2. rank(A)=n;
3. the homogeneous system Ax=0 admits only the null solution.

The solution of system (3.2) is formally provided by Cramer’s rule

Y
T et(A)

j=1,...,n, (3.3)

where A; is the determinant of the matrix obtained by substituting the j-th
column of A with the right hand side b. This formula is, however, of little prac-
tical use. Indeed, if the determinants are evaluated by the recursive relation
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(1.4), the computational effort of Cramer’s rule is of the order of (n + 1)! flops
and therefore turns out to be unacceptable even for small dimensions of A (for
instance, a computer able to perform 10° flops per second would take 9.6-10%7
years to solve a linear system of only 50 equations).

For this reason, numerical methods that are alternatives to Cramer’s rule have
been developed. They are called direct methods if they yield the solution of
the system in a finite number of steps, iterative if they require (theoretically)
an infinite number of steps. Iterative methods will be addressed in the next
chapter. We notice from now on that the choice between a direct and an itera-
tive method does not depend only on the theoretical efficiency of the scheme,
but also on the particular type of matrix, on memory storage requirements
and, finally, on the architecture of the computer.

3.1 Stability Analysis of Linear Systems

Solving a linear system by a numerical method invariably leads to the intro-
duction of rounding errors. Only using stable numerical methods can keep
away the propagation of such errors from polluting the accuracy of the solu-
tion. In this section two aspects of stability analysis will be addressed.

Firstly, we will analyze the sensitivity of the solution of (3.2) to changes in
the data A and b (forward a priori analysis). Secondly, assuming that an ap-
proximate solution X of (3.2) is available, we shall quantify the perturbations
on the data A and b in order for X to be the exact solution of a perturbed
system (backward a priori analysis). The size of these perturbations will in
turn allow us to measure the accuracy of the computed solution X by the use
of a posteriori analysis.

3.1.1 The Condition Number of a Matrix
The condition number of a matrix A € C"*" is defined as
K(A) = [|A]l [[A71], (3.4)

where ||-|| is an induced matrix norm. In general K (A) depends on the choice of
the norm; this will be made clear by introducing a subscript into the notation,
for instance, Koo (A) = ||Alls [|A™!||oo. More generally, K,(A) will denote the
condition number of A in the p-norm. Remarkable instances are p =1, p = 2
and p = oo (we refer to Exercise 1 for the relations among K1(A), K3(A) and
Kao(A)).

As already noticed in Example 2.3, an increase in the condition number
produces a higher sensitivity of the solution of the linear system to changes
in the data. Let us start by noticing that K(A) > 1 since

L= [[AATH| < AL IATH] = K (A).
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Moreover, K(A™!) = K(A) and Va € C with a # 0, K(aA) = K(A). Finally,
if A is orthogonal, K5(A) = 1 since ||Allz = /p(ATA) = /p(I) = 1 and
A~! = AT, The condition number of a singular matrix is set equal to infinity.

For p = 2, K5(A) can be characterized as follows. Starting from (1.21), it
can be proved that

o1(A)
on(A)’
where 01(A) and 0,(A) are the maximum and minimum singular values of

A (see Property 1.7). As a consequence, in the case of symmetric positive
definite matrices we have

Ka(A) = Al A7 |2 =

Ka(A) = 2797 p(A)p(AY), (3.5)

/\min

where A4 and A, are the maximum and minimum eigenvalues of A. To
check (3.5), notice that

HAHQ Y p(ATA) =V p(AQ) =V /\gnax = Mnaz-

Moreover, since A(A™1) = 1/A(A), one gets |A7Y|2 = 1/Amin from which
(3.5) follows. For that reason, Ko(A) is called spectral condition number.

Remark 3.1 Define the relative distance of A € C"*" from the set of singular
matrices with respect to the p-norm by

A
dist,(A) = min { ||6Ap : A+ 0A s singular} .
P

It can then be shown that ([Kah66], [Gas83])

1

Ky(A)

Equation (3.6) suggests that a matrix A with a high condition number can
behave like a singular matrix of the form A+J0A. In other words, null pertur-
bations in the right hand side do not necessarily yield nonvanishing changes in
the solution since, if A40A is singular, the homogeneous system (A+3JA)z = 0
does no longer admit only the null solution. Notice that if the following con-
dition holds

dist,(A) = (3.6)

AT IplI0A]lp < 1. (3.7)
then the matrix A+dJA is nonsingular (see, e.g., [Atk89], Theorem 7.12). N

Relation (3.6) seems to suggest that a natural candidate for measuring
the ill-conditioning of a matrix is its determinant, since from (3.3) one is
prompted to conclude that small determinants mean nearly-singular matri-
ces. However this conclusion is wrong, as there exist examples of matrices
with small (respectively, high) determinants and small (respectively, high)
condition numbers (see Exercise 2).
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3.1.2 Forward a priori Analysis

In this section we introduce a measure of the sensitivity of the system to
changes in the data. These changes will be interpreted in Section 3.10 as
being the effects of rounding errors induced by the numerical method used to
solve the system. For a more comprehensive analysis of the subject we refer
to [Dat95], [GL89], [Ste73] and [Var62].

Due to rounding errors, a numerical method for solving (3.2) does not
provide the exact solution but only an approximate one, which satisfies a per-
turbed system. In other words, a numerical method yields an (exact) solution
X + 0x of the perturbed system

(A + 6A)(x + 0x) = b + db. (3.8)

The next result provides an estimate of dx in terms of A and db.

Theorem 3.1 Let A € R™™™ be a nonsingular matriz and 6A € R" ™ be
such that (3.7) is satisfied for an induced matriz norm || - ||. Then, if x€ R"
is the solution of Ax=b with b € R™ (b # 0) and dx € R" satisfies (3.8) for
ob € R™,

6| K(A) 6b]  ||5A]|
[l = 1— K(A)||SA]/|A] ( bl A ) (3.9)

Proof. From (3.7) it follows that the matrix A™'6A has norm less than 1. Then,
due to Theorem 1.5, T4+ A~'§A is invertible and from (1.26) it follows that

1 1

I+ A'6A) ) < < .
T—JA-TA] = T [JA-T] [5A]

(3.10)

On the other hand, solving for dx in (3.8) and recalling that Ax = b, one gets
O0x =T+ A"'6A)""A7" (b — 6Ax),

from which, passing to the norms and using (3.10), it follows that

A—l
Jox] < Al (bl + Jaa] )

[A=H] l6A]]
Finally, dividing both sides by ||x|| (which is nonzero since b # 0 and A is nonsin-
gular) and noticing that [|x|| > ||b||/||A]|, the result follows. <&

Well-conditioning alone is not enough to yield an accurate solution of the
linear system. It is indeed crucial, as pointed out in Chapter 2, to resort
to stable algorithms. Conversely, ill-conditioning does not necessarily exclude
that for particular choices of the right side b the overall conditioning of the
system is good (see Exercise 4).

A particular case of Theorem 3.1 is the following.
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Theorem 3.2 Assume that the conditions of Theorem 3.1 hold and let
0A =0. Then

1 [8b] _ x| _
KA ol = =

|8bi|
bl

K(A) (3.11)
Proof. We will prove only the first inequality since the second one directly follows
from (3.9). Relation 6x = A~'§b yields ||6b|| < ||A|| ||6x]||. Multiplying both sides by
|Ix|| and recalling that ||x|| < [[A™*|| ||b|| it follows that ||x|| [|6b]] < K (A)|/b]| ||6x]|,
which is the desired inequality. <&

In order to employ the inequalities (3.9) and (3.11) in the analysis of propa-
gation of rounding errors in the case of direct methods, |[§A]| and ||db|| should
be bounded in terms of the dimension of the system and of the characteristics
of the floating-point arithmetic that is being used.

It is indeed reasonable to expect that the perturbations induced by a
method for solving a linear system are such that [|[§A] < v||A]| and ||db| <
v|Ib|l, v being a positive number that depends on the roundoff unit u (for
example, we shall assume henceforth that v = 8'~*, where /3 is the base and
t is the number of digits of the mantissa of the floating-point system F). In
such a case (3.9) can be completed by the following theorem.

Theorem 3.3 Assume that ||0A] < v||All, ||6b]] < v|b|| with v € RT and
JA € R™*"™, db € R™. Then, if YK(A) < 1 the following inequalities hold

Ix+ x| _ 1+7K(A)
el T 1= yK(A)

(3.12)

[[ox| 2y
Ix[| = 1—~K(A)

K(A). (3.13)

Proof. From (3.8) it follows that (I -+ A~'6A)(x + dx) = x + A~'db. Moreover,
since YK(A) < 1 and |[6A]| < v||A|| it turns out that T+ A~'6A is nonsingular.
Taking the inverse of such a matrix and passing to the norms we get ||x + dx|| <
[T+ ATSA) Y| (Hx|| + AT ||b\|) From Theorem 1.5 it then follows that

1
I+ ox] < —

T AT5A] (1]l +~ 1A (1ol

which implies (3.12), since ||AT'SA|| < yK(A) and ||b]| < ||A] [|x]|.
Let us prove (3.13). Subtracting (3.2) from (3.8) it follows that
Adx = —0A(x + 0x) + Ob.
Inverting A and passing to the norms, the following inequality is obtained
lox]| < |ATTSAI| [lx + &x|| + [[A'] [|ob]|

B (3.14)
< yK(A)[lx + x|l + A7 [[b].
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Dividing both sides by ||x|| and using the triangular inequality [|x + dx|| < ||ox]|| +
[[x||, we finally get (3.13). N

Remarkable instances of perturbations A and db are those for which [dA] <
~v]A| and |d0b] < 7|b| with v > 0. Hereafter, the absolute value notation
B = |A| denotes the matrix n x n having entries b;; = |a;;| with 4,5 =1,...,n
and the inequality C < D, with C,D € R™*" has the following meaning

Cij Sd” for ¢ = 1,...,m, _]:17,’!1
If || - |l is considered, from (3.14) it follows that

10 <7|| (AT AL [+ AT D] [loo
Xlloo = ° (1=l TAZH A] loo)[[X[loo

(3.15)

2y _
< AT AT [loo-
L= JAZH A] oo

Estimate (3.15) is generally too pessimistic; however, the following componen-
twise error estimates of dx can be derived from (3.15)

|0z;] < 7|r€)| Al |x +0x|,i=1,...,nif db=0,

| 7| b (3.16)
\5J:z|_ |(Z:)F|t|)|v = L. mifsA—o,
ol =Bl

being rg;) the row vector el A~1. Estimates (3.16) are more stringent than
(3.15), as can be seen in Example 3.1. The first inequality in (3.16) can be
used when the perturbed solution x 4+ dx is known, being henceforth x + dx
the solution computed by a numerical method.

In the case where |A~!| |b| = |x|, the parameter 7 in (3.15) is equal to 1.
For such systems the components of the solution are insensitive to perturba-
tions to the right side. A slightly worse situation occurs when A is a triangular
M-matrix and b has positive entries. In such a case v is bounded by 2n — 1,
since

ey AL x| < (2 — 1)l

For further details on the subject we refer to [Ske79], [CI95] and [Hig89].
Results linking componentwise estimates to normwise estimates through the
so-called hypernorms can be found in [ADR92].

Example 3.1 Consider the linear system Ax=Db with
« i o + i
A = s b =

0 1

Q=
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which has solution x = [, 1]

using (3.15) and (3.16). From

, where 0 < o < 1. Let us compare the results obtained

- - 2 T
AT AL x| = A7 o] = [a+ =1 (3.17)

it follows that the supremum of (3.17) is unbounded as o — 0, exactly as it happens
in the case of ||A||cc. On the other hand, the amplification factor of the error in
(3.16) is bounded. Indeed, the component of the maximum absolute value, z2, of
the solution, satisfies |r(TQ)| |A] |x|/|z2| = 1. .

3.1.3 Backward a priori Analysis

The numerical methods that we shall consider in the following do not require
the explicit computation of the inverse of A to solve Ax=b. However, we can
always assume that they yield an approximate solution of the form X = Cb,
where the matrix C, due to rounding errors, is an approximation of A~
In practice, C is very seldom constructed; in case this should happen, the
following result yields an estimate of the error that is made substituting C for
A~ (see [IK66], Chapter 2, Theorem 7).

Property 3.1 Let R = AC —1; if |R|| < 1, then A and C are nonsingular
and
ICI IRl ICILIR]

< A B < oAy <

s < . 3.18
IR A ] (3.18)

In the frame of backward a priori analysis we can interpret C as being the
inverse of A + 0A (for a suitable unknown 0A). We are thus assuming that
C(A + 6A) = 1. This yields

SA=C'-A=—-(AC-T)C"!'=-RC!
and, as a consequence, if |R|| < 1 it turns out that

IRI (A
Al < 2 1
I6All< T— IR’ (3.19)

having used the first inequality in (3.18), where A is assumed to be an ap-
proximation of the inverse of C (notice that the roles of C and A can be
interchanged).

3.1.4 A posteriori Analysis

Having approximated the inverse of A by a matrix C turns into having an
approximation of the solution of the linear system (3.2). Let us denote by y a
known approximate solution. The aim of the a posteriori analysis is to relate



66 3 Direct Methods for the Solution of Linear Systems

the (unknown) error e = y — x to quantities that can be computed using y
and C.

The starting point of the analysis relies on the fact that the residual vector
r = b — Ay is in general nonzero, since y is just an approximation to the
unknown exact solution. The residual can be related to the error through
Property 3.1 as follows. We have e = A~1(Ay — b) = —A~!r and thus, if
IR|| <1 then

[l €l

el < :
1R

(3.20)

Notice that the estimate does not necessarily require y to coincide with the
solution X = Cb of the backward a priori analysis. One could therefore think
of computing C only for the purpose of using the estimate (3.20) (for instance,
in the case where (3.2) is solved through the Gauss elimination method, one
can compute C a posteriori using the LU factorization of A, see Sections 3.3
and 3.3.1).

We conclude by noticing that if db is interpreted in (3.11) as being the
residual of the computed solution y = x + dx, it also follows that

el [l
i < K(A)—. (3.21)
]l bl
The estimate (3.21) is not used in practice since the computed residual is
affected by rounding errors. A more significant estimate (in the || - ||s norm)
is obtained letting T = fI(b — Ay) and assuming that T = r 4 dr with |dr| <
Yn+1(JA] ly| + |b|), where v,41 = (n+1)u/(1 — (n+1)u) > 0, from which we
have

lelloo - I ATH(F] + i1 (1AL ] + [Pl
I¥lleo [1¥lloo

Formulae like this last one are implemented in the library for linear algebra
LAPACK (see [ABB192]).

3.2 Solution of Triangular Systems

Consider the nonsingular 3x3 lower triangular system

l11 0 0 X1 b1
lo1 122 0 To | = | b2
I31 l32 133 x3 b3

Since the matrix is nonsingular, its diagonal entries /;;, ¢ = 1,2, 3, are nonva-
nishing, hence we can solve sequentially for the unknown values z;, 1 = 1,2, 3,
as follows
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€Ty = 51/111,
x9 = (by — lo121) /122,
x3 = (bg — I3171 — l322) /l33.

This algorithm can be extended to systems n x n and is called forward sub-
stitution. In the case of a system Lx=b, with L being a nonsingular lower
triangular matrix of order n (n > 2), the method takes the form

_b
L’

1 i—1
Xr; = — bi—glijxj ,2'22,...,71.
Lii ;
Jj=1

T

(3.22)

The number of multiplications and divisions to execute the algorithm is equal
to n(n + 1)/2, while the number of sums and subtractions is n(n — 1)/2. The
global operation count for (3.22) is thus n? flops.

Similar conclusions can be drawn for a linear system Ux=b, where U
is a nonsingular upper triangular matrix of order n (n > 2). In this case
the algorithm is called backward substitution and in the general case can be
written as

bn
Tp = —,

Unn

) n (3.23)
i=— | b — i |, i=n—1,...,1.
X Ui Z 'LLJ.’E] (3 n

j=it1

Its computational cost is still n? flops.

3.2.1 Implementation of Substitution Methods

Each i-th step of algorithm (3.22) requires performing the scalar product be-
tween the row vector L(4, 1 : ¢—1) (this notation denoting the vector extracted
from matrix L taking the elements of the i-th row from the first to the (i-1)-th
column) and the column vector x(1 : i — 1). The access to matrix L is thus by
row; for that reason, the forward substitution algorithm, when implemented
in the form above, is called row-oriented.

Its coding is reported in Program 1.

Program 1 - forwardrow : Forward substitution: row-oriented version

function [x]=forwardrow(L,b)

% FORWARDROW forward substitution: row oriented version.

% X=FORWARDROW(L,B) solves the lower triangular system L¥X=B with the
% forward substitution method in the row-oriented version.

[n,m]=size(L);

if n "= m, error('Only square systems’); end

if min(abs(diag(L))) == 0, error('The system is singular’); end



68 3 Direct Methods for the Solution of Linear Systems

x(1,1) = b(1)/L(1,1);
fori = 2:n
x (i,1) = (b(i)-L(i,1:-1)*x(1:i-1,1)) /L(i,i);
end
return

To obtain a column-oriented version of the same algorithm, we take ad-
vantage of the fact that i-th component of the vector x, once computed, can
be conveniently eliminated from the system.

An implementation of such a procedure, where the solution x is overwritten
on the right vector b, is reported in Program 2.

Program 2 - forwardcol : Forward substitution: column-oriented version

function [b]=forwardcol(L,b)

% FORWARDCOL forward substitution: column oriented version.

% X=FORWARDCOL(L,B) solves the lower triangular system L*¥X=B with the
% forward substitution method in the column-oriented version.

[n,m]=size(L);

if n "= m, error('Only square systems'); end
if min(abs(diag(L))) == 0, error('The system is singular’); end
for j=1:n-1
b(j)= b()/L(5.i); b(i+Lin)=b(i+Lin)-b()*L(j+Lnj);
end
b(n) = b(n)/L(n,n);
return

Implementing the same algorithm by a row-oriented rather than a column-
oriented approach, might dramatically change its performance (but of course,
not the solution). The choice of the form of implementation must therefore
be subordinated to the specific hardware that is used.

Similar considerations hold for the backward substitution method, pre-
sented in (3.23) in its row-oriented version.
In Program 3 only the column-oriented version of the algorithm is coded. As
usual, the vector x is overwritten on b.

Program 3 - backwardcol : Backward substitution: column-oriented
version

function [b]=backwardcol(U,b)

% BACKWARDCOL backward substitution: column oriented version.

% X=BACKWARDCOL(U,B) solves the upper triangular system U*¥*X=B with the
% backward substitution method in the column-oriented version.

[n,m]=size(U);

if n "= m, error('Only square systems’); end
if min(abs(diag(U))) == 0, error('The system is singular’); end
for j = n:-1:2,

b(j)=b(j)/U(i.j); b(1:j-1)=b(1:j-1)-b(j)*U(1:j-1.j);
end
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b(1) = b(1)/U(1,1);

return

When large triangular systems must be solved, only the triangular portion
of the matrix should be stored leading to considerable saving of memory re-
sources.

3.2.2 Rounding Error Analysis

The analysis developed so far has not accounted for the presence of rounding
errors. When including these, the forward and backward substitution algo-
rithms no longer yield the exact solutions to the systems Lx=b and Ux=b,
but rather provide approximate solutions X that can be regarded as being
ezxact solutions to the perturbed systems

(L+0L)% = b, (U+6U)% = b,

where 0L = (dl;;) and 6U = (du;;) are perturbation matrices. In order to apply
the estimates (3.9) carried out in Section 3.1.2, we must provide estimates of
the perturbation matrices, L. and dU, as a function of the entries of L and
U, of their size and of the characteristics of the floating-point arithmetic. For
this purpose, it can be shown that

nu
1 —nu

where T is equal to L or U, u = %/Bl’t is the roundoff unit defined in (2.34).
Clearly, if nu < 1 from (3.24) it turns out that, using a Taylor expansion,
|6T| < nu|T| + O(u?). Moreover, from (3.24) and (3.9) it follows that, if
nuK(T) < 1, then
x—%| _ nuK(T)
x| — 1—nuK(T)

[0T| <

IT], (3.24)

= nuK (T) + O(u?) (3.25)

for the norms || |1, ||-||c and the Frobenius norm. If u is sufficiently small (as
typically happens), the perturbations introduced by the rounding errors in the
solution of a triangular system can thus be neglected. As a consequence, the
accuracy of the solution computed by the forward or backward substitution
algorithm is generally very high.

These results can be improved by introducing some additional assumptions
on the entries of L or U. In particular, if the entries of U are such that
|wii| > |ui;| for any j > ¢, then

|z, — 2| < on—itl max|T;|, 1<i<n.

1—nu j>i
The same result holds if T=L, provided that |l;;| > |l;;| for any j < ¢, or if L
and U are diagonally dominant. The previous estimates will be employed in
Sections 3.3.1 and 3.4.2.

For the proofs of the results reported so far, see [FM67], [Hig89] and
[Hig88].
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3.2.3 Inverse of a Triangular Matrix

The algorithm (3.23) can be employed to explicitly compute the inverse of
an upper triangular matrix. Indeed, given an upper triangular matrix U, the
column vectors v; of the inverse V=(vy,...,v,) of U satisfy the following
linear systems

Uvi:ei,i:L...,n, (326)

where {e;} is the canonical basis of R” (defined in Example 1.3). Solving for
v; thus requires the application of algorithm (3.23) n times to (3.26).

This procedure is quite inefficient since at least half the entries of the
inverse of U are null. Let us take advantage of this as follows. Denote by
Vi = (v}, ..., V)T the vector of size k such that

URvE =l k=1,...,n, (3.27)

where U®) is the principal submatrix of U of order k and 1;, the vector of R¥
having null entries, except the first one which is equal to 1. Systems (3.27) are
upper triangular, but have order k£ and can be again solved using the method
(3.23). We end up with the following inversion algorithm for upper triangular

matrices: for k =n,n —1,...,1 compute
—1
Vgt = U 5 i
_ . 2
vl = —ug;t Zuijv;k,forz=k—1,k—2,...,1. (3.28)
j=i+1

At the end of this procedure the vectors v, furnish the nonvanishing entries
of the columns of U~!. The algorithm requires about n3/3 + (3/4)n? flops.
Once again, due to rounding errors, the algorithm (3.28) no longer yields the
exact solution, but an approximation of it. The error that is introduced can
be estimated using the backward a priori analysis carried out in Section 3.1.3.

A similar procedure can be constructed from (3.22) to compute the inverse
of a lower triangular system.

3.3 The Gaussian Elimination Method (GEM) and LU
Factorization

The Gaussian elimination method aims at reducing the system Ax=b to an
equivalent system (that is, having the same solution) of the form Ux=Db,
where U is an upper triangular matrix and b is an updated right side vector.
This latter system can then be solved by the backward substitution method.
Let us denote the original system by AWx = b, During the reduction
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procedure we basically employ the property which states that replacing one
of the equations by the difference between this equation and another one
multiplied by a nonnull constant yields an equivalent system (i.e., one with
the same solution).

Thus, consider a nonsingular matrix A € R"*™ and suppose that the
diagonal entry a;; is nonvanishing. Introducing the multipliers

il
mﬂ:—Z=273,...,n,
a

where al(»Jl») denote the elements of A(), it is possible to eliminate the unknown
x1 from the rows other than the first one by simply subtracting from row i,
with ¢ = 2,...,n, the first row multiplied by m;; and doing the same on the
right side. If we now define

a’z('_'/2') = aﬁ;) - mﬂa%), ,j=2,...,n,
bl('Q) = bﬁl) - mnbg”, i=2,...,n,

where bgl) denote the components of b(!)| we get a new system of the form

1 () (1) bgl)

ayy Ay --- 01y Ty
0 ag? aéQn) To bg)
0 o @] lea]  [@

which we denote by A(®@x = b(?)| that is equivalent to the starting one.
Similarly, we can transform the system in such a way that the unknown x4 is
eliminated from rows 3,...,n. In general, we end up with the finite sequence
of systems

AFx =bk) 1 <k <n, (3.29)

where, for k > 2, matrix A®*) takes the following form

ro(1 1 1) 7
NN oD
0 af as)
Ak — ol
0o ... Oa,(c?...a,(c];)
L 0 ... Oasfl;)...agz@_

having assumed that az(;) #0fori=1,...,k—1. It is clear that for k = n we
obtain the upper triangular system A(™x = b(™)
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r (1 1 1) 7] (1) 7

Vel a7 e B
0 ay) ag)| e | |0
0 . . . .

0 o] Lead L]

Consistently with the notations that have been previously introduced, we
denote by U the upper triangular matrix A(™). The entries a,(;z) are called
pivots and must obviously be nonnull for Kk =1,...,n — 1.

In order to highlight the formulae which transform the k-th system into
the k + 1-th one, for Kk =1,...,n — 1 we assume that a,(;;) # 0 and define the

multiplier
(k)

mik:%,izk—&-l,...,n. (3.30)
Ak
Then we let
al(?+1) = agf) - mikag;.), Lwj=k+1,...,n
(3.31)
pFT — b ) b i = k41, .

Example 3.2 Let us use GEM to solve the following system

1 1 1
T1 + 5T2 + 323 =

[

Dy — p®» 1 1 1., 13
(A x=b ) 5x1 + 3152 + 203 = 15

1 1 1., _ 47

3T1 + 272 + 5T3 = 5o

which admits the solution x=[1, 1, 1}T. At the first step we compute the multipliers
mo1 = 1/2 and ms1 = 1/3, and subtract from the second and third equation of
the system the first row multiplied by me21 and msi, respectively. We obtain the
equivalent system

1 1 1
1+ 3%2 + 3T3= F

[

(APx=b®) ¢ 0+ a2 + 523 =

o=

0+ 2 + % = 1
If we now subtract the second row multiplied by ms2 = 1 from the third one, we
end up with the upper triangular system

1 1 11
T + 522 + 373 = 4§

(A®x =b®) 0+ 522 + a3 =

[

0+ 0+ 15573 = 155

from which we immediately compute z3 = 1 and then, by back substitution, the
remaining unknowns 1 = z2 = 1. °
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Remark 3.2 The matrix in Example 3.2 is called the Hilbert matriz of
order 3. In the general n X n case, its entries are

hij=1/(i+j-1), d,j=1,...,n (3.32)

As we shall see later on, this matrix provides the paradigm of an ill-conditioned
matrix. |

To complete Gaussian elimination 2(n — 1)n(n +1)/3 +n(n — 1) flops are re-
quired, plus n? flops to backsolve the triangular system U x = b("). Therefore,
about (2n3/3 + 2n?) flops are needed to solve the linear system using GEM.
Neglecting the lower order terms, we can state that the Gaussian elimination
process has a cost of 2n®/3 flops.

As previously noticed, GEM terminates safely iff the pivotal elements a,(clz),
for k=1,...,n—1, are nonvanishing. Unfortunately, having nonnull diagonal
entries in A is not enough to prevent zero pivots to arise during the elimina-
tion process. For example, matrix A in (3.33) is nonsingular and has nonzero
diagonal entries

123 12 3
A=|245|,A® = |ofo] -1 |. (3.33)
789 0—6—12

Nevertheless, when GEM is applied, it is interrupted at the second step since
agé) =0.

More restrictive conditions on A are thus needed to ensure the applicabil-
ity of the method. We shall see in Section 3.3.1 that if the leading dominating
minors d; of A are nonzero for i = 1,...,n—1, then the corresponding pivotal
entries al(;) must necessarily be nonvanishing. We recall that d; is the determi-
nant of A;, the i-th principal submatrix made by the first ¢ rows and columns
of A. The matrix in the previous example does not satisfy this condition,
having d; = 1 and dy = 0.

Classes of matrices exist such that GEM can be always safely employed in its
basic form (3.31). Among them, we recall the following ones:

1. matrices diagonally dominant by rows;

2. matrices diagonally dominant by columns. In such a case one can even
show that the multipliers are in module less than or equal to 1 (see
Property 3.2);

3. matrices symmetric and positive definite (see Theorem 3.6).

For a rigorous derivation of these results, we refer to the forthcoming
sections.

3.3.1 GEM as a Factorization Method

In this section we show how GEM is equivalent to performing a factorization of
the matrix A into the product of two matrices, A=LU, with U=A("). Since L
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and U depend only on A and not on the right hand side, the same factorization
can be reused when solving several linear systems having the same matrix A
but different right hand side b, with a considerable reduction of the operation
count (indeed, the main computational effort, about 2n3/3 flops, is spent in
the elimination procedure).

Let us go back to Example 3.2 concerning the Hilbert matrix Hs. In prac-
tice, to pass from A(Y=Hj to the matrix A®) at the second step, we have
multiplied the system by the matrix

100 100
My=|-510|=]-m210
—301 —mg1 01
Indeed,
1y
MA=MAD = 0L L | =A®
0 b

Similarly, to perform the second (and last) step of GEM, we must multiply
A®) by the matrix

1 00 1 00
My= |0 10| =10 10],
0-11 O—m321

where A®) = MyA®@) . Therefore
MoM;A = AG) = U, (3.34)

On the other hand, matrices M; and My are lower triangular, their product
is still lower triangular, as is their inverse; thus, from (3.34) one gets

A = (MyM;)"'U =LU,

which is the desired factorization of A.
This identity can be generalized as follows. Setting

T
my = [O, .. .,O,mk+17k, A ,mn,k] S Rn,
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and defining

1 0 0...0]
o 10 ol . 4
Me=10 g1 0| = Tn Mk

(0o =y 0.1

as the k-th Gaussian transformation matriz, one finds out that
(My)ip = 0ip — (M€} )ip = 0ip — Mikbip,  4,p=1,....10

On the other hand, from (3.31) we have that

al(-fﬂ) = al(f) — mikékkag;) = Z(éip — mikékp)a;];), hL,ji=k+1,...,n,
p=1

or, equivalently,
AFHD — VAR, (3.35)
As a consequence, at the end of the elimination process the matrices My, with
k=1,...,n—1, and the matrix U have been generated such that
M,_1M,,_o---M;A =T.
The matrices My, are unit lower triangular with inverse given by

M, =21, — My =1, + mye], (3.36)

T

while the matrix (mge])(mje]) is equal to the null matrix if i # j. As a

consequence, we have
_A—1ng—1 —1
A=MIM; MU

= (I, + mye])(I, + moed) - (I, + my_1e;_1)U

=1
[ 1 0 0]
(3.37)
mo1 1
= Mao U.
0
_mnl Mp2 «.. Mpn—1 ]-_
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Defining L = (M, _1M,,_o---M;)~' =M7'--- M, !, it follows that

n—1»
A=LU.

We notice that, due to (3.37), the subdiagonal entries of L are the multipliers
my produced by GEM, while the diagonal entries are equal to one.

Once the matrices L and U have been computed, solving the linear system
consists only of solving successively the two triangular systems

Ly = b,
Ux =y.

The computational cost of the factorization process is obviously the same as
that required by GEM.

The following result establishes a link between the leading dominant mi-
nors of a matrix and its LU factorization induced by GEM.

Theorem 3.4 Let A € R™"*™. The LU factorization of A with l;; = 1 for
i=1,...,n exists and is unique iff the principal submatrices A; of A of order
i=1,...,n—1 are nonsingular.

