
Texts in Applied Mathematics 37

Editors
J.E. Marsden

L. Sirovich
S.S. Antman

Advisors
G. Iooss

P. Holmes
D. Barkley
M. Dellnitz

P. Newton

Texts in Applied Mathematics

1. Sirovich: Introduction to Applied Mathematics.
2. Wiggins: Introduction to Applied Nonlinear Dynamical Systems and Chaos.
3. Hale/Koçak: Dynamics and Bifurcations.
4. Chorin/Marsden: A Mathematical Introduction to Fluid Mechanics, Third

Edition.
5. Hubbard/West: Differential Equations: A Dynamical Systems Approach:

Ordinary Differential Equations.
6. Sontag: Mathematical Control Theory: Deterministic Finite Dimensional

Systems Second Edition.
7. Perko: Differential Equations and Dynamical Systems, Third Edition.
8. Seaborn: Hypergeometric Functions and Their Applications.
9. Pipkin: A Course on Integral Equations.
10. Hoppensteadt/Peskin: Modeling and Simulation in Medicine and the Life

Sciences, Second Edition.
11. Braun: Differential Equations and Their Applications, Fourth Edition.
12. Stoer/Bulirsch: Introduction to Numerical Analysis, Third Edition.
13. Renardy/Rogers: An Introduction to Partial Differential Equations.
14. Banks: Growth and Diffusion Phenomena: Mathematical Frameworks and

Applications.
15. Brenner/Scott: The Mathematical Theory of Finite Element Methods, Second

Edition.
16. Van de Velde: Concurrent Scientific Computing.
17. Marsden/Ratiu: Introduction to Mechanics and Symmetry, Second Edition.
18. Hubbard/West: Differential Equations: A Dynamical Systems Approach:

Higher-Dimensional Systems.
19. Kaplan/Glass: Understanding Nonlinear Dynamics.
20. Holmes: Introduction to Perturbation Methods.
21. Curtain/Zwart: An Introduction to Infinite-Dimensional Linear Systems

Theory.
22. Thomas: Numerical Partial Differential Equations: Finite Difference

Methods.
23. Taylor: Partial Differential Equations: Basic Theory.
24. Merkin: Introduction to the Theory of Stability of Motion.
25. Naber: Topology, Geometry, and Gauge Fields: Foundations.
26. Polderman/Willems: Introduction to Mathematical Systems Theory:

A Behavioral Approach.
27. Reddy: Introductory Functional Analysis: with Applications to Boundary

Value Problems and Finite Elements.
28. Gustafson/Wilcox: Analytical and Computational Methods of Advanced

Engineering Mathematics.

(continued after index)

Alfio Quarteroni Riccardo Sacco Fausto Saleri

Numerical Mathematics
Second Edition

With 135 Figures and 45 Tables

ABC

Alfio Quarteroni
SB-IACS-CMS, EPFL
1015 Lausanne, Switzerland
and
Dipartimento di Matematica-MOX
Politecnico di Milano
Piazza Leonardo da Vinci, 32
20133 Milano, Italy
E-mail: alfio.quarteroni@epfl.ch

Series Editors

J.E. Marsden
Control and Dynamical Systems
107-81 California Institute of Technology
Pasadena, CA 91125
USA
marsden@cds.caltech.edu

L. Sirovich
Laboratory of Applied Mathematics
Department of Biomathematics
Mt. Sinai School of Medicine
Box 1012
New York, NY 10029-6574
USA

Riccardo Sacco
Dipartimento di Matematica
Politecnico di Milano
Piazza Leonardo da Vinci, 32
20133 Milano, Italy
E-mail: riccardo.sacco@polimi.it

Fausto Saleri
Dipartimento di Matematica–MOX
Politecnico di Milano
Piazza Leonardo da Vinci, 32
20133 Milano, Italy
E-mail: fausto.saleri@polimi.it

S.S. Antman
Department of Mathematics
and
Institute for Physical Science
and Technology
University of Maryland
College Oark, MD 20742-4015
USA
ssa@math.umd.edu

Mathematics Subject Classification (2000): 15-01, 34-01, 35-01, 65-01

ISBN 0939-2475
ISBN-10 3-540-34658-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-34658-6 Springer Berlin Heidelberg New York
Library of Congress Control Number: 2006930676

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or
parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations
are liable to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media.

springer.com

c© Springer Berlin Heidelberg 2007

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting by the Authors and Spi using Springer LATEX macro package
Cover design: design & production GmbH, Heidelberg

Printed on acid-free paper SPIN: 11304951 37/2244/SPi 5 4 3 2 1 0

Preface

Numerical mathematics is the branch of mathematics that proposes, develops,
analyzes and applies methods from scientific computing to several fields in-
cluding analysis, linear algebra, geometry, approximation theory, functional
equations, optimization and differential equations. Other disciplines such as
physics, the natural and biological sciences, engineering, and economics and
the financial sciences frequently give rise to problems that need scientific com-
puting for their solutions.

As such, numerical mathematics is the crossroad of several disciplines of
great relevance in modern applied sciences, and can become a crucial tool for
their qualitative and quantitative analysis. This role is also emphasized by the
continual development of computers and algorithms, which make it possible
nowadays, using scientific computing, to tackle problems of such a large size
that real-life phenomena can be simulated providing accurate responses at
affordable computational cost.

The corresponding spread of numerical software represents an enrichment
for the scientific community. However, the user has to make the correct choice
of the method (or the algorithm) which best suits the problem at hand. As a
matter of fact, no black-box methods or algorithms exist that can effectively
and accurately solve all kinds of problems.

One of the purposes of this book is to provide the mathematical foun-
dations of numerical methods, to analyze their basic theoretical properties
(stability, accuracy, computational complexity), and demonstrate their per-
formances on examples and counterexamples which outline their pros and
cons. This is done using the MATLAB� 1 software environment. This choice
satisfies the two fundamental needs of user-friendliness and wide-spread dif-
fusion, making it available on virtually every computer.

Every chapter is supplied with examples, exercises and applications of the
discussed theory to the solution of real-life problems. The reader is thus in
the ideal condition for acquiring the theoretical knowledge that is required to

1 MATLAB is a trademark of The MathWorks, Inc.

VI Preface

make the right choice among the numerical methodologies and make use of
the related computer programs.

This book is primarily addressed to undergraduate students, with partic-
ular focus on the degree courses in Engineering, Mathematics, Physics and
Computer Science. The attention which is paid to the applications and the
related development of software makes it valuable also for graduate students,
researchers and users of scientific computing in the most widespread profes-
sional fields.

The content of the volume is organized into four Parts and 13 chapters.
Part I comprises two chapters in which we review basic linear algebra and

introduce the general concepts of consistency, stability and convergence of a
numerical method as well as the basic elements of computer arithmetic.

Part II is on numerical linear algebra, and is devoted to the solution of lin-
ear systems (Chapters 3 and 4) and eigenvalues and eigenvectors computation
(Chapter 5).

We continue with Part III where we face several issues about functions
and their approximation. Specifically, we are interested in the solution of non-
linear equations (Chapter 6), solution of nonlinear systems and optimization
problems (Chapter 7), polynomial approximation (Chapter 8) and numerical
integration (Chapter 9).

Part IV, which demands a mathematical background, is concerned with
approximation, integration and transforms based on orthogonal polynomials
(Chapter 10), solution of initial value problems (Chapter 11), boundary value
problems (Chapter 12) and initial-boundary value problems for parabolic and
hyperbolic equations (Chapter 13).
Part I provides the indispensable background. Each of the remaining Parts
has a size and a content that make it well suited for a semester course.

A guideline index to the use of the numerous MATLAB programs devel-
oped in the book is reported at the end of the volume. These programs are
also available at the web site address:

http://www1.mate.polimi.it/ c̃alnum/programs.html.
For the reader’s ease, any code is accompanied by a brief description of its

input/output parameters.
We express our thanks to the staff at Springer-Verlag New York for their

expert guidance and assistance with editorial aspects, as well as to Dr. Martin
Peters from Springer-Verlag Heidelberg and Dr. Francesca Bonadei from
Springer-Italia for their advice and friendly collaboration all along this project.

We gratefully thank Professors L. Gastaldi and A. Valli for their useful
comments on Chapters 12 and 13.

We also wish to express our gratitude to our families for their forbearance
and understanding, and dedicate this book to them.

Lausanne, Milan Alfio Quarteroni
January 2000 Riccardo Sacco

Fausto Saleri

Preface to the Second Edition

This second edition is characterized by a thourough overall revision.
Regarding the styling of the book, we have improved the readibility of

pictures, tables and program headings.
Regarding the scientific contents, we have introduced several changes in

the chapter on iterative methods for the solution of linear systems as well as
in the chapter on polynomial approximation of functions and data.

Lausanne, Milan Alfio Quarteroni
September 2006 Riccardo Sacco

Fausto Saleri

Contents

Part I Getting Started

1 Foundations of Matrix Analysis . 3
1.1 Vector Spaces . 3
1.2 Matrices . 5
1.3 Operations with Matrices . 6

1.3.1 Inverse of a Matrix . 7
1.3.2 Matrices and Linear Mappings 8
1.3.3 Operations with Block-Partitioned Matrices 9

1.4 Trace and Determinant of a Matrix . 10
1.5 Rank and Kernel of a Matrix . 11
1.6 Special Matrices . 12

1.6.1 Block Diagonal Matrices . 12
1.6.2 Trapezoidal and Triangular Matrices 12
1.6.3 Banded Matrices . 13

1.7 Eigenvalues and Eigenvectors . 13
1.8 Similarity Transformations . 15
1.9 The Singular Value Decomposition (SVD) 17
1.10 Scalar Product and Norms in Vector Spaces 18
1.11 Matrix Norms . 22

1.11.1 Relation between Norms and the Spectral Radius
of a Matrix . 25

1.11.2 Sequences and Series of Matrices 26
1.12 Positive Definite, Diagonally Dominant and M-matrices 27
1.13 Exercises . 30

2 Principles of Numerical Mathematics . 33
2.1 Well-posedness and Condition Number of a Problem 33
2.2 Stability of Numerical Methods . 37

2.2.1 Relations between Stability and Convergence 40
2.3 A priori and a posteriori Analysis . 42

X Contents

2.4 Sources of Error in Computational Models 43
2.5 Machine Representation of Numbers . 45

2.5.1 The Positional System . 45
2.5.2 The Floating-point Number System 46
2.5.3 Distribution of Floating-point Numbers 49
2.5.4 IEC/IEEE Arithmetic . 49
2.5.5 Rounding of a Real Number in its Machine

Representation . 50
2.5.6 Machine Floating-point Operations 52

2.6 Exercises . 54

Part II Numerical Linear Algebra

3 Direct Methods for the Solution of Linear Systems 59
3.1 Stability Analysis of Linear Systems . 60

3.1.1 The Condition Number of a Matrix 60
3.1.2 Forward a priori Analysis . 62
3.1.3 Backward a priori Analysis . 65
3.1.4 A posteriori Analysis . 65

3.2 Solution of Triangular Systems . 66
3.2.1 Implementation of Substitution Methods 67
3.2.2 Rounding Error Analysis . 69
3.2.3 Inverse of a Triangular Matrix 70

3.3 The Gaussian Elimination Method (GEM) and LU
Factorization . 70
3.3.1 GEM as a Factorization Method 73
3.3.2 The Effect of Rounding Errors 78
3.3.3 Implementation of LU Factorization 78
3.3.4 Compact Forms of Factorization 80

3.4 Other Types of Factorization. 81
3.4.1 LDMT Factorization . 81
3.4.2 Symmetric and Positive Definite Matrices: The

Cholesky Factorization . 82
3.4.3 Rectangular Matrices: The QR Factorization 84

3.5 Pivoting . 87
3.6 Computing the Inverse of a Matrix . 91
3.7 Banded Systems . 92

3.7.1 Tridiagonal Matrices . 93
3.7.2 Implementation Issues . 94

3.8 Block Systems . 96
3.8.1 Block LU Factorization . 97
3.8.2 Inverse of a Block-partitioned Matrix 97
3.8.3 Block Tridiagonal Systems . 98

3.9 Sparse Matrices . 99

Contents XI

3.9.1 The Cuthill-McKee Algorithm 102
3.9.2 Decomposition into Substructures 103
3.9.3 Nested Dissection . 105

3.10 Accuracy of the Solution Achieved Using GEM 106
3.11 An Approximate Computation of K(A) 108
3.12 Improving the Accuracy of GEM . 112

3.12.1 Scaling . 112
3.12.2 Iterative Refinement . 113

3.13 Undetermined Systems . 114
3.14 Applications . 117

3.14.1 Nodal Analysis of a Structured Frame 117
3.14.2 Regularization of a Triangular Grid 120

3.15 Exercises . 123

4 Iterative Methods for Solving Linear Systems 125
4.1 On the Convergence of Iterative Methods 125
4.2 Linear Iterative Methods . 128

4.2.1 Jacobi, Gauss-Seidel and Relaxation Methods 128
4.2.2 Convergence Results for Jacobi and Gauss-Seidel

Methods . 130
4.2.3 Convergence Results for the Relaxation Method 132
4.2.4 A priori Forward Analysis . 133
4.2.5 Block Matrices . 134
4.2.6 Symmetric Form of the Gauss-Seidel and SOR

Methods . 135
4.2.7 Implementation Issues . 137

4.3 Stationary and Nonstationary Iterative Methods 138
4.3.1 Convergence Analysis of the Richardson Method . . . 139
4.3.2 Preconditioning Matrices . 141
4.3.3 The Gradient Method . 148
4.3.4 The Conjugate Gradient Method 152
4.3.5 The Preconditioned Conjugate Gradient Method . . . 158
4.3.6 The Alternating-Direction Method 160

4.4 Methods Based on Krylov Subspace Iterations 160
4.4.1 The Arnoldi Method for Linear Systems 164
4.4.2 The GMRES Method . 167
4.4.3 The Lanczos Method for Symmetric Systems 168