Proof. The existence of the LU factorization can be proved following the steps
of the GEM. Here we prefer to pursue an alternative approach, which allows for
proving at the same time both existence and uniqueness and that will be used again
in later sections.

Let us assume that the principal submatrices A; of A are nonsingular for
i =1,...,n —1 and prove, by induction on 7, that under this hypothesis the LU
factorization of A(= A,) with l;; =1 for ¢ = 1,...,n, exists and is unique.

The property is obviously true if ¢ = 1. Assume therefore that there exists an
unique LU factorization of A;_y of the form A;—y = LO~DUCD with 1" = 1 for
k=1,...,i—1, and show that there exists an unique factorization also for A;. We
partition A; by block matrices as

Aifl C
dT aii] ’

and look for a factorization of A; of the form

‘ ‘ L(i—l) 0 U(i—l) u
A, =1OU® = [ ] l ] , (3.38)

Ai =

lT 1 OT Ui

having also partitioned by blocks the factors L® and U, Computing the product
of these two factors and equating by blocks the elements of A;, it turns out that the
vectors 1 and u are the solutions to the linear systems L0~ Vu = ¢, 17U = g7
On the other hand, since 0 # det(A;—1) = det(LE1)det(UC™Y), the matrices
LG=Y and UCD are nonsingular and, as a result, u and 1 exist and are unique.
Thus, there exists a unique factorization of A;, where u;; is the unique solution
of the equation u;; = a;; — 17 u. This completes the induction step of the proof.
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It now remains to prove that, if the factorization at hand exists and is unique,
then the first n — 1 principal submatrices of A must be nonsingular. We shall dis-
tinguish the case where A is singular and when it is nonsingular.

Let us start from the second one and assume that the LU factorization of A
with l;; = 1 for ¢ = 1,...,n, exists and is unique. Then, due to (3.38), we have
Ay =LOUD for i =1,...,n. Thus

det(A;) = det(L®)det(UD) = det(U™) = uiyus - - - wis, (3.39)

from which, taking i = n and A nonsingular, we obtain ui1u22 - - - Unn # 0, and thus,
necessarily, det(A;) = ui1ug2 - us #0fori=1,...,n— 1.

Now let A be a singular matrix and assume that (at least) one diagonal entry
of U is equal to zero. Denote by wuy, the null entry of U with minimum index k.
Thanks to (3.38), the factorization can be computed without troubles until the
k 4 1-th step. From that step on, since the matrix U™ s singular, existence and
uniqueness of the vector 17 are certainly lost, and, thus, the same holds for the
uniqueness of the factorization. In order for this not to occur before the process has
factorized the whole matrix A, the ug, entries must all be nonzero up to the index
k =n — 1 included, and thus, due to (3.39), all the principal submatrices Ay must
be nonsingular for k =1,...,n — 1. &

From the above theorem we conclude that, if an A;, withi=1,...,n—1,1is
singular, then the factorization may either not exist or not be unique.

Example 3.3 Consider the matrices
12 01 01
According to Theorem 3.4, the singular matrix B, having nonsingular leading minor
B1 =1, admits a unique LU factorization. The remaining two examples outline that,
if the assumptions of the theorem are not fulfilled, the factorization may fail to exist
or be unique.
Actually, the nonsingular matrix C, with C; singular, does not admit any factor-

ization, while the (singular) matrix D, with D singular, admits an infinite number
of factorizations of the form D = LgUg, with

Lg:[;?],U5:[82iﬁ],Vﬂ€R.

In the case where the LU factorization is unique, we point out that, because
det(A) = det(LU) = det(L) det(U) = det(U), the determinant of A is given by

det(A) = u1p -+ Upp-

Let us now recall the following property (referring for its proof to [GL89] or
[Hig96]).
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Property 3.2 If A is a matriz diagonally dominant by rows or by columns,
then the LU factorization of A exists and is unique. In particular, if A is
diagonally dominant by columns, then |l;;| <1 Vi, j.

In the proof of Theorem 3.4 we exploited the fact the the diagonal entries
of L are equal to 1. In a similar manner, we could have fixed to 1 the diagonal
entries of the upper triangular matrix U, obtaining a variant of GEM that
will be considered in Section 3.3.4.

The freedom in setting up either the diagonal entries of L or those of U,
implies that several LU factorizations exist which can be obtained one from
the other by multiplication with a suitable diagonal matrix (see Section 3.4.1).

3.3.2 The Effect of Rounding Errors

If rounding errors are taken into account, the factorization process induced
by GEM yields two matrices, L and U such that LU = A + 0A, JA being a
perturbation matrix. The size of such a perturbation can be estimated by

nuo o~
54 < [T O, (3.40)
where u is the roundoff unit, under the assumption that nu < 1. (For the proof
of this result we refer to [Hig89].) From (3.40) it is seen that the presence
of small pivotal entries can make the right side of the inequality virtually
unbounded, with a consequent loss of control on the size of the perturbation
matrix 0A. The interest is thus in finding out estimates like (3.40) of the form

0A] < g(u)|Al,
where g(u) is a suitable positive function of u. For instance, assuming that L
and U have nonnegative entries, then since \L| |U| |LU\ one gets
IL||U| = | | A+ JA| < |A|+ |0A] < |A] + |L| |U\ (3.41)

from which the desired bound is achieved by taking g(u) = nu/(1 —2nu), with
nu < 1/2.

The technique of pivoting, examined in Section 3.5, keeps the size of the
pivotal entries under control and makes it possible to obtain estimates like
(3.41) for any matrix.

3.3.3 Implementation of LU Factorization

Since L is a lower triangular matrix with diagonal entries equal to 1 and U is
upper triangular, it is possible (and convenient) to store the LU factorization
directly in the same memory area that is occupied by the matrix A. More
precisely, U is stored in the upper triangular part of A (including the diagonal),
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whilst L occupies the lower triangular portion of A (the diagonal entries of L
are not stored since they are implicitly assumed to be 1).

A coding of the algorithm is reported in Program 4. The output matrix A
contains the overwritten LU factorization.

Program 4 - lukji : LU factorization of matrix A: kji version

function [A]=lukji(A)

% LUKJI LU factorization of a matrix A in the kji version

% Y=LUKIJI(A): U is stored in the upper triangular part of Y and L is stored

% in the strict lower triangular part of Y.

[n.m]=size(A);

if n "= m, error('Only square systems’); end

for k=1:n-1
if A(k,k)==0; error('Null pivot element’); end
A(k+1:n,k)=A(k+1:n,k)/A(k,k);

for j=k+1:n
i=[k+1:n]; AGij)=A(j)-AG,k)*A(k,));
end
end
return

This implementation of the factorization algorithm is commonly referred
to as the kji version, due to the order in which the cycles are executed. In a
more appropriate notation, it is called the SAX PY — kji version, due to the
fact that the basic operation of the algorithm, which consists of multiplying
a scalar A by a vector X, summing another vector Y and then storing the
result, is usually called SAXPY (i.e. Scalar A X Plus Y).

The factorization can of course be executed by following a different order.
In general, the forms in which the cycle on index ¢ precedes the cycle on j are
called row-oriented, whilst the others are called column-oriented. As usual,
this terminology refers to the fact that the matrix is accessed by rows or by
columns.

An example of LU factorization, jki version and column-oriented, is given
in Program 5. This version is commonly called GAXPY — jki, since the
basic operation (a product matrix-vector), is called GAXPY which stands
for Generalized sAXPY (see for further details [DGK84]). In the GAXPY
operation the scalar A of the SAXPY operation is replaced by a matrix.

Program 5 - lujki : LU factorization of matrix A: jki version

function [A]=lujki(A)

% LUJKI LU factorization of a matrix A in the jki version

% Y=LUJKI(A): U is stored in the upper triangular part of Y and L is stored
% in the strict lower triangular part of Y.

[n,m]=size(A);

if n "= m, error('Only square systems’); end

for j=1:n
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if A(j,j)==0; error(’Null pivot element’); end

for k=1:j-1
i=[k+1:n]; A(i.j)=A(ij)-A(,k)*A(k,j);
end
i=[j+1:n]; A=A /AG):
end
return

3.3.4 Compact Forms of Factorization

Remarkable variants of LU factorization are the Crout factorization and
Doolittle factorization, and are known also as compact forms of the Gauss
elimination method. This name is due to the fact that these approaches require
less intermediate results than the standard GEM to generate the factorization
of A.

Computing the LU factorization of A is formally equivalent to solving the
following nonlinear system of n? equations

min(4,5)

A5 = Z lirurj7 (342)
r=1

the unknowns being the n? + n coefficients of the triangular matrices L and
U. If we arbitrarily set n coefficients to 1, for example the diagonal entries of
L or U, we end up with the Doolittle and Crout methods, respectively, which
provide an efficient way to solve system (3.42).

In fact, supposing that the first £ — 1 columns of L. and rows of U are
available and setting I = 1 (Doolittle method), the following equations are
obtained from (3.42)

k—1
A5 = E lkrurj+7 j:ku"'7n7
r=1

k—1
A, = E lirurk—&-ukhi:k:—i—l,...,n.
r=1

Note that these equations can be solved in a sequential way with respect to
the boxed variables u; and ;. From the Doolittle compact method we thus
obtain first the k-th row of U and then the k-th column of L, as follows: for
k=1,....n

k—1
Uk; = Akj — § lkrurjv j:k,...J’L,
r=1

1 k—1
lig = — | aw — lirter, | i =k+1,...,n.

The Crout factorization is generated similarly, computing first the k-th column
of L and then the k-th row of U: for k =1,...,n

(3.43)
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k—1
Lik = air — Zlirurk;, 1=k,...,n,
r=1

k—1
1 .
Ukj = E (akj - Zlkrum) yi=k+1,...,n,
r=1

where we set urr = 1. Recalling the notations introduced above, the Doolittle
factorization is nothing but the ijk version of GEM.

We provide in Program 6 the implementation of the Doolittle scheme.
Notice that now the main computation is a dot product, so this scheme is also
known as the DOT — ijk version of GEM.

Program 6 - luijk : LU factorization of the matrix A: ijk version

function [A]=luijk(A)
% LUIJK LU factorization of a matrix A in the ijk version
% Y=LUIJK(A): U is stored in the upper triangular part of Y and L is stored
% in the strict lower triangular part of Y.
[n,m]=size(A);
if n "= m, error('Only square systems’); end
for i=1:n
for j=2:i
if A(j,j)==0; error(’Null pivot element’); end
AGD)=A(-1)/A(-L-L):
k=[131] AL =AG)-AGK)*A(K.));
end
k=[1:i-1];
for j=i+1:n
A(iJ)=A(ij)-A k) *A(k,j);
end
end
return

3.4 Other Types of Factorization

We now address factorizations suitable for symmetric and rectangular
matrices.

3.4.1 LDMT Factorization

It is possible to devise other types of factorizations of A. Specifically, we will
address some variants where the factorization of A is of the form

A =1LDMT,
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where L, M and D are lower triangular, upper triangular and diagonal ma-
trices, respectively.

After the construction of this factorization, the resolution of the system
can be carried out solving first the lower triangular system Ly=b, then the
diagonal one Dz=y, and finally the upper triangular system M”x=z, with a
cost of n2 + n flops. In the symmetric case, we obtain M = L and the LDL”
factorization can be computed with half the cost (see Section 3.4.2).

The LDMT factorization enjoys a property analogous to the one in Theo-
rem 3.4 for the LU factorization. In particular, the following result holds.

Theorem 3.5 If all the principal minors of a matriz A€ R"*"™ are nonzero
then there exist a unique diagonal matriz D, a unique unit lower triangular
matriz L and a unique unit upper triangular matriz MT, such that A = LDMT.

Proof. By Theorem 3.4 we already know that there exists a unique LU factorization
of A with l;; = 1 for ¢ = 1,... n. If we set the diagonal entries of D equal to u;;
(nonzero because U is nonsingular), then A = LU = LD(D~'U). Upon defining
MT = D™'U, the existence of the LDMT factorization follows, where D~'U is a unit
upper triangular matrix. The uniqueness of the LDM7 factorization is a consequence
of the uniqueness of the LU factorization. <&

The above proof shows that, since the diagonal entries of D coincide with
those of U, we could compute L, M” and D starting from the LU factorization
of A. It suffices to compute M7 as D~'U. Nevertheless, this algorithm has
the same cost as the standard LU factorization. Likewise, it is also possible
to compute the three matrices of the factorization by enforcing the identity
A=LDMT7 entry by entry.

3.4.2 Symmetric and Positive Definite Matrices: The Cholesky
Factorization

As already pointed out, the factorization LDM” simplifies considerably when
A is symmetric because in such a case M=L, yielding the so-called LDL”
factorization. The computational cost halves, with respect to the LU factor-
ization, to about (n3/3) flops.

As an example, the Hilbert matrix of order 3 admits the following LDL”
factorization

1114 10010 0] [153
_ 111 _ 1 1

111 1 1

35t 311 |00 5] |001

In the case that A is also positive definite, the diagonal entries of D in the
LDLT factorization are positive. Moreover, we have the following result.
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Theorem 3.6 Let A € R™™™ be a symmetric and positive definite matrix.
Then, there exists a unique upper triangular matriz H with positive diagonal
entries such that

A =H"H. (3.44)

This factorization is called Cholesky factorization and the entries hi; of HT
can be computed as follows: hi1 = (/a1 and, fori=2,...,n,

j—1
hij = <aij — Zhikhjk> /hjj, j = 1, e ,i — 1,

k=1

i—1 1/2
hii = (aii — thk> .

k=1

Proof. Let us prove the theorem proceeding by induction on the size i of the matrix
(as done in Theorem 3.4), recalling that if A; € R*** is symmetric positive definite,
then all its principal submatrices enjoy the same property.

For i = 1 the result is obviously true. Thus, suppose that it holds for i — 1 and
prove that it also holds for i. There exists an upper triangular matrix H;_; such
that A,_1 = HiT,lHZ',l. Let us partition A; as

A, = {Aqiwl V] ,

(3.45)

v «

with & € RY, v € R*"! and look for a factorization of A; of the form

HY ;0 Hi-1 h
gy, = i—1 i—1
AZ = Hz Hl |:hT ﬂ:| |:OT B:l .

Enforcing the equality with the entries of A; yields the equations HY ;h = v and
h”h + 8% = a. The vector h is thus uniquely determined, since HY , is nonsingular.
As for 3, due to the properties of determinants

0 < det(A;) = det(H]) det(H;) = 5*(det(H;—1))?,

we can conclude that it must be a real number. As a result, 8 = va — h”h is the
desired diagonal entry and this concludes the inductive argument.

Let us now prove formulae (3.45). The fact that hi1 = /a1 is an immedi-
ate consequence of the induction argument for ¢ = 1. In the case of a generic i,
relations (3.45)1 are the forward substitution formulae for the solution of the lin-

ear system HiT_lh = v = (a1, a2,.- .,ai_lyi)T, while formulae (3.45)2 state that
8 =+va—hTh, where a = a;. &

The algorithm which implements (3.45) requires about (n®/3) flops and it
turns out to be stable with respect to the propagation of rounding errors. It
can indeed be shown that the upper triangular matrix H is such that HTH =
A +5A, where §A is a pertubation matrix such that ||[0A]ls < 8n(n+1)u||Als,
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when the rounding errors are considered and assuming that 2n(n + 1)u <
1—(n+1)u (see [Wil68]).

Also, for the Cholesky factorization it is possible to overwrite the matrix
HT in the lower triangular portion of A, without any further memory storage.
By doing so, both A and the factorization are preserved, noting that A is
stored in the upper triangular section since it is symmetric and that its diag-
onal entries can be computed as a1; = h%l, ai; = hfi + Z;;ll h?k, 1=2,...,n.
An example of implementation of the Cholesky factorization is coded in
Program 7.

Program 7 - chol2 : Cholesky factorization

function [A]=chol2(A)

% CHOL2 Cholesky factorization of a s.p.d. matrix A.

% R=CHOL2(A) produces an upper triangular matrix R such that R"*R=A.

[n,m]=size(A);

if n "= m, error('Only square systems'); end

for k=1:n-1
if A(k,k) j= 0, error('Null or negative pivot element’); end
A(k,k)=sqrt(A(k,k)); A(k+1:n,k)=A(k+1:n,k)/A(kk);
for j=k+1:n, A(j:n,j)=A(j:nj)-A(j:n,k)*A(j,k); end

end

A(n,n)=sqrt(A(n,n));

A = tril(A); A=A’;

return

3.4.3 Rectangular Matrices: The QR Factorization

Definition 3.1 A matrix A € R™*" with m > n, admits a QR factorization
if there exist an orthogonal matrix Q € R™*™ and an upper trapezoidal
matrix R € R™*™ with null rows from the n + 1-th one on, such that

A =QR. (3.46)
O

This factorization can be constructed either using suitable transformation
matrices (Givens or Householder matrices, see Section 5.6.1) or using the
Gram-Schmidt orthogonalization algorithm discussed below.

It is also possible to generate a reduced version of the QR factorization
(3.46), as stated in the following result.

Property 3.3 Let A € R"™*"™ be a matriz of rank n for which a QR factor-
ization is known. Then there exists a unique factorization of A of the form

A=QR (3.47)
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fffffffffff

I |
I |
| m—n

Fig. 3.1. The reduced factorization. The matrices of the QR factorization are drawn
in dashed lines

where C~2 and R are submatrices of Q and R given respectively by
Q:Q(l:m,l:n),ﬁ:R(l:n,l:n). (3.48)

Moreover, Q has orthonormal vector columns and R is upper triangular and

coincides with the Cholesky factor H of the symmetric positive definite matriz
ATA, that is, ATA = RTR.

If A has rank n (i.e., full rank), then the column vectors of Q form an
orthonormal basis for the vector space range(A) (defined in (1.5)). As a con-
sequence, constructing the QR factorization can also be interpreted as a pro-
cedure for generating an orthonormal basis for a given set of vectors. If A has
rank 7 < n, the QR factorization does not necessarily yield an orthonormal
basis for range(A). However, one can obtain a factorization of the form

7ap | Rir Riz2
QAP_[O ! }

where Q is orthogonal, P is a permutation matrix and Ri; is a nonsingular
upper triangular matrix of order r.

In general, when using the QR factorization, we shall always refer to its
reduced form (3.47) as it finds a remarkable application in the solution of
overdetermined systems (see Section 3.13).

The matrix factors Q and R in (3.47) can be computed using the Gram-
Schmidt orthogonalization. Starting from a set of linearly independent vectors,
X1,...,Xp, this algorithm generates a new set of mutually orthogonal vectors,

di-- -5 An; given by

q1 = X1,
k
(qi, Xk+1) (3.49)
qr+1 = Xk+1 — —q;, k=1,...,n—1.
iz:; (qwa) !
Denoting by ay, ..., a, the column vectors of A, we set q; = a;/[|a;[|2 and,

for k=1,...,n— 1, compute the column vectors of Q as
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Q1 = At1/[|drr1ll2,

where
k

Q1 = app1 — D (@) ak41)
j=1

Next, imposing that A=QR and exploiting the fact that Q is orthogonal (that
is, Q7' = QT), the entries of R can easily be computed. The overall compu-
tational cost of the algorithm is of the order of mn? flops.

It is also worth noting that if A has full rank, the matrix AT A is symmetric
and positive definite (see Section 1.9) and thus it admits a unique Cholesky
factorization of the form H7H. On the other hand, since the orthogonality of

Q implies
H'H = ATA = RTQTQR = R"R,

we conclude that R is actually the Cholesky factor H of ATA. Thus, the
diagonal entries of R are all nonzero only if A has full rank.

The Gram-Schmidt method is of little practical use since the generated vectors
lose their linear independence due to rounding errors. Indeed, in floating-point
arithmetic the algorithm produces very small values of ||qg+1|]2 and 7 with
a consequent numerical instability and loss of orthogonality for matrix Q (see
Example 3.4).

These drawbacks suggest employing a more stable version, known as mod-
ified Gram-Schmidt method. At the beginning of the k& + 1-th step, the pro-
jections of the vector ag41 along the vectors qi,...,qx are progressively sub-
tracted from agy1. On the resulting vector, the orthogonalization step is then
carried out. In practice, after computing (qi,ax+1)q1 at the k + 1-th step,
this vector is immediately subtracted from aj41. As an example, one lets

1 ~ ~
aéﬁl =agt1 — (1, ap41)d1-

This new vector a,(clll is projected along the direction of qo and the obtained
(1)

projection is subtracted from a;_/,, yielding

2 1 . 1)
al(s-i1 = al(s-i1 - (Q2vai(cl1)(12

(k)
k+1

It can be checked that 35:21 coincides with the corresponding vector qj41
in the standard Gram-Schmidt process, since, due to the orthogonality of

vectors qi, qa, - - -, Qk,

k N _ . - .
aéll = apy1 — (A1, a54+1)q1 — (92, ak41 — (A1, 8k41)q1) A2 + - - -

k

= ap41 — Z(ijak+l)élj-
j=1

and so on, until a is computed.
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Program 8 implements the modified Gram-Schmidt method. Notice that
it is not possible to overwrite the computed QR factorization on the matrix
A. In general, the matrix R is overwritten on A, whilst Q is stored separately.
The computational cost of the modified Gram-Schmidt method has the order
of 2mn? flops.

Program 8 - modgrams : Modified Gram-Schmidt method

function [Q,R]=modgrams(A)
% MODGRAMS QR factorization of a matrix A.
% [Q,R]=MODGRAMS(A) produces an upper trapezoidal matrix R and an orthogonal
% matrix Q such that Q*R=A.
[m,n]=size(A);
Q=zeros(m,n); Q(1:m,1) = A(1:m,1); R=zeros(n); R(1,1)=1;
for k = 1:n
R(k,k) = norm(A(1:m,k));
Q(1:m,k) = A(1:m,k)/R(k,k);
j=[k+1:n];
R(k,j) = Q (1:m,k)"*A(1:m,j);
A(1:m,j) = A (1:m,j)-Q(1:m,k)*R(k,j);
end
return

Example 3.4 Let us consider the Hilbert matrix Ha of order 4 (see (3.32)). The
matrix Q, generated by the standard Gram-Schmidt algorithm, is orthogonal up to
the order of 107'°, being

0.0000 —0.0000 0.0001 —0.0041

~T~A _ n—10 | —0.0000 0 0.0004 —0.0099
[-Q Q=10 0.0001  0.0004 0 —0.4785
—0.0041 —0.0099 —0.4785 0

and [T — QTQllec = 4.9247 - 10~'*. Using the modified Gram-Schmidt method, we
would obtain

0.0001 —0.0005 0.0069 —0.2853
—0.0005 0 —0.0023 0.0213
0.0069 —0.0023 0.0002 —0.0103
—0.2853 0.0213 —0.0103 0

-0 =102

and this time ||T — Q" Qe = 3.1686 - 1072,

An improved result can be obtained using, instead of Program 8, the intrinsic
function qr of MATLAB. This function can be properly employed to generate both
the factorization (3.46) as well as its reduced version (3.47). o

3.5 Pivoting

As previously pointed out, the GEM process breaks down as soon as a zero
pivotal entry is computed. In such an event, one needs to resort to the so-called
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pivoting technique, which amounts to exchanging rows (or columns) of the
system in such a way that nonvanishing pivots are obtained.

Example 3.5 Let us go back to matrix (3.33) for which GEM furnishes at the
second step a zero pivotal element. By simply exchanging the second row with the
third one, we can execute one step further of the elimination method, finding a
nonzero pivot. The generated system is equivalent to the original one and it can be
noticed that it is already in upper triangular form. Indeed

1 2 3
AP =10-6-12| =T,

0 0 -1

while the transformation matrices are given by

100 100
Mi=|-210[,M2=]010].
—701 001

From an algebraic standpoint, a permutation of the rows of A has been performed.
In fact, it now no longer holds that A:Ml_lMQ_IU, but rather A:MI_IE]MZ_IU, P

being the permutation matrix
100
P=|001]. (3.50)

010

The pivoting strategy adopted in Example 3.5 can be generalized by looking,
at each step k of the elimination procedure, for a nonzero pivotal entry by
searching within the entries of the subcolumn A®)(k : n, k). For that reason,
it is called partial pivoting (by rows).

From (3.30) it can be seen that a large value of m;j, (generated for example

by a small value of the pivot agz)) might amplify the rounding errors affecting

the entries a,g;-). Therefore, in order to ensure a better stability, the pivotal

element is chosen as the largest entry (in module) of the column A% (k : n, k)
and partial pivoting is generally performed at every step of the elimination
procedure, even if not strictly necessary (that is, even if nonzero pivotal entries
are found).

Alternatively, the searching process could have been extended to the whole
submatrix A®)(k : n, k : n), ending up with a complete pivoting (see Figure
3.2). Notice, however, that while partial pivoting requires an additional cost of
about n? searches, complete pivoting needs about 2n3/3, with a considerable
increase of the computational cost of GEM.

Example 3.6 Let us consider the linear system Ax = b with

10711
="
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Fig. 3.2. Partial pivoting by row (left) or complete pivoting (right). Darker areas
of the matrix are those involved in the searching for the pivotal entry

and where b is chosen in such a way that x = (1, l)T is the exact solution. Suppose
we use base 2 and 16 significant digits. GEM without pivoting would give xgrnm =
[0.99920072216264, 1]T7 while GEM plus partial pivoting furnishes the exact solution
up to the 16-th digit. °

Let us analyze how partial pivoting affects the LU factorization induced by
GEM. At the first step of GEM with partial pivoting, after finding out the
entry a,; of maximum module in the first column, the elementary permutation
matrix Py which exchanges the first row with the r-th row is constructed (if
r = 1, Py is the identity matrix). Next, the first Gaussian transformation
matrix M; is generated and we set A = M;P;A(M . A similar approach is
now taken on A(®) searching for a new permutation matrix Py and a new
matrix My such that

A(g) = M2P2A(2) = M2P2M1P1A(1)'

Executing all the elimination steps, the resulting upper triangular matrix U
is now given by

U=AM =M, 1P,_;---M;P;AD. (3.51)

Letting M =M,,_1P,,_1---M;P; and P =P,,_1 - - - P1, we obtain that U=MA
and, thus, U = (MP~!)PA. It can easily be checked that the matrix L = PM~!
is unit lower triangular, so that the LU factorization reads

PA = LU. (3.52)

One should not be worried by the presence of the inverse of M, since M~! =
Po'My - P MY and Pt = PT while Mt = 21, — M;.

Once L, U and P are available, solving the initial linear system amounts to
solving the triangular systems Ly = Pb and Ux = y. Notice that the entries
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of the matrix L coincide with the multipliers computed by LU factorization,
without pivoting, when applied to the matrix PA.
If complete pivoting is performed, at the first step of the process, once the
element agy, of largest module in submatrix A(1:n,1: n) has been found, we
must exchange the first row and column with the ¢g-th row and the r-th col-
umn. This generates the matrix P;A(M)Q;, where P; and Q; are permutation
matrices by rows and by columns, respectively.

As a consequence, the action of matrix M; is now such that A® =
M;P;AMQ;. Repeating the process, at the last step, instead of (3.51) we
obtain

U=AM =M, 1Py MiPLADQ - Qe
In the case of complete pivoting the LU factorization becomes
PAQ = LU,

where Q = Q1 ---Qp—1 is a permutation matrix accounting for all permuta-
tions that have been operated. By construction, matrix L is still lower tri-
angular, with module entries less than or equal to 1. As happens in partial
pivoting, the entries of L are the multipliers produced by the LU factorization
process without pivoting, when applied to the matrix PAQ.

Program 9 is an implementation of the LU factorization with complete
pivoting. For an efficient computer implementation of the LU factorization
with partial pivoting, we refer to the MATLAB intrinsic function 1u.

Program 9 - LUpivtot : LU factorization with complete pivoting

function [L,U,P,Q]=LUpivtot(A)

%LUPIVTOT LU factorization with complete pivoting

% [L,U,P,Q]=LUPIVTOT(A) returns unit lower triangular matrix L, upper

% triangular matrix U and permutation matrices P and Q so that P*A*Q=L*U.
[n,m]=size(A);

if n "= m, error('Only square systems’); end
P=eye(n); Q=P; Minv=P; I=eye(n);
for k=1:n-1

[Pk,Qk]=pivot(Ak,n,l); A=Pk*A*Qk;
[Mk,Mkinv]=MGauss(A k,n);
A=Mk*A; P=Pk*P; Q=Q*Qk;
Minv=Minv*Pk*Mkinv;

end

U=triu(A); L=P*Minv;

return

function [Mk,Mkinv]=MGauss(A k,n)
Mk=eye(n);

i=[k+1:n];

MK (i, k)=-A(i,k) /A(k k);
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Mkinv=2*eye(n)-Mk;
return

function [Pk,Qk]=pivot(A k,n,I)
ly.i]=max(abs(A(k:n,k:n)));
[piv.jpiv]=max(y);

ipiv=i(jpiv);
jpiv=jpiv+k-1;
ipiv=ipiv+k-1;

Pk=I; Pk(ipiv,ipiv)=0; Pk(k,k)=0; Pk(k,ipiv)=1; Pk(ipiv,k)=1;
Qk=I; Qk(jpiv,jpiv)=0; Qk(k,k)=0; Qk(k,jpiv)=1; Qk(jpiv,k)=1;
return

Remark 3.3 The presence of large pivotal entries is not in itself sufficient
to guarantee accurate solutions, as demonstrated by the following example
(taken from [JM92]). For the linear system

—4000 2000 2000 1 400
2000 0.78125 0 ro | = [ 1.3816 |,
2000 0 0 T3 1.9273

at the first step the pivotal entry coincides with the diagonal entry —4000
itself. However, executing GEM with 8 digits on such a matrix yields the
solution

X = [0.00096365, —0.698496, 0.90042329]T,

whose first component drastically differs from that of the exact solution
x = [1.9273, —0.698496, 0.9004233]". The cause of this behaviour should
be ascribed to the wide variations among the system coefficients. Such cases
can be remedied by a suitable scaling of the matrix (see Section 3.12.1). N

Remark 3.4 (Pivoting for symmetric matrices) As already noticed,
pivoting is not strictly necessary if A is symmetric and positive definite. A
separate comment is deserved when A is symmetric but not positive definite,
since pivoting could destroy the symmetry of the matrix. This can be avoided
by employing a complete pivoting of the form PAPT, even though this piv-
oting can only turn out into a reordering of the diagonal entries of A. As a
consequence, the presence on the diagonal of A of small entries might inhibit
the advantages of the pivoting. To deal with matrices of this kind, special
algorithms are needed (like the Parlett-Reid method [PR70] or the Aasen
method [Aas71]) for whose description we refer to [GL89], and to [JM92] for
the case of sparse matrices. |

3.6 Computing the Inverse of a Matrix

The explicit computation of the inverse of a matrix can be carried out using
the LU factorization as follows. Denoting by X the inverse of a nonsingular
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matrix A€ R™ ™ the column vectors of X are the solutions to the linear
systems Ax; =e;, fori=1,...,n.

Supposing that PA=LU, where P is the partial pivoting permutation ma-
trix, we must solve 2n triangular systems of the form

LYi:Pei7UXi:yiai:17"'an7

i.e., a succession of linear systems having the same coefficient matrix but
different right hand sides. The computation of the inverse of a matrix is a
costly procedure which can sometimes be even less stable than GEM (see
[Hig88]).

An alternative approach for computing the inverse of A is provided by the
Faddev or Leverrier formula, which, letting Bo=I, recursively computes

1
ap = Etr(ABk—l)a Bk = *ABk—l + akL k= 1327 sy N

Since B,, = 0, if a;, # 0 we get

1
Ail = 7Bn—17
an,
and the computational cost of the method for a full matrix is equal to (n—1)n?
flops (for further details see [FF63], [Bar89]).

3.7 Banded Systems

Discretization methods for boundary value problems often lead to solving lin-
ear systems with matrices having banded, block or sparse forms. Exploiting
the structure of the matrix allows for a dramatic reduction in the compu-
tational costs of the factorization and of the substitution algorithms. In the
present and forthcoming sections, we shall address special variants of GEM
or LU factorization that are properly devised for dealing with matrices of this
kind. For the proofs and a more comprehensive treatment, we refer to [GL89]
and [Hig88] for banded or block matrices, while we refer to [JM92], [GL81]
and [Saa96] for sparse matrices and the techniques for their storage.
The main result for banded matrices is the following.

Property 3.4 Let Ac R" ™. Suppose that there exists a LU factorization
of A. If A has upper bandwidth q and lower bandwidth p, then L has lower
bandwidth p and U has upper bandwidth q.

In particular, notice that the same memory area used for A is enough to
also store its LU factorization. Consider, indeed, that a matrix A having
upper bandwidth ¢ and lower bandwidth p is usually stored in a matrix B
(p+ g+ 1) x n, assuming that
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bi—jtqt1j = @ij

for all the indices 7, j that fall into the band of the matrix. For instance, in
the case of the tridiagonal matrix A=tridiags(—1,2,—1) (where ¢ = p = 1),
the compact storage reads

0-1-1-1-1
B= 2 2 2 2 2
-1-1-1-1 0

The same format can be used for storing the factorization LU of A. It is clear
that this storage format can be quite inconvenient in the case where only a
few bands of the matrix are large. In the limit, if only one column and one
row were full, we would have p = ¢ = n and thus B would be a full matrix
with a lot of zero entries.

Finally, we notice that the inverse of a banded matrix is generally full (as
happens for the matrix A considered above).

3.7.1 Tridiagonal Matrices

Consider the particular case of a linear system with nonsingular tridiagonal
matrix A given by

In such an event, the matrices L and U of the LU factorization of A are
bidiagonal matrices of the form

The coefficients «; and [3; can easily be computed by the following relations

alzal,ﬁizi,ai:ai—ﬁici,l, i:2,...,n. (353)
Qi1
This is known as the Thomas algorithm and can be regarded as a particular
instance of the Doolittle factorization, without pivoting. When one is not
interested in storing the coefficients of the original matrix, the entries «; and
0B; can be overwritten on A.
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The Thomas algorithm can also be extended to solve the whole tridiagonal
system Ax = f. This amounts to solving two bidiagonal systems Ly = f and
Ux =y, for which the following formulae hold:

(Ly:f) yl:f17yi:fi_ﬂiyi—lai:2a"'any (354)

(Ux=y)z, = y—n, r; = (i — ciwip1) [y, i=n—1,...,1.  (3.55)
The algorithm requires only 8n — 7 flops: precisely, 3(n — 1) flops for the
factorization (3.53) and 5n — 4 flops for the substitution procedure (3.54)-
(3.55).
As for the stability of the method, if A is a nonsingular tridiagonal matrix
and L and U are the factors actually computed, then

I6A| < (4u + 3u® +v?)|L| [T,

where §A is implicitly defined by the relation A + §A = LU while u is the
roundoff unit. In particular, if A is also symmetric and positive definite or it
is an M-matrix, we have

|0A] < A,

4du + 3u? +u?

1 —
which implies the stability of the factorization procedure in such cases. A
similar result holds even if A is diagonally dominant.

3.7.2 Implementation Issues

An implementation of the LU factorization for banded matrices is shown in
Program 10.

Program 10 - luband : LU factorization for a banded matrix

function [A]=Iluband(A,p,q)
%LUBAND LU factorization for a banded matrix
% Y=LUBAND(A,P,Q): U is stored in the upper triangular part of Y and L is stored
% in the strict lower triangular part of Y for a banded matrix A
% with an upper bandwidth Q and a lower bandwidth P.
[n,m]=size(A);
if n "= m, error('Only square systems’); end
for k = 1:n-1
for i = k+1:min(k+p,n), A(i,k)=A(i,k)/A(kk); end
for j = k+1:min(k+q,n)
i = [k+1:min(k+p,n)];
AG)=A(0)-AGk)*A(K,));
end
end
return
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In the case where n > p and n > ¢, this algorithm approximately takes 2npq
flops, with a considerable saving with respect to the case in which A is a full
matrix.

Similarly, ad hoc versions of the substitution methods can be devised (see
Programs 11 and 12). Their costs are, respectively, of the order of 2np flops
and 2nq flops, always assuming that n > p and n > q.

Program 11 - forwband : Forward substitution for a banded matrix L

function [b]=forwband (L,p,b)

%FORWBAND forward substitution for a banded matrix

% X=FORWBAND(L,P,B) solves the lower triangular system L*X=B
% where L is a matrix with lower bandwidth P.

[n,m]=size(L);

if n "= m, error('Only square systems’); end
for j = Lin

i=[j- Limin(i-+p.n)]; b(i) = b(3) - L(i)*b();
end
return

Program 12 - backband : Backward substitution for a banded matrix U

function [b]=backband (U,q,b)
%BACKBAND forward substitution for a banded matrix
% X=BACKBAND(U,Q,B) solves the upper triangular system U*X=B
% where U is a matrix with upper bandwidth Q.
[n,m]=size(U);
if n "= m, error('Only square systems’); end
for j=n:-1:1

b () = b () / U G);

i = [max(Li-q):-11; b(i)=b(i)-U(i j)*b(;):
end
return

The programs assume that the whole matrix is stored (including also the zero
entries).

Concerning the tridiagonal case, the Thomas algorithm can be imple-
mented in several ways. In particular, when implementing it on computers
where divisions are more costly than multiplications, it is possible (and con-
venient) to devise a version of the algorithm without divisions in (3.55), by
resorting to the following form of the factorization

A=1LDMT =
—1 —1
"o 0 0 7 0 7oA 0
V2

by 5t

. .0 . Cpet
0 b vt 0 T 0 0 !
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The coefficients «; can be recursively computed by the formulae
Yi = (a; —byicicio1) hi=1,...,n,

where 79 = 0, by = 0 and ¢, = 0 have been assumed. The forward and
backward substitution algorithms respectively read:

Ly =1f) y1 =nfi, yi =vlfi —biyi—1), i =2,...,n,
(3.56)

(Ux=y)Zn=Yn &=y —YiCiTiy1, t=n—1,...,1

In Program 13 we show an implementation of the Thomas algorithm in the
form (3.56), without divisions. The input vectors a, b and ¢ contain the co-
efficients of the tridiagonal matrix {a;}, {b;} and {¢;}, respectively, while the
vector f contains the components f; of the right-hand side f.

Program 13 - modthomas : Thomas algorithm, modified version

function [x] = modthomas (a,b,c,f)
%MODTHOMAS modified version of the Thomas algorithm
% X=MODTHOMAS(A,B,C,F) solves the system T*X=F where T
% is the tridiagonal matrix T=tridiag(B,A,C).
n=length(a);
b=[0; b];
c=[c; 0];
gamma(1l)=1/a(1);
for i=2:n
gamma(i)=1/(a(i)-b(i)*gamma(i-1)*c(i-1));
end
y(1)=gamma(1)*f (1);
for i =2:n
y(i)=gamma(i)*(F())-b()) *y(i-1));
end
x(n.1)=y(n);
for i=n-1:-1:1
x(i,1)=y(i)-gamma(i)*c(i)*x(i+1,1);
end
return

3.8 Block Systems

In this section we deal with the LU factorization of block-partitioned ma-
trices, where each block can possibly be of a different size. Our aim is
twofold: optimizing the storage occupation by suitably exploiting the struc-
ture of the matrix and reducing the computational cost of the solution of the
system.
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3.8.1 Block LU Factorization

Let Ae R™™ be the following block partitioned matrix

A1 Arz
A =
l:AQI Azz} ’

where Aj; € R™" is a nonsingular square matrix whose factorization

L11D1Ry; is known, while Agy € R(*=7)*(»=7") Tn such a case it is possi-
ble to factorize A using only the LU factorization of the block Ay;. Indeed, it

is true that
A App _ L O D, 0 Rii Riz
Aoy Ay Loy I—r 0 Ay 0 L—|’

Lot = AoiRi' Dy Y, Rio = Dy'Lit As,
Ao = Asy — Lo1D1Ryo.

where

If necessary, the reduction procedure can be repeated on the matrix Ao, thus
obtaining a block-version of the LU factorization.

If Ay; were a scalar, the above approach would reduce by one the size of
the factorization of a given matrix. Applying iteratively this method yields an
alternative way of performing the Gauss elimination.

We also notice that the proof of Theorem 3.4 can be extended to the case
of block matrices, obtaining the following result.

Theorem 3.7 Let A € R™ "™ be partitioned in m x m blocks A;; with
i,j = 1,...,m. A admits a unique LU block factorization (with L having
unit diagonal entries) iff the m — 1 dominant principal block minors of A are
nonzero.

Since the block factorization is an equivalent formulation of the standard LU
factorization of A, the stability analysis carried out for the latter holds for its
block-version as well. Improved results concerning the efficient use in block
algorithms of fast forms of matrix-matrix product are dealt with in [Hig88].
In the forthcoming section we focus solely on block-tridiagonal matrices.

3.8.2 Inverse of a Block-partitioned Matrix

The inverse of a block matrix can be constructed using the LU factorization
introduced in the previous section. A remarkable application is when A is a
block matrix of the form

A =C+UBYV,

where C is a block matrix that is “easy” to invert (for instance, when C is
given by the diagonal blocks of A), while U, B and V take into account the
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connections between the diagonal blocks. In such an event A can be inverted
by using the Sherman-Morrison or Woodbury formula

A =(C+UBV) ' =C ' —C'U(1+BVC'U) 'BVC!, (3.57)

having assumed that C and I+ BVC~!U are two nonsingular matrices. This
formula has several practical and theoretical applications, and is particularly
effective if connections between blocks are of modest relevance.

3.8.3 Block Tridiagonal Systems

Consider block tridiagonal systems of the form

Ay App O X1 b;
Aoy Ay . : :
Ax = ] ) = , (3.58)
. ’ Anfl,n :
O An,n—l Ann Xn bn
where A;; are matrices of order n; x n; and x; and b; are column vectors of
size n;, for 4,5 = 1,...,n. We assume that the diagonal blocks are squared,
although not necessarily of the same size. For k =1,...,n, set
I, 0 Uy Ao O
L1 In2 U2 .
Ay = . . .
O . . .. Ak:—l,k
Lici L, | | O Uy

Equating for £ = n the matrix above with the corresponding blocks of A,,, it
turns out that Uy = A;1, while the remaining blocks can be obtained solving
sequentially, for i = 2,...,n, the systems L;,_1U;_; = A; ;_; for the columns
of L and Computing Ui = A” — Li—lAi—l,i-
This procedure is well defined only if all the matrices U; are nonsingular,
which is the case if, for instance, the matrices Aq,..., A, are nonsingular. As
an alternative, one could resort to factorization methods for banded matrices,
even if this requires the storage of a large number of zero entries (unless a
suitable reordering of the rows of the matrix is performed).

A remarkable instance is when the matrix is block tridiagonal and symmet-
ric, with symmetric and positive definite blocks. In such a case (3.58) takes
the form

An Agl O X1 b1

Ao Agp N N
. =
n,n—1

O An,nf 1 Ann Xn bn
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Here we consider an extension to the block case of the Thomas algorithm,
which aims at transforming A into a block bidiagonal matrix. To this purpose,
we first have to eliminate the block corresponding to matrix As;. Assume that
the Cholesky factorization of Aj; is available and denote by Hy; the Cholesky
factor. If we multiply the first row of the block system by Hl_lT, we find

H11X1 + H;lTA§1X2 == H;lTbl.

Letting Hoy = Hl_lTAQT1 and ¢; = Hl_lTbl, it follows that Ay, = HI Hy; and
thus the first two rows of the system are

Hiixy + Hoyxo = ¢y,

Hngllxl + A22X2 + A§2X3 = b2.

As a consequence, multiplying the first row by HZ, and subtracting it from
the second one, the unknown x; is eliminated and the following equivalent
equation is obtained

Aélz)x2 + Alyx3 = by — Hajcq,

with Aélg) = Ayy — H2TlH21. At this point, the factorization of ASQ) is carried

out and the unknown x5 is eliminated from the third row of the system, and

the same is repeated for the remaining rows of the system. At the end of the
. . . n—1 .

procedure, which requires solving (n — 1)y =1 T linear systems to compute

the matrices H;y1;, ¢ = 1,...,n — 1, we end up with the following block

bidiagonal system

Hll H21 O X1 (1
Hao - : :
. = ?
T Hnmfl . .
O Hnn Xn Cn

which can be solved with a (block) back substitution method. If all blocks have
the same size p, then the number of multiplications required by the algorithm
is about (7/6)(n — 1)p® flops (assuming both p and n very large).

3.9 Sparse Matrices

In this section we briefly address the numerical solution of linear sparse sys-
tems, that is, systems where the matrix A€ R™*™ has a number of nonzero
entries of the order of n (and not n?). We call a pattern of a sparse matrix
the set of its nonzero coefficients.

Banded matrices with sufficiently small bands are sparse matrices. Obvi-
ously, for a sparse matrix the matrix structure itself is redundant and it can be
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more conveniently substituted by a vector-like structure by means of matriz
compacting techniques, like the banded matrix format discussed in Section 3.7.

For sake of convenience, we associate with a sparse matrix A an oriented
graph G(A). A graph is a pair (V, X)) where V is a set of p points and X is a
set of ¢ ordered pairs of elements of V that are linked by a line. The elements
of V are called the vertices of the graph, while the connection lines are called
the paths of the graph.

The graph G(A) associated with a matrix A€ R™*™ can be constructed
by identifying the vertices with the set of the indices from 1 to the maximum
between m and n and supposing that a path exists which connects two vertices
i and j if a;; # 0 and is directed from i to j, fori =1,...,mand j =1,...,n.
For a diagonal entry a;; # 0, the path joining the vertex i with itself is called
a loop. Since an orientation is associated with each side, the graph is called
oriented (or finite directed). As an example, Figure 3.3 displays the pattern
of a symmetric and sparse 12 x 12 matrix, together with its associated graph.

As previously noticed, during the factorization procedure, nonzero entries
can be generated in memory positions that correspond to zero entries in the
starting matrix. This action is referred to as fill-in. Figure 3.4 shows the effect
of fill-in on the sparse matrix whose pattern is shown in Figure 3.3. Since use
of pivoting in the factorization process makes things even more complicated,
we shall only consider the case of symmetric positive definite matrices for
which pivoting is not necessary.

A first remarkable result concerns the amount of fill-in. Let m;(A) =i —
min{j <i: a;; # 0} and denote by E(A) the convexr hull of A, given by

E(A) ={(,j): 0<i—j<mi(A)}. (3.59)

X xxx X X
X X X X 6

X X X X X
XX XXXX
X X X 7 1
X X X
X X X X X
X X X X

8 12

X
| X X X] 10
Fig. 3.3. Pattern of a symmetric sparse matrix (left) and of its associated graph
(right). For the sake of clarity, the loops have not been drawn; moreover, since the
matrix is symmetric, only one of the two sides associated with each a;; # 0 has been
reported
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X  xxx X X
X X X X
X XXX @@X
XX XXXX @
X @XX @@
XOX@X@
X X @@@ XX
X X X X
XXX X @
X XX @
X X X X X

L X X X 0000X X@®X X

X
X

X X

Fig. 3.4. The shaded regions in the left figure show the areas of the matrix that
can be affected by fill-in, for the matrix considered in Figure 3.3. Solid lines denote
the boundary of £(A). The right figure displays the factors that have been actually
computed. Black dots denote the elements of A that were originarily equal to zero

For a symmetric positive definite matrix, we have
E(A) =€&M+HT), (3.60)

where H is the Cholesky factor, so that fill-in is confined within the convex
hull of A (see Figure 3.4). Moreover, if we denote by [;(A) the number of
active rows at the k-th step of the factorization (i.e., the number of rows of A
with 7 > k and a;; # 0), the computational cost of the factorization process is

SO I(A) ((A) +3)  flops, (3.61)
k=1

having accounted for all the nonzero entries of the convex hull. Confinement of
fill-in within £(A) ensures that the LU factorization of A can be stored without
extra memory areas simply by storing all the entries of £(A) (including the
null elements). However, such a procedure might still be highly inefficient due
to the large number of zero entries in the hull (see Exercise 11).

On the other hand, from (3.60) one gets that the reduction in the convex
hull reflects a reduction of fill-in, and in turn, due to (3.61), of the number
of operations needed to perform the factorization. For this reason several
strategies for reordering the graph of the matrix have been devised. Among
them, we recall the Cuthill-McKee method, which will be addressed in the
next section.

An alternative consists of decomposing the matrix into sparse submatri-
ces, with the aim of reducing the original problem to the solution of sub-
problems of reduced size, where matrices can be stored in full format. This
approach leads to submatrix decomposition methods which will be addressed
in Section 3.9.2.
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3.9.1 The Cuthill-McKee Algorithm

The Cuthill-McKee algorithm is a simple and effective method for reordering
the system variables. The first step of the algorithm consists of associating
with each vertex of the graph the number of its connections with neighboring
vertices, called the degree of the vertex. Next, the following steps are taken:

1. a vertex with a low number of connections is chosen as the first vertex of
the graph;

2. the vertices connected to it are progressively re-labeled starting from those
having lower degrees;

3. the procedure is repeated starting from the vertices connected to the sec-
ond vertex in the updated list. The nodes already re-labeled are ignored.
Then, a third new vertex is considered, and so on, until all the vertices
have been explored.

The usual way to improve the efficiency of the algorithm is based on the so-
called reverse form of the Cuthill-McKee method. This consists of executing
the Cuthill-McKee algorithm described above where, at the end, the i-th ver-
tex is moved into the n — i + 1-th position of the list, n being the number of
nodes in the graph. Figure 3.5 reports, for comparison, the graphs obtained
using the direct and reverse Cuthill-McKee reordering in the case of the ma-
trix pattern represented in Figure 3.3, while in Figure 3.6 the factors L and
U are compared. Notice the absence of fill-in when the reverse Cuthill-McKee
method is used.

Remark 3.5 For an efficient solution of linear systems with sparse matri-
ces, we mention the public domain libraries SPARSKIT [Saa90], UMFPACK

[DD95] and the MATLAB sparfun package. |
4(5) 5(12) ‘®
5(6) 3(2) 3(11)
6(1) 2 (4) 6 2(9)
7(12) 13 ' ©®
1(10)
8 (5)
8 (8) E ; 12 (7) 12 (1)
9 (10) 11(11) 9(3) 11(2)
10(9) 10 (4)

Fig. 3.5. Reordered graphs using the direct (left) and reverse (right) Cuthill-McKee
algorithm. The label of each vertex, before reordering is performed, is reported in
braces
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X X X
X X X X
X X X XX
X XX X X
X X X X X
X XXX X
X X XX XX
XX X
XX XXX
XX XXX X
X X X X
L X X X

Fig. 3.6. Factors L and U after the direct (left) and reverse (right) Cuthill-McKee
reordering. In the second case, fill-in is absent

1

Substructure 11
2 3
6 b 4| Substructure I

Fig. 3.7. Decomposition into two substructures

3.9.2 Decomposition into Substructures

These methods have been developed in the framework of numerical approxi-
mation of partial differential equations. Their basic strategy consists of split-
ting the solution of the original linear system into subsystems of smaller size
which are almost independent from each other and can be easily interpreted
as a reordering technique.

We describe the methods on a special example, referring for a more com-
prehensive presentation to [BSG96]. Consider the linear system Ax=Db, where
A is a symmetric positive definite matrix whose pattern is shown in Figure
3.3. To help develop an intuitive understanding of the method, we draw the
graph of A in the form as in Figure 3.7.

We then partition the graph of A into the two subgraphs (or substructures)
identified in the figure and denote by X, k = 1, 2, the vectors of the unknowns
relative to the nodes that belong to the interior of the k-th substructure. We
also denote by xs the vector of the unknowns that lie along the interface
between the two substructures. Referring to the decomposition in Figure 3.7,
we have x; = [2, 3, 4, 6|7, xo =[8, 9, 10, 11, 12]7 and x3 = [1, 5, 7]7.
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As a result of the decomposition of the unknowns, matrix A will be parti-
tioned in blocks, so that the linear system can be written in the form

A11 O A13 X1 b1
0 Aoy Ao X2 | = [b2],
A?3 AgB A33 X3 b3

having reordered the unknowns and partitioned accordingly the right hand
side of the system. Suppose that Ags is decomposed into two parts, A%, and
A, which represent the contributions to Ags of each substructure. Similarly,
let the right hand side bs be decomposed as b + b4. The original linear
system is now equivalent to the following pair

[An A13:| |:X1] _ [bl ]
Al AL, X3 by + ;3 |’

{Azz A23] {X2] _ [bz }
Ag3 Afs X3 by — s |’

having denoted by «5 a vector that takes into account the coupling between
the substructures. A typical way of proceeding in decomposition techniques
consists of eliminating 5 to end up with independent systems, one for each
substructure. Let us apply this strategy to the example at hand. The linear
system for the first substructure is

A A13} [X1] {bl }
= . 3.62
[Ang 33 X3 3+ 73 ( )

Let us now factorize Aq; as H1T1H11 and proceed with the reduction method
already described in Section 3.8.3 for block tridiagonal matrices. We obtain
the system

Hyq Hoy X1|_|c
0 Aby—H3Ha | |x3 b +~; — Hjje |

where Hy; = Hl_lTAlg and ¢ = Hl_lTbl. The second equation of this system
yields v explicitly as

vs = (A — HJ Ha1) x5 — bh + HJ ey

Substituting this equation into the system for the second substructure, one
ends up with a system only in the unknowns x5 and x3

Aoy A b
] (o] ) 509

where A% = Az3—HZ% Hy and b’ = b3 —HI, ¢;. Once (3.63) has been solved,
it will be possible, by backsubstitution into (3.62), to compute also x;.
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The technique described above can be easily extended to the case of several
substructures and its efficiency will increase the more the substructures are
mutually independent. It reproduces in nuce the so-called frontal method (in-
troduced by Irons [Iro70]), which is quite popular in the solution of finite
element systems (for an implementation, we refer to the UMFPACK library
[DD95]).

Remark 3.6 (The Schur complement) An approach that is dual to the
above method consists of reducing the starting system to a system acting only
on the interface unknowns x3, passing through the assembling of the Schur
complement of matrix A, defined in the 3x3 case at hand as

S = Az — ATAL A3 — ALAL Ags.
The original problem is thus equivalent to the system
SX3 = b3 — A?gAl_llbl — A53A2_21b2.

This system is full (even if the matrices A;; were sparse) and can be solved
using either a direct or an iterative method, provided that a suitable pre-
conditioner is available. Once x3 has been computed, one can get x; and
X5 by solving two systems of reduced size, whose matrices are Ay; and Ao,
respectively.

We also notice that if the block matrix A is symmetric and positive definite,
then the linear system on the Schur complement S is no more ill-conditioned
than the original system on A, since

K>(S) < K3(A)

(for a proof, see Lemma 3.12, [Axe94]. See also [CM94] and [QV99)). |

3.9.3 Nested Dissection

This is a renumbering technique quite similar to substructuring. In practice,
it consists of repeating the decomposition process several times at each sub-
structure level, until the size of each single block is made sufficiently small.
In Figure 3.8 a possible nested dissection is shown in the case of the matrix
considered in the previous section. Once the subdivision procedure has been
completed, the vertices are renumbered starting with the nodes belonging to
the latest substructuring level and moving progressively up to the first level.
In the example at hand, the new node ordering is 11, 9, 7, 6, 12, 8, 4, 2, 1,
5, 3.

This procedure is particularly effective if the problem has a large size and
the substructures have few connections between them or exhibit a repetitive
pattern [Geo73].
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34B5 6 C A

4 >B

Fig. 3.8. Two steps of nested dissection. Graph partitioning (left) and matrix re-
ordering (right)

3.10 Accuracy of the Solution Achieved Using GEM

Let us analyze the effects of rounding errors on the accuracy of the solution
yielded by GEM. Suppose that A and b are a matrix and a vector of floating-
point numbers. Denoting by L and U respectively, the matrices of the LU
factorization induced by GEM and computed in floating-point arithmetic, the
solution X yielded by GEM can be regarded as being the solution (in exact
arithmetic) of the perturbed system (A4+0A)X = b, where JA is a perturbation
matrix such that

6A] < nu (3|A| + 5|£||ﬁ|) +Ou?), (3.64)

where u is the roundoff unit and the matrix absolute value notation has been
used (see [GL89], Section 3.4.6). As a consequence, the entries of JA will be
small in size if the entries of L and U are small. Using partial pivoting allows
for bounding below 1 the module of the entries of L in such a way that, passing
to the infinity norm and noting that |L|lec < n, the estimate (3.64) becomes

1810 < (3]Alo + 52Tl ) + O(u?). (3.65)
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The bound for ||0A||« in (3.65) is of practical use only if it is possible to
provide an estimate for ||U||o. With this aim, backward analysis can be carried
out introducing the so-called growth factor

max

(k)
o ‘aij |

Pn = (3.66)

max|a;;|
irj
Taking advantage of the fact that |u;;| < p,max|a,;|, the following result due
to Wilkinson can be drawn from (3.65), v
[6A]lo0 < 8un®p,[|Allo + O(u?). (3.67)

The growth factor can be bounded by 27~! and, although in most of the cases
it is of the order of 10, there exist matrices for which the inequality in (3.67)
becomes an equality (see, for instance, Exercise 5). For some special classes
of matrices, a sharp bound for p,, can be found:

1. for banded matrices with upper and lower bands equal to p, p, < 22P~1 —
(p —1)2P=2. As a consequence, in the tridiagonal case one gets p, < 2;

. for Hessenberg matrices, p, < n;

. for symmetric positive definite matrices, p,, = 1;

4. for matrices strictly diagonally dominant by columns, p, < 2.

W N

To achieve better stability when using GEM for arbitrary matrices, resort-
ing to complete pivoting would seem to be mandatory, since it ensures that
1/2
pn < nM/2(2- 3Y2. 0 pl/nmh) 2 Indeed, this growth is slower than

2"~! as n increases.
However, apart from very special instances, GEM with only partial piv-

oting exhibits acceptable growth factors. This make it the most commonly
employed method in the computational practice.

Example 3.7 Consider the linear system (3.2) with

1 1+
A:[iﬂ],b:[ 11, (3.68)

which admits the exact solution x=1 for any value of . The matrix is well-
conditioned, having Ko (A) = (1+¢)%. Attempting to solve the system for e = 1077
by the LU factorization with 16 significant digits, and using the Programs 5, 2 and
3, yields the solution X = [0.8881784197001253, l.OOOOOOOOOOOOOOO}T, with an error
greater than 11% on the first component. Some insight into the causes of the inac-
curacy of the computed solution can be drawn from (3.64). Indeed this latter does
not provide a uniformly small bound for all the entries of matrix JA, rather

3.55-1073° 1.33.1071°

A< |y 351010

Notice that the entries of the corresponding matrices L and U are quite large in
module. Conversely, resorting to GEM with partial or complete pivoting yields the
exact solution of the system (see Exercise 6). °
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Let us now address the role of the condition number in the error analysis
for GEM. GEM yields a solution X that is typically characterized by having
a small residual T = b — AX (see [GL89]). This feature, however, does not
ensure that the error x — X is small when K(A) > 1 (see Example 3.8). In
fact, if db in (3.11) is regarded as being the residual, then

[x — x|
x|l

This result will be applied to devise methods, based on the a posteriori
analysis, for improving the accuracy of the solution of GEM (see Section 3.12).

Iell

N 1
< KOl R Ry < ey

Example 3.8 Consider the linear system Ax = b with

1 1.0001 1
A_[l.()OOl 1 ]’b_{l}’

which admits the solution x = [0.499975...,0.499975...]7. Assuming as an ap-
proximate solution the vector X = [—4.499775,5.5002249]", one finds the residual
T ~ [-0.001, O]T, which is small although X is quite different from the exact solution.

The reason for this is due to the ill-conditioning of matrix A. Indeed in this case
Koo (A) = 20001. .

An estimate of the number of exact significant digits of a numerical solution
of a linear system can be given as follows. From (3.13), letting v = u and
assuming that uK . (A) < 1/2 we get

16%/lse _ 2uKoo(A)
< < duK o (A).
[x[loo ™ 1 —uKu(A)

As a consequence

X = X]|oo

1%l oo

~uK o (A). (3.69)

Assuming that u ~ 7% and K. (A) ~ 8™, one gets that the solution x
computed by GEM will have at least ¢t —m exact digits, ¢t being the number
of digits available for the mantissa. In other words, the ill-conditioning of a
system depends both on the capability of the floating-point arithmetic that is
being used and on the accuracy that is required in the solution.

3.11 An Approximate Computation of K(A)

Suppose that the linear system (3.2) has been solved by a factorization
method. To determine the accuracy of the computed solution, the analysis
carried out in Section 3.10 can be used if an estimate of the condition number
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~

K(A) of A, which we denote by K(A), is available. Indeed, although evaluat-
ing ||A]| can be an easy task if a suitable norm is chosen (for instance, || - [|1
or || - [s), it is by no means reasonable (or computationally convenient) to
compute A~ if the only purpose is to evaluate ||[A=1||. For this reason, we de-
scribe in this section a procedure (proposed in [CMSW79]) that approximates
|A~Y|| with a computational cost of the order of n? flops.

The basic idea of the algorithm is as follows: Vd € R™ with d # 0, thanks
to the definition of matrix norm, [[A=1]| > |ly||/|d]| = v(d) with Ay = d.
Thus, we look for d in such a way that y(d) is as large as possible and assume
the obtained value as an estimate of |A™}.

For the method to be effective, the selection of d is crucial. To explain
how to do this, we start by assuming that the QR factorization of A has been
computed and that K5(A) is to be approximated. In such an event, since
K3(A) = K3(R) due to Property 1.8, it suffices to estimate ||[R™!||y instead
of ||A~Y||2. Considerations related to the SVD of R induce approximating
[R~Y|2 by the following algorithm:

compute the vectors x and y, solutions to the systems

R”x =d, Ry =x, (3.70)

then estimate |[R71||2 by the ratio 42 = [|y|2/[/x|l2- The vector d appearing
in (3.70) should be determined in such a way that ~, is as close as possible to
the value actually attained by ||[R7!|2. It can be shown that, except in very
special cases, v2 provides for any choice of d a reasonable (although not very
accurate) estimate of |[R7![|2 (see Exercise 15). As a consequence, a proper
selection of d can encourage this natural trend.