4.5 The Lanczos Method for Unsymmetric Systems 170
4.6 Stopping Criteria . 173

4.6.1 A Stopping Test Based on the Increment 174
4.6.2 A Stopping Test Based on the Residual 175

4.7 Applications . 175
4.7.1 Analysis of an Electric Network 176
4.7.2 Finite Difference Analysis of Beam Bending 178

4.8 Exercises . 180

XII Contents

5 Approximation of Eigenvalues and Eigenvectors 183
5.1 Geometrical Location of the Eigenvalues 183
5.2 Stability and Conditioning Analysis . 186

5.2.1 A priori Estimates . 187
5.2.2 A posteriori Estimates . 190

5.3 The Power Method . 192
5.3.1 Approximation of the Eigenvalue of Largest

Module . 192
5.3.2 Inverse Iteration . 195
5.3.3 Implementation Issues . 196

5.4 The QR Iteration . 199
5.5 The Basic QR Iteration . 201
5.6 The QR Method for Matrices in Hessenberg Form 203

5.6.1 Householder and Givens Transformation Matrices . . 203
5.6.2 Reducing a Matrix in Hessenberg Form 207
5.6.3 QR Factorization of a Matrix in Hessenberg Form . . 209
5.6.4 The Basic QR Iteration Starting from Upper

Hessenberg Form . 209
5.6.5 Implementation of Transformation Matrices 212

5.7 The QR Iteration with Shifting Techniques 214
5.7.1 The QR Method with Single Shift 215
5.7.2 The QR Method with Double Shift 217

5.8 Computing the Eigenvectors and the SVD of a Matrix 220
5.8.1 The Hessenberg Inverse Iteration 220
5.8.2 Computing the Eigenvectors from the Schur Form

of a Matrix . 221
5.8.3 Approximate Computation of the SVD of a

Matrix . 222
5.9 The Generalized Eigenvalue Problem . 223

5.9.1 Computing the Generalized Real Schur Form 224
5.9.2 Generalized Real Schur Form of Symmetric-Definite

Pencils . 225
5.10 Methods for Eigenvalues of Symmetric Matrices 226

5.10.1 The Jacobi Method . 226
5.10.2 The Method of Sturm Sequences 229

5.11 The Lanczos Method. 233
5.12 Applications . 236

5.12.1 Analysis of the Buckling of a Beam 236
5.12.2 Free Dynamic Vibration of a Bridge 238

5.13 Exercises . 240

Contents XIII

Part III Around Functions and Functionals

6 Rootfinding for Nonlinear Equations . 247
6.1 Conditioning of a Nonlinear Equation . 248
6.2 A Geometric Approach to Rootfinding 250

6.2.1 The Bisection Method . 250
6.2.2 The Methods of Chord, Secant and Regula Falsi

and Newton’s Method . 253
6.2.3 The Dekker-Brent Method . 259

6.3 Fixed-point Iterations for Nonlinear Equations 260
6.3.1 Convergence Results for Some Fixed-point

Methods . 263
6.4 Zeros of Algebraic Equations . 264

6.4.1 The Horner Method and Deflation 265
6.4.2 The Newton-Horner Method . 266
6.4.3 The Muller Method . 269

6.5 Stopping Criteria . 273
6.6 Post-processing Techniques for Iterative Methods 275

6.6.1 Aitken’s Acceleration . 275
6.6.2 Techniques for Multiple Roots 278

6.7 Applications . 280
6.7.1 Analysis of the State Equation for a Real Gas 280
6.7.2 Analysis of a Nonlinear Electrical Circuit 281

6.8 Exercises . 283

7 Nonlinear Systems and Numerical Optimization 285
7.1 Solution of Systems of Nonlinear Equations 286

7.1.1 Newton’s Method and Its Variants 286
7.1.2 Modified Newton’s Methods . 288
7.1.3 Quasi-Newton Methods . 292
7.1.4 Secant-like Methods . 292
7.1.5 Fixed-point Methods . 295

7.2 Unconstrained Optimization . 298
7.2.1 Direct Search Methods . 300
7.2.2 Descent Methods . 305
7.2.3 Line Search Techniques . 307
7.2.4 Descent Methods for Quadratic Functions 309
7.2.5 Newton-like Methods for Function Minimization 311
7.2.6 Quasi-Newton Methods . 312
7.2.7 Secant-like methods . 313

7.3 Constrained Optimization . 315
7.3.1 Kuhn-Tucker Necessary Conditions for Nonlinear

Programming . 318
7.3.2 The Penalty Method . 319

XIV Contents

7.3.3 The Method of Lagrange Multipliers 321
7.4 Applications . 325

7.4.1 Solution of a Nonlinear System Arising from
Semiconductor Device Simulation 325

7.4.2 Nonlinear Regularization of a Discretization Grid . . . 328
7.5 Exercises . 330

8 Polynomial Interpolation . 333
8.1 Polynomial Interpolation . 333

8.1.1 The Interpolation Error . 335
8.1.2 Drawbacks of Polynomial Interpolation on Equally

Spaced Nodes and Runge’s Counterexample 336
8.1.3 Stability of Polynomial Interpolation 337

8.2 Newton Form of the Interpolating Polynomial 339
8.2.1 Some Properties of Newton Divided Differences 341
8.2.2 The Interpolation Error Using Divided Differences . . 343

8.3 Barycentric Lagrange Interpolation . 344
8.4 Piecewise Lagrange Interpolation . 346
8.5 Hermite-Birkoff Interpolation . 349
8.6 Extension to the Two-Dimensional Case 351

8.6.1 Polynomial Interpolation . 351
8.6.2 Piecewise Polynomial Interpolation 352

8.7 Approximation by Splines . 355
8.7.1 Interpolatory Cubic Splines . 357
8.7.2 B-splines . 361

8.8 Splines in Parametric Form . 365
8.8.1 Bézier Curves and Parametric B-splines 367

8.9 Applications . 370
8.9.1 Finite Element Analysis of a Clamped Beam 370
8.9.2 Geometric Reconstruction Based on Computer

Tomographies . 374
8.10 Exercises . 375

9 Numerical Integration . 379
9.1 Quadrature Formulae . 379
9.2 Interpolatory Quadratures . 381

9.2.1 The Midpoint or Rectangle Formula 381
9.2.2 The Trapezoidal Formula . 383
9.2.3 The Cavalieri-Simpson Formula 385

9.3 Newton-Cotes Formulae . 386
9.4 Composite Newton-Cotes Formulae . 392
9.5 Hermite Quadrature Formulae . 394
9.6 Richardson Extrapolation . 396

9.6.1 Romberg Integration . 397
9.7 Automatic Integration . 400

Contents XV

9.7.1 Nonadaptive Integration Algorithms 400
9.7.2 Adaptive Integration Algorithms 402

9.8 Singular Integrals . 406
9.8.1 Integrals of Functions with Finite Jump

Discontinuities . 406
9.8.2 Integrals of Infinite Functions . 407
9.8.3 Integrals over Unbounded Intervals 409

9.9 Multidimensional Numerical Integration 411
9.9.1 The Method of Reduction Formula 411
9.9.2 Two-Dimensional Composite Quadratures 413
9.9.3 Monte Carlo Methods for Numerical Integration 416

9.10 Applications . 417
9.10.1 Computation of an Ellipsoid Surface 417
9.10.2 Computation of the Wind Action on a

Sailboat Mast . 418
9.11 Exercises . 421

Part IV Transforms, Differentiation and Problem Discretization

10 Orthogonal Polynomials in Approximation Theory 425
10.1 Approximation of Functions by Generalized Fourier Series . . 425

10.1.1 The Chebyshev Polynomials . 427
10.1.2 The Legendre Polynomials . 428

10.2 Gaussian Integration and Interpolation 429
10.3 Chebyshev Integration and Interpolation 433
10.4 Legendre Integration and Interpolation 436
10.5 Gaussian Integration over Unbounded Intervals 438
10.6 Programs for the Implementation of Gaussian

Quadratures . 439
10.7 Approximation of a Function in the Least-Squares Sense 441

10.7.1 Discrete Least-Squares Approximation 442
10.8 The Polynomial of Best Approximation 443
10.9 Fourier Trigonometric Polynomials . 445

10.9.1 The Gibbs Phenomenon . 449
10.9.2 The Fast Fourier Transform . 450

10.10 Approximation of Function Derivatives 452
10.10.1 Classical Finite Difference Methods 452
10.10.2 Compact Finite Differences . 454
10.10.3 Pseudo-Spectral Derivative . 458

10.11 Transforms and Their Applications . 460
10.11.1 The Fourier Transform . 460
10.11.2 (Physical) Linear Systems and Fourier Transform . . . 463
10.11.3 The Laplace Transform . 465
10.11.4 The Z-Transform . 467

XVI Contents

10.12 The Wavelet Transform . 468
10.12.1 The Continuous Wavelet Transform 468
10.12.2 Discrete and Orthonormal Wavelets 471

10.13 Applications . 472
10.13.1 Numerical Computation of Blackbody Radiation . . . 472
10.13.2 Numerical Solution of Schrödinger Equation 474

10.14 Exercises . 476

11 Numerical Solution of Ordinary Differential Equations 479
11.1 The Cauchy Problem . 479
11.2 One-Step Numerical Methods . 482
11.3 Analysis of One-Step Methods . 483

11.3.1 The Zero-Stability . 484
11.3.2 Convergence Analysis . 486
11.3.3 The Absolute Stability . 489

11.4 Difference Equations . 492
11.5 Multistep Methods . 497

11.5.1 Adams Methods . 500
11.5.2 BDF Methods . 502

11.6 Analysis of Multistep Methods . 502
11.6.1 Consistency . 502
11.6.2 The Root Conditions . 504
11.6.3 Stability and Convergence Analysis for Multistep

Methods . 505
11.6.4 Absolute Stability of Multistep Methods 509

11.7 Predictor-Corrector Methods . 511
11.8 Runge-Kutta (RK) Methods . 518

11.8.1 Derivation of an Explicit RK Method 521
11.8.2 Stepsize Adaptivity for RK Methods 521
11.8.3 Implicit RK Methods . 523
11.8.4 Regions of Absolute Stability for RK Methods 525

11.9 Systems of ODEs . 526
11.10 Stiff Problems . 528
11.11 Applications . 530

11.11.1 Analysis of the Motion of a Frictionless Pendulum . . 531
11.11.2 Compliance of Arterial Walls . 532

11.12 Exercises . 536

12 Two-Point Boundary Value Problems . 539
12.1 A Model Problem . 539
12.2 Finite Difference Approximation . 541

12.2.1 Stability Analysis by the Energy Method 542
12.2.2 Convergence Analysis . 546
12.2.3 Finite Differences for Two-Point Boundary Value

Problems with Variable Coefficients 548

Contents XVII

12.3 The Spectral Collocation Method . 550
12.4 The Galerkin Method . 552

12.4.1 Integral Formulation of Boundary Value Problems . . 552
12.4.2 A Quick Introduction to Distributions 554
12.4.3 Formulation and Properties of the Galerkin

Method . 555
12.4.4 Analysis of the Galerkin Method 556
12.4.5 The Finite Element Method . 558
12.4.6 Implementation Issues . 564
12.4.7 Spectral Methods . 566

12.5 Advection-Diffusion Equations . 568
12.5.1 Galerkin Finite Element Approximation 569
12.5.2 The Relationship between Finite Elements and

Finite Differences; the Numerical Viscosity 572
12.5.3 Stabilized Finite Element Methods 574

12.6 A Quick Glance at the Two-Dimensional Case 580
12.7 Applications . 583

12.7.1 Lubrication of a Slider . 583
12.7.2 Vertical Distribution of Spore Concentration over

Wide Regions . 584
12.8 Exercises . 586

13 Parabolic and Hyperbolic Initial Boundary Value
Problems . 589
13.1 The Heat Equation . 589
13.2 Finite Difference Approximation of the Heat Equation 591
13.3 Finite Element Approximation of the Heat Equation 593

13.3.1 Stability Analysis of the θ-Method 595
13.4 Space-Time Finite Element Methods for the Heat

Equation . 601
13.5 Hyperbolic Equations: A Scalar Transport Problem 604
13.6 Systems of Linear Hyperbolic Equations 607

13.6.1 The Wave Equation . 608
13.7 The Finite Difference Method for Hyperbolic Equations 609

13.7.1 Discretization of the Scalar Equation 610
13.8 Analysis of Finite Difference Methods . 611

13.8.1 Consistency . 612
13.8.2 Stability . 612
13.8.3 The CFL Condition . 613
13.8.4 Von Neumann Stability Analysis 615

13.9 Dissipation and Dispersion. 618
13.9.1 Equivalent Equations . 619

13.10 Finite Element Approximation of Hyperbolic Equations 624
13.10.1 Space Discretization with Continuous and

Discontinuous Finite Elements 625

XVIII Contents

13.10.2 Time Discretization . 627
13.11 Applications . 630

13.11.1 Heat Conduction in a Bar . 630
13.11.2 A Hyperbolic Model for Blood Flow Interaction

with Arterial Walls . 630
13.12 Exercises . 632

References . 635

Index of MATLAB Programs . 645

Index . 649

Part I

Getting Started

1

Foundations of Matrix Analysis

In this chapter we recall the basic elements of linear algebra which will be
employed in the remainder of the text. For most of the proofs as well as for
the details, the reader is referred to [Bra75], [Nob69], [Hal58]. Further results
on eigenvalues can be found in [Hou75] and [Wil65].

1.1 Vector Spaces

Definition 1.1 A vector space over the numeric field K (K = R or K = C)
is a nonempty set V , whose elements are called vectors and in which two
operations are defined, called addition and scalar multiplication, that enjoy
the following properties:

1. addition is commutative and associative;
2. there exists an element 0 ∈ V (the zero vector or null vector) such that

v + 0 = v for each v ∈ V ;
3. 0 · v = 0, 1 · v = v, for each v ∈ V , where 0 and 1 are respectively the

zero and the unity of K;
4. for each element v ∈ V there exists its opposite, −v, in V such that

v + (−v) = 0;
5. the following distributive properties hold

∀α ∈ K, ∀v,w ∈ V, α(v + w) = αv + αw,

∀α, β ∈ K, ∀v ∈ V, (α + β)v = αv + βv;

6. the following associative property holds

∀α, β ∈ K, ∀v ∈ V, (αβ)v = α(βv).