Before going on, it is worth noting that computing K»(R) is not an easy
matter even if an estimate of |[R™![| is available. Indeed, it would remain to
compute ||Rll2 = /p(RTR). To overcome this difficulty, we consider hence-
forth K (R) instead of K3(R) since ||R||; is easily computable. Then, heuristics
allows us to assume that the ratio 1 = ||y||1//x||1 is an estimate of |[R™!||y,
exactly as 72 is an estimate of |[R™!||5.

Let us now deal with the choice of d. Since RTx = d, the generic compo-
nent x; of x can be formally related to x1,...,x,_1 through the formulae of
forward substitution as

r11xo = di,
(3.71)
TreTr = dp — (rgzr + ..o+ e xTh-1), k> 1.

Assume that the components of d are of the form d = +60j, where 0 are
random numbers and set arbitrarily dy = 61. Then, x1 = 61 /711 is completely
determined, while o = (do — r1221)/r22 depends on the sign of do. We set
the sign of do as the opposite of 71221 in such a way to make ||x(1 : 2)||; =
|z1| + |22|, for a fixed x1, the largest possible. Once x5 is known, we compute
x3 following the same criterion, and so on, until x,,.
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This approach sets the sign of each component of d and yields a vector
x with a presumably large || - ||;. However, it can fail since it is based on
the idea (which is in general not true) that maximizing |/x|[; can be done
by selecting at each step k in (3.71) the component x; which guarantees the
maximum increase of ||x(1: k—1)||; (without accounting for the fact that all
the components are related).

Therefore, we need to modify the method by including a sort of “look-
ahead” strategy, which accounts for the way of choosing d; affects all later
values x;, with ¢ > k, still to be computed. Concerning this point, we notice
that for a generic row 4 of the system it is always possible to compute at step
k the vector p*~1) with components

P =o, i=1,...,k—1,
k- .
P,(- Y =721+ e TR—1,i k1, E = Ky,

Thus z, = (£6 — pgﬁ_l))/rkk. We denote the two possible values of x; by
x; and z, . The choice between them is now taken not only accounting for
which of the two most increases ||x(1 : k)||1, but also evaluating the increase
of [[p®]|1. This second contribution accounts for the effect of the choice of dy,
on the components that are still to be computed. We can include both criteria
in a unique test. Denoting by

+ — - — .
p =Y b oM = p Y b i =k 41,0,

the components of the vectors p(’“)Jr and p®)~ respectively, we set each k-th
step dy, = +0}, or dj, = —0}, according to whether |rkk:1:;r| + Hp(k)+ |l is greater
or less than |rpra; |+ [|p® ||

Under this choice d is completely determined and the same holds for x.
Now, solving the system Ry = x, we are warranted that ||y/||1/[/x]|1 is a reliable
approximation to |[R™!|1, so that we can set Ki(A) = ||R||1|lyll1/]x]1.

In practice the PA=LU factorization introduced in Section 3.5 is usually
available. Based on the previous considerations and on some heuristics, an
analogous procedure to that shown above can be conveniently employed to
approximate ||A~||;. Precisely, instead of systems (3.70), we must now solve

(LU)Tx =d, LUy = x.

We set ||y|l1/|]x|l1 as the approximation of ||[A~![|; and, consequently, we
define K;(A). The strategy for selecting d can be the same as before; indeed,
solving (LU)Tx = d amounts to solving

UTz=d,LTx = z, (3.72)
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and thus, since UT is lower triangular, we can proceed as in the previous
case. A remarkable difference concerns the computation of x. Indeed, while
the matrix R” in the second system of (3.70) has the same condition number
as R, the second system in (3.72) has a matrix L7 which could be even more
ill-conditioned than U”. If this were the case, solving for x could lead to an
inaccurate outcome, thus making the whole process useless.

Fortunately, resorting to partial pivoting prevents this circumstance from
occurring, ensuring that any ill-condition in A is reflected in a corresponding
ill-condition in U. Moreover, picking ¢, randomly between 1/2 and 1 guar-
antees accurate results even in the special cases where L turns out to be
ill-conditioned.

The algorithm presented below is implemented in the LINPACK library
[BDMS79] and in the MATLAB function rcond. This function, in order to
avoid rounding errors, returns as output parameter the reciprocal of K 1(A).
A more accurate estimator, described in [Hig88], is implemented in the MAT-
LAB function condest.

Program 14 implements the approximate evaluation of K; for a matrix
A of generic form. The input parameters are the size n of the matrix A, the
matrix A, the factors L, U of its PA=LU factorization and the vector theta
containing the random numbers 0y, for k =1,... n.

Program 14 - condest2 : Algorithm for the approximation of K;(A)

function [k1]=condest2(A,L,U,theta)
%CONDEST2 Condition number
% K1=CONDEST2(A,L,U THETA) returns an approximation of the condition
% number of a matrix A. L and U are the factor of the LU factorization of A.
% THETA contains random numbers.
[n,m]=size(A);
if n "= m, error('Only square matrices’); end
p = zeros(1,n);
for k=1:n
zplus=(theta(k)-p(k))/U(k,k); zminu=(-theta(k)-p(k))/U(kk);
splus=abs(theta(k)-p(k)); sminu=abs(-theta(k)-p(k));
for i=k+1:n
splus=splus+abs(p(i)+U(k,i)*zplus);
sminu=sminu-abs(p(i)+U(k,i)*zminu);
end
if splus >= sminu, z(k)=zplus; else, z(k)=zminu; end
i=[k+1:n]; p(i)=p(i)+U(ki)*z(k);
end
z =72
x = backwardcol(L’,z);
w = forwardcol(L x);
y = backwardcol(U,w);
kl=norm(A,1)*norm(y,1)/norm(x,1);
return
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Example 3.9 Let us consider the Hilbert matrix H4. Its condition number K1 (Hy4),
computed using the MATLAB function invhilb which returns the exact inverse of
Hy, is 2.8375-10%. Running Program 14 with theta=[1,1,1,1]” gives the reasonable
estimate IA(1(H4) = 2.1509 - 10* (which is the same as the output of rcond), while
the function condest returns the exact result. °

3.12 Improving the Accuracy of GEM

As previously noted if the matrix of the system is ill-conditioned, the solution
generated by GEM could be inaccurate even though its residual is small. In
this section, we mention two techniques for improving the accuracy of the
solution computed by GEM.

3.12.1 Scaling

If the entries of A vary greatly in size, it is likely that during the elimination
process large entries are summed to small entries, with a consequent onset of
rounding errors. A remedy consists of performing a scaling of the matrix A
before the elimination is carried out.

Example 3.10 Consider again the matrix A of Remark 3.3. Multiplying it on the
right and on the left with matrix D=diag(0.0005, 1, 1), we obtain the scaled matrix

i —0.001 1 1
A=DAD=| 1 0781250].
1 0 0

Applying GEM to the scaled system Ax = Db = [0.2, 1.3816, 1.9273]7, we get the
correct solution x = Dx. °

Row scaling of A amounts to finding a diagonal nonsingular matrix D,
such that the diagonal entries of D1 A are of the same size. The linear system
Ax = b transforms into

DlAX = D1b

When both rows and columns of A are to be scaled, the scaled version of (3.2)
becomes

(D;ADy)y = D1b with y = D 'x,

having also assumed that D is invertible. Matrix Dy scales the equations,
while Do scales the unknowns. Notice that, to prevent rounding errors, the
scaling matrices are chosen in the form

D, = diag(8™,...,3™), Dy = diag(s“,...,5),
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where (3 is the base of the used floating-point arithmetic and the exponents
T1y.euyTn, C1,...,Cy, must be determined. It can be shown that

1/~
D2 & =Xl _ g (p,aD,).
D2 X[ oo
Therefore, scaling will be effective if Ko, (D1AD3) is much less than K (A).
Finding convenient matrices D; and Ds is not in general an easy matter.

A strategy consists, for instance, of picking up D7 and Ds in such a way
that |D1ADs||o and |[D;ADsl|; belong to the interval [1/3, 1], where f is the
base of the used floating-point arithmetic (see [McK62] for a detailed analysis
in the case of the Crout factorization).

Remark 3.7 (The Skeel condition number) The Skeel condition num-
ber, defined as cond(A) = | |[A7Y |A| [l«, is the supremum over the set
x€ R"™, with x # 0, of the numbers

A=A X! [
conp ) = LA AL

Unlike what happens for K(A), cond(A,x) is invariant with respect to a scaling
by rows of A, that is, to transformations of A of the form DA, where D is
a nonsingular diagonal matrix. As a consequence, cond(A) provides a sound
indication of the ill-conditioning of a matrix, irrespectively of any possible
row diagonal scaling. |

3.12.2 Iterative Refinement

Iterative refinement is a technique for improving the accuracy of a solution
yielded by a direct method. Suppose that the linear system (3.2) has been
solved by means of LU factorization (with partial or complete pivoting), and
denote by x(©) the computed solution. Having fixed an error tolerance, tol, the
iterative refinement performs as follows: for ¢ = 0,1, ..., until convergence:

1. compute the residual r¥ = b — Ax(9;

2. solve the linear system Az = r(® using the LU factorization of A;

3. update the solution setting x("t1) = x(*) 4 g

4. if ||z||/|x"* V| < tol, then terminate the process returning the solution
x(+1) Otherwise, the algorithm restarts at step 1.

In absence of rounding errors, the process would stop at the first step, yielding
the exact solution. The convergence properties of the method can be improved
by computing the residual r(¥) in double precision, while computing the other
quantities in single precision. We call this procedure mized-precision iterative
refinement (shortly, MPR), as compared to fixed-precision iterative refinement
(FPR).
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It can be shown that, if || [A~Y |£| \f]| llo is sufficiently small, then at
each step 4 of the algorithm, the relative error ||x — x| o /||%||s0 is reduced
by a factor p, which is given by

p~2n cond(A,x)u (FPR),
p~u (MPR),

where p is independent of the condition number of A in the case of MPR. Slow
convergence of FPR is a clear indication of the ill-conditioning of the matrix,
as it can be shown that, if p is the number of iterations for the method to
converge, then K (A) ~ gt1=1/p),

Even if performed in fixed precision, iterative refinement is worth using
since it improves the overall stability of any direct method for solving the
system. We refer to [Ric81], [Ske80], [JW77] [Ste73], [Wil63] and [CMSWT79]
for an overview of this subject.

3.13 Undetermined Systems

We have seen that the solution of the linear system Ax=Db exists and is unique
if n = m and A is nonsingular. In this section we give a meaning to the
solution of a linear system both in the overdetermined case, where m > n,
and in the underdetermined case, corresponding to m < n. We notice that an
undetermined system generally has no solution unless the right side b is an
element of range(A).
For a detailed presentation, we refer to [LH74], [GL89] and [Bj688].

Given Ae R™*™ with m > n, be R™, we say that x* € R" is a solution
of the linear system Ax=Db in the least-squares sense if

*x\ * 2 . _ 2: :
o) = |Ax" — [} < min |Ax — b} = min®(x).  (373)

The problem thus consists of minimizing the Euclidean norm of the resid-
ual. The solution of (3.73) can be found by imposing the condition that the
gradient of the function @ in (3.73) must be equal to zero at x*. From

d(x) = (Ax — b)T(Ax — b) = xTATAx — 2xTATb + b™b,
we find that
Vo(x*) = 2ATAx* — 2ATb =0,
from which it follows that x* must be the solution of the square system
ATAX* = A"b (3.74)

known as the system of normal equations. The system is nonsingular if A has
full rank and in such a case the least-squares solution exists and is unique.
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We notice that B = ATA is a symmetric and positive definite matrix. Thus,
in order to solve the normal equations, one could first compute the Cholesky
factorization B = H”H and then solve the two systems H’y = A7b and
Hx* = y. However, due to roundoff errors, the computation of ATA may
be affected by a loss of significant digits, with a consequent loss of positive
definiteness or nonsingularity of the matrix, as happens in the following ex-
ample (implemented in MATLAB) where for a matrix A with full rank, the
corresponding matrix fI(ATA) turns out to be singular

1 1

A=|2270 ,fl(ATA)_Fl}
0o 277 1

Therefore, in the case of ill-conditioned matrices it is more convenient to utilize
the QR factorization introduced in Section 3.4.3. Indeed, the following result
holds.

Theorem 3.8 Let A € R™*"  with m > n, be a full rank matriz. Then the
unique solution of (3.73) is given by

x* =R71QTb, (3.75)

where R € R™™ and Q € R™*™ are the matrices defined in (3.48) starting
from the QR factorization of A. Moreover, the minimum of @ is given by

m

e(x) = Y [(Q"b)]

1=n—+1

Proof. The QR factorization of A exists and is unique since A has full rank. Thus,
there exist two matrices, Q€ R™*"™ and Re R"™*"™ such that A=QR, where Q is
orthogonal. Since orthogonal matrices preserve the Euclidean scalar product (see
Property 1.8), it follows that

IAx = bl = |[Rx — Q"b]}3.

Recalling that R is upper trapezoidal, we have

[Rx — Qb3 = [|Rx - Q"bl5 + Y [(Q"b)J%,

i=n+1

so that the minimum is achieved when x = x*. <&

For more details about the analysis of the computational cost of the algo-
rithm (which depends on the actual implementation of the QR factorization),
as well as for results about its stability, we refer the reader to the texts quoted
at the beginning of the section.

If A does not have full rank, the solution techniques above fail, since in
this case if x* is a solution to (3.73), the vector x* + z, with z € ker(A), is
a solution too. We must therefore introduce a further constraint to enforce
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the uniqueness of the solution. Typically, one requires that x* has minimal
Euclidean norm, so that the least-squares problem can be formulated as:

find x* € R" with minimal Euclidean norm such that

3.76
A" — B[} < min [Ax — b3 (3:76)
xeR™

This problem is consistent with (3.73) if A has full rank, since in this case
(3.73) has a unique solution which necessarily must have minimal Euclidean
norm.

The tool for solving (3.76) is the singular value decomposition (or SVD,
see Section 1.9), for which the following theorem holds.

Theorem 3.9 Let A € R™*" with SVD given by A = UXVT. Then the
unique solution to (3.76) is

x* = Afb, (3.77)

where A is the pseudo-inverse of A introduced in Definition 1.15.

Proof. Using the SVD of A, problem (3.76) is equivalent to finding w = V7x such
that w has minimal Euclidean norm and

|Zw — UTb|3 < Sy — UTb|3, VyeR"™

If r is the number of nonzero singular values o; of A, then

: 2 “ 2
IBw — UTb|3 = > (0w — (UTb):)" + D ((UTb))",
i=1 i=r+1
which is minimum if w; = (UTb)i/ai for ¢« = 1,...,r. Moreover, it is clear that

among the vectors w of R having the first » components fixed, the one with minimal
Euclidean norm has the remaining n—r components equal to zero. Thus the solution
vector is w* = XTUTD, that is, x* = VZTUTb = A'b, where X1 is the diagonal
matrix defined in (1.11). O

As for the stability of problem (3.76), we point out that if the matrix
A does not have full rank, the solution x* is not necessarily a continuous
function of the data, so that small changes on these latter might produce
large variations in x*. An example of this is shown below.

Example 3.11 Consider the system Ax = b with

10 1
A= [OO] b= [2] , rank(A) = 1.
00 3

Using the MATLAB function svd we can compute the SVD of A. Then comput-
ing the pseudo-inverse, one finds the solution vector x* = (1, ())T. If we per-
turb the null entry ass, with the value 107'2, the perturbed matrix has (full)
rank 2 and the solution (which is unique in the sense of (3.73)) is now given by

%= (1, 2-10%)". .
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We refer the reader to Section 5.8.3 for the approximate computation of
the SVD of a matrix.

In the case of underdetermined systems, for which m < n, if A has full
rank the QR factorization can still be used. In particular, when applied to the
transpose matrix A7, the method yields the solution of minimal Euclidean
norm. If, instead, the matrix has not full rank, one must resort to SVD.

Remark 3.8 If m = n (square system), both SVD and QR factorization
can be used to solve the linear system Ax=b, as alternatives to GEM. Even
though these algorithms require a number of flops far superior to GEM (SVD,
for instance, requires 12n® flops), they turn out to be more accurate when the
system is ill-conditioned and nearly singular. |

Example 3.12 Compute the solution to the linear system Hisx=b, where H;5 is
the Hilbert matrix of order 15 (see (3.32)) and the right-hand side is chosen in such
a way that the exact solution is the unit vector x = 1. Using GEM with partial
pivoting yields a solution affected by a relative error larger than 100%. A solution of
much better quality is obtained by passing through the computation of the pseudo-
inverse, where the entries in ¥ that are less than 107'2 are set equal to zero. °

3.14 Applications

In this section we present two problems, suggested by structural mechanics
and grid generation in finite element analysis, whose solutions require solving
large linear systems.

3.14.1 Nodal Analysis of a Structured Frame

Let us consider a structured frame which is made by rectilinear beams con-
nected among them through hinges (referred to as the nodes) and suitably
constrained to the ground. External loads are assumed to be applied at the
nodes of the frame and for any beam in the frame the internal actions amount
to a unique force of constant strength and directed as the beam itself. If the
normal stress acting on the beam is a traction we assume that it has positive
sign, otherwise the action has negative sign. Structured frames are frequently
employed as covering structures for large size public buildings like exhibition
stands, railway stations or airport halls.

To determine the internal actions in the frame, that are the unknowns of
the mathematical problem, a nodal analysis is used (see [Zie77]): the equilib-
rium with respect to translation is imposed at every node of the frame yielding
a sparse and large-size linear system. The resulting matrix has a sparsity pat-
tern which depends on the numbering of the unknowns and that can strongly
affect the computational effort of the LU factorization due to fill-in. We will
show that the fill-in can be dramatically reduced by a suitable reordering of
the unknowns.
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25|

Fig. 3.9. A structured frame loaded at the point (0, 1)

The structure shown in Figure 3.9 is arc-shaped and is symmetric with re-
spect to the origin. The radii » and R of the inner and outer circles are equal
to 1 and 2, respectively. An external vertical load of unit size directed down-
wards is applied at (0,1) while the frame is constrained to ground through a
hinge at (—(r + R),0) and a bogie at (r + R,0). To generate the structure
we have partitioned the half unit circle in ny uniform slices, resulting in a
total number of n = 2(ny + 1) nodes and a matrix size of m = 2n. The struc-
ture in Figure 3.9 has ng = 7 and the unknowns are numbered following a
counterclockwise labeling of the beams starting from the node at (1,0).

We have represented the structure along with the internal actions com-
puted by solving the nodal equilibrium equations where the width of the
beams is proportional to the strength of the computed action. Black is used to
identify tractions whereas gray is associated with compressions. As expected
the maximum traction stress is attained at the node where the external load
is applied.

We show in Figure 3.10 the sparsity pattern of matrix A (left) and that
of the L-factor of its LU factorization with partial pivoting (right) in the case
ng = 40 which corresponds to a size of 164 x 164. Notice the large fill-in effect
arising in the lower part of L which results in an increase of the nonzero entries
from 645 (before the factorization) to 1946 (after the factorization).

In view of the solution of the linear system by a direct method, the increase
of the nonzero entries demands for a suitable reordering of the unknowns. For
this purpose we use the MATLAB function symrcm which implements the
symmetric reverse Cuthill-McKee algorithm described in Section 3.9.1. The
sparsity pattern, after reordering, is shown in Figure 3.11 (left) while the
L-factor of the LU factorization of the reordered matrix is shown in Figure
3.11 (right). The results indicate that the reordering procedure has “scattered”
the sparsity pattern throughout the matrix with a relatively modest increase
of the nonzero entries from 645 to 1040.

The effectiveness of the symmetric reverse Cuthill-McKee reordering pro-
cedure is demonstrated in Figure 3.12 which shows the number of nonzero
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Fig. 3.10. Sparsity pattern of matrix A (left) and of the L-factor of the LU factor-
ization with partial pivoting (right) in the case ng = 40
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Fig. 3.11. Sparsity pattern of matrix A (left) after a reordering with the symmetric
reverse Cuthill-McKee algorithm and the L-factor of the LU factorization of the
reordered matrix with partial pivoting (right) in the case ng = 40

entries nz in the L-factor of A as a function of the size m of the matrix (repre-
sented on the z-axis). In the reordered case (solid line) a linear increase of nz
with m can be clearly appreciated at the expense of a dramatic fill-in growing
with m if no reordering is performed (dashed line).
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Fig. 3.12. Number of nonzero entries in the L-factor of A as a function of the size
m of the matrix, with (solid line) and without (dashed line) reordering

3.14.2 Regularization of a Triangular Grid

The numerical solution of a problem in a two-dimensional domain D of polygo-
nal form, for instance by finite element or finite difference methods, very often
requires that D be decomposed in smaller subdomains, usually of triangular
form (see for instance Section 9.9.2).

Suppose that D = |J T, where 7}, is the considered triangulation (also

TeT,

called computational grid) and h is a positive parameter which characterizes
the triangulation. Typically, A denotes the maximum length of the triangle
edges. We shall also assume that two triangles of the grid, 77 and T», have
either null intersection or share a vertex or a side.
The geometrical properties of the computational grid can heavily affect the
quality of the approximate numerical solution. It is therefore convenient to
devise a sufficiently regular triangulation, such that, for any T € 7}, the ratio
between the maximum length of the sides of T' (the diameter of T') and the
diameter of the circle inscribed within 7' (the sphericity of T') is bounded by a
constant independent of T'. This latter requirement can be satisfied employing
a regularization procedure, applied to an existing grid. We refer to [Ver96] for
further details on this subject.
Let us assume that 75 contains Np triangles and N vertices, of which Ny,
lying on the boundary 0D of D, are kept fixed and having coordinates x\9P) =

(]

[mEaD), ygaD)}T. We denote by AV}, the set of grid nodes, excluding the boundary
nodes, and for each node x; = (z;,;)7 € My, let P; and Z; respectively be
the set of triangles T € 7}, sharing x; (called the patch of x;) and the set of
nodes of P; except node x; itself (see Figure 3.13, right). We let n; = dim(Z;).

The regularization procedure consists of moving the generic node x; to
a new position which is determined by the center of gravity of the poly-
gon generated by joining the nodes of Z;, and for that reason it is called a
barycentric reqularization. The effect of such a procedure is to force all the
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Xk

Fig. 3.13. An example of a decomposition into triangles of a polygonal domain D
(left), and the effect of the barycentric regularization on a patch of triangles (right).
The newly generated grid is plotted in dashed line

triangles that belong to the interior of the domain to assume a shape that
is as regular as possible (in the limit, each triangle should be equilateral). In
practice, we let

Xi = Z x; | /i, Vx; € Ny, X; = anD) if x; € OD.
xjeZ,i

Two systems must then be solved, one for the z-components {z;} and the
other for the y-components {y;}. Denoting by z; the generic unknown, the
i-th row of the system, in the case of internal nodes, reads

nizi— Y 2z =0, VieN,, (3.78)
Z;€EZ;

while for the boundary nodes the identities z; = zlgaD) hold. Equations (3.78)
yield a system of the form Az = b, where A is a symmetric and positive
definite matrix of order N — N;, which can be shown to be an M-matrix (see
Section 1.12). This property ensures that the new grid coordinates satisfy
minimum and maximum discrete principles, that is, they take a value which
is between the minimum and the maximum values attained on the boundary.
Let us apply the regularization technique to the triangulation of the unit
square in Figure 3.14, which is affected by a severe non uniformity of the
triangle size. The grid consists of Ny = 112 triangles and N = 73 vertices,
of which N, = 32 are on the boundary. The size of each of the two linear
systems (3.78) is thus equal to 41 and their solution is carried out by the
LU factorization of matrix A in its original form and using its sparse format,
obtained using the Cuthill-McKee inverse reordering algorithm described in
Section 3.9.1.
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Fig. 3.14. Triangulation before (left) and after (right) the regularization
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Fig. 3.15. Sparsity patterns of matrix A without and with reordering (left and right,
respectively)

In Figure 3.15 the sparsity patterns of A are displayed, without and with re-
ordering; the integer nz = 237 denotes the number of nonzero entries in the
matrix. Notice that in the second case there is a decrease in the bandwidth
of the matrix, to which corresponds a large reduction in the operation count
from 61623 to 5552. The final configuration of the grid is displayed in Fig-
ure 3.14 (right), which clearly shows the effectiveness of the regularization
procedure.
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3.15 Exercises

1.

10.

For any square matrix A€ R"*"™, prove the following relations
CKa(A) < Ki(A) < nKa(A), T Kao(A) < Ka(A) < nKw(A),
1
S HKI(A) < Koo(A) < n?Ki(A).

They allow us to conclude that if a matrix is ill-conditioned in a certain norm
it remains so even in another norm, up to a factor depending on n.

. Check that the matrix B € R"*": b; =1, b;; = —1if i < j, b;; = 0if i > j, has

determinant equal to 1, yet Ko (B) is large (equal to n2" ™).

Prove that K(AB) < K(A)K(B), for any two square nonsingular matrices A,B€
R™*™,

Given the matrix A € R2X2, a1 = age = 1, a12 = 7, az1 = 0, check that
for v > 0, K(A) = Ki(A) = (1 4 v)?. Next, consider the linear system
Ax = b where b is such that x = (1 —v,1)7 is the solution. Find a bound for
[10%|loo/[|X]|sc in terms of [|db]le/||bllc When db = (81,d2)". Is the problem
well- or ill-conditioned?

Consider the matrix A € R"*", with entries a;; =1ifi=jor j =n, a;; = —1
if ¢ > j, zero otherwise. Show that A admits an LU factorization, with |l;;| <1
and U, = 2" N R
Consider matrix (3.68) in Example 3.7. Prove that the matrices L and U have
entries very large in module. Check that using GEM with complete pivoting
yields the exact solution.

Devise a variant of GEM that transforms a nonsingular matrix A € R™*" di-
rectly into a diagonal matrix D. This process is commonly known as the Gauss-
Jordan method. Find the Gauss-Jordan transformation matrices G;,i =1,...,n,
such that G, ---G1A = D.

Let A be a sparse matrix of order n. Prove that the computational cost of the
LU factorization of A is given by (3.61). Prove also that it is always less than

3D () (ma(4) +3).
k=1

Prove that, if A is a symmetric and positive definite matrix, solving the linear
system Ax = b amounts to computing x= Z?:1(Ci/)‘i)viv where \; are the
eigenvalues of A and v; are the corresponding eigenvectors.

(From [JM92]). Consider the following linear system

1001 1000 z1| | b1

1000 1001 o | |b2 |
Using Exercise 9, explain why, when b = [2001, 2001}T7 a small change db =
[1,0]" produces large variations in the solution, while, conversely, when b =
[1, —1]%, a small variation dx = [0.001,0]” in the solution induces a large

change in b.
[Hint : expand the right hand side on the basis of the eigenvectors of the matrix.]
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11.

12.

13.

14.

15.

3 Direct Methods for the Solution of Linear Systems

Characterize the fill-in for a matrix A € R"*" having nonzero entries only on
the main diagonal and on the first column and last row. Propose a permutation
that minimizes the fill-in.

[Hint : it suffices to exchange the first row and the first column with the last
row and the last column, respectively.]

Consider the linear system H, x = b, where H,, is the Hilbert matrix of order
n. Estimate, as a function of n, the maximum number of significant digits that
are expected when solving the system by GEM.

Given the vectors

vi=[1, 1,1, =17, va=[2, -1, -1, 1]",
V3 = [07 37 37 73]Ta V4 = [717 27 25 I}Ta

generate an orthonormal system using the Gram-Schmidt algorithm, in either
its standard and modified versions, and compare the obtained results. What is
the dimension of the space generated by the given vectors?

Prove that if A=QR then

CKi(A) < Ka(R) < nEG(A),
while K2(A) = K2(R).

Let A € R™*"™ be a nonsingular matrix. Determine the conditions under which
the ratio ||y||2/||x||2, with x and y as in (3.70), approximates ||[A™"||2.
[Solution : let UXVT be the singular value decomposition of A. Denote by u;,
v; the column vectors of U and V, respectively, and expand the vector d in
(3.70) on the basis spanned by {v;}. Then d = " | d;v; and, from (3.70),
X = Z?Zl((ii/ai)ui, y = ZZ;I(@/U?)W, having denoted the singular values of
A by o1,...,0n.

The ratio
n n 1/2
Iyllz/I1xll2 = | Y (di/o?)?/ Y (difoi)?
i=1 i=1
is about equal to o, = ||A7'[]2 if: (i) y has a relevant component in the

direction of v,, (i.e., if d, is not excessively small), and (ii) the ratio d, /o, is
not negligible with respect to the ratios di/ai for : = 1,...,n — 1. This last
circumstance certainly occurs if A is ill-conditioned in the || - [|2-norm since
on K 01.)
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Iterative Methods for Solving Linear Systems

Iterative methods formally yield the solution x of a linear system after an
infinite number of steps. At each step they require the computation of the
residual of the system. In the case of a full matrix, their computational cost is
therefore of the order of n? operations for each iteration, to be compared with
an overall cost of the order of %n?’ operations needed by direct methods. Itera-
tive methods can therefore become competitive with direct methods provided
the number of iterations that are required to converge (within a prescribed
tolerance) is either independent of n or scales sublinearly with respect to n.

In the case of large sparse matrices, as discussed in Section 3.9, direct
methods may be unconvenient due to the dramatic fill-in, although extremely
efficient direct solvers can be devised on sparse matrices featuring special
structures like, for example, those encountered in the approximation of partial
differential equations (see Chapters 12 and 13).

Finally, we notice that, when A is ill-conditioned, a combined use of direct
and iterative methods is made possible by preconditioning techniques that
will be addressed in Section 4.3.2.

4.1 On the Convergence of Iterative Methods

The basic idea of iterative methods is to construct a sequence of vectors x(¥)
that enjoy the property of convergence

x = lim x*), (4.1)
k—oo
where x is the solution to (3.2). In practice, the iterative process is stopped at
the minimum value of n such that ||x(™) —x|| < e, where ¢ is a fixed tolerance
and || - || is any convenient vector norm. However, since the exact solution is
obviously not available, it is necessary to introduce suitable stopping criteria
to monitor the convergence of the iteration (see Section 4.6).
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To start with, we consider iterative methods of the form
given x(0, x(+1) = Bx®) 4 £ k>0, (4.2)

having denoted by B an n x n square matrix called the iteration matriz and
by f a vector that is obtained from the right hand side b.

Definition 4.1 An iterative method of the form (4.2) is said to be consistent
with (3.2) if f and B are such that x = Bx + f. Equivalently,

f=(I-B)A 'b.

Having denoted by
e =x® _x (4.3)

the error at the k-th step of the iteration, the condition for convergence (4.1)
amounts to requiring that klim e®) = 0 for any choice of the initial datum
—00

x(©) (often called the initial guess).
Consistency alone does not suffice to ensure the convergence of the iterative
method (4.2), as shown in the following example.