�

4 1 Foundations of Matrix Analysis

Example 1.1 Remarkable instances of vector spaces are:
- V = R

n (respectively V = C
n): the set of the n-tuples of real (respectively

complex) numbers, n ≥ 1;
- V = Pn: the set of polynomials pn(x) =

∑n

k=0
akxk with real (or complex)

coefficients ak having degree less than or equal to n, n ≥ 0;
- V = Cp([a, b]): the set of real (or complex)-valued functions which are contin-

uous on [a, b] up to their p-th derivative, 0 ≤ p < ∞. •

Definition 1.2 We say that a nonempty part W of V is a vector subspace of
V iff W is a vector space over K. �

Example 1.2 The vector space Pn is a vector subspace of C∞(R), which is the
space of infinite continuously differentiable functions on the real line. A trivial sub-
space of any vector space is the one containing only the zero vector. •

In particular, the set W of the linear combinations of a system of p vectors
of V , {v1, . . . ,vp}, is a vector subspace of V , called the generated subspace or
span of the vector system, and is denoted by

W = span {v1, . . . ,vp}
= {v = α1v1 + . . . + αpvp with αi ∈ K, i = 1, . . . , p} .

The system {v1, . . . ,vp} is called a system of generators for W .
If W1, . . . ,Wm are vector subspaces of V , then the set

S = {w : w = v1 + . . . + vm with vi ∈ Wi, i = 1, . . . ,m}

is also a vector subspace of V . We say that S is the direct sum of the subspaces
Wi if any element s ∈ S admits a unique representation of the form s =
v1 + . . . + vm with vi ∈ Wi and i = 1, . . . ,m. In such a case, we shall write
S = W1 ⊕ . . . ⊕ Wm.

Definition 1.3 A system of vectors {v1, . . . ,vm} of a vector space V is called
linearly independent if the relation

α1v1 + α2v2 + . . . + αmvm = 0

with α1, α2, . . . , αm ∈ K implies that α1 = α2 = . . . = αm = 0. Otherwise,
the system will be called linearly dependent. �

We call a basis of V any system of linearly independent generators of V . If
{u1, . . . ,un} is a basis of V , the expression v = v1u1 + . . .+vnun is called the
decomposition of v with respect to the basis and the scalars v1, . . . , vn ∈ K are
the components of v with respect to the given basis. Moreover, the following
property holds.

1.2 Matrices 5

Property 1.1 Let V be a vector space which admits a basis of n vectors. Then
every system of linearly independent vectors of V has at most n elements and
any other basis of V has n elements. The number n is called the dimension of
V and we write dim(V) = n.
If, instead, for any n there always exist n linearly independent vectors of V ,
the vector space is called infinite dimensional.

Example 1.3 For any integer p the space Cp([a, b]) is infinite dimensional. The
spaces R

n and C
n have dimension equal to n. The usual basis for R

n is the set of
unit vectors {e1, . . . , en} where (ei)j = δij for i, j = 1, . . . n, where δij denotes the
Kronecker symbol equal to 0 if i �= j and 1 if i = j. This choice is of course not the
only one that is possible (see Exercise 2). •

1.2 Matrices

Let m and n be two positive integers. We call a matrix having m rows and
n columns, or a matrix m × n, or a matrix (m,n), with elements in K, a set
of mn scalars aij ∈ K, with i = 1, . . . ,m and j = 1, . . . n, represented in the
following rectangular array

A =

⎡

⎢
⎢
⎢
⎣

a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

...
am1 am2 . . . amn

⎤

⎥
⎥
⎥
⎦

. (1.1)

When K = R or K = C we shall respectively write A ∈ R
m×n or A ∈ C

m×n,
to explicitly outline the numerical fields which the elements of A belong to.
Capital letters will be used to denote the matrices, while the lower case letters
corresponding to those upper case letters will denote the matrix entries.
We shall abbreviate (1.1) as A = (aij) with i = 1, . . . , m and j = 1, . . . n.
The index i is called row index, while j is the column index. The set
(ai1, ai2, . . . , ain) is called the i-th row of A; likewise, (a1j , a2j , . . . , amj) is
the j-th column of A.

If n = m the matrix is called squared or having order n and the set of the
entries (a11, a22, . . . , ann) is called its main diagonal.

A matrix having one row or one column is called a row vector or column
vector respectively. Unless otherwise specified, we shall always assume that
a vector is a column vector. In the case n = m = 1, the matrix will simply
denote a scalar of K.
Sometimes it turns out to be useful to distinguish within a matrix the set
made up by specified rows and columns. This prompts us to introduce the
following definition.

Definition 1.4 Let A be a matrix m×n. Let 1 ≤ i1 < i2 < . . . < ik ≤ m and
1 ≤ j1 < j2 < . . . < jl ≤ n two sets of contiguous indexes. The matrix S(k× l)

6 1 Foundations of Matrix Analysis

of entries spq = aipjq
with p = 1, . . . , k, q = 1, . . . , l is called a submatrix of A.

If k = l and ir = jr for r = 1, . . . , k, S is called a principal submatrix of A. �

Definition 1.5 A matrix A(m × n) is called block partitioned or said to be
partitioned into submatrices if

A =

⎡

⎢
⎢
⎢
⎣

A11 A12 . . . A1l

A21 A22 . . . A2l

...
...

. . .
...

Ak1 Ak2 . . . Akl

⎤

⎥
⎥
⎥
⎦

,

where Aij are submatrices of A. �

Among the possible partitions of A, we recall in particular the partition by
columns

A = (a1, a2, . . . ,an),

ai being the i-th column vector of A. In a similar way the partition by rows
of A can be defined. To fix the notations, if A is a matrix m × n, we shall
denote by

A(i1 : i2, j1 : j2) = (aij) i1 ≤ i ≤ i2, j1 ≤ j ≤ j2

the submatrix of A of size (i2 − i1 + 1) × (j2 − j1 + 1) that lies between the
rows i1 and i2 and the columns j1 and j2. Likewise, if v is a vector of size n,
we shall denote by v(i1 : i2) the vector of size i2− i1 +1 made up by the i1-th
to the i2-th components of v.

These notations are convenient in view of programming the algorithms
that will be presented throughout the volume in the MATLAB language.

1.3 Operations with Matrices

Let A = (aij) and B = (bij) be two matrices m× n over K. We say that A is
equal to B, if aij = bij for i = 1, . . . ,m, j = 1, . . . , n. Moreover, we define the
following operations:

– matrix sum: the matrix sum is the matrix A+B = (aij + bij). The neutral
element in a matrix sum is the null matrix, still denoted by 0 and made
up only by null entries;

– matrix multiplication by a scalar: the multiplication of A by λ ∈ K, is a
matrix λA = (λaij);

– matrix product: the product of two matrices A and B of sizes (m, p) and

(p, n) respectively, is a matrix C(m,n) whose entries are cij =
p∑

k=1

aikbkj ,

for i = 1, . . . ,m, j = 1, . . . , n.

1.3 Operations with Matrices 7

The matrix product is associative and distributive with respect to the matrix
sum, but it is not in general commutative. The square matrices for which the
property AB = BA holds, will be called commutative.

In the case of square matrices, the neutral element in the matrix product is
a square matrix of order n called the unit matrix of order n or, more frequently,
the identity matrix given by In = (δij). The identity matrix is, by definition,
the only matrix n × n such that AIn = InA = A for all square matrices A.
In the following we shall omit the subscript n unless it is strictly necessary.
The identity matrix is a special instance of a diagonal matrix of order n, that
is, a square matrix of the type D = (diiδij). We will use in the following the
notation D = diag(d11, d22, . . . , dnn).
Finally, if A is a square matrix of order n and p is an integer, we define Ap as
the product of A with itself iterated p times. We let A0 = I.
Let us now address the so-called elementary row operations that can be per-
formed on a matrix. They consist of:

– multiplying the i-th row of a matrix by a scalar α; this operation is equiv-
alent to pre-multiplying A by the matrix D = diag(1, . . . , 1, α, 1, . . . , 1),
where α occupies the i-th position;

– exchanging the i-th and j-th rows of a matrix; this can be done by pre-
multiplying A by the matrix P(i,j) of elements

p(i,j)
rs =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if r = s = 1, . . . , i − 1, i + 1, . . . , j − 1, j + 1, . . . n,

1 if r = j, s = i or r = i, s = j,

0 otherwise.

(1.2)

Matrices like (1.2) are called elementary permutation matrices. The prod-
uct of elementary permutation matrices is called a permutation matrix,
and it performs the row exchanges associated with each elementary per-
mutation matrix. In practice, a permutation matrix is a reordering by rows
of the identity matrix;

– adding α times the j-th row of a matrix to its i-th row. This operation
can also be performed by pre-multiplying A by the matrix I+N(i,j)

α , where
N(i,j)

α is a matrix having null entries except the one in position i, j whose
value is α.

1.3.1 Inverse of a Matrix

Definition 1.6 A square matrix A of order n is called invertible (or regular
or nonsingular) if there exists a square matrix B of order n such that A B =
B A = I. B is called the inverse matrix of A and is denoted by A−1. A matrix
which is not invertible is called singular. �

If A is invertible its inverse is also invertible, with (A−1)−1 = A. Moreover,
if A and B are two invertible matrices of order n, their product AB is also
invertible, with (A B)−1 = B−1A−1. The following property holds.

8 1 Foundations of Matrix Analysis

Property 1.2 A square matrix is invertible iff its column vectors are linearly
independent.

Definition 1.7 We call the transpose of a matrix A∈ R
m×n the matrix n×m,

denoted by AT , that is obtained by exchanging the rows of A with the columns
of A. �

Clearly, (AT)T = A, (A+B)T = AT +BT , (AB)T = BT AT and (αA)T = αAT

∀α ∈ R. If A is invertible, then also (AT)−1 = (A−1)T = A−T .

Definition 1.8 Let A ∈ C
m×n; the matrix B = AH ∈ C

n×m is called the
conjugate transpose (or adjoint) of A if bij = āji, where āji is the complex
conjugate of aji. �

In analogy with the case of the real matrices, it turns out that (A+B)H =
AH + BH , (AB)H = BHAH and (αA)H = ᾱAH ∀α ∈ C.

Definition 1.9 A matrix A ∈ R
n×n is called symmetric if A = AT , while it is

antisymmetric if A = −AT . Finally, it is called orthogonal if AT A = AAT = I,
that is A−1 = AT . �

Permutation matrices are orthogonal and the same is true for their products.

Definition 1.10 A matrix A ∈ C
n×n is called hermitian or self-adjoint if

AT = Ā, that is, if AH = A, while it is called unitary if AHA = AAH = I.
Finally, if AAH = AHA, A is called normal. �

As a consequence, a unitary matrix is one such that A−1 = AH .
Of course, a unitary matrix is also normal, but it is not in general hermitian.
For instance, the matrix of the Example 1.4 is unitary, although not symmetric
(if s �= 0). We finally notice that the diagonal entries of an hermitian matrix
must necessarily be real (see also Exercise 5).

1.3.2 Matrices and Linear Mappings

Definition 1.11 A linear map from C
n into C

m is a function f : C
n −→ C

m

such that f(αx + βy) = αf(x) + βf(y), ∀α, β ∈ K and ∀x,y ∈ C
n. �

The following result links matrices and linear maps.

Property 1.3 Let f : C
n −→ C

m be a linear map. Then, there exists a
unique matrix Af ∈ C

m×n such that

f(x) = Afx ∀x ∈ C
n. (1.3)

Conversely, if Af ∈ C
m×n then the function defined in (1.3) is a linear map

from C
n into C

m.

1.3 Operations with Matrices 9

Example 1.4 An important example of a linear map is the counterclockwise rota-
tion by an angle ϑ in the plane (x1, x2). The matrix associated with such a map is
given by

G(ϑ) =

[
c −s
s c

]

, c = cos(ϑ), s = sin(ϑ)

and it is called a rotation matrix. •

1.3.3 Operations with Block-Partitioned Matrices

All the operations that have been previously introduced can be extended to
the case of a block-partitioned matrix A, provided that the size of each single
block is such that any single matrix operation is well-defined.

Indeed, the following result can be shown (see, e.g., [Ste73]).

Property 1.4 Let A and B be the block matrices

A =

⎡

⎢
⎣

A11 . . . A1l

...
. . .

...
Ak1 . . . Akl

⎤

⎥
⎦ , B =

⎡

⎢
⎣

B11 . . . B1n

...
. . .

...
Bm1 . . . Bmn

⎤

⎥
⎦ ,

where Aij and Bij are matrices (ki × lj) and (mi × nj). Then we have

1.

λA =

⎡

⎢
⎣

λA11 . . . λA1l

...
. . .

...
λAk1 . . . λAkl

⎤

⎥
⎦ , λ ∈ C; AT =

⎡

⎢
⎣

AT
11 . . . AT

k1
...

. . .
...

AT
1l . . . AT

kl

⎤

⎥
⎦ ;

2. if k = m, l = n, mi = ki and nj = lj, then

A + B =

⎡

⎢
⎣

A11 + B11 . . . A1l + B1l

...
. . .

...
Ak1 + Bk1 . . . Akl + Bkl

⎤

⎥
⎦ ;

3. if l = m, li = mi and ki = ni, then, letting Cij =
m∑

s=1

AisBsj,

AB =

⎡

⎢
⎣

C11 . . . C1l

...
. . .

...
Ck1 . . . Ckl

⎤

⎥
⎦ .

10 1 Foundations of Matrix Analysis

1.4 Trace and Determinant of a Matrix

Let us consider a square matrix A of order n. The trace of a matrix is the sum

of the diagonal entries of A, that is tr(A) =
n∑

i=1

aii.