Example 4.1 To solve the linear system 2Ix = b, consider the iterative method
xBHD = ) 4y

which is obviously consistent. This scheme is not convergent for any choice of the
initial guess. If, for instance, x(® = 0, the method generates the sequence x(?F) = o,
xZD —p k=0,1,....

On the other hand, if x(© = %b the method is convergent. °

Theorem 4.1 Let (4.2) be a consistent method. Then, the sequence of vectors
{X(k)} converges to the solution of (3.2) for any choice of x©) iff p(B) < 1.

Proof. From (4.3) and the consistency assumption, the recursive relation ekt —

Be® is obtained. Therefore,
el = B*el®, Vk=0,1,... (4.4)

Thus, thanks to Theorem 1.5, it follows that klim Be® = 0 for any e(® iff p(B) < 1.

Conversely, suppose that p(B) > 1, then Otohere exists at least one eigenvalue
A(B) with module greater than 1. Let e® be an eigenvector associated with A; then
Bel® = xe® and, therefore, e = e Asa consequence, e cannot tend to
0 as k — oo, since |A| > 1. O

From (1.23) and Theorem 1.4 it follows that a sufficient condition for conver-
gence to hold is that ||B|| < 1, for any consistent matrix norm. It is reasonable
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to expect that the convergence is faster when p(B) is smaller so that an es-
timate of p(B) might provide a sound indication of the convergence of the
algorithm. Other remarkable quantities in convergence analysis are contained
in the following definition.

Definition 4.2 Let B be the iteration matrix. We call:

1. ||B™|| the convergence factor after m steps of the iteration;
2. |B™||Y/™ the average convergence factor after m steps;
3. Ry (B) = — L log||B™|| the average convergence rate after m steps.

These quantities are too expensive to compute since they require evaluating
B™. Therefore, it is usually preferred to estimate the asymptotic convergence
rate, which is defined as

R(B) = ZClim R (B) = —log p(B), (4.5)
where Property 1.14 has been accounted for. In particular, if B were sym-
metric, we would have

1
Fon(B) = =~ log [B" 2 = — log p(B).

In the case of nonsymmetric matrices, p(B) sometimes provides an overop-
timistic estimate of ||B™||/™ (see [Axe94], Section 5.1). Indeed, although
p(B) < 1, the convergence to zero of the sequence |[B™| might be non-
monotone (see Exercise 1). We finally notice that, due to (4.5), p(B) is the
asymptotic convergence factor. Criteria for estimating the quantities defined
so far will be addressed in Section 4.6.

Remark 4.1 The iterations introduced in (4.2) are a special instance of
iterative methods of the form

X(O) = fO(Aa b)a

x( D) = (x() x(=D 0 x (=) A D) for n > m,

where f; and x(™) ..., x(1) are given functions and vectors, respectively. The
number of steps which the current iteration depends on is called the order of
the method. If the functions f; are independent of the step index 4, the method
is called stationary, otherwise it is nonstationary. Finally, if f; depends linearly
on x(© . x(™) the method is called linear, otherwise it is nonlinear.

In the light of these definitions, the methods considered so far are therefore
stationary linear iterative methods of first order. In Section 4.3, examples of
nonstationary linear methods will be provided. |
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4.2 Linear Iterative Methods

A general technique to devise consistent linear iterative methods is based on
an additive splitting of the matrix A of the form A=P—N, where P and N are
two suitable matrices and P is nonsingular. For reasons that will be clear in
the later sections, P is called preconditioning matrix or preconditioner.
Precisely, given x(9), one can compute x*) for k > 1, solving the systems

Px*D) = Nx®) 4+ b, &k >0. (4.6)

The iteration matrix of method (4.6) is B = P7IN, while f = P~'b. Alterna-
tively, (4.6) can be written in the form

xFHD) = x(0) 4 p=1p(k) (4.7

where
r) =p — Ax® (4.8)

denotes the residual vector at step k. Relation (4.7) outlines the fact that a
linear system, with coefficient matrix P, must be solved to update the solution
at step k—+ 1. Thus P, besides being nonsingular, ought to be easily invertible,
in order to keep the overall computational cost low. (Notice that, if P were
equal to A and N=0, method (4.7) would converge in one iteration, but at
the same cost of a direct method).

Let us mention two results that ensure convergence of the iteration (4.7),
provided suitable conditions on the splitting of A are fulfilled (for their proof,
we refer to [Hac94]).

Property 4.1 Let A =P —N, with A and P symmetric and positive definite.
If the matriz 2P — A is positive definite, then the iterative method defined in
(4.7) is convergent for any choice of the initial datum x©) and

p(B) = |[Blla = [Blp < 1.

Moreover, the convergence of the iteration is monotone with respect to the
norms || - [[p and || - |4 (i.e., e D]p < [e®]|p and [le® Vs < [le®]|a
k=0,1,...).

Property 4.2 Let A =P — N with A being symmetric and positive definite.
If the matriz P +PT — A is positive definite, then P is invertible, the iterative
method defined in (4.7) is monotonically convergent with respect to norm || - || a
and p(B) < |B|la < 1.

4.2.1 Jacobi, Gauss-Seidel and Relaxation Methods

In this section we consider some classical linear iterative methods.
If the diagonal entries of A are nonzero, we can single out in each equation
the corresponding unknown, obtaining the equivalent linear system
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1 n
i=— b= Y aya |, i=1...n 49
x o vla]x] i n (4.9)

=

J#i

In the Jacobi method, once an arbitrarily initial guess x(°) has been chosen,
x(#+1) is computed by the formulae

(k+1) _ 1 - O
x, = aT‘i bi—Zaij:cj yi=1,...,n. (4.10)
=1
i#i
This amounts to performing the following splitting for A

P=D,N=D—-A=E+F,

where D is the diagonal matrix of the diagonal entries of A, E is the lower
triangular matrix of entries e;; = —a;; if ¢ > 7, ;5 = 01if ¢ < 7, and F is the
upper triangular matrix of entries fi; = —a;; if j >4, fi; =0if j <. As a
consequence, A =D — (E+F).

The iteration matrix of the Jacobi method is thus given by

By=DYE+F)=1-D'A. (4.11)

A generalization of the Jacobi method is the over-relaxation method
(or JOR), in which, having introduced a relaxation parameter w, (4.10) is
replaced by

xl(.k—H) = a%i b, — Xn:aijxg»k) +(1— w)xgk), i=1,...,n.
=1
J#i
The corresponding iteration matrix is
By, =wBs+ (1 —w)L (4.12)
In the form (4.7), the JOR method corresponds to

x(k+1) = x () D~ 1pR),

This method is consistent for any w # 0 and for w = 1 it coincides with the
Jacobi method.

The Gauss-Seidel method differs from the Jacobi method in the fact that
at the k + 1-th step the available values of x§k+1) are being used to update
the solution, so that, instead of (4.10), one has



130 4 Iterative Methods for Solving Linear Systems

1 i—1 n
x§k+1) L P Zaij$§-k+1) _ Z aijxg-k) ci=1,...,n. (4.13)
ig j=1 j=it+1

This method amounts to performing the following splitting for A
P=D-E,N=F,

and the associated iteration matrix is
Bes = (D —E)7'F. (4.14)

Starting from Gauss-Seidel method, in analogy to what was done for
Jacobi iterations, we introduce the successive over-relaxation method (or SOR
method)

(k+1) W ) : (k1) o (R) - (k)
x; e b; — Zaua:j Z aijr; | +(1—w)z;’, (4.15)
7j=1 J=i+1
for i = 1,...,n. The method (4.15) can be written in vector form as
(I —wD'E)x® Y = [(1 — W)+ wD'F]x*® + wD™'b, (4.16)

from which the iteration matrix is
Bw)=(I1-wD'E) (1 —w)I+wD 'F. (4.17)

Multiplying by D both sides of (4.16) and recalling that A = D — (E + F)
yields the following form (4.7) of the SOR method

-1

x(b+D) = x(k) 4 <1D - E) vk,
w

It is consistent for any w # 0 and for w = 1 it coincides with Gauss-Seidel
method. In particular, if w € (0,1) the method is called under-relaxation,
while if w > 1 it is called over-relaxation.

4.2.2 Convergence Results for Jacobi and Gauss-Seidel Methods

There exist special classes of matrices for which it is possible to state a priori
some convergence results for the methods examined in the previous section.
The first result in this direction is the following.

Theorem 4.2 If A is a strictly diagonally dominant matriz by rows, the
Jacobi and Gauss-Seidel methods are convergent.
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Proof. Let us prove the part of the theorem concerning the Jacobi method, while for
the Gauss-Seidel method we refer to [Axe94]. Since A is strictly diagonally dominant

by rows, |aii| > E;:I |ai;| for j # i and @ = 1,...,n. As a consequence, ||Bj|jec =
n
max E laij|/|aii] < 1, so that the Jacobi method is convergent. &
i=1,...,n
=1,

Theorem 4.3 If A and 2D — A are symmetric and positive definite matrices,
then the Jacobi method is convergent and p(By) = ||Bs|la = [|IBsllp-

Proof. The theorem follows from Property 4.1 taking P=D. O

In the case of the JOR method, the assumption on 2D — A can be removed,
yielding the following result.

Theorem 4.4 If A is symmetric positive definite, then the JOR method is
convergent if 0 < w < 2/p(D7A).

Proof. The result immediately follows from (4.12) and noting that A has real
positive eigenvalues. <&

Concerning the Gauss-Seidel method, the following result holds.

Theorem 4.5 If A is symmetric positive definite, the Gauss-Seidel method is
monotonically convergent with respect to the norm || - ||a.

Proof. We can apply Property 4.2 to the matrix P=D—E, upon checking that
P +PT — A is positive definite. Indeed

P+PT-A=2D-E-F-A=D,

having observed that (D —E)” = D — F. We conclude by noticing that D is positive
definite, since it is the diagonal of A. o

Finally, if A is tridiagonal (or block tridiagonal), it can be shown that

p(Bas) = p°(By) (4.18)

(see [YouT71] for the proof). From (4.18) we can conclude that both methods
converge or fail to converge at the same time. In the former case, the Gauss-
Seidel method is more rapidly convergent than the Jacobi method, and the
asymptotic convergence rate of the Gauss-Seidel method is twice than that of
the Jacobi method. In particular, if A is tridiagonal and symmetric positive
definite, Theorem 4.5 implies convergence of the Gauss-Seidel method, and
(4.18) ensures convergence also for the Jacobi method.
Relation (4.18) holds even if A enjoys the following A-property.

Definition 4.3 A consistently ordered matrix M € R™*™ (that is, a matrix
such that oD~ 'E + o 'D~!F, for a # 0, has eigenvalues that do not depend
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on «, where M =D — E — F, D = diag(ma1,...,myy), E and F are strictly
lower and upper triangular matrices, respectively) enjoys the A-property if it
can be partitioned in the 2 x 2 block form

D, M12]
M = e |
[Mm Dy

where D; and Dy are diagonal matrices. [ |

When dealing with general matrices, no a priori conclusions on the conver-
gence properties of the Jacobi and Gauss-Seidel methods can be drawn, as
shown in Example 4.2.

Example 4.2 Consider the 3 x 3 linear systems of the form A;x = b;, where b; is
always taken in such a way that the solution of the system is the unit vector, and
the matrices A; are

30 4 -3 3 —6
A= 7421, Ay = 478],
-1 1 2 5 7 -9

4 1 1 76 9
As= ]2 -9 0], A4—l4 54].
0 -8 —6 -7 -3 8

It can be checked that the Jacobi method does fail to converge for A1 (p(Bs) = 1.33),
while the Gauss-Seidel scheme is convergent. Conversely, in the case of As, the Jacobi
method is convergent, while the Gauss-Seidel method fails to converge (p(Bas) =
1.1). In the remaining two cases, the Jacobi method is more slowly convergent than
the Gauss-Seidel method for matrix As (p(Bs) = 0.44 against p(Bas) = 0.018), and
the converse is true for Ay (p(Bs) = 0.64 while p(Bgs) = 0.77). °

We conclude the section with the following result.

Theorem 4.6 If the Jacobi method is convergent, then the JOR method
converges if 0 <w < 1.

Proof. From (4.12) we obtain that the eigenvalues of B, are
pe = wAp +1 —w, k=1,...,n,

where \; are the eigenvalues of B;. Then, recalling the Euler formula for the repre-
sentation of a complex number, we let \;, = rre’® and get

Lk = Wy + 2wrg cos(Bx) (1 — w) + (1 — w)? < (wrp +1 — w)?,

which is less than 1 if 0 < w < 1. o

4.2.3 Convergence Results for the Relaxation Method

The following result provides a necessary condition on w in order the SOR
method to be convergent.
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Theorem 4.7 For any w € R we have p(B(w)) > |w — 1|; therefore, the SOR
method fails to converge if w <0 or w > 2.

Proof. If {\;} denote the eigenvalues of the SOR iteration matrix, then

n

JJES

i=1

= |det [(1 - w)I+wD71F]| =11-w|".

Therefore, at least one eigenvalue \; must exist such that |\;| > |1 — w| and thus,
in order for convergence to hold, we must have |1 —w| < 1, that is 0 <w < 2. <

Assuming that A is symmetric and positive definite, the condition 0 < w < 2,
besides being necessary, becomes also sufficient for convergence. Indeed the
following result holds (for the proof, see [Hac94]).

Property 4.3 (Ostrowski) If A is symmetric and positive definite, then
the SOR method is convergent iff 0 < w < 2. Moreover, ils convergence is
monotone with respect to || - ||a.

Finally, if A is strictly diagonally dominant by rows, the SOR method con-
verges if 0 <w < 1.

The results above show that the SOR method is more or less rapidly con-
vergent, depending on the choice of the relaxation parameter w. The question
of how to determine the value wgy; for which the convergence rate is the high-
est possible can be given a satisfactory answer only in special cases (see, for
instance, [Axe94], [You71l], [Var62] or [Wac66]). Here we limit ourselves to
quoting the following result (whose proof is in [Axe94]).

Property 4.4 If the matriz A enjoys the A-property and if B; has real eigen-
values, then the SOR method converges for any choice of x© iff p(B;) < 1
and 0 < w < 2. Moreover,

(4.19)

2
w =
P /1= 2(By)
and the corresponding asymptotic convergence factor is

1—/1-p*(By)

1+/1-p%(B,)

p(B(wopt)) =

4.2.4 A priori Forward Analysis

In the previous analysis we have neglected the rounding errors. However, as
shown in the following example (taken from [HW76]), they can dramatically
affect the convergence rate of the iterative method.
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Example 4.3 Let A be a lower bidiagonal matrix of order 100 with entries a;; = 1.5
and a;;—1 = 1, and let b € R*% be the right-side with b; = 2.5. The exact solution of
the system Ax = b has components x; = 1—(—2/3)". The SOR method with w = 1.5
should be convergent, working in exact arithmetic, since p(B(1.5)) = 0.5 (far below
one). However, running Program 16 with x(®) = fi(x) + e, which is extremely
close to the exact value, the sequence x*) diverges and after 100 iterations the
algorithm yields a solution with ||x*°?|| ., = 10'®. The flaw is due to rounding error
propagation and must not be ascribed to a possible ill-conditioning of the matrix
since Koo (A) ~ 5. °

To account for rounding errors, let us denote by X(**1 the solution (in finite
arithmetic) generated by an iterative method of the form (4.6) after k steps.
Due to rounding errors, X(*+1) can be regarded as the exact solution to the
problem

P = Nx(®) 4 b — ¢, (4.20)
with
Cp = 0P XY — gy

The matrix 0P41 accounts for the rounding errors in the solution of (4.6),
while the vector gj, includes the errors made in the evaluation of Nx(*) 4+ b.
From (4.20), we obtain

k
x(EHD = BH1x(©) N BIP (b - ¢, )
j=0

and for the absolute error e*+1) = x — g(k+1)

k
6<k+1) _ Bk?-‘rle(o) + ZBjP_lc.kfj'
7=0

The first term represents the error that is made by the iterative method
in exact arithmetic; if the method is convergent, this error is negligible for
sufficiently large values of k. The second term refers instead to rounding error
propagation; its analysis is quite technical and is carried out, for instance, in
[Hig88] in the case of Jacobi, Gauss-Seidel and SOR methods.

4.2.5 Block Matrices

The methods of the previous sections are also referred to as point (or line)
iterative methods, since they act on single entries of matrix A. It is possible
to devise block versions of the algorithms, provided that D denotes the block
diagonal matrix whose entries are the m x m diagonal blocks of matrix A
(see Section 1.6).
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The block Jacobi method is obtained taking again P=D and N=D-A. The
method is well-defined only if the diagonal blocks of D are nonsingular. If A
is decomposed in p x p square blocks, the block Jacobi method is

k+1 - k

Aiin(- * ) = bz — ZA”X; ), 1= 1,. 5Py

j=1

J#i
having also decomposed the solution vector and the right side in blocks of
size p, denoted by x; and b;, respectively. As a result, at each step, the block
Jacobi method requires solving p linear systems of matrices A;;. Theorem 4.3 is
still valid, provided that D is substituted by the corresponding block diagonal
matrix.

In a similar manner, the block Gauss-Seidel and block SOR methods can
be introduced.

4.2.6 Symmetric Form of the Gauss-Seidel and SOR Methods

Even if A is a symmetric matrix, the Gauss-Seidel and SOR methods generate
iteration matrices that are not necessarily symmetric. For that, we introduce
in this section a technique that allows for symmetrizing these schemes. The
final aim is to provide an approach for generating symmetric preconditioners
(see Section 4.3.2).

Firstly, let us remark that an analogue of the Gauss-Seidel method can be
constructed, by simply exchanging E with F. The following iteration can thus
be defined, called the backward Gauss-Seidel method

(D — F)x*t) = Ex®) 4 b,

with iteration matrix given by Bgsy = (D — F)~!E.

The symmetric Gauss-Seidel method is obtained by combining an iteration
of Gauss-Seidel method with an iteration of backward Gauss-Seidel method.
Precisely, the k-th iteration of the symmetric Gauss-Seidel method is

(D —B)x* /2 —px® 1 b (D — F)x**) = gx(*+1/2) 4 p,
Eliminating x(*+1/2) the following scheme is obtained

M1 = Bsgsx™® + bsgs,

x
Bsgs = (D —F)'E(D - E)"'F,
bsacs = (D —F)'[E(D - E)~! +1b. (4.21)
The preconditioning matrix associated with (4.21) is

Psgs = (D -E)D™(D - F).

The following result can be proved (see [Hac94]).
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Property 4.5 If A is a symmetric positive definite matriz, the symmetric
Gauss-Seidel method is convergent, and, moreover, Bsas is symmetric posi-
tive definite.

In a similar manner, defining the backward SOR method
(D — wF)x* 1) = [WE + (1 — w)D] x® + wb,

and combining it with a step of SOR method, the following symmetric SOR
method or SSOR, is obtained

(k1) _ Bs(w)x(k) + b,
where
Bs(w) = (D — wF) "} (wE + (1 = w)D)(D — wE) ! (wF + (1 —w)D),
b, = w(2 —w)(D — wF)'D(D — wE) 'b.

The preconditioning matrix of this scheme is

Pssor(w) = <1D - E) L <1D - F) . (4.22)
w 2—-w w

If A is symmetric and positive definite, the SSOR method is convergent if
0 < w < 2 (see [Hac94] for the proof). Typically, the SSOR method with an
optimal choice of the relaxation parameter converges more slowly than the
corresponding SOR method. However, the value of p(Bs(w)) is less sensitive
to a choice of w around the optimal value (in this respect, see the behavior of
the spectral radii of the two iteration matrices in Figure 4.1). For this reason,
the optimal value of w that is chosen in the case of SSOR method is usually
the same used for the SOR method (for further details, we refer to [You71]).

0.9}
08¢ SSOR
07t
0.6}

p0.5¢}
04t
0.3}
0.2t
0.1t

SOR

0 0.5 1 15 2
0]

Fig. 4.1. Spectral radius of the iteration matrix of SOR and SSOR methods, as a
function of the relaxation parameter w for the matrix tridiag,,(—1,2,—1)
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4.2.7 Implementation Issues

We provide the programs implementing the Jacobi and Gauss-Seidel methods
in their point form and with relaxation.

In Program 15 the JOR method is implemented (the Jacobi method is
obtained as a special case setting omega = 1). The stopping test monitors the
Euclidean norm of the residual at each iteration, normalized to the value of
the initial residual.

Notice that each component x(i) of the solution vector can be computed
independently; this method can thus be easily parallelized.

Program 15 - jor : JOR method

function [x,iter]=jor(A,b,x0,nmax,tol,omega)

%JOR JOR method

% [X,JITER]=JOR(A,B,X0,NMAX, TOL,OMEGA) attempts to solve the system
% A*X=B with the JOR method. TOL specifies the tolerance of the method.
% NMAX specifies the maximum number of iterations. X0 specifies the initial
% guess. OMEGA is the relaxation parameter. ITER is the iteration number at
% which X is computed.

[n,m]=size(A);

if n "= m, error('Only square systems'); end

iter=0;

r = b-A*x0; rO=norm(r); err=norm(r); x=x0;

while err > tol & iter < nmax

iter = iter + 1;
for i=1:n
s =0;

for j = L:i-1, s=s+A(i,j)*x(j); end
for j = i+1:n, s=s+A(i,j)*x(j); end
xnew(i,1)=omega*(b(i)-s)/A(i,i)+(1-omega)*x(i);
end
x=xnew; r=b-A*x; err=norm(r)/r0;
end
return

Program 16 implements the SOR method. Taking omega=1 yields the
Gauss-Seidel method.
Unlike the Jacobi method, this scheme is fully sequential. However, it can be
efficiently implemented without storing the solution of the previous step, with
a saving of memory storage.

Program 16 - sor : SOR method

function [x,iter]=sor(A,b,x0,nmax,tol,omega)

%SOR SOR method

% [X,ITER]=SOR(A,B,X0,NMAX,TOL,OMEGA) attempts to solve the system
% A*X=B with the SOR method. TOL specifies the tolerance of the method.
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% NMAX specifies the maximum number of iterations. X0 specifies the initial
% guess. OMEGA is the relaxation parameter. ITER is the iteration number at
% which X is computed.
[n,m]=size(A);
if n "= m, error(‘Only square systems’); end
iter=0; r=b-A*x0; rO=norm(r); err=norm(r); xold=x0;
while err > tol & iter < nmax
iter = iter + 1;
for i=1:n
s=0;
for j = 1:i-1, s=s+A(i,j)*x(j); end
for j = i+1:n, s=s+A(i,j)*xold(j); end
x(i,1)=omega*(b(i)-s)/A(i,i)+(1-omega)*xold(i);
end
xold=x; r=b-A*x; err=norm(r)/r0;
end
return

4.3 Stationary and Nonstationary Iterative Methods

Denote by
Rp=1-P'A

the iteration matrix associated with (4.7). Proceeding as in the case of re-
laxation methods, (4.7) can be generalized introducing a relaxation (or ac-
celeration) parameter «. This leads to the following stationary Richardson
method

x(HHD = x®) L op=1p®) f >, (4.23)

More generally, allowing a to depend on the iteration index, the nonstationary
Richardson method or semi-iterative method is given by

xFHD) = x(®) 4 g Ptk k> 0. (4.24)
The iteration matrix at the k-th step for (4.24) (depending on k) is
R, =1 — apP7tA,

with a = « in the stationary case. If P = I, the family of methods (4.24)
will be called nonpreconditioned. The Jacobi and Gauss-Seidel methods can
be regarded as stationary Richardson methods with P =D and P =D — E,
respectively (and o = 1 in both cases).

We can rewrite (4.24) (and, thus, also (4.23)) in a form of greater interest
for computation. Letting z(*) = P~1r(*) (the so-called preconditioned resid-
ual), we get xF+1) = x®) 1 0, 2(F) and r*+1) = b— Ax*F+D = () — o Az,
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To summarize, a nonstationary Richardson method requires at each k + 1-th
step the following operations:

solve the linear system Pz(*) = ()

compute the acceleration parameter ay, ( )
4.25
update the solution x*+1) = x®) 4 o, 7k

update the residual r#+1) = r(®) — ¢ Az (),

4.3.1 Convergence Analysis of the Richardson Method

Let us first consider the stationary Richardson methods for which oy = a for
k > 0. The following convergence result holds.

Theorem 4.8 For any nonsingular matriz P, the stationary Richardson
method (4.23) is convergent iff

2Re/\z
alAil?

>1Vi=1,...,n, (4.26)

where \; € C are the eigenvalues of P~1A.

Proof. Let us apply Theorem 4.1 to the iteration matrix Ro = I — aP 'A. The
condition |1 — aX;| < 1 for i =1,...,n yields the inequality

(1 —aRe\)® + o (Im)\;)? < 1,

from which (4.26) immediately follows. <o

Let us notice that, if the sign of the real parts of the eigenvalues of P~'A is
not constant, the stationary Richardson method cannot converge.

More specific results can be obtained provided that suitable assumptions are
made on the spectrum of P71A.

Theorem 4.9 Assume that P is a nonsingular matriz and that P~'A has
positive Teal eigenvalues, ordered in such a way that Ay > Ao > ... > A\, > 0.
Then, the stationary Richardson method (4.23) is convergent iff 0 < o < 2/\1.
Moreover, letting

2

opt = ———, 4.27
Gopt A+ A ( )

the spectral radius of the iteration matriz Ry is minimum if o = qope, with

A=A

= —. 4.28

Popt = m(in [p(Ra)]
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Fig. 4.2. Spectral radius of R, as a function of the eigenvalues of P™1A

Proof. The eigenvalues of R, are given by \;(Ra) = 1 — @\, so that (4.23) is
convergent iff [A;(Ra)| < 1 for i = 1,...,n, that is, if 0 < a < 2/A;. It follows
(see Figure 4.2) that p(R) is minimum when 1 — e\, = aA; — 1, that is, for
a = 2/(A1 4+ An), which furnishes the desired value for aop:. By substitution, the
desired value of pop: is obtained. &

If P~'A is symmetric positive definite, it can be shown that the convergence

of the Richardson method is monotone with respect to either || - ||z and || - || a-
In such a case, using (4.28), we can also relate p,pr to Ko(P71A) as follows
Ka(P1A) — 1 2 AP,

Port = T (PTA) 11 %% = T (PTA) + 1 (4.29)
The choice of a suitable preconditioner P is, therefore, of paramount impor-
tance for improving the convergence of a Richardson method. Of course, such
a choice should also account for the need of keeping the computational effort
as low as possible. In Section 4.3.2, some preconditioners of common use in
practice will be described.

Corollary 1 Assume that A is a symmetric positive definite matrix with
eigenvalues \y > Ao > ... > \,. Then, if 0 < a < 2/)\;, the nonprecon-
ditioned stationary Richardson method is convergent and

le® V]l < p(Ra)e®]la, & >0. (4.30)

The same result holds for the preconditioned Richardson method, provided that
the matrices P, A and P™'A are symmetric positive definite.

Proof. The convergence is a consequence of Theorem 4.8. Moreover, we notice that

[e“la = [Rae™ s = |A*Rae® |2 < AV RaATV2[2]|A" 2.
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The matrix R, is symmetric positive definite and is similar to Al/QRaAfl/?

Therefore,

|AY?RaA™2 )12 = p(Ra).
The result (4.30) follows by noting that [|A'/?e®||, = | |[s. A similar proof can
be carried out in the preconditioned case, provided we replace A with P~1A. &

Finally, the inequality (4.30) holds even if only P and A are symmetric positive
definite (for the proof, see [QV94], Chapter 2).

4.3.2 Preconditioning Matrices

All the methods introduced in the previous sections can be cast in the form
(4.2), so that they can be regarded as being methods for solving the system

(I-B)x=f=P"'b.

On the other hand, since B=P~!N, system (3.2) can be equivalently refor-
mulated as

P 'Ax =P 'b. (4.31)

The latter is the preconditioned system, being P the preconditioning matriz or
left preconditioner. Right and centered preconditioners can be introduced as
well, if system (3.2) is transformed, respectively, as

AP 'y =b, y = Px,
or
P, 'APR'y =P 'b, y = Ppx.

There are point preconditioners and block preconditioners, depending on
whether they are applied to the single entries of A or to the blocks of a parti-
tion of A. The iterative methods considered so far correspond to fixed-point
iterations on a left-preconditioned system. As stressed by (4.25), computing
the inverse of P is not mandatory; actually, the role of P is to “precondition”
the residual r®) through the solution of the additional system Pz*) = r(*).

Since the preconditioner acts on the spectral radius of the iteration matrix,
it would be useful to pick up, for a given linear system, an optimal precondi-
tioner, i.e., a preconditioner which is able to make the number of iterations
required for convergence independent of the size of the system. Notice that
the choice P=A is optimal but, trivially, “inefficient”; some alternatives of
greater computational interest will be examined below.

There is not a general roadmap to devise optimal preconditioners. How-
ever, an established “rule of thumb” is that P is a good preconditioner for
A if P71A is near to being a normal matrix and if its eigenvalues are clus-
tered within a sufficiently small region of the complex field. The choice of a
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preconditioner must also be guided by practical considerations, noticeably, its
computational cost and its memory requirements.

Preconditioners can be divided into two main categories: algebraic and
functional preconditioners, the difference being that the algebraic precon-
ditioners are independent of the problem that originated the system to be
solved, and are actually constructed via algebraic procedures, while the func-
tional preconditioners take advantage of the knowledge of the problem and
are constructed as a function of it. In addition to the preconditioners already
introduced in Section 4.2.6, we give a description of other algebraic precondi-
tioners of common use.

1. Diagonal preconditioners: choosing P as the diagonal of A is generally
effective if A is symmetric positive definite. A usual choice in the nonsym-

metric case is to set 12

n
2
Dii = E Q;;
j=1

Block diagonal preconditioners can be constructed in a similar manner.
We remark that devising an optimal diagonal preconditioner is far from
being trivial, as previously noticed in Section 3.12.1 when dealing with
the scaling of a matrix.

2. Incomplete LU factorization (shortly ILU) and Incomplete Cholesky fac-
torization (shortly IC).
An incomplete factorization of A is a process that computes P = L;,,U;,,,
where L;, is a lower triangular matrix and U;, is an upper triangular
matrix. These matrices are approximations of the exact matrices L, U of
the LU factorization of A and are chosen in such a way that the residual
matrix R = A — L;,,U;,, satisfies some prescribed requirements, such as
having zero entries in specified locations.
For a given matrix M, the L-part (U-part) of M will mean henceforth
the lower (upper) triangular part of M. Moreover, we assume that the
factorization process can be carried out without resorting to pivoting.
The basic approach to incomplete factorization, consists of requiring the
approximate factors L;, and U;, to have the same sparsity pattern as the
L-part and U-part of A, respectively. A general algorithm for constructing
an incomplete factorization is to perform Gauss elimination as follows:
at each step k, compute m;, = agﬁ)/a,ii) only if a;, # 0 for i = k +
1,...,n. Then, compute for j = k+1,...,n az(-;-ﬁ_l) only if a;; # 0. This
algorithm is implemented in Program 17, where the matrices L;,, and U;,
are progressively overwritten onto the L-part and U-part of A.

Program 17 - basiclLU : Incomplete LU factorization

function [A] = basiclLU(A)
%BASICILU Incomplete LU factorization.



4.3 Stationary and Nonstationary Iterative Methods 143

% Y=BASICILU(A): U is stored in the upper triangular part of Y and L is stored
% in the strict lower triangular part of Y. The factors L and U have the

% same sparsity as that of the matrix A.

[n,m]=size(A);

if n "= m, error('Only square matrices’); end
for k=1:n-1
for i=k-+1:n,
if Aik) "= 0

if A(k,k) == 0, error('Null pivot element’); end
A(i,k)=A(i,k)/A(k,k);

for j=k+1:n
if A(i,j) "= 0
end
end
end
end
end
return

We notice that having L;,, and U;,, with the same patterns as the L. and
U-parts of A, respectively, does not necessarily imply that R has the same
sparsity pattern as A, but guarantees that r;; = 0 if a;; # 0, as is shown
in Figure 4.3.

The resulting incomplete factorization is known as ILU(0), where “0”
means that no fill-in has been introduced in the factorization process.
An alternative strategy might be to fix the structure of L;, and U,

0

1t o o

2t u] 0O O O O o o O
3t O u] u]

41 u] O e O e e e o
5t O O e O e O e o o
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Fig. 4.3. The sparsity pattern of the original matrix A is represented by the squares,
while the pattern of R = A — L;, U, computed by Program 17, is drawn by the
bullets
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irrespectively of that of A, in such a way that some computational criteria
are satisfied (for example, that the incomplete factors have the simplest
possible structure).

The accuracy of the ILU(0) factorization can obviously be improved by
allowing some fill-in to arise, and thus, by accepting nonzero entries in
the factorization whereas A has elements equal to zero. To this purpose,
it is convenient to introduce a function, which we call fill-in level, that
is associated with each entry of A and that is being modified during the
factorization process. If the fill-in level of an element is greater than an
admissible value p € N, the corresponding entry in U, or L;,, is set equal
to zero.

Let us explain how this procedure works, assuming that the matrices L;,
and Uy, are progressively overwritten to A (as happens in Program 4).
The fill-in level of an entry agl-c) is denoted by lev;;, where the dependence
on k is understood, and it should provide a reasonable estimate of the size
of the entry during the factorization process. Actually, we are assuming
that if lev;; = ¢ then |a;;| ~ 07 with § € (0,1), so that ¢ is greater when
|a§f)| is smaller.

At the starting step of the procedure, the level of the nonzero entries of
A and of the diagonal entries is set equal to 0, while the level of the null

entries is set equal to infinity. For any row i = 2,...,n, the following
operations are performed: if lev;, < p, k =1,...,7 — 1, the entry m;j of
L;, and the entries az(.fﬂ) of Uj,, j =141,...,n, are updated. Moreover,

if aE?H) # 0 the value lev;; is updated as being the minimum between
the available value of lev;; and lev;, + levy; + 1. The reason of this choice
is that \a§f+1)| = |a¥ — mika,(c’;.)| o~ |§levia — glevitlevis+1| Fgo that one

J
can assume that the size of \anH)

6levik+levkj+1

| is the maximum between §'¢is and

The above factorization process is called ILU(p) and turns out to be
extremely efficient (with p small) provided that it is coupled with a suit-
able matrix reordering (see Section 3.9).

Program 18 implements the ILU(p) factorization; it returns in output the
approximate matrices L;, and U, (overwritten to the input matrix a),
with the diagonal entries of L;,, equal to 1, and the matrix lev containing
the fill-in level of each entry at the end of the factorization.

Program 18 - ilup : ILU(p) factorization

function [A,lev]=ilup(A,p)

%ILUP Incomplete LU(p) factorization.

% [Y,LEV]=ILUP(A): U is stored in the upper triangular part of Y and L is stored
% in the strict lower triangular part of Y. The factors L and U

% have a fill-in level P. LEV contains the fill-in level of

% each entry at the end of the factorization.
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[n,m]=size(A);

if n "= m, error('Only square matrices’); end
lev=Inf*ones(n,n);
i=(A"=0);
lev(i)=0,
for i=2:n
for k=1:i-1
if lev(i,k) <= p

if A(k,k)==0, error('Null pivot element’); end
A(i,k)=A(i,k)/A(k,k);

for j=k+1:n
AL =AGL)-AGK)*A(K);
if A(i,j) "=0
lev(i,j)=min(lev(i,j),lev(i,k)+lev(k,j)+1);
end
end
end
end
for j=1:n, if lev(i,j) > p, A(i,j) = 0; end, end
end
return

Example 4.4 Consider the matrix A € R**%0 associated with the finite
difference approximation of the Laplace operator A- = g—;’ + g—;’ (see Sec-

tion 12.6). This matrix can be generated with the following MATLAB com-
mands: G=numgrid(’B’,10); A=delsq(G) and corresponds to the discretization
of the differential operator on a domain having the shape of the exterior of a
butterfly and included in the square [—1, 1]2. The number of nonzero entries of
A is 174. Figure 4.4 shows the pattern of matrix A (drawn by the bullets) and
the entries in the pattern added by the ILU(1) and ILU(2) factorizations due
to fill-in (denoted by the squares and the triangles, respectively). Notice that
these entries are all contained within the envelope of A since no pivoting has
been performed. °

The ILU(p) process can be carried out without knowing the actual values
of the entries of A, but only working on their fill-in levels. Therefore,
we can distinguish between a symbolic factorization (the generation of
the levels) and an actual factorization (the computation of the entries
of ILU(p) starting from the informations contained in the level function).
The scheme is thus particularly effective when several linear systems must
be solved, with matrices having the same structure but different entries.
On the other hand, for certain classes of matrices, the fill-in level does
not always provide a sound indication of the actual size attained by the
entries. In such cases, it is better to monitor the size of the entries of R
by neglecting each time the entries that are too small. For instance, one
can drop out the entries agfﬂ) such that
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Fig. 4.4. Pattern of the matrix A in Example 4.4 (bullets); entries added by the
ILU(1) and ILU(2) factorizations (squares and triangles, respectively)

(kD)

(k+1) (k+1)1/2
j | < claj; Qg | / )

,j=1,...,n,
with 0 < ¢ <1 (see [Axe94]).

In the strategies considered so far, the entries of the matrix that are
dropped out can no longer be recovered in the incomplete factorization
process. Some remedies exist for this drawback: for instance, at the end
of each k-th step of the factorization, one can sum, row by row, the dis-
carded entries to the diagonal entries of U,,. By doing so, an incomplete
factorization known as MILU (Modified ILU) is obtained, which enjoys
the property of being exact with respect to the constant vectors, i.e., such
that R1 = 0 (see [Axe94] for other formulations). In the practice, this
simple trick provides, for a wide class of matrices, a better preconditioner
than obtained with the ILU method. In the case of symmetric positive
definite matrices one can resort to the Modified Incomplete Cholesky Fac-
torization (MICh).

We conclude by mentioning the ILUT factorization, which collects the
features of ILU(p) and MILU. This factorization can also include partial
pivoting by columns with a slight increase of the computational cost. For
an efficient implementation of incomplete factorizations, we refer to the
MATLAB function luinc in the toolbox sparfun.

The existence of the ILU factorization is not guaranteed for all nonsin-
gular matrices (see for an example [Elm86]) and the process stops if zero
pivotal entries arise. Existence theorems can be proved if A is an M-matrix
[MdV77] or diagonally dominant [Man80]. It is worth noting that some-
times the ILU factorization turns out to be more stable than the complete
LU factorization [GM83].
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3. Polynomial preconditioners: the preconditioning matrix is defined as
P~ =p(A),

where p is a polynomial in A, usually of low degree.
A remarkable example is given by Neumann polynomial preconditioners.
Letting A =D — C, we have A = (I - CD~1)D, from which

A =D'1-CDH) =D I+CD ' +(CD 1) +...).

A preconditioner can then be obtained by truncating the series above at
a certain power p. This method is actually effective only if p(CD~!) < 1,
which is the necessary condition in order the series to be convergent.

4. Least-squares preconditioners: A~' is approximated by a least-squares
polynomial ps(A) (see Section 3.13). Since the aim is to make matrix
I—P~'A as close as possible to the null matrix, the least-squares approx-
imant ps(A) is chosen in such a way that the function ¢(z) = 1 — ps(z)z
is minimized. This preconditioning technique works effectively only if A
is symmetric and positive definite.

For further results on preconditioners, see [dV89] and [Axe94].

Example 4.5 Consider the matrix A€ R3?4*324 agsociated with the finite differ-
ence approximation of the Laplace operator on the square [—1,1]?. This matrix
can be generated with the following MATLAB commands: G=numgrid(‘N’,20);
A=delsq(G@). The condition number of the matrix is K2(A) = 211.3. In Table 4.1 we
show the values of K(P~'A) computed using the ILU(p) and Neumann precondi-
tioners, with p = 0, 1,2, 3. In the last case D is the diagonal part of A. °

Remark 4.2 Let A and P be real symmetric matrices of order n, with P posi-
tive definite. The eigenvalues of the preconditioned matrix P~ A are solutions
of the algebraic equation

Ax = \Px, (4.32)

where x is an eigenvector associated with the eigenvalue A. Equation (4.32) is
an example of generalized eigenvalue problem (see Section 5.9 for a thorough

Table 4.1. Spectral condition numbers of the preconditioned matrix A of Example
4.5 as a function of p

D ILU(p) Neumann
0 22.3 211.3

1 12 36.91
2 8.6 48.55
3 5.6 18.7
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discussion) and the eigenvalue A can be computed through the following gen-

eralized Rayleigh quotient
(Ax, )

(Px,x)
Applying the Courant-Fisher Theorem (see Section 5.11) yields

)\min (A> )\maw (A)
)\mam (P) )\min (P) .

Relation (4.33) provides a lower and upper bound for the eigenvalues of the
preconditioned matrix as a function of the extremal eigenvalues of A and P,
and therefore it can be profitably used to estimate the condition number of
PIA. |

IN

A< (4.33)

4.3.3 The Gradient Method

The expression of the optimal parameter that has been provided in Theo-
rem 4.9 is of limited usefulness in practical computations, since it requires the
knowledge of the extremal eigenvalues of the matrix P~1A. In the special case
of symmetric and positive definite matrices, however, the optimal acceleration
parameter can be dynamically computed at each step k as follows.

We first notice that, for such matrices, solving system (3.2) is equivalent
to finding the minimizer x € R™ of the quadratic form

1
D(y) = §yTAy —y'b,

which is called the energy of system (3.2). Indeed, the gradient of @ is given by
1
Vo(y) = §(AT +A)y—b=Ay—b. (4.34)

As a consequence, if V®(x) = 0 then x is a solution of the original system.
Conversely, if x is a solution, then

By) = 2+ (y — X)) = 00 + 5y ~ XAy ~x),  Vy ER

and thus, ®(y) > ®(x) if y # x, i.e. x is a minimizer of the functional ®.
Notice that the previous relation is equivalent to

Sy~ xI3 = 2(y) — B(), (435)

where || - ||a is the A-norm or energy norm, defined in (1.28).

The problem is thus to determine the minimizer x of ® starting from a
point x(©) € R™ and, consequently, to select suitable directions along which
moving to get as close as possible to the solution x. The optimal direction,
that joins the starting point x(?) to the solution point x, is obviously unknown
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a priori. Therefore, we must take a step from x(9) along a given direction p(©),
and then fix along this latter a new point x) from which to iterate the process
until convergence.

Precisely, at the generic step k, x*t1) is computed as

XD Z x0) 4 g, p®), (4.36)

where o, is the value which fixes the length of the step along the direction p*).
The most natural idea is to take as p(*) the direction of maximum descent
along the functional ® in x(*), which is given by —V®(x*)). This yields the
gradient method, also called steepest descent method.

Due to (4.34), V&(x*)) = Ax*) — b = —r(®) 50 that the direction of
the gradient of ® coincides with that of residual and can be immediately
computed using the current iterate. This shows that the gradient method, as
well as the Richardson method (4.24) with P = I, moves at each step k along
the direction p*) = r(*) = — Vo (x(¥).

To compute the parameter ay let us write explicitly @(x(k“)) as a function
of a parameter «

(D)) = %(Xw) + T A 1 ar®)) — (x®) | qp®)Th,

Differentiating with respect to o and setting it equal to zero yields the desired
value of ay

r) T (k)
ap = ———,
P e T Ak

which depends only on the residual at the k-th step. For this reason, the non-
stationary nonpreconditioned Richardson method employing (4.37) to evalu-
ate the acceleration parameter is also called the gradient method.
Summarizing, the gradient (or steepest descent) method can be described as
follows:

(4.37)

given x(© € R™, set r® = b — Ax(® and, for k =0, 1,... until convergence,
compute
()T (k)
ap = ———,
b T Aph)

X(k+1) = X(k) _|_ akr(k)’
r 1) = (k) — oy Ar(d),
Theorem 4.10 Let A be a symmetric and positive definite matriz; then the

gradient method is convergent for any choice of the initial datum x©). More-
over

Ky(A) -1
le* D4 < o) le®la, k=01, (4.38)

T K(A) +

where || - ||a is the energy norm defined in (1.28).
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Proof. Let x*) be the solution generated by the gradient method at the k-th step.
Then, let X%H'l) be the vector generated by taking one step of the nonpreconditioned
Richardson method with optimal parameter starting from x| i.e., x%ﬁ'l) =x® 4
Oéoptr(k).

Due to Corollary 1 and to (4.28), we have

e Vla < 220

(k)HA
- KQ(A)"—l ’

le

k+1)
b

where egﬂ) = xgH)

— x. Moreover, from (4.35) we have that the vector x
generated by the gradient method, is the one that minimizes the A-norm of the
error among all vectors of the form x*) +6r®®) | with 6 € R. Therefore, ||e(k+1> la <

||e§§+l) |[a which is the desired result. <&

Let us now consider the preconditioned gradient method and assume that the
matrix P is symmetric positive definite. In such a case the optimal value of
oy, in algorithm (4.25) is
72T (k)
T T AL
and we have .
k+1)||A < KZ(P, A) -1
Ky(P~1A)+1

For the proof of this convergence result see, e.g., [QV94], Section 2.4.1.

We notice that the line through x® and x**1) is tangent at the point
x(**+1) to the ellipsoidal level surface {x € R™: ®(x) = ®(x#T1)} (see also
Figure 4.5).

Relation (4.38) shows that convergence of the gradient method can be
quite slow if K5(A) = A1/\, is large. A simple geometric interpretation of
this result can be given in the case n = 2. Suppose that A=diag(\1, A2), with
0< X <A and b= (bl,bg)T.

In such a case, the curves corresponding to &(z1,z2) = ¢, as ¢ varies
in RT, form a sequence of concentric ellipses whose semi-axes have length

e 1e® ]l

-2 0 2 -1 -0.5 0 0.5 1

Fig. 4.5. The first iterates of the gradient method on the level curves of ®
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inversely proportional to the values Ay and As. If Ay = As, the ellipses degen-
erate into circles and the direction of the gradient crosses the center directly,
in such a way that the gradient method converges in one iteration. Con-
versely, if \; > Ao, the ellipses become strongly eccentric and the method
converges quite slowly, as shown in Figure 4.5, moving along a “zig-zag”
trajectory.

Program 19 provides an implementation of the preconditioned gradient
method. Here and in the programs reported in the remainder of the section,
the input parameters A, b, x, P, nmax and tol respectively represent the co-
efficient matrix of the linear system, the right-hand side, the initial datum
x(9 a possible preconditioner, the maximum number of admissible itera-
tions and a tolerance for the stopping test. This stopping test checks if the
ratio ||t(®)||5/||bl|2 is less than tol. The output parameters of the code are
the the number of iterations iter required to fulfill the stopping test, the
vector x with the solution computed after iter iterations and the normal-
ized residual relres = |[r®*e)||5/[|b||z. A null value of the parameter flag
warns the user that the algorithm has actually satisfied the stopping test and
it has not terminated due to reaching the maximum admissible number of
iterations.

Program 19 - gradient : Preconditioned gradient method

function [x,relres,iter,flag]=gradient(A,b,x,P,nmax,tol)
%GRADIENT Gradient method
% [X,RELRES,ITER,FLAG]=GRADIENT(A,B,X0,NMAX,TOL,OMEGA) attempts
% to solve the system A*X=B with the gradient method. TOL specifies the
% tolerance of the method. NMAX specifies the maximum number of iterations.
% XO specifies the initial guess. P is a preconditioner. RELRES is the relative
% residual. If FLAG is 1, then RELRES > TOL. ITER is the iteration number
% at which X is computed.
[n,m]=size(A);
if n "= m, error('Only square systems'); end
flag = 0; iter = 0; bnrm2 = norm( b );
if bnrm2==0, bnrm2 = 1; end
r=b-A*x; relres=norm(r)/bnrm2;
if relres<tol, return, end
for iter=1:nmax
z=P\r;
rho=r'*z;
q=A*z;
alpha=rho/(z'*q);
x=x-+alpha*z;
r=r-alpha*q;
relres=norm(r) /bnrm2;
if relres<=tol, break, end
end
if relres>tol, flag = 1; end
return
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Fig. 4.6. The residual normalized to the starting one, as a function of the number
of iterations, for the gradient method applied to the systems in Example 4.6. The
curves labelled (a) and (b) refer to the case m = 16 with the nonpreconditioned
and preconditioned method, respectively, while the curves labelled (c) and (d) re-
fer to the case m = 400 with the nonpreconditioned and preconditioned method,
respectively

Example 4.6 Let us solve with the gradient method the linear system with
matrix A,, € R™*™ generated with the MATLAB commands G=numgrid(’S’,n);
A=delsq(G) where m = (n —2)?. This matrix is associated with the discretization of
the differential Laplace operator on the domain [—1,1]?. The right-hand side by, is
selected in such a way that the exact solution is the vector 1 € R™. The matrix A,,
is symmetric and positive definite for any m and becomes ill-conditioned for large
values of m. We run Program 19 in the cases m = 16 and m = 400, with x@ =0,
t01=10"1% and nmax=200. If m = 400, the method fails to satisfy the stopping test
within the admissible maximum number of iterations and exhibits an extremely slow
reduction of the residual (see Figure 4.6). Actually, K2(A400) >~ 258. If, however, we
precondition the system with the matrix P = R%Rm, where R;, is the lower tri-
angular matrix in the Cholesky incomplete factorization of A, the algorithm fulfills
the convergence within the maximum admissible number of iterations (indeed, now
KQ(P71A400) ~ 38) °

4.3.4 The Conjugate Gradient Method

The gradient method consists essentially of two phases: choosing a direction
p®) (which turns out to coincide with the one of the residual) and picking up
a point of local minimum for ® along that direction. The latter request can
be accommodated by choosing «j as the value of the parameter « such that
<I>(x(’“) + ap(k)) is minimized. Differentiating with respect to a and setting to
zero the derivative at the minimizer, yields

p® T k)

m. (4.39)

o =
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(This reduces to (4.37) when p(*) = r(*).) The question is whether a different
choice of the search direction p(*) exists, that might provide a faster conver-
gence of the Richardson method in the case where K3(A) is large. Since, by
(4.36), we have

r(f+D) = p(B) _ o Ap®), (4.40)
using (4.39) shows that
(p(k))Tr(k—H) — 0’
that is, the new residual becomes orthogonal to the search direction. For the

next iteration step, the strategy is thus to find a new search direction p**1)
in such a way that

(ApD)Tp#+D) —o,  j=0,... k (4.41)

To see how the k + 1 relations (4.41) can be obtained in a practical way, we
proceed as follows.

Assume that for k£ > 1, p(@, pM ... p* are mutually conjugate orthog-
onal (or A-orthogonal). This means that

(Ap™)Tpl) =, Vi, j=0,....k, i#j. (4.42)

This makes sense (in exact arithmetic) provided k < n. Assume also, without
loss of generality, that

(PWYTe® =0, j=01,... k-1 (4.43)

We claim tha_ut for every k£ > 0, the new residual r(b+1) g orthogonal to the
directions pt), j =0,...,k, that is

(PNTrk+D) =0, j=o0,... k. (4.44)

This can be proven by induction on k. For k = 0, r") = r(® — gy Ar(® | thus
(PN Tr(M = 0 since apg = (p)Tr®/((p@)TAp®), and (4.43) therefore
holds. Equation (4.40) yields (since A is symmetric)

(P Tr+D = (pUNTr(F) _ o (ApU)Tpk),

Unless for j = k, (Ap“)Tp*) vanishes owing to (4.42), whereas (pt/))7r(*)
is zero due to the induction assumption. On the other hand, when j = k the
right hand side is zero due to the choice (4.39) of ay,.

It remains only to compute the sequence of search directions p(®, p", .. .,
p®) in an efficient way to make them mutually A-orthogonal. To this end, let

p(k-i-l) — pkt1) ﬁkp(k)7 k=0,1,..., (4.45)
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where initially we let p(® = r©® and Sy, 31,... are still to be determined.
Using (4.45) in (4.41) for j = k yields

_ (Ap)Tp(k+D) B
ﬁk—W, k—O,l, (446)

We also notice that, for every j =0,. .., k, relation (4.45) implies
(Ap(j))Tp(kH) - (Ap(j))Tr(kH) _ Bk(Ap(j))TP(k)-

Now, by the induction assumption for j < k& — 1, the last scalar product is
zero. To prove that also the first scalar product on the right hand side is
zero, we proceed as follows. Let Vj, = span(p(o), e ,p(k)). Then, if we choose
p@ = r(® using (4.45) we see that Vj has the alternative representation
Vi = span(r® ... r®)). Hence, Ap¥) € Vi, for all k > 0 owing to (4.40).
Since r(**1) is orthogonal to any vector in Vj, (see (4.44)), then

(ApN Tttt — o j=0,1,...,k—1.

)

We have therefore proven (4.41) by induction on k, provided the A-orthogonal
directions are chosen as in (4.45) and (4.46).
The method obtained by choosing the search directions p*) as in (4.45) and
the acceleration parameter «y, as in (4.39) is called conjugate gradient method
(CG). The CG method reads as follows: given x(*) € R™, set r(®) = b — Ax(®)
and p(© = r(® then, for k= 0,1,..., until convergence, compute
p® T p®)
" P T Ap®)

x(k+1) = X(k) + akp(k)7

r(+D) — p(F) — o Ap(K),
(Ap(k))Tr(k+1)

(Ap)Tp®

pltD) — p(k+1) _ g, (k)

Br =

It can also be shown (see Exercise 12) that the two parameters «y and Sy
may be alternatively expressed as

R el i)
p® Apk)’ ™13

We finally notice that, eliminating the search directions from r+1 =
r®) — a, Ap®), the following recursive three-terms relation is obtained for
the residuals (see Exercise 13)
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Ar®) — _ L) (1 _ ﬁkl) P8 4 P o (g

875 g -1 Ap—1
As for the convergence of the CG method, we have the following results.

Theorem 4.11 Let A be a symmetric and positive definite matriz. Any
method which employs conjugate directions to solve (3.2) terminates after at
most n steps, yielding the exact solution.

Proof. The directions p®,p™®,...,p" Y form an A-orthogonal basis in R”.
Moreover, from (4.43) it follows that r*®) is orthogonal to the space Vi i
span(p(o),p(l)7 e 7p(k_l)). As a consequence, r™ 1 V,_; = R™ and thus r™ =
which implies x™ = x.

S o

Going back to the example discussed in Section 4.3.3, Figure 4.7 shows
the performance of the conjugate gradient (CG) method, compared to the
gradient (G) method. In the present case (n = 2), the CG scheme converges
in two iterations due to the property of A-orthogonality, while the gradient
method converges very slowly, due to the above described “zig-zag” trajectory
of the search directions.

Theorem 4.12 Let A be a symmetric and positive definite matriz. The con-
Jugate gradient method for solving (3.2) converges after at most n steps. More-
over, the error e*) at the k-th iteration (with k < n) is orthogonal to p),
forj=0,....k—1 and

2ck Ko(A)—1
le®)]| 4 < ¢ - e[, with ¢ = VEA) -1 . (4.49)
l+c VE2(A)+1

Proof. The convergence of the CG method in n steps is a consequence of
Theorem 4.11.

0 02 04 06 08 1 12 1.4 16 18
Fig. 4.7. Directions for the conjugate gradient method (denoted by CG, dashed line)

and the gradient method (denoted by G, solid line). Notice that the CG method
reaches the solution after two iterations
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Let us prove the error estimate, assuming for simplicity that x(® = 0. Notice
first that, for fixed k

k
xFD = Z’yjAjb,
j=0

for suitable v; € R. Moreover, by construction, x*+1) is the vector which min-

imizes the A-norm of the error at step k£ + 1, among all vectors of the form
7z = Zj:O 0;A’b = pr(A)b, where pi(§) = ijo 0;&7 is a polynomial of degree
k and pr(A) denotes the corresponding matrix polynomial. As a consequence

le® VIR < (x = 2)"Alx — 2) = x" qir1(A)Ager (A)x, (4.50)

where qr+1(€) = 1—pi(£)€ € Pgil, being Pg’il ={q € Prt1 : ¢(0) =1} and gr41(A)
the associated matrix polynomial. From (4.50) we get

le®™ V)R = min  x"ge1(A)Ageii(A)x. (4.51)
q1¢,+1€ﬂ”2i1

Since A is symmetric positive definite, there exists an orthogonal matrix Q such
that A = QAQT with A = diag(A1,...,\,), with Ay and A, the largest and smallest
eigenvalues of A, respectively. Noticing that gxr1(A) = Qqr+1(A)QT, we get from
(4.51)

||e(k+1)||2A = mino 1 XTQQk+1(A)QTQAQTqu+1(A)QTX
ar+1€P 7

min x" Qqr41(A)Agei1(A)Q x
ak+1€P 7

= minO ) deiag(qu (A)Aige+1(N0))y
ak+1€P 7

n
= rnin0 . Zy?/\i(QkJrl()\i))Qv
ar+1€F

having set y = Qx. Thus, we can conclude that

n
le™ VA < min - max (qer1(A:))* Z?J?)\i-
qrc+1€]1”k’+1)‘ieo(A) i1

Recalling that E y?/\i = ||e(0)|\i, we have
i=1
(k+1)
e .
el min  max_ [ge1(A)].

le@)a — G4 €PQL M€ (A)

Let us now recall the following property

Property 4.6 The problem of minimizing | max, lg(2)| over the space
nSZSAL

Pgil([z\n, A1]) admits a unique solution, given by the polynomial
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Prt1(§) = T (ﬁ) /Clry1, & € [An, A,

where Cr41 = Tkﬂ(%) and Ty41 is the Chebyshev polynomial of degree k + 1
(see Section 10.10).The value of the minimum is 1/Cli1.

Using this property we get

e ]| 1
He(O)HA - (Al-l—)\n)7
T;
k1 N,

from which the thesis follows since in the case of a symmetric positive definite matrix

1 2ch 1
Crp1 14 c20+D7

<

The generic k-th iteration of the conjugate gradient method is well defined
only if the search direction p*) is nonnull. Besides, if p(*¥) = 0, then the iterate
x(®) must necessarily coincide with the solution x of the system. Moreover,
irrespectively of the choice of the parameters i, one can show (see [Axe94],
p. 463) that the sequence x(*) generated by the CG method is such that either
xF) £ x, p) £ 0, ay, # 0 for any k, or there must exist an integer m such
that x(™) = x, where x(*) #£ x, p*) £ 0 and oy, #0 for k =0,1,...,m — 1.

The particular choice made for 8j in (4.47) ensures that m < n. In absence
of rounding errors, the CG method can thus be regarded as being a direct
method, since it terminates after a finite number of steps. However, for ma-
trices of large size, it is usually employed as an iterative scheme, where the
iterations are stopped when the error gets below a fixed tolerance. In this re-
spect, the dependence of the error reduction factor on the condition number
of the matrix is more favorable than for the gradient method. We also notice
that estimate (4.49) is often overly pessimistic and does not account for the
fact that in this method, unlike what happens for the gradient method, the
convergence is influenced by the whole spectrum of A, and not only by its
extremal eigenvalues.

Remark 4.3 (Effect of rounding errors) The termination property of
the CG method is rigorously valid only in exact arithmetic. The cumulating
rounding errors prevent the search directions from being A-conjugate and can
even generate null denominators in the computation of coefficients ay, and .
This latter phenomenon, known as breakdown, can be avoided by introducing
suitable stabilization procedures; in such an event, we speak about stabilized
gradient methods.

Despite the use of these strategies, it may happen that the CG method fails
to converge (in finite arithmetic) after n iterations. In such a case, the only
reasonable possibility is to restart the iterative process, taking as residual
the last computed one. By so doing, the cyclic CG method or CG method
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with restart is obtained, for which, however, the convergence properties of the
original CG method are no longer valid. |

4.3.5 The Preconditioned Conjugate Gradient Method

If P is a symmetric and positive definite matrix, the preconditioned conjugate
gradient method (PCG) counsists of applying the CG method to the precon-
ditioned system

P~1/2AP~1/2y = P~1/?p, with y = PY/?x.

In practice, the method is implemented without explicitly requiring the com-
putation of P2 or P~1/2. After some algebra, the following scheme is ob-
tained:

given x(© € R”, set r(® = b — Ax(®, 20 = P~ and p@ = 2O for
k=0,1,... until convergence, compute

20T (k)
T 0 T Ap®)
x(E+1) = x(]) 4 o, p(k),
r(k+1) — p (k) _ oy Apk)
Pzt = p(k+1)

B 2+ DT L (k+1)
2B ek

p(k""l) = Z(k""l) + ﬁkp(k)

The computational cost is increased with respect to the CG method, as one
needs to solve at each step the linear system Pz(**1) = r(*+1)_ For this system
the symmetric preconditioners examined in Section 4.3.2 can be used. The
error estimate is the same as for the nonpreconditioned method, provided the
matrix A is replaced by P7TA.

In Program 20 an implementation of the PCG method is reported. For a
description of the input/output parameters, see Program 19.