We call the determinant of A the scalar defined through the following formula

det(A) =
∑

π∈P

sign(π)a1π1a2π2 . . . anπn
,

where P =
{
π = (π1, . . . , πn)T

}
is the set of the n! vectors that are obtained

by permuting the index vector i = (1, . . . , n)T and sign(π) equal to 1 (respec-
tively, −1) if an even (respectively, odd) number of exchanges is needed to
obtain π from i.
The following properties hold

det(A) = det(AT), det(AB) = det(A)det(B), det(A−1) = 1/det(A),

det(AH) = det(A), det(αA) = αndet(A), ∀α ∈ K.

Moreover, if two rows or columns of a matrix coincide, the determinant van-
ishes, while exchanging two rows (or two columns) produces a change of sign
in the determinant. Of course, the determinant of a diagonal matrix is the
product of the diagonal entries.

Denoting by Aij the matrix of order n−1 obtained from A by eliminating
the i-th row and the j-th column, we call the complementary minor associated
with the entry aij the determinant of the matrix Aij . We call the k-th principal
(dominating) minor of A, dk, the determinant of the principal submatrix of
order k, Ak = A(1 : k, 1 : k). If we denote by ∆ij = (−1)i+jdet(Aij) the
cofactor of the entry aij , the actual computation of the determinant of A can
be performed using the following recursive relation

det(A) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a11 if n = 1,

n∑

j=1

∆ijaij , for n > 1,
(1.4)

which is known as the Laplace rule. If A is a square invertible matrix of order
n, then

A−1 =
1

det(A)
C,

where C is the matrix having entries ∆ji, i, j = 1, . . . , n.

1.5 Rank and Kernel of a Matrix 11

As a consequence, a square matrix is invertible iff its determinant is non-
vanishing. In the case of nonsingular diagonal matrices the inverse is still a
diagonal matrix having entries given by the reciprocals of the diagonal entries
of the matrix.

Every orthogonal matrix is invertible, its inverse is given by AT , moreover
det(A) = ±1.

1.5 Rank and Kernel of a Matrix

Let A be a rectangular matrix m × n. We call the determinant of order q
(with q ≥ 1) extracted from matrix A, the determinant of any square matrix
of order q obtained from A by eliminating m − q rows and n − q columns.

Definition 1.12 The rank of A (denoted by rank(A)) is the maximum order
of the nonvanishing determinants extracted from A. A matrix has complete
or full rank if rank(A) = min(m,n). �

Notice that the rank of A represents the maximum number of linearly in-
dependent column vectors of A that is, the dimension of the range of A,
defined as

range(A) = {y ∈ R
m : y = Ax for x ∈ R

n} . (1.5)

Rigorously speaking, one should distinguish between the column rank of A
and the row rank of A, the latter being the maximum number of linearly
independent row vectors of A. Nevertheless, it can be shown that the row
rank and column rank do actually coincide.

The kernel of A is defined as the subspace

ker(A) = {x ∈ R
n : Ax = 0} .

The following relations hold:

1. rank(A) = rank(AT) (if A ∈ C
m×n, rank(A) = rank(AH));

2. rank(A) + dim(ker(A)) = n.

In general, dim(ker(A)) �= dim(ker(AT)). If A is a nonsingular square matrix,
then rank(A) = n and dim(ker(A)) = 0.

Example 1.5 Let

A =

[
1 1 0
1 −1 1

]

.

Then, rank(A) = 2, dim(ker(A)) = 1 and dim(ker(AT)) = 0. •

12 1 Foundations of Matrix Analysis

We finally notice that for a matrix A ∈ C
n×n the following properties are

equivalent:

1. A is nonsingular;
2. det(A) �= 0;
3. ker(A) = {0};
4. rank(A) = n;
5. A has linearly independent rows and columns.

1.6 Special Matrices

1.6.1 Block Diagonal Matrices

These are matrices of the form D = diag(D1, . . . ,Dn), where Di are square
matrices with i = 1, . . . , n. Clearly, each single diagonal block can be of dif-
ferent size. We shall say that a block diagonal matrix has size n if n is the
number of its diagonal blocks. The determinant of a block diagonal matrix is
given by the product of the determinants of the single diagonal blocks.

1.6.2 Trapezoidal and Triangular Matrices

A matrix A(m × n) is called upper trapezoidal if aij = 0 for i > j, while it is
lower trapezoidal if aij = 0 for i < j. The name is due to the fact that, in the
case of upper trapezoidal matrices, with m < n, the nonzero entries of the
matrix form a trapezoid.

A triangular matrix is a square trapezoidal matrix of order n of the form

L =

⎡

⎢
⎢
⎢
⎣

l11 0 . . . 0
l21 l22 . . . 0
...

...
...

ln1 ln2 . . . lnn

⎤

⎥
⎥
⎥
⎦

or U =

⎡

⎢
⎢
⎢
⎣

u11 u12 . . . u1n

0 u22 . . . u2n

...
...

...
0 0 . . . unn

⎤

⎥
⎥
⎥
⎦

.

The matrix L is called lower triangular while U is upper triangular.
Let us recall some algebraic properties of triangular matrices that are easy to
check.

– The determinant of a triangular matrix is the product of the diagonal
entries;

– the inverse of a lower (respectively, upper) triangular matrix is still lower
(respectively, upper) triangular;

– the product of two lower triangular (respectively, upper trapezoidal) ma-
trices is still lower triangular (respectively, upper trapezoidal);

– if we call unit triangular matrix a triangular matrix that has diagonal
entries equal to 1, then, the product of lower (respectively, upper) unit
triangular matrices is still lower (respectively, upper) unit triangular.

1.7 Eigenvalues and Eigenvectors 13

1.6.3 Banded Matrices

The matrices introduced in the previous section are a special instance of
banded matrices. Indeed, we say that a matrix A ∈ R

m×n (or in C
m×n)

has lower band p if aij = 0 when i > j + p and upper band q if aij = 0
when j > i + q. Diagonal matrices are banded matrices for which p = q = 0,
while trapezoidal matrices have p = m − 1, q = 0 (lower trapezoidal), p = 0,
q = n − 1 (upper trapezoidal).

Other banded matrices of relevant interest are the tridiagonal matrices for
which p = q = 1 and the upper bidiagonal (p = 0, q = 1) or lower bidiagonal
(p = 1, q = 0). In the following, tridiagn(b,d, c) will denote the triadiagonal
matrix of size n having respectively on the lower and upper principal diagonals
the vectors b = (b1, . . . , bn−1)T and c = (c1, . . . , cn−1)T , and on the principal
diagonal the vector d = (d1, . . . , dn)T . If bi = β, di = δ and ci = γ, β, δ and
γ being given constants, the matrix will be denoted by tridiagn(β, δ, γ).

We also mention the so-called lower Hessenberg matrices (p = m − 1,
q = 1) and upper Hessenberg matrices (p = 1, q = n − 1) that have the
following structure

H =

⎡

⎢
⎢
⎢
⎢
⎣

h11 h12 0
h21 h22

. . .
...

. . . hm−1n

hm1 hmn

⎤

⎥
⎥
⎥
⎥
⎦

or H =

⎡

⎢
⎢
⎢
⎢
⎣

h11 h12 . . . h1n

h21 h22 h2n

.
...

0 hmn−1 hmn

⎤

⎥
⎥
⎥
⎥
⎦

.

Matrices of similar shape can obviously be set up in the block-like format.

1.7 Eigenvalues and Eigenvectors

Let A be a square matrix of order n with real or complex entries; the number
λ ∈ C is called an eigenvalue of A if there exists a nonnull vector x ∈ C

n such
that Ax = λx. The vector x is the eigenvector associated with the eigenvalue
λ and the set of the eigenvalues of A is called the spectrum of A, denoted
by σ(A). We say that x and y are respectively a right eigenvector and a left
eigenvector of A, associated with the eigenvalue λ, if

Ax = λx, yHA = λyH .

The eigenvalue λ corresponding to the eigenvector x can be determined by
computing the Rayleigh quotient λ = xHAx/(xHx). The number λ is the
solution of the characteristic equation

pA(λ) = det(A − λI) = 0,

where pA(λ) is the characteristic polynomial. Since this latter is a polynomial
of degree n with respect to λ, there certainly exist n eigenvalues of A not
necessarily distinct. The following properties can be proved

14 1 Foundations of Matrix Analysis

det(A) =
n∏

i=1

λi, tr(A) =
n∑

i=1

λi, (1.6)

and since det(AT − λI) = det((A − λI)T) = det(A − λI) one concludes that
σ(A) = σ(AT) and, in an analogous way, that σ(AH) = σ(Ā).

From the first relation in (1.6) it can be concluded that a matrix is singular
iff it has at least one null eigenvalue, since pA(0) = det(A) = Πn

i=1λi.
Secondly, if A has real entries, pA(λ) turns out to be a real-coefficient

polynomial so that complex eigenvalues of A shall necessarily occur in complex
conjugate pairs.

Finally, due to the Cayley-Hamilton Theorem if pA(λ) is the characteristic
polynomial of A, then pA(A) = 0, where pA(A) denotes a matrix polynomial
(for the proof see, e.g., [Axe94], p. 51).

The maximum module of the eigenvalues of A is called the spectral radius
of A and is denoted by

ρ(A) = max
λ∈σ(A)

|λ|. (1.7)

Characterizing the eigenvalues of a matrix as the roots of a polynomial implies
in particular that λ is an eigenvalue of A ∈ C

n×n iff λ̄ is an eigenvalue of AH .
An immediate consequence is that ρ(A) = ρ(AH). Moreover, ∀A ∈ C

n×n,
∀α ∈ C, ρ(αA) = |α|ρ(A), and ρ(Ak) = [ρ(A)]k ∀k ∈ N.
Finally, assume that A is a block triangular matrix

A =

⎡

⎢
⎢
⎢
⎣

A11 A12 . . . A1k

0 A22 . . . A2k

...
. . .

...
0 . . . 0 Akk

⎤

⎥
⎥
⎥
⎦

.

As pA(λ) = pA11
(λ)pA22

(λ) · · · pAkk
(λ), the spectrum of A is given by the

union of the spectra of each single diagonal block. As a consequence, if A is
triangular, the eigenvalues of A are its diagonal entries.
For each eigenvalue λ of a matrix A the set of the eigenvectors associated with
λ, together with the null vector, identifies a subspace of C

n which is called
the eigenspace associated with λ and corresponds by definition to ker(A-λI).
The dimension of the eigenspace is

dim [ker(A − λI)] = n − rank(A − λI),

and is called geometric multiplicity of the eigenvalue λ. It can never be greater
than the algebraic multiplicity of λ, which is the multiplicity of λ as a root
of the characteristic polynomial. Eigenvalues having geometric multiplicity
strictly less than the algebraic one are called defective. A matrix having at
least one defective eigenvalue is called defective.

The eigenspace associated with an eigenvalue of a matrix A is invariant
with respect to A in the sense of the following definition.

1.8 Similarity Transformations 15

Definition 1.13 A subspace S in C
n is called invariant with respect to a

square matrix A if AS ⊂ S, where AS is the transformed of S through A. �

1.8 Similarity Transformations

Definition 1.14 Let C be a square nonsingular matrix having the same or-
der as the matrix A. We say that the matrices A and C−1AC are similar,
and the transformation from A to C−1AC is called a similarity transforma-
tion. Moreover, we say that the two matrices are unitarily similar if C is
unitary. �

Two similar matrices share the same spectrum and the same characteris-
tic polynomial. Indeed, it is easy to check that if (λ,x) is an eigenvalue-
eigenvector pair of A, (λ,C−1x) is the same for the matrix C−1AC since

(C−1AC)C−1x = C−1Ax = λC−1x.

We notice in particular that the product matrices AB and BA, with A ∈ C
n×m

and B ∈ C
m×n, are not similar but satisfy the following property (see [Hac94],

p.18, Theorem 2.4.6)

σ(AB)\ {0} = σ(BA)\ {0} ,

that is, AB and BA share the same spectrum apart from null eigenvalues so
that ρ(AB) = ρ(BA).

The use of similarity transformations aims at reducing the complexity of
the problem of evaluating the eigenvalues of a matrix. Indeed, if a given matrix
could be transformed into a similar matrix in diagonal or triangular form, the
computation of the eigenvalues would be immediate. The main result in this
direction is the following theorem (for the proof, see [Dem97], Theorem 4.2).

Property 1.5 (Schur decomposition) Given A∈ C
n×n, there exists U

unitary such that

U−1AU = UHAU =

⎡

⎢
⎢
⎢
⎣

λ1 b12 . . . b1n

0 λ2 b2n

...
. . .

...
0 . . . 0 λn

⎤

⎥
⎥
⎥
⎦

= T,

where λi are the eigenvalues of A.

It thus turns out that every matrix A is unitarily similar to an upper triangular
matrix. The matrices T and U are not necessarily unique [Hac94]. The Schur
decomposition theorem gives rise to several important results; among them,
we recall:

16 1 Foundations of Matrix Analysis

1. every hermitian matrix is unitarily similar to a diagonal real matrix, that
is, when A is hermitian every Schur decomposition of A is diagonal. In
such an event, since

U−1AU = Λ = diag(λ1, . . . , λn),

it turns out that AU = UΛ, that is, Aui = λiui for i = 1, . . . , n so that
the column vectors of U are the eigenvectors of A. Moreover, since the
eigenvectors are orthogonal two by two, it turns out that an hermitian
matrix has a system of orthonormal eigenvectors that generates the whole
space C

n. Finally, it can be shown that a matrix A of order n is similar to
a diagonal matrix D iff the eigenvectors of A form a basis for C

n [Axe94];
2. a matrix A ∈ C

n×n is normal iff it is unitarily similar to a diagonal
matrix. As a consequence, a normal matrix A ∈ C

n×n admits the following
spectral decomposition: A = UΛUH =

∑n
i=1 λiuiuH

i being U unitary and
Λ diagonal [SS90];

3. let A and B be two normal and commutative matrices; then, the generic
eigenvalue µi of A+B is given by the sum λi + ξi, where λi and ξi are the
eigenvalues of A and B associated with the same eigenvector.

There are, of course, nonsymmetric matrices that are similar to diagonal ma-
trices, but these are not unitarily similar (see, e.g., Exercise 7).
The Schur decomposition can be improved as follows (for the proof see, e.g.,
[Str80], [God66]).

Property 1.6 (Canonical Jordan Form) Let A be any square matrix.
Then, there exists a nonsingular matrix X which transforms A into a block
diagonal matrix J such that

X−1AX = J = diag (Jk1(λ1), Jk2(λ2), . . . , Jkl
(λl)) ,

which is called canonical Jordan form, λj being the eigenvalues of A and
Jk(λ) ∈ C

k×k a Jordan block of the form J1(λ) = λ if k = 1 and

Jk(λ) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

λ 1 0 . . . 0

0 λ 1 · · ·
...

...
. 1 0

...
. . . λ 1

0 0 λ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, for k > 1.

If an eigenvalue is defective, the size of the corresponding Jordan block is
greater than one. Therefore, the canonical Jordan form tells us that a matrix
can be diagonalized by a similarity transformation iff it is nondefective. For
this reason, the nondefective matrices are called diagonalizable. In particular,
normal matrices are diagonalizable.

1.9 The Singular Value Decomposition (SVD) 17

Partitioning X by columns, X = (x1, . . . ,xn), it can be seen that the ki vectors
associated with the Jordan block Jki

(λi) satisfy the following recursive relation

Axl = λixl, l =
i−1∑

j=1

mj + 1,

Axj = λixj + xj−1, j = l + 1, . . . , l − 1 + ki, if ki �= 1.

(1.8)

The vectors xi are called principal vectors or generalized eigenvectors of A.

Example 1.6 Let us consider the following matrix

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

7/4 3/4 −1/4 −1/4 −1/4 1/4
0 2 0 0 0 0

−1/2 −1/2 5/2 1/2 −1/2 1/2
−1/2 −1/2 −1/2 5/2 1/2 1/2
−1/4 −1/4 −1/4 −1/4 11/4 1/4
−3/2 −1/2 −1/2 1/2 1/2 7/2

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

The Jordan canonical form of A and its associated matrix X are given by

J =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

2 1 0 0 0 0
0 2 0 0 0 0
0 0 3 1 0 0
0 0 0 3 1 0
0 0 0 0 3 0
0 0 0 0 0 2

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, X =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 1
0 1 0 0 0 1
0 0 1 0 0 1
0 0 0 1 0 1
0 0 0 0 1 1
1 1 1 1 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

Notice that two different Jordan blocks are related to the same eigenvalue (λ = 2).
It is easy to check property (1.8). Consider, for example, the Jordan block associated
with the eigenvalue λ2 = 3; we have

Ax3 = [0 0 3 0 0 3]T = 3 [0 0 1 0 0 1]T = λ2x3,

Ax4 = [0 0 1 3 0 4]T = 3 [0 0 0 1 0 1]T + [0 0 1 0 0 1]T = λ2x4 + x3,

Ax5 = [0 0 0 1 3 4]T = 3 [0 0 0 0 1 1]T + [0 0 0 1 0 1]T = λ2x5 + x4.

•

1.9 The Singular Value Decomposition (SVD)

Any matrix can be reduced in diagonal form by a suitable pre and post-
multiplication by unitary matrices. Precisely, the following result holds.

Property 1.7 Let A∈ C
m×n. There exist two unitary matrices U∈ C

m×m

and V∈ C
n×n such that

UHAV = Σ = diag(σ1, . . . , σp) ∈ R
m×n with p = min(m,n) (1.9)

and σ1 ≥ . . . ≥ σp ≥ 0. Formula (1.9) is called Singular Value Decomposi-
tion or (SVD) of A and the numbers σi (or σi(A)) are called singular values
of A.

18 1 Foundations of Matrix Analysis

If A is a real-valued matrix, U and V will also be real-valued and in (1.9) UT

must be written instead of UH . The following characterization of the singular
values holds

σi(A) =
√

λi(AHA), i = 1, . . . , p. (1.10)

Indeed, from (1.9) it follows that A = UΣVH , AH = VΣHUH so that, U
and V being unitary, AHA = VΣHΣVH , that is, λi(AHA) = λi(ΣHΣ) =
(σi(A))2. Since AAH and AHA are hermitian matrices, the columns of U,
called the left singular vectors of A, turn out to be the eigenvectors of AAH

(see Section 1.8) and, therefore, they are not uniquely defined. The same holds
for the columns of V, which are the right singular vectors of A.
Relation (1.10) implies that if A ∈ C

n×n is hermitian with eigenvalues given
by λ1, λ2, . . . , λn, then the singular values of A coincide with the modules
of the eigenvalues of A. Indeed because AAH = A2, σi =

√
λ2

i = |λi| for
i = 1, . . . , n. As far as the rank is concerned, if

σ1 ≥ . . . ≥ σr > σr+1 = . . . = σp = 0,

then the rank of A is r, the kernel of A is the span of the column vectors of
V, {vr+1, . . . ,vn}, and the range of A is the span of the column vectors of U,
{u1, . . . ,ur}.

Definition 1.15 Suppose that A∈ C
m×n has rank equal to r and that it

admits a SVD of the type UHAV = Σ. The matrix A† = VΣ†UH is called
the Moore-Penrose pseudo-inverse matrix, being

Σ† = diag
(

1
σ1

, . . . ,
1
σr

, 0, . . . , 0
)

. (1.11)

�

The matrix A† is also called the generalized inverse of A (see Exercise 13).
Indeed, if rank(A) = n < m, then A† = (AT A)−1AT , while if n = m =
rank(A), A† = A−1. For further properties of A†, see also Exercise 12.

1.10 Scalar Product and Norms in Vector Spaces

Very often, to quantify errors or measure distances one needs to compute the
magnitude of a vector or a matrix. For that purpose we introduce in this
section the concept of a vector norm and, in the following one, of a matrix
norm. We refer the reader to [Ste73], [SS90] and [Axe94] for the proofs of the
properties that are reported hereafter.

Definition 1.16 A scalar product on a vector space V defined over K is any
map (·, ·) acting from V × V into K which enjoys the following properties:

1.10 Scalar Product and Norms in Vector Spaces 19

1. it is linear with respect to the vectors of V, that is

(γx + λz,y) = γ(x,y) + λ(z,y), ∀x,y, z ∈ V, ∀γ, λ ∈ K;

2. it is hermitian, that is, (y,x) = (x,y), ∀x,y ∈ V ;
3. it is positive definite, that is, (x,x) > 0, ∀x �= 0 (in other words, (x,x) ≥

0, and (x,x) = 0 if and only if x = 0).

�

In the case V = C
n (or R

n), an example is provided by the classical Euclidean
scalar product given by

(x,y) = yHx =
n∑

i=1

xiȳi,

where z̄ denotes the complex conjugate of z.

Moreover, for any given square matrix A of order n and for any x, y∈ C
n

the following relation holds

(Ax,y) = (x,AHy). (1.12)

In particular, since for any matrix Q ∈ C
n×n, (Qx,Qy) = (x,QHQy), one gets

Property 1.8 Unitary matrices preserve the Euclidean scalar product, that
is, (Qx,Qy) = (x,y) for any unitary matrix Q and for any pair of vectors x
and y.

Definition 1.17 Let V be a vector space over K. We say that the map ‖ · ‖
from V into R is a norm on V if the following axioms are satisfied:

1. (i) ‖v‖ ≥ 0 ∀v ∈ V and (ii) ‖v‖ = 0 if and only if v = 0;
2. ‖αv‖ = |α|‖v‖ ∀α ∈ K, ∀v ∈ V (homogeneity property);
3. ‖v + w‖ ≤ ‖v‖ + ‖w‖ ∀v,w ∈ V (triangular inequality),

where |α| denotes the absolute value of α if K = R, the module of α if
K = C. �

The pair (V, ‖ · ‖) is called a normed space. We shall distinguish among
norms by a suitable subscript at the margin of the double bar symbol. In the
case the map |·| from V into R enjoys only the properties 1(i), 2 and 3 we shall
call such a map a seminorm. Finally, we shall call a unit vector any vector of
V having unit norm.
An example of a normed space is R

n, equipped for instance by the p-norm
(or Hölder norm); this latter is defined for a vector x of components {xi} as

‖x‖p =

(
n∑

i=1

|xi|p
)1/p

, for 1 ≤ p < ∞. (1.13)

20 1 Foundations of Matrix Analysis

Notice that the limit as p goes to infinity of ‖x‖p exists, is finite, and equals
the maximum module of the components of x. Such a limit defines in turn a
norm, called the infinity norm (or maximum norm), given by

‖x‖∞ = max
1≤i≤n

|xi|.

When p = 2, from (1.13) the standard definition of Euclidean norm is
recovered

‖x‖2 = (x,x)1/2 =

(
n∑

i=1

|xi|2
)1/2

=
(
xT x

)1/2
,

for which the following property holds.

Property 1.9 (Cauchy-Schwarz inequality) For any pair x,y ∈ R
n,

|(x,y)| = |xT y| ≤ ‖x‖2 ‖y‖2, (1.14)

where strict equality holds iff y = αx for some α ∈ R.

We recall that the scalar product in R
n can be related to the p-norms intro-

duced over R
n in (1.13) by the Hölder inequality

|(x,y)| ≤ ‖x‖p‖y‖q, with
1
p

+
1
q

= 1.

In the case where V is a finite-dimensional space the following property holds
(for a sketch of the proof, see Exercise 14).

Property 1.10 Any vector norm ‖ · ‖ defined on V is a continuous function
of its argument, namely, ∀ε > 0, ∃C > 0 such that if ‖x − x̂‖ ≤ ε then
| ‖x‖ − ‖x̂‖ | ≤ Cε, for any x, x̂ ∈ V .

New norms can be easily built using the following result.

Property 1.11 Let ‖ · ‖ be a norm of R
n and A ∈ R

n×n be a matrix with n
linearly independent columns. Then, the function ‖ · ‖A2 acting from R

n into
R defined as

‖x‖A2 = ‖Ax‖ ∀x ∈ R
n,

is a norm of R
n.

Two vectors x, y in V are said to be orthogonal if (x,y) = 0. This statement
has an immediate geometric interpretation when V = R

2 since in such a case

(x,y) = ‖x‖2‖y‖2 cos(ϑ),

1.10 Scalar Product and Norms in Vector Spaces 21

Table 1.1. Equivalence constants for the main norms of R
n

cpq q = 1 q = 2 q = ∞
p = 1 1 1 1

p = 2 n−1/2 1 1

p = ∞ n−1 n−1/2 1

Cpq q = 1 q = 2 q = ∞
p = 1 1 n1/2 n

p = 2 1 1 n1/2

p = ∞ 1 1 1

where ϑ is the angle between the vectors x and y. As a consequence, if (x,y) =
0 then ϑ is a right angle and the two vectors are orthogonal in the geometric
sense.

Definition 1.18 Two norms ‖ ·‖p and ‖ ·‖q on V are equivalent if there exist
two positive constants cpq and Cpq such that

cpq‖x‖q ≤ ‖x‖p ≤ Cpq‖x‖q ∀x ∈ V.

�

In a finite-dimensional normed space all norms are equivalent. In particular,
if V = R

n it can be shown that for the p-norms, with p = 1, 2, and ∞, the
constants cpq and Cpq take the value reported in Table 1.1.

In this book we shall often deal with sequences of vectors and with their
convergence. For this purpose, we recall that a sequence of vectors

{
x(k)

}
in

a vector space V having finite dimension n, converges to a vector x, and we
write lim

k→∞
x(k) = x if

lim
k→∞

x
(k)
i = xi, i = 1, . . . , n, (1.15)

where x
(k)
i and xi are the components of the corresponding vectors with re-

spect to a basis of V . If V = R
n, due to the uniqueness of the limit of a

sequence of real numbers, (1.15) implies also the uniqueness of the limit, if
existing, of a sequence of vectors.
We further notice that in a finite-dimensional space all the norms are topo-
logically equivalent in the sense of convergence, namely, given a sequence of
vectors x(k), we have that

|||x(k)||| → 0 ⇔ ‖x(k)‖ → 0 if k → ∞,

where ||| · ||| and ‖ · ‖ are any two vector norms. As a consequence, we can
establish the following link between norms and limits.

Property 1.12 Let ‖ · ‖ be a norm in a finite dimensional space V . Then

lim
k→∞

x(k) = x ⇔ lim
k→∞

‖x − x(k)‖ = 0,

where x ∈ V and
{
x(k)

}
is a sequence of elements of V .

22 1 Foundations of Matrix Analysis

1.11 Matrix Norms

Definition 1.19 A matrix norm is a mapping ‖ · ‖ : R
m×n → R such that:

1. ‖A‖ ≥ 0 ∀A ∈ R
m×n and ‖A‖ = 0 if and only if A = 0;

2. ‖αA‖ = |α|‖A‖ ∀α ∈ R, ∀A ∈ R
m×n (homogeneity);

3. ‖A + B‖ ≤ ‖A‖ + ‖B‖ ∀A,B ∈ R
m×n (triangular inequality).

�

Unless otherwise specified we shall employ the same symbol ‖ · ‖, to denote
matrix norms and vector norms.

We can better characterize the matrix norms by introducing the concepts
of compatible norm and norm induced by a vector norm.

Definition 1.20 We say that a matrix norm ‖ · ‖ is compatible or consistent
with a vector norm ‖ · ‖ if

‖Ax‖ ≤ ‖A‖ ‖x‖, ∀x ∈ R
n. (1.16)

More generally, given three norms, all denoted by ‖ · ‖, albeit defined on
R

m, R
n and R

m×n, respectively, we say that they are consistent if ∀x ∈ R
n,

Ax = y ∈ R
m, A ∈ R

m×n, we have that ‖y‖ ≤ ‖A‖ ‖x‖. �

In order to single out matrix norms of practical interest, the following property
is in general required

Definition 1.21 We say that a matrix norm ‖·‖ is sub-multiplicative if ∀A ∈
R

n×m, ∀B ∈ R
m×q

‖AB‖ ≤ ‖A‖ ‖B‖. (1.17)

�

This property is not satisfied by any matrix norm. For example (taken from
[GL89]), the norm ‖A‖∆ = max |aij | for i = 1, . . . , n, j = 1, . . . ,m does not
satisfy (1.17) if applied to the matrices

A = B =
[

1 1
1 1

]

,

since 2 = ‖AB‖∆ > ‖A‖∆‖B‖∆ = 1.
Notice that, given a certain sub-multiplicative matrix norm ‖·‖α, there always
exists a consistent vector norm. For instance, given any fixed vector y �= 0 in
C

n, it suffices to define the consistent vector norm as

‖x‖ = ‖xyH‖α x ∈ C
n.