Program 20 - conjgrad : Preconditioned conjugate gradient method

function [x,relres,iter,flag]=conjgrad(A,b,x,P,nmax,tol)

%CONJGRAD Conjugate gradient method

% [X,RELRES,ITER,FLAG]=CONJGRAD(A,B,X0,NMAX,TOL,OMEGA) attempts
% to solve the system A*X=B with the conjugate gradient method. TOL specifies
% the tolerance of the method. NMAX specifies the maximum number of iterations.
% X0 specifies the initial guess. P is a preconditioner. RELRES is the relative



4.3 Stationary and Nonstationary Iterative Methods 159

% residual. If FLAG is 1, then RELRES > TOL. ITER is the iteration number at which
% X is computed.
flag=0; iter=0; bnrm2=norm(b);
if bnrm2==0, bnrm2=1; end
r=b-A*x; relres=norm(r)/bnrm2;
if relres<tol, return, end
for iter = 1:nmax
z=P\r; rho=r"*z;
if iter>1
beta=rho/rhol;
p=z+beta*p;
else
p=2;

q=A*p;
alpha=rho/(p'*q);
x=x-+alpha*p;
r=r-alpha*q;
relres=norm(r)/bnrm2;
if relres<=tol, break, end

rhol = rho;
end
if relres>tol, flag = 1; end
return

Example 4.7 Let us consider again the linear system of Example 4.6. The CG
method has been run with the same input data as in the previous example. It
converges in 3 iterations for m = 16 and in 45 iterations for m = 400. Using the

108t

10—10 |

10712 |

10—14

0 5 10 15 20 25 30 35 40 45

Fig. 4.8. Behavior of the residual, normalized to the right-hand side, as a function
of the number of iterations for the conjugate gradient method applied to the systems
of Example 4.6 in the case m = 400. The curve in dashed line refers to the nonpre-
conditioned method, while the curve in solid line refers to the preconditioned one
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same preconditioner as in Example 4.6, the number of iterations decreases from 45
to 26, in the case m = 400. °

4.3.6 The Alternating-Direction Method

Assume that A = A; + Ao, with Ay and Ay symmetric and positive defi-
nite. The alternating direction method (ADI), as introduced by Peaceman
and Rachford [PJ55], is an iterative scheme for (3.2) which consists of solving
the following systems Vk > 0

(I + ()(1A1)X<k+1/2) = (I - O(lAQ)X(k) + Oélb,
(4.52)
(I + 042A2>X(k+1) = (I — agAl)X(k+1/2) + Ong,

where «; and sy are two real parameters. The ADI method can be cast in
the form (4.2) setting

B = (I + OéQAQ)_l(I — O[QAl)(I + OzlAl)_l(I — Oé]AQ),
f = (I + a2A2)_1 [O{l(l — a2A1)(I + OélAl)_l + O{QI] b.

Both B and f depend on «a; and as. The following estimate holds

1—azAl! 1—a A
p(B) < max L&) max L&) ,
1=1,...,n ]‘+a1>\i i=1,....,n 1+a2/\i
where /\El) and /\§2), for i« = 1,...,n, are the eigenvalues of A; and As,

respectively. The method converges if p(B) < 1, which is always verified if
a; = ag = a > 0. Moreover (see [Axe94]) if v < AD < svi=1,...n,

Vj = 1,2, for suitable v and § then the ADI method coﬁverges with the choice
a1 = ag = 1/4/07, provided that v/ tends to 0 as the size of A grows. In

such an event the corresponding spectral radius satisfies

2
1- /s
p(B)§<1+m> :

4.4 Methods Based on Krylov Subspace Iterations

In this section we introduce iterative methods based on Krylov subspace
iterations. For the proofs and further analysis, we refer to [Saa96], [Axe94],
[Hac94] and [vdV03].

Consider the Richardson method (4.24) with P =T; the residual at the k-th
step can be related to the initial residual as
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k—1
r®) = H(I —a; A)r®, (4.53)

Jj=0

so that r®) = pp(A)r(® where pj(A) is a polynomial in A of degree k. If we
introduce the space

K., (A;v) = span {v, Av,... ,Am_lv} , (4.54)

it immediately appears from (4.53) that r®) € K 1(A;r(®). The space de-
fined in (4.54) is called the Krylov subspace of order m. It is a subspace of the
set spanned by all the vectors u € R™ that can be written as u = p,,,—1(A)v,
where p,,_1 is a polynomial in A of degree < m — 1.

In an analogous manner as for (4.53), it is seen that the iterate x(¥) of the
Richardson method is given by

k—1
x®) = %0 £ 3 x ),
§j=0

so that x(*) belongs to the following space
Wi, = {v =x0 1y, ye Kk(A;r(O))} . (4.55)

Notice also that Zf;é ajr(j ) is a polynomial in A of degree less than k — 1. In
the nonpreconditioned Richardson method we are thus looking for an approx-
imate solution to x in the space Wj. More generally, we can think of devising
methods that search for approximate solutions of the form

x® = xO 4 g (A, (4.56)

where ¢;_1 is a polynomial selected in such a way that x(*) be, in a sense that
must be made precise, the best approximation of x in Wj. A method that
looks for a solution of the form (4.56) with W}, defined as in (4.55) is called a
Krylov method.

A first question concerning Krylov subspace iterations is whether the
dimension of K,,(A;v) increases as the order m grows. A partial answer is
provided by the following result.

Property 4.7 Let A € R"™" and v € R"™. The Krylov subspace K, (A;v)
has dimension equal to m iff the degree of v with respect to A, denoted by
deg, (v), is not less than m, where the degree of v is defined as the minimum
degree of a monic nonnull polynomial p in A, for which p(A)v = 0.

The dimension of K,,(A;v) is thus equal to the minimum between m and
the degree of v with respect to A and, as a consequence, the dimension of the
Krylov subspaces is certainly a nondecreasing function of m. Notice that the
degree of v cannot be greater than n due to the Cayley-Hamilton Theorem
(see Section 1.7).
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Example 4.8 Consider the matrix A = tridiag,(—1,2,—1). The vector v =
[1,1,1,1]7 has degree 2 with respect to A since pa(A)v = 0 with p2(A) =
I,—3A+A?, while there is no monic polynomial p; of degree 1 for which p; (A)v = 0.
As a consequence, all Krylov subspaces from K2(A;v) on, have dimension equal to
2. The vector w = [1,1, —1,1]" has, instead, degree 4 with respect to A. °

For a fixed m, it is possible to compute an orthonormal basis for K,,(A;v)
using the so-called Arnoldi algorithm.

Setting vi = v/||v]|2, this method generates an orthonormal basis {v;}
for K,,(A;vy) using the Gram-Schmidt procedure (see Section 3.4.3). For

k=1,...,m, the Arnoldi algorithm computes
hiw = v Avy, i=1,2,...k,
K (4.57)
wi = Avy — Zhikvi7 hig1, = ||Wil|2-
i=1

If wj = 0 the process terminates and in such a case we say that a breakdown
of the algorithm has occurred; otherwise, we set vii1 = wi/||wg|2 and the
algorithm restarts, incrementing & by 1.

It can be shown that if the method terminates at the step m then the
vectors v, ..., vy, form a basis for K,,(A;v). In such a case, if we denote by
V,, € R™*™ the matrix whose columns are the vectors v;, we have

VI AV, =H,,, VI AV,, = H,,, (4.58)

where ﬁm e Rm+1)xm g the upper Hessenberg matrix whose entries h;; are

given by (4.57) and H,, € R™*™ is the restriction of H,, to the first m rows
and m columns.

The algorithm terminates at an intermediate step k& < m iff deg, (v1) = k.
As for the stability of the procedure, all the considerations valid for the Gram-
Schmidt method hold. For more efficient and stable computational variants of
(4.57), we refer to [Saa96].

The functions arnoldialg and GSarnoldi, invoked by Program 21, pro-
vide an implementation of the Arnoldi algorithm. In output, the columns
of V contain the vectors of the generated basis, while the matrix H stores the
coefficients h;;, computed by the algorithm. If m steps are carried out, V.= V,,
and H(1 : m,1:m) = H,,.

Program 21 - arnoldialg : The Arnoldi algorithm

function [V,H]=arnoldialg(A,v,m)

% ARNOLDIALG Arnoldi algorithm

% [B,H]=ARNOLDIALG(A,V,M) computes for a fixed M an orthonormal basis B for
% K'M(A,V) such that V" T*A*V=H.

v=v/norm(v,2); V=v; H=[]; k=0;
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while k <= m-1

[k,V,H] = GSarnoldi(A,m,k,V,H);
end
return

function [k,V,H]=GSarnoldi(A,m,k,V,H)
% GSARNOLDI Gram-Schmidt method for the Arnoldi algorithm
k=k+1; H=[H,V(:,1:k) *A*V(: k)];
s=0;
for i=1:k
s=s+H(i,k)*V(:,i);
end
w=A*V(: k)-s; H(k+1,k)=norm(w,2);
if H(k4+1,k)>=eps & kjm
V=[V,w/H(k+1k)];
else
k=m+1;
end
return

Having introduced an algorithm for generating the basis for a Krylov subspace
of any order, we can now solve the linear system (3.2) by a Krylov method.
As already noticed, for all of these methods the iterate x(*) is always of the
form (4.56) and, for a given r(9), the vector x(*) is selected as being the unique
element in W, which satisfies a criterion of minimal distance from x. Thus,
the feature distinguishing two different Krylov methods is the criterion for
selecting x(*).

The most natural idea consists of searching for x*) € W;, as the vector
which minimizes the Euclidean norm of the error. This approach, however,
does not work in practice since x*) would depend on the (unknown) solu-
tion x.

Two alternative strategies can be pursued:

1. compute x*) € W), enforcing that the residual r*) is orthogonal to any
vector in Kj(A;r(®), ie., we look for x*) € W}, such that

vib—Ax®) =0  vve Ki(A;r®); (4.59)

2. compute x*) € W, minimizing the Euclidean norm of the residual |[r(*)||5,
ie.

_ B, — mi _
b~ Ax®; = min b Av. (4.60)

Satisfying (4.59) leads to the Arnoldi method for linear systems (more com-
monly known as FOM, full orthogonalization method), while satisfying (4.60)
yields the GMRES (generalized minimum residual) method.

In the two forthcoming sections we shall assume that k steps of the Arnoldi
algorithm have been carried out, in such a way that an orthonormal basis for
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Ki(A;r(©) has been generated and stored into the column vectors of the
matrix Vi with vi = r©@/|[r(® 5. In such a case the new iterate x(*) can
always be written as

x®) = x(0 4 v, 20, (4.61)

where z(®) must be selected according to a fixed criterion.

4.4.1 The Arnoldi Method for Linear Systems

Let us enforce that r*) be orthogonal to Kj,(A;r(?)) by requiring that (4.59)
holds for all the basis vectors v;, i.e.

VEie® =o. (4.62)
Since r®) = b — Ax*) with x(¥) of the form (4.61), relation (4.62) becomes
VEb — Ax) — VIAV, 2z = VIr©® —VIAV,z® =0,  (4.63)

Due to the orthonormality of the basis and the choice of v, Vgr(o)
[r(®)||ze1, e; being the first unit vector of R*. Recalling (4.58), from (4.63) it
turns out that z(*) is the solution to the linear system

Hyz® = [|r©|ze;. (4.64)

Once z*) is known, we can compute x*) from (4.61). Since Hy, is an upper
Hessenberg matrix, the linear system in (4.64) can be easily solved, for in-
stance, resorting to the LU factorization of Hy.

We notice that the method, if working in exact arithmetic, cannot execute
more than n steps and that it terminates after m < n steps only if a breakdown
in the Arnoldi algorithm occurs. As for the convergence of the method, the
following result holds.

Theorem 4.13 In exact arithmetic the Arnoldi method yields the solution of
(3.2) after at most n iterations.

Proof. If the method terminates at the n-th iteration, then it must necessarily
be x™ = x since K,(A;r(®) = R". Conversely, if a breakdown occurs after m
iterations, for a suitable m < n, then x(™ = x. Indeed, inverting the first relation
in (4.58), we get

x™ =x© 4 v,z =x© 4 v, H;' VT @ = A7,

<&
In its naive form, FOM does not require an explicit computation of the solution
or the residual, unless a breakdown occurs. Therefore, monitoring its conver-
gence (by computing, for instance, the residual at each step) might be com-
putationally expensive. The residual, however, is available without explicitly
requiring to compute the solution since at the k-th step we have
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b — Ax®ly = Ay xlef 2|
and, as a consequence, one can decide to stop the method if
hierrlet zel /@2 < e (4.65)

€ > 0 being a fixed tolerance.

The most relevant consequence of Theorem 4.13 is that FOM can be
regarded as a direct method, since it yields the exact solution after a fi-
nite number of steps. However, this fails to hold when working in floating
point arithmetic due to the cumulating rounding errors. Moreover, if we also
account for the high computational effort, which, for a number of m steps and
a sparse matrix of order n with n, nonzero entries, is of the order of 2(n.+mn)
flops, and the large memory occupation needed to store the matrix V,,, we
conclude that the Arnoldi method cannot be used in the practice, except for
small values of m.

Several remedies to this drawback are available, one of which consisting
of preconditioning the system (using, for instance, one of the preconditioners
proposed in Section 4.3.2). Alternatively, we can also introduce some modified
versions of the Arnoldi method following two approaches:

1. no more than m consecutive steps of FOM are taken, m being a small
fixed number (usually, m ~ 10). If the method fails to converge, we set
x(0 = x(m) and FOM is repeated for other m steps. This procedure is
carried out until convergence is achieved. This method, known as FOM(m)
or FOM with restart, reduces the memory occupation, only requiring to
store matrices with m columns at most;

2. a limitation is set on the number of directions involved in the orthogo-
nalization procedure in the Arnoldi algorithm, yielding the incomplete
orthogonalization method or IOM. In the practice, the k-th step of the
Arnoldi algorithm generates a vector vi41 which is orthonormal, at most,
to the ¢ preceding vectors, where ¢ is fixed according to the amount of
available memory.

It is worth noticing that Theorem 4.13 does no longer hold for the methods
stemming from the two strategies above.

Program 22 provides an implementation of the FOM algorithm with a
stopping criterion based on the residual (4.65). The input parameter m is the
maximum admissible size of the Krylov subspace that is being generated and
represents, as a consequence, the maximum admissible number of iterations.

Program 22 - arnoldimet : The Arnoldi method for linear systems

function [x,iter]=arnoldimet(A,b,x0,m,tol)

%ARNOLDIMET Arnoldi method.

% [X,/TER|=ARNOLDIMET(A,B,X0,M, TOL) attempts to solve the system A*X=B
% with the Arnoldi method. TOL specifies the tolerance of the method.



166 4 Iterative Methods for Solving Linear Systems

% M specifies the maximum size of the Krylov subspace. X0 specifies
% the initial guess. ITER is the iteration number at which X is computed.
r0=b-A*x0; nr0=norm(r0,2);
if nr0 "= 0
v1l=r0/nr0; V=[v1]; H=[]; iter=0; istop=0;
while (iter <= m-1) & (istop == 0)
[iter,V,H] = GSarnoldi(A,m,iter,V,H);
[nr,nc]=size(H); el=eye(nc);
y=(el(:,1)"*nr0)/H(1:nc,:);
residual = H(nr,nc)*abs(y*el(:,nc));
if residual <= tol

istop = 1; y=y;
end
end
if istop==0

[nr,nc]=size(H); el=eye(nc);
y=(el(:,1)"*nr0)/H(1:nc,:); y=y';
end
x=x0+V(:,1:nc)*y;
else
x=x0;
end

Example 4.9 Let us employ Program 22 to solve the linear system Ax = b with
A = tridiag,yo(—1,2, —1) and b such that the solution is x = 1. The initial vector
is x( = 0 and to1=10"1". The method converges in 50 iterations and Figure 4.9
reports its convergence history. Notice the sudden, dramatic, reduction of the resi-
dual, which is a typical warning that the last generated subspace W is sufficiently
rich to contain the exact solution of the system. °

10° |
10—2 _k}

10 20 30 40 50 60

Fig. 4.9. The behavior of the residual as a function of the number of iterations for
the Arnoldi method applied to the linear system in Example 4.9
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4.4.2 The GMRES Method

This method is characterized by selecting x*) in such a way to minimize the
Euclidean norm of the residual at each k-th step. Recalling (4.61) we have

) =0 _ Ay, 2z (4.66)
but, since r® = v, [|r(?]|; and (4.58) holds, relation (4.66) becomes
r® = Vi1 (e e — Hyz®), (4.67)

where e; is the first unit vector of R¥*t1. Therefore, in the GMRES method
the solution at step k can be computed through (4.61) as

2™ chosen in such a way to minimize || [|r(®|,e; — Hpz®™ |, (4.68)

(the matrix Vi1 appearing in (4.67) does not change the value of || - ||2 since
it is orthogonal). Having to solve at each step a least-squares problem of size
k, the GMRES method will be the more effective the smaller is the number of
iterations. Exactly as for the Arnoldi method, the GMRES method terminates
at most after n iterations, yielding the exact solution. Premature stops are due
to a breakdown in the orthonormalization Arnoldi algorithm. More precisely,
we have the following result.

Property 4.8 A breakdown occurs for the GMRES method at a step m (with
m < n) iff the computed solution x\"™) coincides with the exact solution to the
system.

A basic implementation of the GMRES method is provided in Program 23.
This latter requires in input the maximum admissible size m for the Krylov
subspace and the tolerance tol on the Euclidean norm of the residual normal-
ized to the initial residual. This implementation of the method computes the
solution x(®) at each step in order to evaluate the residual, with a consequent
increase of the computational effort.

Program 23 - gmres : The GMRES method for linear systems

function [x,iter]=gmres(A,b,x0,m,tol)
%GMRES GMRES method.
% [X,ITER]=GMRES(A,B,X0,M, TOL) attempts to solve the system A*X=B
% with the GMRES method. TOL specifies the tolerance of the method.
% M specifies the maximum size of the Krylov subspace. X0 specifies
% the initial guess. ITER is the iteration number at which X is computed.
r0=b-A*x0; nrO=norm(r0,2);
if nr0 "= 0
vl=r0/nr0; V=[v1]; H=[]; iter=0; residual=1,
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while iter <= m-1 & residual > tol,
[iter,V,H] = GSarnoldi(A,m,iter,V,H);
[nr,nc]=size(H); y=(H"*H) \ (H*nr0*[1;zeros(nr-1,1)]);
x=x0+V(:,1:nc)*y; residual = norm(b-A*x,2)/nr0;
end
else
x=x0;
end

To improve the efficiency of the GMRES algorithm it is necessary to devise a
stopping criterion which does not require the explicit evaluation of the residual
at each step. This is possible, provided that the linear system with upper
Hessenberg matrix Hy, is appropriately solved.

In practice, Hy is transformed into an upper triangular matrix Ry €
REFD*E with Tr+1,k = 0 such that Qka = Hj, where Qj is a matrix
obtained as the product of k Givens rotations (see Section 5.6.3). Then, since
Qp is orthogonal, it can be seen that minimizing |[[[r(®|j2e; — Hpz® | is
equivalent to minimize ||[f; — Rpz®||2, with fi = Qx|[r(?)|se;. It can also be
shown that the & + 1-th component of f} is, in absolute value, the Euclidean
norm of the residual at the k-th step.

As FOM, the GMRES method entails a high computational effort and
a large amount of memory, unless convergence occurs after few iterations.
For this reason, two variants of the algorithm are available, one named
GMRES(m) and based on the restart after m steps, the other named Quasi-
GMRES or QGMRES and based on stopping the Arnoldi orthogonalization
process. It is worth noting that these two methods do not enjoy Property 4.8.

Remark 4.4 (Projection methods) Denoting by Y3 and L, two generic
m-~dimensional subspaces of R", we call projection method a process which
generates an approximate solution x*) at step k, enforcing that x*) € Y,
and that the residual r®) = b — Ax(*) be orthogonal to Lj. If Y}, = L, the
projection process is said to be orthogonal, oblique otherwise (see [Saa96]).
The Krylov subspace iterations can be regarded as being projection meth-
ods. For instance, the Arnoldi method is an orthogonal projection method
where L = Vi = Ki(A;r(®), while the GMRES method is an oblique pro-
jection method with Yy, = Ki(A; r(o)) and L = AYj. It is worth noticing that
some classical methods introduced in previous sections fall into this category.
For example, the Gauss-Seidel method is an orthogonal projection method
where at the k-th step Kj(A;r(®) = span(ey), with k = 1, ..., n. The projec-
tion steps are carried out cyclically from 1 to n until convergence. |

4.4.3 The Lanczos Method for Symmetric Systems

The Arnoldi algorithm simplifies considerably if A is symmetric since the
matrix Hy, is tridiagonal and symmetric (indeed, from (4.58) it turns out that
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H,,, must be symmetric, so that, being upper Hessenberg by construction, it
must necessarily be tridiagonal). In such an event the method is more com-
monly known as the Lanczos algorithm. For ease of notation, we henceforth
let Q; = ]’L“‘ and ﬂz = hi—l,i-

An implementation of the Lanczos algorithm is provided in Program 24.
Vectors alpha and beta contain the coefficients «; and (3; computed by the
scheme.

Program 24 - lanczos : The Lanczos algorithm

function [V,alpha,beta]=lanczos(A,m)
%LANCZOS Lanczos algorithm.
% [V,ALPHA BETA]=LANCZOS(A,M) computes matrices V and H of dimension
% equal to M in (4.58).
n=size(A); V=[0*[1:n]",[1,0*[1:n-1]]'];
beta(1)=0; normb=1; k=1,
while k <= m & normb >= eps
vk = V(:,k+1); w = A*vk-beta(k)*V(:,k);
alpha(k)= w'*vk; w = w - alpha(k)*vk
normb = norm(w,2);

if normb "= 0

beta(k+1)=normb; V=[V,w/normb]; k=k+1;
end
end

[n,m]=size(V); V=V(;,2:m-1);
alpha=alpha(1:n); beta=beta(2:n);

The algorithm, which is far superior to Arnoldi’s one as far as memory
saving is concerned, is not numerically stable since only the first generated
vectors are actually orthogonal. For this reason, several stable variants have
been devised.

As in previous cases, also the Lanczos algorithm can be employed as a
solver for linear systems, yielding a symmetric form of the FOM method. It
can be shown that r*) = vy 1, for a suitable v, (analogously to (4.65)) so
that the residuals are all mutually orthogonal.

Remark 4.5 (The conjugate gradient method) If A is symmetric and
positive definite, starting from the Lanczos method for linear systems it is
possible to derive the conjugate gradient method already introduced in Section
4.3.4 (see [Saa96]). The conjugate gradient method is a variant of the Lanczos
method where the orthonormalization process remains incomplete.

As a matter of fact, the A-conjugate directions of the CG method can
be characterized as follows. If we carry out at the generic k-th step the LU
factorization Hy = LUy, with Ly (resp., Ug) lower (resp., upper) bidiagonal,
the iterate x(*) of the Lanczos method for systems reads

x®) = x© L P L e® | gey,
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with Py = VkUlzl. The column vectors of Pj are mutually A-conjugate.
Indeed, PgAPk is symmetric and bidiagonal since

PIAP, = U, "H, U = U, "Ly,

so that it must necessarily be diagonal. As a result, (p(j))TAp(i) =0ifi# 7,
having denoted by p(® the i-th column vector of matrix Py |

As happens for the FOM method, also the GMRES method simplifies if A
is symmetric. The resulting scheme is called conjugate residuals or CR, method
since it enjoys the property that the residuals are mutually A-conjugate. Vari-
ants of this method are the generalized conjugate residuals method (GCR) and
the method commonly known as ORTHOMIN (obtained by truncation of the
orthonormalization process as done for the IOM method).

4.5 The Lanczos Method for Unsymmetric Systems

The Lanczos orthogonalization process can be extended to deal with un-
symmetric matrices through a bi-orthogonalization procedure as follows. T'wo
bases, {v;};~, and {z;}]-,, are generated for the subspaces K,,(A;vy) and
K,,(AT;z), respectively, with z7 v, = 1, such that

7] v; = 0}, i,j=1,...,m. (4.69)

(3

Two sets of vectors satisfying (4.69) are said to be bi-orthogonal and can be
obtained through the following algorithm: setting 81 = v; = 0 and zg = vg =
07, at the generic k-th step, with k =1,...,m, we set ay = z} Avy, then we
compute

id _ 5 _ T
Vil = AV — oV — BiVi—1, Zpy1 = A 2k — 0pZp — YieZr—1-

If ypo1 = 4/ |Z£+1x7k+1\ = 0 the algorithm is stopped, otherwise we set Bx11 =
ig f1VEk+1 /7k+1 and generate two new vectors in the basis as

Vit = Vit 1/ Vet1s Zht1 = Zit1/Brot1-

If the process terminates after m steps, denoting by V,, and Z,, the matrices
whose columns are the vectors of the basis that has been generated, we have

2L AV, = Ty,
T,, being the following tridiagonal matrix
o B O
Yo o
" B
0 o

T, =
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As in the symmetric case, the bi-orthogonalization Lanczos algorithm can be
utilized to solve the linear system (3.2). For this purpose, for m fixed, once
the bases {v;}.", and {z;},-, have been constructed, it suffices to set

x(m) = 50 Ly, )

where y("™ is the solution to the linear system T,,y(™ = ||r(9|5e;. Tt is
also possible to introduce a stopping criterion based on the residual, without
computing it explicitly, since

2 = 410y ™) Vi e

An implementation of the Lanczos method for unsymmetric systems is given
in Program 25. If a breakdown of the algorithm occurs, i.e., if 7411 = 0, the
method stops returning in output a negative value of the variable niter which
denotes the number of iterations necessary to reduce the initial residual by a
factor tol.

Program 25 - lanczosnosym : The Lanczos method for unsymmetric
systems

function [xk,relres,iter]=lanczosnosym(A,b,x0,m,tol)
%LANCZOSNOSYM Lanczos method
% [X,RELRES,ITER]=LANCZOSNOSYM(A,B,X0,M,TOL) attempts to solve the
% system A*X=B with the Lanczos method. TOL specifies the tolerance of the
% method. M specifies the maximum number of iterations. X0 specifies the initial
guess. ITER is the iteration number at which X is computed.
r0=b-A*x0; relresO=norm(r0,2);
if relresO "= 0

V=r0/relres0; Z=V; gamma(1)=0; beta(1)=0; k=1; relres=1;

while k <= m & relres > tol

vk=V(:,k); zk=Z(:k);

if k==

vk1=0*vk; zkl=0%*zk;
else

vk1l=V(: k-1); zk1=Z(:k-1);
end

alpha(k)=zk *A*vk;
tildev=A*vk-alpha(k)*vk-beta(k)*vk1;
tildez=A"*zk-alpha(k)*zk-gamma(k)*zk1;
gamma(k+1)=sqrt(abs(tildez *tildev));
if gamma(k+1) == 0

k=m+2;
else

beta(k+1)=tildez *tildev/gamma(k+1);

Z=[Z tildez/beta(k+1)]; V=|V,tildev/gamma(k+1)];
end
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if kK"=m+2
if k==
Tk = alpha;
else
Tk=diag(alpha)+diag(beta(2:k),1)+diag(gamma(2:k),-1);
end

yk=Tk\ (relres0*[1,0*[1:k-1]]');
xk=x0+V(:,1:k)*yk;
relres=abs(gamma(k+1)*[0*[1:k-1],1]*yk)*norm(V(:,k+1),2)/relres0;

k=k+1;
end

end
else

x=x0;
end
if k==m+2, iter=-k; else, iter=k-1; end
return

Example 4.10 Let us solve the linear system with matrix A = tridiag,q,(—0.5, 2,
—1) and right-side b selected in such a way that the exact solution is x = 1. Using
Program 25 with tol= 10~*® and a randomly generated x0, the algorithm converges
in 59 iterations. Figure 4.10 shows the convergence history reporting the graph of
[e®)|]2/]|r® ]2 as a function of the number of iterations. o

We conclude recalling that some variants of the unsymmetric Lanczos method
have been devised, that are characterized by a reduced computational cost. We
refer the interested reader to the bibliography below for a complete description
of the algorithms and to the programs included in the MATLAB version of the
public domain library templates for their efficient implementation [BBCT94].

10°
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10—10 |

10—12 |

10714

10 20 30 40 50 60
Fig. 4.10. Graph of the residual normalized to the initial residual as a function of

the number of iterations for the Lanczos method applied to the system in Example
4.10



4.6 Stopping Criteria 173

1. The bi-conjugate gradient method (BiCG): it can be derived by the un-
symmetric Lanczos method in the same way as the conjugate gradient
method is obtained from the FOM method [Fle75];

2. the Quasi-Minimal Residual method (QMR): it is analogous to the
GMRES method, the only difference being the fact that the Arnoldi
orthonormalization process is replaced by the Lanczos bi-orthogonaliza-
tion;

3. the conjugate gradient squared method (CGS): the matrix-vector products
involving the transposed matrix A” are removed. A variant of this method,
known as BiCGStab, is characterized by a more regular convergence than
provided by the CGS method (see [Son89], [vdV92], [vdV03]).

4.6 Stopping Criteria

In this section we address the problem of how to estimate the error introduced
by an iterative method and the number k,,;, of iterations needed to reduce
the initial error by a factor e.

In practice, Ky, can be obtained by estimating the convergence rate of (4.2),
i.e. the rate at which |[e®)|| — 0 as k tends to infinity. From (4.4), we get

le®] K
<|IB
||e(o)H = H ”7

so that ||B¥|| is an estimate of the reducing factor of the norm of the error after
k steps. Typically, the iterative process is continued until [|e®)|| has reduced
with respect to |[e(?)|| by a certain factor £ < 1, that is

[e®] < elle@]. (4.70)

If we assume that p(B) < 1, then Property 1.13 implies that there exists a
suitable matrix norm ||- || such that ||B|| < 1. As a consequence, ||B¥|| tends to
zero as k tends to infinity, so that (4.70) can be satisfied for a sufficiently large
k such that ||B¥|| < ¢ holds. However, since |B¥| < 1, the previous inequality
amounts to requiring that

k> tog(e)/ ( 08 B4 ) = - log(e)/ Ru(B) (471)

where Ry (B) is the average convergence rate introduced in Definition 4.2.
From a practical standpoint, (4.71) is useless, being nonlinear in k; if, however,
the asymptotic convergence rate is adopted, instead of the average one, the
following estimate for k,,;, is obtained

Emin =~ —log(e)/R(B). (4.72)

This latter estimate is usually rather optimistic, as confirmed by Example
4.11.
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Example 4.11 For the matrix A3 of Example 4.2, in the case of Jacobi method,
letting ¢ = 107°, condition (4.71) is satisfied with kmin = 16, while (4.72) yields
kmin = 15, with a good agreement between the two estimates. Instead, on the matrix
A4 of Example 4.2, we find that (4.71) is satisfied with kms» = 30, while (4.72) yields
kmin = 26. °

4.6.1 A Stopping Test Based on the Increment
From the recursive error relation et = Be®) | we get
le®*+ D1 < |IB]|[le!™]]. (4.73)
Using the triangular inequality we get
le® DI < B (fle®™ V| + [lx*+ — x|,

from which it follows that

Bl (k+1) _ (k)
e = xFFD | < T xB D — x ). (4.74)
1—|B]
In particular, taking & = 0 in (4.74) and applying recursively (4.73) we also
get
|x — X(k+1)|| < WHX(D _ X(O)H
T 1B
which can be used to estimate the number of iterations necessary to fulfill the
condition [[e*+1)|| < ¢, for a given tolerance ¢.

In the practice, ||BJ| can be estimated as follows: since
x(F+1) _ (k) — —(x— X(k+1)) + (x — X(k)) — B(x(k) — X(k—l))7

a lower bound of ||B|| is provided by ¢ = 0y,11/8), where §; 1 = [|[xU+1) —xW) ||,
with j = k — 1, k. Replacing ||B|| by ¢, the right-hand side of (4.74) suggests
using the following indicator for ||e®**+1) ||

(B +1) 5’%7“ (4.75)
Ok — Oky1 '
Due to the kind of approximation of ||B]|| that has been used, the reader is
warned that €*+1) should not be regarded as an upper bound for |e*+1)].
However, often e*+1) provides a reasonable indication about the true error
behavior, as we can see in the following example.