As a consequence, in the case of sub-multiplicative matrix norms it is no
longer necessary to explicitly specify the vector norm with respect to the
matrix norm is consistent.

1.11 Matrix Norms 23

Example 1.7 The norm

‖A‖F =

√
√
√
√

n∑

i,j=1

|aij |2 =
√

tr(AAH) (1.18)

is a matrix norm called the Frobenius norm (or Euclidean norm in C
n2

) and is
compatible with the Euclidean vector norm ‖ · ‖2. Indeed,

‖Ax‖2
2 =

n∑

i=1

∣
∣
∣
∣
∣

n∑

j=1

aijxj

∣
∣
∣
∣
∣

2

≤
n∑

i=1

(
n∑

j=1

|aij |2
n∑

j=1

|xj |2
)

= ‖A‖2
F ‖x‖2

2.

Notice that for such a norm ‖In‖F =
√

n. •

In view of the definition of a natural norm, we recall the following theorem.

Theorem 1.1 Let ‖·‖ be a vector norm. The function

‖A‖ = sup
x�=0

‖Ax‖
‖x‖ (1.19)

is a matrix norm called induced matrix norm or natural matrix norm.
Proof. We start by noticing that (1.19) is equivalent to

‖A‖ = sup
‖x‖=1

‖Ax‖. (1.20)

Indeed, one can define for any x �= 0 the unit vector u = x/‖x‖, so that (1.19)
becomes

‖A‖ = sup
‖u‖=1

‖Au‖ = ‖Aw‖ with ‖w‖ = 1.

This being taken as given, let us check that (1.19) (or, equivalently, (1.20)) is actually
a norm, making direct use of Definition 1.19.

1. If ‖Ax‖ ≥ 0, then it follows that ‖A‖ = sup
‖x‖=1

‖Ax‖ ≥ 0. Moreover

‖A‖ = sup
x �=0

‖Ax‖
‖x‖ = 0 ⇔ ‖Ax‖ = 0 ∀x �= 0,

and Ax = 0 ∀x �= 0 if and only if A=0; therefore ‖A‖ = 0 ⇔ A = 0.
2. Given a scalar α,

‖αA‖ = sup
‖x‖=1

‖αAx‖ = |α| sup
‖x‖=1

‖Ax‖ = |α| ‖A‖.

3. Finally, triangular inequality holds. Indeed, by definition of supremum, if x �= 0
then

‖Ax‖
‖x‖ ≤ ‖A‖ ⇒ ‖Ax‖ ≤ ‖A‖‖x‖,

so that, taking x with unit norm, one gets

‖(A + B)x‖ ≤ ‖Ax‖ + ‖Bx‖ ≤ ‖A‖ + ‖B‖,
from which it follows that ‖A + B‖ = sup

‖x‖=1

‖(A + B)x‖ ≤ ‖A‖ + ‖B‖.

�

24 1 Foundations of Matrix Analysis

Relevant instances of induced matrix norms are the so-called p-norms de-
fined as

‖A‖p = sup
x�=0

‖Ax‖p

‖x‖p
.

The 1-norm and the infinity norm are easily computable since

‖A‖1 = max
j=1,...,n

m∑

i=1

|aij |, ‖A‖∞ = max
i=1,...,m

n∑

j=1

|aij |,

and they are called the column sum norm and the row sum norm, respectively.
Moreover, we have ‖A‖1 = ‖AT ‖∞ and, if A is self-adjoint or real sym-

metric, ‖A‖1 = ‖A‖∞.
A special discussion is deserved by the 2-norm or spectral norm for which

the following theorem holds.

Theorem 1.2 Let σ1(A) be the largest singular value of A. Then

‖A‖2 =
√

ρ(AHA) =
√

ρ(AAH) = σ1(A). (1.21)

In particular, if A is hermitian (or real and symmetric), then

‖A‖2 = ρ(A), (1.22)

while, if A is unitary, ‖A‖2 = 1.

Proof. Since AHA is hermitian, there exists a unitary matrix U such that

UHAHAU = diag(µ1, . . . , µn),

where µi are the (positive) eigenvalues of AHA. Let y = UHx, then

‖A‖2 = sup
x �=0

√
(AHAx,x)

(x,x)
= sup

y �=0

√
(UHAHAUy,y)

(y,y)

= sup
y �=0

√
√
√
√

n∑

i=1

µi|yi|2/
n∑

i=1

|yi|2 =
√

max
i=1,...,n

|µi|,

from which (1.21) follows, thanks to (1.10).
If A is hermitian, the same considerations as above apply directly to A.
Finally, if A is unitary, we have

‖Ax‖2
2 = (Ax, Ax) = (x, AHAx) = ‖x‖2

2,

so that ‖A‖2 = 1. �

As a consequence, the computation of ‖A‖2 is much more expensive than
that of ‖A‖∞ or ‖A‖1. However, if only an estimate of ‖A‖2 is required, the
following relations can be profitably employed in the case of square matrices

1.11 Matrix Norms 25

max
i,j

|aij | ≤ ‖A‖2 ≤ n max
i,j

|aij |,
1√
n
‖A‖∞ ≤ ‖A‖2 ≤ √

n‖A‖∞,

1√
n
‖A‖1 ≤ ‖A‖2 ≤ √

n‖A‖1,

‖A‖2 ≤
√

‖A‖1 ‖A‖∞.

For other estimates of similar type we refer to Exercise 17. Moreover, if A is
normal then ‖A‖2 ≤ ‖A‖p for any n and all p ≥ 2.

Theorem 1.3 Let ||| · ||| be a matrix norm induced by a vector norm ‖ · ‖.
Then, the following relations hold:

1. ‖Ax‖ ≤ |||A||| ‖x‖, that is, ||| · ||| is a norm compatible with ‖ · ‖;
2. |||I||| = 1;
3. |||AB||| ≤ |||A||| |||B|||, that is, ||| · ||| is sub-multiplicative.

Proof. Part 1 of the theorem is already contained in the proof of Theorem 1.1,

while part 2 follows from the fact that |||I||| = sup
x �=0

‖Ix‖/‖x‖ = 1. Part 3 is simple to

check. �

Notice that the p-norms are sub-multiplicative. Moreover, we remark that the
sub-multiplicativity property by itself would only allow us to conclude that
|||I||| ≥ 1. Indeed, |||I||| = |||I · I||| ≤ |||I|||2.

1.11.1 Relation between Norms and the Spectral Radius
of a Matrix

We next recall some results that relate the spectral radius of a matrix to
matrix norms and that will be widely employed in Chapter 4.

Theorem 1.4 Let ‖ · ‖ be a consistent matrix norm; then

ρ(A) ≤ ‖A‖ ∀A ∈ C
n×n.

Proof. Let λ be an eigenvalue of A and v �= 0 an associated eigenvector. As a
consequence, since ‖ · ‖ is consistent, we have

|λ| ‖v‖ = ‖λv‖ = ‖Av‖ ≤ ‖A‖ ‖v‖,

so that |λ| ≤ ‖A‖. �

More precisely, the following property holds (see for the proof [IK66], p. 12,
Theorem 3).

Property 1.13 Let A ∈ C
n×n and ε > 0. Then, there exists an induced

matrix norm ‖ · ‖A,ε (depending on ε) such that

‖A‖A,ε ≤ ρ(A) + ε.

26 1 Foundations of Matrix Analysis

As a result, having fixed an arbitrarily small tolerance, there always exists a
matrix norm which is arbitrarily close to the spectral radius of A, namely

ρ(A) = inf
‖·‖

‖A‖, (1.23)

the infimum being taken on the set of all the consistent norms.
For the sake of clarity, we notice that the spectral radius is a sub-

multiplicative seminorm, since it is not true that ρ(A) = 0 iff A = 0. As an
example, any triangular matrix with null diagonal entries clearly has spectral
radius equal to zero. Moreover, we have the following result.

Property 1.14 Let A be a square matrix and let ‖ · ‖ be a consistent norm.
Then

lim
m→∞

‖Am‖1/m = ρ(A).

1.11.2 Sequences and Series of Matrices

A sequence of matrices
{
A(k)

}
∈ R

n×n is said to converge to a matrix A ∈
R

n×n if

lim
k→∞

‖A(k) − A‖ = 0.

The choice of the norm does not influence the result since in R
n×n all norms

are equivalent. In particular, when studying the convergence of iterative meth-
ods for solving linear systems (see Chapter 4), one is interested in the so-called
convergent matrices for which

lim
k→∞

Ak = 0,

0 being the null matrix. The following theorem holds.

Theorem 1.5 Let A be a square matrix; then

lim
k→∞

Ak = 0 ⇔ ρ(A) < 1. (1.24)

Moreover, the geometric series
∞∑

k=0

Ak is convergent iff ρ(A) < 1. In such a

case
∞∑

k=0

Ak = (I − A)−1. (1.25)

As a result, if ρ(A) < 1 the matrix I − A is invertible and the following
inequalities hold

1
1 + ‖A‖ ≤ ‖(I − A)−1‖ ≤ 1

1 − ‖A‖ , (1.26)

where ‖ · ‖ is an induced matrix norm such that ‖A‖ < 1.

1.12 Positive Definite, Diagonally Dominant and M-matrices 27

Proof. Let us prove (1.24). Let ρ(A) < 1, then ∃ε > 0 such that ρ(A) < 1 − ε and
thus, thanks to Property 1.13, there exists an induced matrix norm ‖ · ‖ such that
‖A‖ ≤ ρ(A)+ε < 1. From the fact that ‖Ak‖ ≤ ‖A‖k < 1 and from the definition of
convergence it turns out that as k → ∞ the sequence

{
Ak
}

tends to zero. Conversely,

assume that lim
k→∞

Ak = 0 and let λ denote an eigenvalue of A. Then, Akx = λkx,

being x(�=0) an eigenvector associated with λ, so that lim
k→∞

λk = 0. As a consequence,

|λ| < 1 and because this is true for a generic eigenvalue one gets ρ(A) < 1 as desired.
Relation (1.25) can be obtained noting first that the eigenvalues of I−A are given by
1−λ(A), λ(A) being the generic eigenvalue of A. On the other hand, since ρ(A) < 1,
we deduce that I−A is nonsingular. Then, from the identity

(I − A)(I + A + . . . + An) = (I − An+1)

and taking the limit for n tending to infinity the thesis follows since

(I − A)

∞∑

k=0

Ak = I.

Finally, thanks to Theorem 1.3, the equality ‖I‖ = 1 holds, so that

1 = ‖I‖ ≤ ‖I − A‖ ‖(I − A)−1‖ ≤ (1 + ‖A‖) ‖(I − A)−1‖,

giving the first inequality in (1.26). As for the second part, noting that I = I−A+A
and multiplying both sides on the right by (I − A)−1, one gets (I − A)−1 = I +
A(I − A)−1. Passing to the norms, we obtain

‖(I − A)−1‖ ≤ 1 + ‖A‖ ‖(I − A)−1‖,

and thus the second inequality, since ‖A‖ < 1. �

Remark 1.1 The assumption that there exists an induced matrix norm such
that ‖A‖ < 1 is justified by Property 1.13, recalling that A is convergent and,
therefore, ρ(A) < 1. �

Notice that (1.25) suggests an algorithm to approximate the inverse of a ma-
trix by a truncated series expansion.

1.12 Positive Definite, Diagonally Dominant and
M-matrices

Definition 1.22 A matrix A ∈ C
n×n is positive definite in C

n if the num-
ber (Ax,x) is real and positive ∀x ∈ C

n, x �= 0. A matrix A ∈ R
n×n is

positive definite in R
n if (Ax,x) > 0 ∀x ∈ R

n, x �= 0. If the strict inequal-
ity is substituted by the weak one (≥) the matrix is called positive semi-
definite. �

28 1 Foundations of Matrix Analysis

Example 1.8 Matrices that are positive definite in R
n are not necessarily symmet-

ric. An instance is provided by matrices of the form

A =

[
2 α

−2 − α 2

]

(1.27)

for α �= −1. Indeed, for any nonnull vector x = (x1, x2)
T in R

2

(Ax,x) = 2(x2
1 + x2

2 − x1x2) > 0.

Notice that A is not positive definite in C
2. Indeed, if we take a complex vector x

we find out that the number (Ax,x) is not real-valued in general. •

Definition 1.23 Let A ∈ R
n×n. The matrices

AS =
1
2
(A + AT), ASS =

1
2
(A − AT)

are respectively called the symmetric part and the skew-symmetric part of A.
Obviously, A = AS + ASS . If A ∈ C

n×n, the definitions modify as follows:
AS = 1

2 (A + AH) and ASS = 1
2 (A − AH). �

The following property holds

Property 1.15 A real matrix A of order n is positive definite iff its symmet-
ric part AS is positive definite.

Indeed, it suffices to notice that, due to (1.12) and the definition of ASS ,
xT ASSx = 0 ∀x ∈ R

n. For instance, the matrix in (1.27) has a positive
definite symmetric part, since

AS =
1
2
(A + AT) =

[
2 −1
−1 2

]

.

This holds more generally (for the proof see [Axe94]).

Property 1.16 Let A ∈ C
n×n (respectively, A ∈ R

n×n); if (Ax,x) is real-
valued ∀x ∈ C

n, then A is hermitian (respectively, symmetric).

An immediate consequence of the above results is that matrices that are
positive definite in C

n do satisfy the following characterizing property.

Property 1.17 A square matrix A of order n is positive definite in C
n iff it

is hermitian and has positive eigenvalues. Thus, a positive definite matrix is
nonsingular.

In the case of positive definite real matrices in R
n, results more specific than

those presented so far hold only if the matrix is also symmetric (this is the rea-
son why many textbooks deal only with symmetric positive definite matrices).
In particular

1.12 Positive Definite, Diagonally Dominant and M-matrices 29

Property 1.18 Let A ∈ R
n×n be symmetric. Then, A is positive definite iff

one of the following properties is satisfied:

1. (Ax,x) > 0 ∀x �= 0 with x∈ R
n;

2. the eigenvalues of the principal submatrices of A are all positive;
3. the dominant principal minors of A are all positive (Sylvester criterion);
4. there exists a nonsingular matrix H such that A = HT H.

All the diagonal entries of a positive definite matrix are positive. Indeed, if ei

is the i-th vector of the canonical basis of R
n, then eT

i Aei = aii > 0.
Moreover, it can be shown that if A is symmetric positive definite, the entry

with the largest module must be a diagonal entry (these last two properties
are therefore necessary conditions for a matrix to be positive definite).

We finally notice that if A is symmetric positive definite and A1/2 is the
only positive definite matrix that is a solution of the matrix equation X2 = A,
the norm

‖x‖A = ‖A1/2x‖2 = (Ax,x)1/2 (1.28)

defines a vector norm, called the energy norm of the vector x. Related to the
energy norm is the energy scalar product given by (x,y)A = (Ax,y).

Definition 1.24 A matrix A∈ R
n×n is called diagonally dominant by rows if

|aii| ≥
n∑

j=1,j �=i

|aij |, with i = 1, . . . , n,

while it is called diagonally dominant by columns if

|aii| ≥
n∑

j=1,j �=i

|aji|, with i = 1, . . . , n.

If the inequalities above hold in a strict sense, A is called strictly diagonally
dominant (by rows or by columns, respectively). �

A strictly diagonally dominant matrix that is symmetric with positive diago-
nal entries is also positive definite.

Definition 1.25 A nonsingular matrix A ∈ R
n×n is an M-matrix if aij ≤ 0

for i �= j and if all the entries of its inverse are nonnegative. �

M-matrices enjoy the so-called discrete maximum principle, that is, if A is
an M-matrix and Ax ≤ 0, then x ≤ 0 (where the inequalities are meant
componentwise). In this connection, the following result can be useful.

Property 1.19 (M-criterion) Let a matrix A satisfy aij ≤ 0 for i �= j.
Then A is an M-matrix if and only if there exists a vector w > 0 such that
Aw > 0.

30 1 Foundations of Matrix Analysis

Finally, M-matrices are related to strictly diagonally dominant matrices
by the following property.

Property 1.20 A matrix A ∈ R
n×n that is strictly diagonally dominant by

rows and whose entries satisfy the relations aij ≤ 0 for i �= j and aii > 0, is
an M-matrix.

For further results about M-matrices, see for instance [Axe94] and [Var62].

1.13 Exercises

1. Let W1 and W2 be two subspaces of R
n. Prove that if V = W1 ⊕ W2, then

dim(V) = dim(W1) + dim(W2), while in general

dim(W1 + W2) = dim(W1) + dim(W2) − dim(W1 ∩ W2).

[Hint : Consider a basis for W1 ∩ W2 and first extend it to W1, then to W2,
verifying that the basis formed by the set of the obtained vectors is a basis for
the sum space.]

2. Check that the following set of vectors

vi =
(
xi−1

1 , xi−1
2 , . . . , xi−1

n

)
, i = 1, 2, . . . , n,

forms a basis for R
n, x1, . . . , xn being a set of n distinct points of R.

3. Exhibit an example showing that the product of two symmetric matrices may
be nonsymmetric.

4. Let B be a skew-symmetric matrix, namely, BT = −B. Let A = (I+B)(I−B)−1

and show that A−1 = AT .
5. A matrix A ∈ C

n×n is called skew-hermitian if AH = −A. Show that the
diagonal entries of A must be purely imaginary numbers.

6. Let A, B and A+B be invertible matrices of order n. Show that also A−1 +B−1

is nonsingular and that

(
A−1 + B−1

)−1
= A (A + B)−1 B = B (A + B)−1 A.

[Solution :
(
A−1 + B−1

)−1
= A

(
I + B−1A

)−1
= A (B + A)−1 B. The second

equality is proved similarly by factoring out B and A, respectively from left and
right.]

7. Given the nonsymmetric real matrix

A =

[
0 1 1
1 0 −1

−1 −1 0

]

,

check that it is similar to the diagonal matrix D = diag(1, 0,−1) and find its
eigenvectors. Is this matrix normal?
[Solution : the matrix is not normal.]

1.13 Exercises 31

8. Let A be a square matrix of order n. Check that if P (A) =

n∑

k=0

ckAk and λ(A)

are the eigenvalues of A, then the eigenvalues of P (A) are given by λ(P (A)) =
P (λ(A)). In particular, prove that ρ(A2) = [ρ(A)]2.

9. Prove that a matrix of order n having n distinct eigenvalues cannot be defective.
Moreover, prove that a normal matrix cannot be defective.

10. Commutativity of matrix product. Show that if A and B are square matrices that
share the same set of eigenvectors, then AB = BA. Prove, by a counterexample,
that the converse is false.

11. Let A be a normal matrix whose eigenvalues are λ1, . . . , λn. Show that the
singular values of A are |λ1|, . . . , |λn|.

12. Let A ∈ C
m×n with rank(A) = n. Show that A† = (AT A)−1AT enjoys the

following properties:

(1) A†A = In; (2) A†AA† = A†, AA†A = A; (3) if m = n, A† = A−1.

13. Show that the Moore-Penrose pseudo-inverse matrix A† is the only matrix that
minimizes the functional

min
X∈Cn×m

‖AX − Im‖F,

where ‖ · ‖F is the Frobenius norm.
14. Prove Property 1.10.

[Solution : For any x, x̂ ∈ V show that | ‖x‖−‖x̂‖ | ≤ ‖x− x̂‖. Assuming that
dim(V) = n and expanding the vector w = x − x̂ on a basis of V, show that
‖w‖ ≤ C‖w‖∞, from which the thesis follows by imposing in the first obtained
inequality that ‖w‖∞ ≤ ε.]

15. Prove Property 1.11 in the case A ∈ R
n×m with m linearly independent columns.

[Hint : First show that ‖ · ‖A fulfills all the properties characterizing a norm:
positiveness (A has linearly independent columns, thus if x �= 0, then Ax �= 0,
which proves the thesis), homogeneity and triangular inequality.]

16. Show that for a rectangular matrix A ∈ R
m×n

‖A‖2
F = σ2

1 + . . . + σ2
p,

where p is the minimum between m and n, σi are the singular values of A and
‖ · ‖F is the Frobenius norm.

17. Assuming p, q = 1, 2,∞, F , recover the following table of equivalence constants
cpq such that ∀A ∈ R

n×n, ‖A‖p ≤ cpq‖A‖q.

cpq q = 1 q = 2 q = ∞ q = F

p = 1 1
√

n n
√

n
p = 2

√
n 1

√
n 1

p = ∞ n
√

n 1
√

n
p = F

√
n

√
n

√
n 1

18. A matrix norm for which ‖A‖ = ‖ |A| ‖ is called absolute norm, having denoted
by |A| the matrix of the absolute values of the entries of A. Prove that ‖ · ‖1,
‖ · ‖∞ and ‖ · ‖F are absolute norms, while ‖ · ‖2 is not. Show that for this latter

1√
n
‖A‖2 ≤ ‖ |A| ‖2 ≤

√
n‖A‖2.

2

Principles of Numerical Mathematics

The basic concepts of consistency, stability and convergence of a numerical
method will be introduced in a very general context in the first part of the
chapter: they provide the common framework for the analysis of any method
considered henceforth. The second part of the chapter deals with the computer
finite representation of real numbers and the analysis of error propagation in
machine operations.

2.1 Well-posedness and Condition Number of a Problem

Consider the following problem: find x such that

F (x, d) = 0, (2.1)

where d is the set of data which the solution depends on and F is the func-
tional relation between x and d. According to the kind of problem that is
represented in (2.1), the variables x and d may be real numbers, vectors or
functions. Typically, (2.1) is called a direct problem if F and d are given and x
is the unknown, inverse problem if F and x are known and d is the unknown,
identification problem when x and d are given while the functional relation F
is the unknown (these latter problems will not be covered in this volume).

Problem (2.1) is well posed if it admits a unique solution x which depends
with continuity on the data. We shall use the terms well posed and stable in
an interchanging manner and we shall deal henceforth only with well-posed
problems.

A problem which does not enjoy the property above is called ill posed or
unstable and before undertaking its numerical solution it has to be regular-
ized, that is, it must be suitably transformed into a well-posed problem (see,
for instance [Mor84]). Indeed, it is not appropriate to pretend the numerical
method can cure the pathologies of an intrinsically ill-posed problem.

Example 2.1 A simple instance of an ill-posed problem is finding the number
of real roots of a polynomial. For example, the polynomial p(x) = x4 − x2

34 2 Principles of Numerical Mathematics

(2a− 1) + a(a− 1) exhibits a discontinuous variation of the number of real roots as
a continuously varies in the real field. We have, indeed, 4 real roots if a ≥ 1, 2 if
a ∈ [0, 1) while no real roots exist if a < 0. •

Let D be the set of admissible data, i.e. the set of the values of d in
correspondance of which problem (2.1) admits a unique solution. Continuous
dependence on the data means that small perturbations on the data d of D
yield “small” changes in the solution x. Precisely, let d ∈ D and denote by
δd a perturbation admissible in the sense that d + δd ∈ D and by δx the
corresponding change in the solution, in such a way that

F (x + δx, d + δd) = 0. (2.2)

Then, we require that

∃η0 = η0(d) > 0, ∃K0 = K0(d) such that

if ‖δd‖ ≤ η0 then ‖δx‖ ≤ K0‖δd‖.
(2.3)

The norms used for the data and for the solution may not coincide, whenever
d and x represent variables of different kinds.

Remark 2.1 The property of continuous dependence on the data could have
been stated in the following alternative way, which is more akin to the classical
form of Analysis

∀ε > 0 ∃δ = δ(ε) such that if ‖δd‖ ≤ δ then ‖δx‖ ≤ ε.

The form (2.3) is however more suitable to express in the following the concept
of numerical stability, that is, the property that small perturbations on the
data yield perturbations of the same order on the solution. �

With the aim of making the stability analysis more quantitative, we introduce
the following definition.

Definition 2.1 For problem (2.1) we define the relative condition number
to be

K(d) = sup
{
‖δx‖/‖x‖
‖δd‖/‖d‖ , δd �= 0, d + δd ∈ D

}

. (2.4)

Whenever d = 0 or x = 0, it is necessary to introduce the absolute condition
number, given by

Kabs(d) = sup
{
‖δx‖
‖δd‖ , δd �= 0, d + δd ∈ D

}

. (2.5)

�

2.1 Well-posedness and Condition Number of a Problem 35

Problem (2.1) is called ill-conditioned if K(d) is “big” for any admissi-
ble datum d (the precise meaning of “small” and “big” is going to change
depending on the considered problem).

The property of a problem of being well-conditioned is independent of the
numerical method that is being used to solve it. In fact, it is possible to gener-
ate stable as well as unstable numerical schemes for solving well-conditioned
problems. The concept of stability for an algorithm or for a numerical method
is analogous to that used for problem (2.1) and will be made precise in the
next section.

Remark 2.2 (Ill-posed problems) Even in the case in which the condition
number does not exist (formally, it is infinite), it is not necessarily true that the
problem is ill-posed. In fact there exist well posed problems (for instance, the
search of multiple roots of algebraic equations, see Example 2.2) for which
the condition number is infinite, but such that they can be reformulated in
equivalent problems (that is, having the same solutions) with a finite condition
number. �

If problem (2.1) admits a unique solution, then there necessarily exists a
mapping G, that we call resolvent, between the sets of the data and of the
solutions, such that

x = G(d), that is F (G(d), d) = 0. (2.6)

According to this definition, (2.2) yields x+δx = G(d+δd). Assuming that G
is differentiable in d and denoting formally by G′(d) its derivative with respect
to d (if G : R

n → R
m, G′(d) will be the Jacobian matrix of G evaluated at

the vector d), a Taylor’s expansion of G truncated at first order ensures that

G(d + δd) − G(d) = G′(d)δd + o(‖δd‖) for δd → 0,

where ‖·‖ is a suitable vector norm and o(·) is the classical infinitesimal symbol
denoting an infinitesimal term of higher order with respect to its argument.
Neglecting the infinitesimal of higher order with respect to ‖δd‖, from (2.4)
and (2.5) we respectively deduce that

K(d) � ‖G′(d)‖ ‖d‖
‖G(d)‖ , Kabs(d) � ‖G′(d)‖, (2.7)

where the symbol ‖ · ‖, when applied to a matrix, denotes the induced matrix
norm (1.19) associated with the vector norm introduced above. The estimates
in (2.7) are of great practical usefulness in the analysis of problems in the
form (2.6), as shown in the forthcoming examples.