Example 4.12 Consider the linear system Ax =b with

4 1 1 6
2-9 0|,b=| =71,
0 -8 —6 —14

which admits the unit vector as exact solution. Let us apply the Jacobi method and
estimate the error at each step by using (4.75). Figure 4.11 shows an acceptable

agreement between the behavior of the error ||e**V| . and that of its estimate
(k+1)
€ .

A=
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Fig. 4.11. Absolute error (solid line) versus the error estimated by (4.75) (dashed
line). The number of iterations is indicated on the z-axis

4.6.2 A Stopping Test Based on the Residual

A different stopping criterion consists of continuing the iteration until ||r(®) | <
€, € being a fixed tolerance. Note that

I = x®) = A7 = x| = AT ®| < ]ATY] e

Considering instead a normalized residual, i.e. stopping the iteration as soon
as [[r®)||/|b|| < &, we obtain the following control on the relative error

e — %M _ AT e
]

In the case of preconditioned methods, the residual is replaced by the precon-
ditioned residual, so that the previous criterion becomes

[Pt M)
T 3
[P=Tee =

where P is the preconditioning matrix.

4.7 Applications

In this section we consider two examples arising in electrical network analysis
and structural mechanics which lead to the solution of large sparse linear
systems.
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4.7.1 Analysis of an Electric Network

We consider a purely resistive electric network (shown in Figure 4.12, left)
which consists of a connection of n stages S (Figure 4.12, right) through the
series resistances R. The circuit is completed by the driving current generator
Iy and the load resistance Rj. As an example, a purely resistive network is
a model of a signal attenuator for low-frequency applications where capaci-
tive and inductive effects can be neglected. The connecting points between
the electrical components will be referred to henceforth as nodes and are pro-
gressively labeled as drawn in the figure. For n > 1, the total number of
nodes is 4n. Each node is associated with a value of the electric potential V;,
i=20,...,4n — 1, which are the unknowns of the problem.

The nodal analysis method is employed to solve the problem. Precisely, the
Kirchhoff current law is written at any node of the network leading to the
linear system YV = I where V € RV+1 is the vector of nodal potentials,
I € RN+ is the load vector and the entries of the matrix Y € RWVHDx(N+1)
fori,j =0,...,4n — 1, are given by

) ST G fori =,
Yij = keadj(i)
—Gij, for i # j,

where adj(¢) is the index set of the neighboring nodes of node i and G;; =
1/R;; is the admittance between node i and node j, provided R;; denotes the
resistance between the two nodes ¢ and j. Since the potential is defined up
to an additive constant, we arbitrarily set Vy = 0 (ground potential). As a
consequence, the number of independent nodes for potential difference com-
putations is N = 4n — 1 and the linear system to be solved becomes YV =1,
where Y € RV*N 'V € RY and I € RY are obtained eliminating the first row
and column in Y and the first entry in V and I, respectively.

The matrix Y is symmetric, diagonally dominant and positive definite. This
last property follows by noting that

N N
VIYV =Y ViV + > Gi(Vi = V;)?,

1=1 1,j=1
4
(o7 ANV O
1 ZR_¢8 i Rs
W —0 *—
> >
< <
s s ) R, 3 3SR,
lg 1 2 — — 2R
R
6
2n+1 R - 2n+2 2n+3 4n-1
0 W —o o— o AN o
= R2

Fig. 4.12. Resistive electric network (left) and resistive stage S (right)
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Fig. 4.13. Sparsity pattern of Y for n = 3 (left) and spectral condition number of
Y as a function of n (right)
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Fig. 4.14. Convergence history of several nonpreconditioned iterative methods

which is always a positive quantity, being equal to zero only if V = 0. The
sparsity pattern of Y in the case n = 3 is shown in Figure 4.13 (left) while
the spectral condition number of Y as a function of the number of blocks
n is reported in Figure 4.13 (right). Our numerical computations have been
carried out setting the resistance values equal to 1 Ohm, while Iy = 1 Ampere.

In Figure 4.14 we report the convergence history of several non precon-
ditioned iterative methods in the case n = 5 corresponding to a matrix size
of 19 x 19. The plots show the Euclidean norms of the residual normalized
to the initial residual. The dashed curve refers to the Gauss-Seidel method,
the dash-dotted line refers to the gradient method, while the solid and cir-
cled lines refer respectively to the conjugate gradient (CG) and SOR method
(with an optimal value of the relaxation parameter w ~ 1.76 computed ac-
cording to (4.19) since Y is block tridiagonal symmetric positive definite). The
SOR method converges in 109 iterations, while the CG method converges in
10 iterations.
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Table 4.2. Convergence iterations for the preconditioned CG method

n nz CG ICh(0) MICh(0) e = 1072  MICh(0) ¢ = 10~?
5 114 10 9 (54) 6 (78) 4 (98)
10 429 20 15 (114) 7 (173) 5 (233)
20 1659 40 23 (234) 10 (363) 6 (503)
40 6519 80 36 (474) 14 (743) 7 (1043)
80 25839 160 62 (954) 21 (1503) 10 (2123)
160 102879 320 110 (1914) 34 (3023) 14 (4283)

We have also considered the solution of the system at hand by the conju-

gate gradient (CG) method using the Cholesky version of the ILU(0) and
MILU(0) preconditioners, where drop tolerances equal to ¢ = 10721073
have been chosen for the MILU(0) preconditioner (see Section 4.3.2). Calcula-
tions with both preconditioners have been done using the MATLAB functions
cholinc and michol. Table 4.2 shows the convergence iterations of the method
for n = 5,10, 20, 40, 80, 160 and for the considered values of . We report in the
second column the number of nonzero entries in the Cholesky factor of matrix
Y, in the third column the number of iterations for the CG method with-
out preconditioning to converge, while the columns ICh(0) and MICh(0) with
£ =102 and ¢ = 1072 show the same information for the CG method using
the incomplete Cholesky and modified incomplete Cholesky preconditioners,
respectively.
The entries in the table are the number of iterations to converge and the
number in the brackets are the nonzero entries of the L-factor of the corre-
sponding preconditioners. Notice the decrease of the iterations as € decreases,
as expected. Notice also the increase of the number of iterations with respect
to the increase of the size of the problem.

4.7.2 Finite Difference Analysis of Beam Bending

Consider the beam clamped at the endpoints that is drawn in Figure 4.15
(left). The structure, of length L, is subject to a distributed load P, varying
along the free coordinate x and expressed in [Kgm~!]. We assume hence-
forth that the beam has uniform rectangular section, of width r and depth s,
momentum of inertia J = rs3/12 and Young’s module E, expressed in [m?]
and [Kgm™2], respectively.

The transverse bending of the beam, under the assumption of small displace-
ments, is governed by the following fourth-order differential equation

(EJu")"(z) = P(z), 0<z<L, (4.76)

where u = u(z) denotes the vertical displacement. The following boundary
conditions (at the endpoints © = 0 and x = L)

w(0) =u(L) =0, u'(0)=u(L)=0, (4.77)
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Fig. 4.15. Clamped beam (left); convergence histories for the preconditioned con-
jugate gradient method in the solution of system (4.78) (right)

model the effect of the two clampings (vanishing displacements and rotations).
To solve numerically the boundary-value problem (4.76)-(4.77), we use the
finite difference method (see Section 10.10.1 and Exercise 11 of Chapter 12).

With this aim, let us introduce the discretization nodes x; = jh, with
h=L/Njand j =0,..., Ny, and substitute at each node x; the fourth-order
derivative with an approximation through centered finite differences. Letting
f(z) = P(z)/(EJ), f; = f(z;) and denoting by 7; the (approximate) nodal
displacement of the beam at node x;, the finite difference discretization of
(4.76)-(4.77) is

7772_47771—’_677_477 1+77 2:h4f7v.]:277Nh_2a
{ J J J J+ Jj+ J (4.78)

no =m ="nn,-1=1n, = 0.

The null displacement boundary conditions in (4.78) that have been imposed
at the first and the last two nodes of the grid, require that N, > 4. Notice
that a fourth-order scheme has been used to approximate the fourth-order
derivative, while, for sake of simplicity, a first-order approximation has been
employed to deal with the boundary conditions (see Section 10.10.1).

The N, —3 discrete equations (4.78) yield a linear system of the form Ax =
b where the unknown vector x € RV =3 and the load vector b € RN»=3 are
given respectively by x = [12,73,...,7nn, 2|7 and b = [fs, f3,..., fn, —2]",
while the coefficient matrix A € R(Vr=3)x(Ne=3) is pentadiagonal and sym-
metric, given by A = pentadiagy, 3(1,—4,6,—4,1).

The matrix A is symmetric and positive definite. Therefore, to solve system
Ax = b, the SSOR preconditioned conjugated gradient method (see Section
4.3.5) and the Cholesky factorization method have been employed. In the
remainder of the section, the two methods are identified by the symbols (CG)
and (CH).

The convergence histories of CG are reported in Figure 4.15 (right), where
the sequences [[r®||y/|[b®)||5, for the values n = 10, 60,110, are plotted,
r®) = b — Ax(® being the residual at the k-th step. The results have been
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obtained using Program 20, with to1=10"1" and w = 1.8 in (4.22). The
initial vector x(°) has been set equal to the null vector.

As a comment to the graphs, it is worth noting that CG has required 7, 33
and 64 iterations to converge, respectively, with a maximum absolute error
of 5-1071% with respect to the solution produced by CH. This latter has
an overall computational cost of 136, 1286 and 2436 flops respectively, to be
compared with the corresponding 3117, 149424 and 541647 flops of method
CG. As for the performances of the SSOR preconditioner, we remark that the
spectral condition number of matrix A is equal to 192, 3.8 - 10° and 4.5 - 109,
respectively, while the corresponding values in the preconditioned case are 65,
1.2-10* and 1.3 - 10°.

4.8 Exercises

1. The spectral radius of the matrix

a 4
o5 2]
is p(B) = |a|. Check that if 0 < a < 1, then p(B) < 1, while |[B™||s/™ can be
greater than 1.
2. Let A € R™ " be a strictly diagonally dominant matrix by rows. Show that the
Gauss-Seidel method for the solution of the linear system (3.2) is convergent.
3. Check that the matrix A = tridiag(—1, o, —1), with @ € R, has eigenvalues
given by

Aj =a—2cos(j0), j=1,...,n,

where § = /(n + 1) and the corresponding eigenvectors are
q; = [sin(j0), sin(20),...,sin(nj60)]" .
Under which conditions on « is the matrix positive definite?
[Solution : o > 2.]

4. Consider the pentadiagonal matrix A = pentadiag,(—1,—1,10,—1,—1).
Assume n = 10 and A = M 4+ N + D, with D = diag(8,...,8) € R!0*!0
M = pentadiag;,(—1,—1,1,0,0) and N = M?. To solve Ax = b, analyze the
convergence of the following iterative methods

(a) (M +D)x* D = _Nx*) 4 b,
(b) Dx*F*Y = (M 4+ N)x® + b,

(¢) (M + N)x*+D = _px(* 4 p.

[Solution : denoting respectively by pa, p» and p. the spectral radii of the
iteration matrices of the three methods, we have p, = 0.1450, p, = 0.5 and
pe = 12.2870 which implies convergence for methods (a) and (b) and divergence
for method (c).]
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5. For the solution of the linear system Ax = b with
1 2 3
consider the following iterative method:

given x© € R?, xFtY = B(@)X(k) +g(0), k>0,

where 6 is a real parameter and

SIS

1 [ 2024+20+1 —20°+20+1
4

-0
BO=71 290212041 20242041 } » 80) = [ iy } :
Check that the method is consistent V0 € R. Then, determine the values of
for which the method is convergent and compute the optimal value of 0 (i.e.,
the value of the parameter for which the convergence rate is maximum).
[Solution : the method is convergent iff —1 < 6§ < 1/2 and the convergence rate
is maximum if 0 = (1 — v/3)/2.]
6. To solve the following block linear system

ERYIHEE

consider the two methods
(1) Arx®*D 4 By® = by, Bx® 4 Ay *HD = by;
(2) Arx®HD £ By® = by, Bx*HD 4 Aoy = by,

Find sufficient conditions in order for the two schemes to be convergent for any
choice of the initial data x(©, y(©.
[Solution : method (1) is a decoupled system in the unknowns x and y
Assuming that A; and A are invertible, method (1) converges if p(AT'B) < 1
and p(A;'B) < 1. In the case of method (2) we have a coupled system to solve at
each step in the unknowns x** and y**1. Solving formally the first equation
with respect to xF 1 (which requires A; to be invertible) and substituting into
the second one we see that method (2) is convergent if p(A; 'BA]'B) < 1 (again
A, must be invertible).]

7. Consider the linear system Ax = b with

(k+1) (k+1)

62 24 1 8 15 110
23 50 7 14 16 110
A= 4 6 58 20 22 |, b= 110
10 12 19 66 3 110
11 18 25 2 54 110

(1) Check if the Jacobi and Gauss-Seidel methods can be applied to solve this
system. (2) Check if the stationary Richardson method with optimal parameter
can be applied with P =1 and P = D, where D is the diagonal part of A, and
compute the corresponding values of cop: and pope.

[Solution : (1): matrix A is neither diagonally dominant nor symmetric positive
definite, so that we must compute the spectral radii of the iteration matrices of
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10.

11.

12.

13.
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the Jacobi and Gauss-Seidel methods to verify if they are convergent. It turns
out that p; = 0.9280 and pgs = 0.3066 which implies convergence for both
methods. (2): in the case P =1 all the eigenvalues of A are positive so that the
Richardson method can be applied yielding aope = 0.015 and pope = 0.6452. If
P = D the method is still applicable and aopt = 0.8510, pope = 0.6407.]
Consider the linear system Ax = b with

5 7 6 5 23
7 10 8 7 32
A= 6 8 10 9 , b= 33
5 7 9 10 31

Analyze the convergence properties of the Jacobi and Gauss-Seidel methods
applied to the system above in their point and block forms (for a 2 x 2 block
partition of A).

[Solution : both methods are convergent, the block form being the faster one.
Moreover, p*(Bs) = p(Bas).]

. To solve the linear system Ax = b, consider the iterative method (4.6), with

P =D+ wF and N = —gF — E, w and (8 being real numbers. Check that the
method is consistent only if 3 = 1 — w. In such a case, express the eigenvalues
of the iteration matrix as a function of w and determine for which values of
w the method is convergent, as well as the value of wop, assuming that A =
tridiag,,(—1, 2, —1).

[Hint : Take advantage of the result in Exercise 3.]

Let A € R™" be such that A = (1 4+ w)P — (N + wP), with P™'N nonsingular
and with real eigenvalues 1 > A1 > A2 > ... > \,. Find the values of w € R for
which the following iterative method

(14 w)Px*D = (N+wP)x™ +b, k>0,

converges Vx(? to the solution of the linear system (3.2). Determine also the
value of w for which the convergence rate is maximum.

[Solution : w > —(1 4+ An)/2; wopt = —(A1 4+ An)/2.]

Consider the linear system

. 3 2 2
Ax=Db WlthA—|:2 6:|’ b—[_s}.

Write the associated functional ®(x) and give a graphical interpretation of the
solution of the linear system. Perform some iterations of the gradient method,
after proving convergence for it.

Show that the coefficients a, and S in the conjugate gradient method can be
written in the alternative form (4.47).

[Solution: notice that Ap® = (r® — r*+1) /o, and thus (Ap®)Tr*+D) =
—|le®** 113 /.. Moreover, ax(Ap*)Tp*) = —||r®)|12 ]

Prove the three-terms recursive relation (4.48) for the residual in the conjugate
gradient method.

[Solution: subtract from both sides of Ap*) = (r® — r**+1)) /0y the quantity
ﬂk_l/akr(k) and recall that Ap®™ = Ar®™ — 3, _;Ap*~Y. Then, expressing the
residual r®) as a function of r*~% one immediately gets the desired relation.]
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Approximation of Eigenvalues and
Eigenvectors

In this chapter we deal with approximations of the eigenvalues and eigenvec-
tors of a matrix A € C"*". Two main classes of numerical methods exist to
this purpose, partial methods, which compute the eztremal eigenvalues of A
(that is, those having maximum and minimum module), or global methods,
which approximate the whole spectrum of A.
It is worth noting that methods which are introduced to solve the matrix
eigenvalue problem are not necessarily suitable for calculating the matrix
eigenvectors. For example, the power method (a partial method, see Section
5.3) provides an approximation to a particular eigenvalue/eigenvector pair.

The QR method (a global method, see Section 5.5) instead computes the
real Schur form of A, a canonical form that displays all the eigenvalues of A
but not its eigenvectors. These eigenvectors can be computed, starting from
the real Schur form of A, with an extra amount of work, as described in Section
5.8.2.

Finally, some ad hoc methods for dealing effectively with the special case
where A is a symmetric (n X n) matrix are considered in Section 5.10.

5.1 Geometrical Location of the Eigenvalues

Since the eigenvalues of A are the roots of the characteristic polynomial pa (\)
(see Section 1.7), iterative methods must be used for their approximation
when n > 5. Knowledge of eigenvalue location in the complex plane can thus
be helpful in accelerating the convergence of the process.

A first estimate is provided by Theorem 1.4,

Al <Al VAea(A), (5-1)

for any consistent matrix norm || - ||. Inequality (5.1), which is often quite
rough, states that all the eigenvalues of A are contained in a circle of radius
Rja| = [|A]| centered at the origin of the Gauss plane.
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Another result is obtained by extending Definition 1.23 to complex-valued
matrices.

Theorem 5.1 If A € C"*" [et
H=(A+A")/2  and  iS=(A-A")/2

be the hermitian and skew-hermitian parts of A, respectively, i being the imag-
inary unit. For any \ € o(A)

Amin(H) < Re(A) < Aoz (H),  Apin(S) <Im(A) < Apaz(S). (5.2)

Proof. From the definition of H and S it follows that A = H + iS. Let u € C",
|[ul|2 = 1, be the eigenvector associated with the eigenvalue A; the Rayleigh quotient
(introduced in Section 1.7) reads

A =u"Au = u”Hu + iu”Su. (5.3)

Notice that both H and S are hermitian matrices, whilst iS is skew-hermitian. Ma-
trices H and S are thus unitarily similar to a real diagonal matrix (see Section 1.7),
and therefore their eigenvalues are real. In such a case, (5.3) yields

Re(\) = u”Hu, Im(\) = u”’Su,

from which (5.2) follows. &

An a priori bound for the eigenvalues of A is given by the following result.

Theorem 5.2 (of the Gershgorin circles) Let A € C"*™. Then

o(A) CSr = URi’ R;={z€C: |z—ayl <Z|a”|} (5.4)
i=1
J#z
The sets R; are called Gershgorin circles.

Proof. Let us decompose A as A = D+E, where D is the diagonal part of A, whilst
eii =0fori=1,...,n. For A\ € 0(A) (with X\ # a4, i = 1,...,n), let us introduce
the matrix By = A — Al = (D — AI) + E. Since B, is singular, there exists a non-null
vector x € C" such that Bxx = 0. This means that ((D — AI) + E)x = 0, that is,
passing to the ||+ ||cc norm,

=-D-A)T'Ex,  [[xllo < [[(D =AD" Elloc|x]|oc,

and thus
1 lex;| |ak;]
L< (D= AD Bl = ZW - Z‘akk -l (5.5)

for a certain k, 1 < k < n. Inequality (5.5) implies A € Ry and thus (5.4). <&



5.1 Geometrical Location of the Eigenvalues 185

The bounds (5.4) ensure that any eigenvalue of A lies within the union of the
circles R;. Moreover, since A and AT share the same spectrum, Theorem 5.2
also holds in the form

O'(A)QSCZ ch’ CjZ{ZE(CZ |z—ajj| SZMU‘} (56)
j=1 i=1
i#J

The circles R; in the complex plane are called row circles, and C; column
circles. The immediate consequence of (5.4) and (5.6) is the following.

Property 5.1 (First Gershgorin theorem) For a given matriz A € C"*"™,
Vieo(d), AeSr[)Se. (5.7)

The following two location theorems can also be proved (see [Atk89], pp. 588-
590 and [Hou75], pp. 66-67).

Property 5.2 (Second Gershgorin theorem) Let

m

Si=JRi, &= 0 Ri.

=1 i=m-+1

If §§ NSy = (), then Sy contains exactly m eigenvalues of A, each one being
accounted for with its algebraic multiplicity, while the remaining eigenvalues
are contained in So.

Remark 5.1 Properties 5.1 and 5.2 do not exclude the possibility that
there exist circles containing no eigenvalues, as happens for the matrix in
Exercise 1. |

Definition 5.1 A matrix A € C"*" is called reducible if there exists a per-
mutation matrix P such that

Bi1 Bz
0 Ba

PAPT =

b

where Bj; and Bgo are square matrices; A is irreducible if it is not
reducible. |

To check if a matrix is reducible, the oriented graph of the matrix can be
conveniently employed. Recall from Section 3.9 that the oriented graph of a
real matrix A is obtained by joining n points (called vertices of the graph)
Py, ..., P, through a line oriented from P; to P; if the corresponding matrix
entry a;; # 0. An oriented graph is strongly connected if for any pair of distinct
vertices P; and P; there exists an oriented path from P; to P;. The following
result holds (see [Var62] for the proof).
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Im(z)

Fig. 5.1. Row and column circles for matrix A in Example 5.1

Property 5.3 A matric A € C"*" is irreducible iff its oriented graph is
strongly connected.

Property 5.4 (Third Gershgorin theorem) Let A € C"*" be an irre-
ducible matriz. An eigenvalue A € o(A) cannot lie on the boundary of Sg
unless it belongs to the boundary of every circle R;, fori=1,... n.

Example 5.1 Let us consider the matrix

102 3
A=|-12-1],
01 3

whose spectrum is (to four significant figures) o(A) = {9.687,2.656 + i0.693}. The
following values of the norm of A: [|A|l; = 11, ||Al2 = 10.72, ||A]lc = 15 and
||Allr = 11.36 can be used in the estimate (5.1). Estimate (5.2) provides instead
1.96 < Re(A(A)) < 10.34, —2.34 < Im(A\(A)) < 2.34, while the row and column
circles are given respectively by R1 = {|z] : |z — 10| < 5}, R2 = {|z| : |z — 2| < 2},
Rs={lz|: [z=3] <1} and C; = {|z] : |z —10] < 1}, C2 = {|2] : |z — 2| < 3},
Cs ={]z] : |z —3| < 4}.

In Figure 5.1, for i = 1,2, 3 the R; and C; circles and the intersection Sk NSc¢ (shaded
areas) are drawn. In agreement with Property 5.2, we notice that an eigenvalue is
contained in Ci, which is disjoint from C2 and Cs, while the remaining eigenvalues,
thanks to Property 5.1, lie within the set R2 U {C3 N R1}. °

5.2 Stability and Conditioning Analysis

In this section we introduce some a priori and a posteriori estimates that
are relevant in the stability analysis of the matrix eigenvalue and eigenvector
problem. The presentation follows the guidelines that have been traced in
Chapter 2.
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5.2.1 A priori Estimates

Assume that A € C"*™ is a diagonalizable matrix and denote by X =

(X1,...,%X,) € C"™ the matrix of its right eigenvectors, where x; € C"
for k = 1,...,n, such that D = X"*AX = diag(A1,...,\,), A\; being the
eigenvalues of A, i = 1,...,n. Moreover, let E € C"*™ be a perturbation of

A. The following theorem holds.

Theorem 5.3 (Bauer-Fike) Let u be an eigenvalue of the matric A+ E €

C™*"™; then
in (A=l < K,(X)|E|,, 5.8
Ag}'l&)l pl < Kp(X)|[Elp (5.8)
where || - ||, is any matriz p-norm and K,(X) = ||X||,||X7!|l, is called the

condition number of the eigenvalue problem for matriz A.

Proof. We first notice that if 4 € o(A) then (5.8) is trivially verified, since
X[ X" I, IEll, > 0. Let us thus assume henceforth that u ¢ o(A). From the
definition of eigenvalue it follows that matrix (A +E — ul) is singular, which means
that, since X is invertible, the matrix X (A + E — pI)X = D + X 'EX — ul is
singular. Therefore, there exists a non-null vector x € C" such that

(D= pl) + X7'EX) x = 0.

Since p € o(A), the diagonal matrix (D — ul) is invertible and the previous equation
can be written in the form

(I+(D—u) (X 'EX)) x = 0.
Passing to the || - ||, norm and proceeding as in the proof of Theorem 5.2, we get
1< (D = u) ™ oK (X)|[Ellps
from which the estimate (5.8) follows, since

D—ul)7 |, = in [A—pu))"h
(D —pD)™ "y (Ag};&)l ©l)

&

If A is a normal matrix, from the Schur decomposition theorem (see Section
1.8) it follows that the similarity transformation matrix X is unitary so that
K5(X) = 1. This implies that

Vi€ o(A+E), AIer(lri(r;\)lkful < [El2, (5.9)

hence the eigenvalue problem is well-conditioned with respect to the absolute
error. This, however, does not prevent the matrix eigenvalue problem from
being affected by significant relative errors, especially when A has a widely
spread spectrum.
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Table 5.1. Relative and absolute errors in the calculation of the eigenvalues of the
Hilbert matrix (using the MATLAB intrinsic function eig). “Abs. Err.” and “Rel.
Err.” denote respectively the absolute and relative errors (with respect to \)

Abs. Err. Rel. Err. 1En] 2 K>(Hy) Ky(H, + E,)
1-1073 1-1073 1-1073 1-1073 1
1.677-107%  1.446-107% 2-1073 19.28 19.26
5.080-107 2.207-107% 4.107%  1.551-10% 1.547-10*
8
1

1.156 - 10712 3.496- 1073 2107 1.526 - 10 1.515 - 10°
1.355-107*  4.078-1073 -1072  1.603-10'3 1.589 - 10*3

—
ooo»-lka 3

Example 5.2 Let us consider, for 1 < n < 10, the calculation of the eigenvalues
of the Hilbert matrix H,, € R™*™ (see Example 3.2, Chapter 3). It is symmetric
(thus, in particular, normal) and exhibits, for n > 4, a very large condition number.
Let E,, € R™*™ be a matrix having constant entries equal to n = 1072, We show in
Table 5.1 the results of the computation of the minimum in (5.9). Notice how the
absolute error is decreasing, since the eigenvalue of minimum module tends to zero,
whilst the relative error is increasing as the size n of the matrix increases, due to
the higher sensitivity of “small” eigenvalues with respect to rounding errors. °

The Bauer-Fike theorem states that the matrix eigenvalue problem is well-
conditioned if A is a normal matrix. Failure to fulfil this property, however,
does not necessarily imply that A must exhibit a “strong” numerical sensi-
tivity to the computation of every one of its eigenvalues. In this respect, the
following result holds, which can be regarded as an a priori estimate of the
conditioning of the calculation of a particular eigenvalue of a matrix.

Theorem 5.4 Let A € C"*™ be a diagonalizable matriz; let A, x and'y be a
simple eigenvalue of A and its associated right and left eigenvectors, respec-
tively, with ||x||2 = ||yl = 1. Moreover, for e > 0, let A(e) = A + €E, with
E € C™"*™ such that ||E||s = 1. Denoting by \(€) and x(¢) the eigenvalue and
the corresponding eigenvector of A(e), such that A(0) = A and x(0) = x, we
have

o\ 1
J— < .
9z (0)‘ < 57

(5.10)

Proof. Let us first prove that y7x # 0. Setting Y = (y1,...,yn) = (X7)7!, with
ye € C" for k =1,...,n, it follows that y77 A = A\,y¥, i.e., the rows of X' = Y#
are left eigenvectors of A. Then, since YZ?X =1, y,-ij =0 fori,j =1,...,n, d;
being the Kronecker symbol. This result is equivalent to saying that the eigenvectors
{x} of A and the eigenvectors {y} of A¥ form a bi-orthogonal set (see (4.69)).

Let us now prove (5.10). Since the roots of the characteristic equation are con-
tinuous functions of the coefficients of the characteristic polynomial associated with
A(e), it follows that the eigenvalues of A(e) are continuous functions of € (see, for
instance, [Hen74], p. 281). Therefore, in a neighborhood of ¢ = 0,

(A +eE)x(e) = AMe)x(e).
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Differentiating the previous equation with respect to € and setting ¢ = 0 yields

8j
Oe

102 ox
= S2(0)x + A55(0),

A e

(0) + Ex

from which, left-multiplying both sides by y* and recalling that y* is a left eigen-
vector of A,

O (g - YL

Oe "’ yHx
Using the Cauchy-Schwarz inequality gives the desired estimate (5.10). <
Notice that [yf x| = | cos(6)], where 6} is the angle between the eigenvectors

y* and x (both having unit Euclidean norm). Therefore, if these two vectors
are almost orthogonal the computation of the eigenvalue A turns out to be
ill-conditioned. The quantity

1 1

"N = 9] Teos(y)]

(5.11)

can thus be taken as the condition number of the eigenvalue X. Obviously,
k(A) > 1; when A is a normal matrix, since it is unitarily similar to a diagonal
matrix, the left and right eigenvectors y and x coincide, yielding s(\) =
1/|Ix]3 = 1.

Inequality (5.10) can be roughly interpreted as stating that perturbations
of the order of de in the entries of matrix A induce changes of the order
of 6\ = de/| cos(y)| in the eigenvalue A. If normal matrices are considered,
the calculation of X is a well-conditioned problem; the case of a generic non-
symmetric matrix A can be conveniently dealt with using methods based on
similarity transformations, as will be seen in later sections.

It is interesting to check that the conditioning of the matrix eigenvalue prob-
lem remains unchanged if the transformation matrices are unitary. To this
end, let U € C"*" be a unitary matrix and let A = UFAU. Also let \; be
an eigenvalue of A and denote by r; the condition number (5.11). Moreover,
let k; be the condition number of A; when it is regarded as an eigenvalue of
A. Finally, let {xr}, {yr} be the right and left eigenvectors of A respectively.
Clearly, {Ufx;}, {UHy,} are the right and left eigenvectors of A. Thus, for
any j=1,...,n,

Ry = |y uutixg| = w,

from which it follows that the stability of the computation of A; is not affected
by performing similarity transformations using unitary matrices. It can also
be checked that unitary transformation matrices do not change the Euclidean
length and the angles between vectors in C™. Moreover, the following a priori
estimate holds (see [GL89], p. 317)

FI(X7IAX) = X1AX + E, with B[y ~ uKs(X)|[All,  (5.12)
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where fI(M) is the machine representation of matrix M and u is the roundoff
unit (see Section 2.5). From (5.12) it follows that using nonunitary transfor-
mation matrices in the eigenvalue computation can lead to an unstable process
with respect to rounding errors.

We conclude this section with a stability result for the approximation of the
eigenvector associated with a simple eigenvalue. Under the same assumptions
of Theorem 5.4, the following result holds (see for the proof, [Atk89], Problem
6, pp. 649-650).

Property 5.5 The eigenvectors xj, and xj(€) of the matrices A a