Example 2.2 (Algebraic equations of second degree) The solutions to the

algebraic equation x2 − 2px + 1 = 0, with p ≥ 1, are x± = p ±
√

p2 − 1. In this
case, F (x, p) = x2 − 2px + 1, the datum d is the coefficient p, while x is the vector

36 2 Principles of Numerical Mathematics

of components {x+, x−}. As for the condition number, we notice that (2.6) holds
by taking G : R → R

2, G(p) = {x+, x−}. Letting G±(p) = x±, it follows that

G′
±(p) = 1 ± p/

√
p2 − 1. Using (2.7) with ‖ · ‖ = ‖ · ‖2 we get

K(p) � |p|
√

p2 − 1
, p > 1. (2.8)

From (2.8) it turns out that in the case of separated roots (say, if p ≥
√

2) problem
F (x, p) = 0 is well conditioned. The behavior dramatically changes in the case
of multiple roots, that is when p = 1. First of all, one notices that the function
G±(p) = p ±

√
p2 − 1 is no longer differentiable for p = 1, which makes (2.8)

meaningless. On the other hand, equation (2.8) shows that, for p close to 1, the
problem at hand is ill conditioned. However, the problem is not ill posed. Indeed,
following Remark 2.2, it is possible to reformulate it in an equivalent manner as
F (x, t) = x2 − ((1 + t2)/t)x + 1 = 0, with t = p +

√
p2 − 1, whose roots x− = t and

x+ = 1/t coincide for t = 1. The change of parameter thus removes the singularity
that is present in the former representation of the roots as functions of p. The two
roots x− = x−(t) and x+ = x+(t) are now indeed regular functions of t in the
neighborhood of t = 1 and evaluating the condition number by (2.7) yields K(t) � 1
for any value of t. The transformed problem is thus well conditioned. •

Example 2.3 (Systems of linear equations) Consider the linear system Ax =
b, where x and b are two vectors in R

n, while A is the matrix (n × n) of the real
coefficients of the system. Suppose that A is nonsingular; in such a case x is the
unknown solution x, while the data d are the right-hand side b and the matrix A,
that is, d = {bi, aij , 1 ≤ i, j ≤ n}.

Suppose now that we perturb only the right-hand side b. We have d = b,
x = G(b) = A−1b so that, G′(b) = A−1, and (2.7) yields

K(d) � ‖A−1‖ ‖b‖
‖A−1b‖ =

‖Ax‖
‖x‖ ‖A−1‖ ≤ ‖A‖ ‖A−1‖ = K(A), (2.9)

where K(A) is the condition number of matrix A (see Sect. 3.1.1) and the use of a
consistent matrix norm is understood. Therefore, if A is well conditioned, solving
the linear system Ax=b is a stable problem with respect to perturbations of the
right-hand side b. Stability with respect to perturbations on the entries of A will be
analyzed in Sect. 3.10. •

Example 2.4 (Nonlinear equations) Let f : R → R be a function of class C1

and consider the nonlinear equation

F (x, d) = f(x) = ϕ(x) − d = 0,

where ϕ : R → R is a suitable function and d ∈ R a datum (possibly equal to zero).
The problem is well defined only if ϕ is invertible in a neighborhood of d: in such a
case, indeed, x = ϕ−1(d) and the resolvent is G = ϕ−1. Since (ϕ−1)′(d) = [ϕ′(x)]

−1
,

the first relation in (2.7) yields, for d �= 0,

K(d) � |[ϕ′(x)]−1| |d||x| , (2.10)

2.2 Stability of Numerical Methods 37

while if d = 0 or x = 0 we have

Kabs(d) � |[ϕ′(x)]−1|. (2.11)

The problem is thus ill posed if x is a multiple root of ϕ(x)− d; it is ill conditioned
when ϕ′(x) is “small”, well conditioned when ϕ′(x) is “large”. We shall further
address this subject in Secttion6.1. •

In view of (2.7), the quantity ‖G′(d)‖ is an approximation of Kabs(d) and is
sometimes called first order absolute condition number. This latter represents
the limit of the Lipschitz constant of G (see Section 11.1) as the perturbation
on the data tends to zero.
Such a number does not always provide a sound estimate of the condition
number Kabs(d). This happens, for instance, when G′ vanishes at a point
whilst G is nonnull in a neighborhood of the same point. For example, take
x = G(d) = cos(d) − 1 for d ∈ (−π/2, π/2); we have G′(0) = 0, while
Kabs(0) = 2/π.

2.2 Stability of Numerical Methods

We shall henceforth suppose the problem (2.1) to be well posed. A numerical
method for the approximate solution of (2.1) will consist, in general, of a
sequence of approximate problems

Fn(xn, dn) = 0 n ≥ 1 (2.12)

depending on a certain parameter n (to be defined case by case). The under-
stood expectation is that xn → x as n → ∞, i.e. that the numerical solution
converges to the exact solution. For that, it is necessary that dn → d and that
Fn “approximates” F , as n → ∞. Precisely, if the datum d of problem (2.1)
is admissible for Fn, we say that (2.12) is consistent if

Fn(x, d) = Fn(x, d) − F (x, d) → 0 for n → ∞, (2.13)

where x is the solution to problem (2.1) corresponding to the datum d.
The meaning of this definition will be made precise in the next chapters

for any single class of considered problems.
A method is said to be strongly consistent if Fn(x, d) = 0 for any value of

n and not only for n → ∞.
In some cases (e.g., when iterative methods are used) problem (2.12) could

take the following form

Fn(xn, xn−1, . . . , xn−q, dn) = 0 n ≥ q, (2.14)

where x0, x1, . . . , xq−1 are given. In such a case, the property of strong con-
sistency becomes Fn(x, x, . . . , x, d) = 0 for all n ≥ q.

38 2 Principles of Numerical Mathematics

Example 2.5 Let us consider the following iterative method (known as Newton’s
method and discussed in Section 6.2.2) for approximating a simple root α of a
function f : R → R,

given x0, xn = xn−1 −
f(xn−1)

f ′(xn−1)
, n ≥ 1. (2.15)

The method (2.15) can be written in the form (2.14) by setting Fn(xn, xn−1, f) =
xn − xn−1 + f(xn−1)/f ′(xn−1) and is strongly consistent since Fn(α, α, f) = 0 for
all n ≥ 1.

Consider now the following numerical method (known as the composite midpoint

rule discussed in Section 9.2) for approximating x =
∫ b

a
f(t) dt,

xn = H

n∑

k=1

f
(

tk + tk+1

2

)
, n ≥ 1,

where H = (b − a)/n and tk = a + (k − 1)H, k = 1, . . . , n + 1. This method
is consistent; it is also strongly consistent provided that f is a piecewise linear
polynomial.

More generally, all numerical methods obtained from the mathematical problem
by truncation of limit operations (such as integrals, derivatives, series, . . .) are not
strongly consistent. •

Recalling what has been previously stated about problem (2.1), in order
for the numerical method to be well posed (or stable) we require that for any
fixed n, there exists a unique solution xn corresponding to the datum dn, that
the computation of xn as a function of dn is unique and, furthermore, that
xn depends continuously on the data. More precisely, let dn be an arbitrary
element of Dn, where Dn is the set of all admissible data for (2.12). Let δdn

be a perturbation admissible in the sense that dn + δdn ∈ Dn, and let δxn

denote the corresponding perturbation on the solution, that is

Fn(xn + δxn, dn + δdn) = 0.

Then we require that

∃η0 = η0(dn) > 0, ∃K0 = K0(dn) such that

if ‖δdn‖ ≤ η0 then ‖δxn‖ ≤ K0‖δdn‖.
(2.16)

As done in (2.4), we introduce for each problem in the sequence (2.12) the
quantities

Kn(dn) = sup
{
‖δxn‖/‖xn‖
‖δdn‖/‖dn‖

, δdn �= 0, dn + δdn ∈ Dn

}

,

Kabs,n(dn) = sup
{
‖δxn‖
‖δdn‖

, δdn �= 0, dn + δdn ∈ Dn

}

.

(2.17)

The numerical method is said to be well conditioned if Kn(dn) is “small” for
any admissible datum dn, ill conditioned otherwise. As in (2.6), let us consider

2.2 Stability of Numerical Methods 39

the case where, for each n, the functional relation (2.12) defines a mapping
Gn between the sets of the numerical data and the solutions

xn = Gn(dn), that is Fn(Gn(dn), dn) = 0. (2.18)

Assuming that Gn is differentiable, we can obtain from (2.17)

Kn(dn) � ‖G′
n(dn)‖ ‖dn‖

‖Gn(dn)‖ , Kabs,n(dn) � ‖G′
n(dn)‖. (2.19)

We observe that, in the case where the sets of admissible data in problems (2.1)
and (2.12) coincide, we can use in (2.16) and (2.17) the quantity d instead of
dn. In such a case, we can define the relative and absolute asymptotic condition
number corresponding to the datum d as follows

Knum(d) = lim
k→∞

sup
n≥k

Kn(d), Knum
abs (d) = lim

k→∞
sup
n≥k

Kabs,n(d).

Example 2.6 (Sum and subtraction) The function f : R
2 → R, f(a, b) = a+ b,

is a linear mapping whose gradient is the vector f ′(a, b) = (1, 1)T . Using the vector
norm ‖ · ‖1 defined in (1.13) yields K(a, b) � (|a| + |b|)/(|a + b|), from which it
follows that summing two numbers of the same sign is a well conditioned opera-
tion, being K(a, b) � 1. On the other hand, subtracting two numbers almost equal
is ill conditioned, since |a + b| � |a| + |b|. This fact, already pointed out in Ex-
ample 2.2, leads to the cancellation of significant digits whenever numbers can be
represented using only a finite number of digits (as in floating-point arithmetic, see
Sect. 2.5). •

Example 2.7 Consider again the problem of computing the roots of a polynomial
of second degree analyzed in Example 2.2. When p > 1 (separated roots), such
a problem is well conditioned. However, we generate an unstable algorithm if we
evaluate the root x− by the formula x− = p −

√
p2 − 1. This formula is indeed

subject to errors due to numerical cancellation of significant digits (see Sect. 2.4)
that are introduced by the finite arithmetic of the computer. A possible remedy to
this trouble consists of computing x+ = p +

√
p2 − 1 at first, then x− = 1/x+.

Alternatively, one can solve F (x, p) = x2 − 2px + 1 = 0 using Newton’s method
(proposed in Example 2.5), which reads:

given x0, xn = xn−1 − (x2
n−1 − 2pxn−1 + 1)/(2xn−1 − 2p) = fn(p), n ≥ 1.

Applying (2.19) for p > 1 yields Kn(p) � |p|/|xn−p|. To compute Knum(p) we notice
that, in the case when the algorithm converges, the solution xn would converge to one
of the roots x+ or x−; therefore, |xn −p| →

√
p2 − 1 and thus Kn(p) → Knum(p) �

|p|/
√

p2 − 1, in perfect agreement with the value (2.8) of the condition number of
the exact problem.

We can conclude that Newton’s method for the search of simple roots of a second
order algebraic equation is ill conditioned if |p| is very close to 1, while it is well
conditioned in the other cases. •

40 2 Principles of Numerical Mathematics

The final goal of numerical approximation is, of course, to build, through
numerical problems of the type (2.12), solutions xn that “get closer” to the
solution of problem (2.1) as much as n gets larger. This concept is made
precise in the next definition.

Definition 2.2 The numerical method (2.12) is convergent iff

∀ε > 0 ∃n0 = n0(ε), ∃δ = δ(n0, ε) > 0 such that

∀n > n0(ε), ∀δdn : ‖δdn‖ ≤ δ ⇒ ‖x(d) − xn(d + δdn)‖ ≤ ε,
(2.20)

where d is an admissible datum for the problem (2.1), x(d) is the corresponding
solution and xn(d + δdn) is the solution of the numerical problem (2.12) with
datum d + δdn. �

To verify the implication (2.20) it suffices to check that under the same
assumptions

‖x(d + δdn) − xn(d + δdn)‖ ≤ ε

2
. (2.21)

Indeed, thanks to (2.3) we have

‖x(d) − xn(d + δdn)‖ ≤ ‖x(d) − x(d + δdn)‖

+‖x(d + δdn) − xn(d + δdn)‖ ≤ K0‖δdn‖ + ε
2 .

Choosing δ = min{η0, ε/(2K0)} one obtains (2.20).
Measures of the convergence of xn to x are given by the absolute error or

the relative error, respectively defined as

E(xn) = |x − xn|, Erel(xn) =
|x − xn|

|x| (if x �= 0). (2.22)

In the cases where x and xn are matrix or vector quantities, in addition to
the definitions in (2.22) (where the absolute values are substituted by suitable
norms) it is sometimes useful to introduce the relative error by component
defined as

Ec
rel(xn) = max

i,j

|(x − xn)ij |
|xij |

. (2.23)

2.2.1 Relations between Stability and Convergence

The concepts of stability and convergence are strongly connected.
First of all, if problem (2.1) is well posed, a necessary condition in order for
the numerical problem (2.12) to be convergent is that it is stable.

Let us thus assume that the method is convergent, that is, (2.20) holds for
an arbitrary ε > 0. We have

2.2 Stability of Numerical Methods 41

‖δxn‖ = ‖xn(d + δdn) − xn(d)‖ ≤ ‖xn(d) − x(d)‖

+‖x(d) − x(d + δdn)‖ + ‖x(d + δdn) − xn(d + δdn)‖

≤ K(δ(n0, ε), d)‖δdn‖ + ε,

(2.24)

having used (2.3) and (2.21) twice. Choosing now δdn such that ‖δdn‖ ≤ η0,
we deduce that ‖δxn‖/‖δdn‖ can be bounded by K0 = K(δ(n0, ε), d) + 1,
provided that ε ≤ ‖δdn‖, so that the method is stable. Thus, we are interested
in stable numerical methods since only these can be convergent.

The stability of a numerical method becomes a sufficient condition for
the numerical problem (2.12) to converge if this latter is also consistent with
problem (2.1). Indeed, under these assumptions we have

‖x(d + δdn) − xn(d + δdn)‖ ≤ ‖x(d + δdn) − x(d)‖

+‖x(d) − xn(d)‖ + ‖xn(d) − xn(d + δdn)‖.

Thanks to (2.3), the first term at right-hand side can be bounded by ‖δdn‖
(up to a multiplicative constant independent of δdn). A similar bound holds
for the third term, due to the stability property (2.16). Finally, concerning
the remaining term, if Fn is differentiable with respect to the variable x, an
expansion in a Taylor series gives

Fn(x(d), d) − Fn(xn(d), d) =
∂Fn

∂x
|(x,d)(x(d) − xn(d)),

for a suitable x “between” x(d) and xn(d). Assuming also that ∂Fn/∂x is
invertible, we get

x(d) − xn(d) =
(

∂Fn

∂x

)−1

|(x,d)

[Fn(x(d), d) − Fn(xn(d), d)]. (2.25)

On the other hand, replacing Fn(xn(d), d) with F (x(d), d) (since both terms
are equal to zero) and passing to the norms, we find

‖x(d) − xn(d)‖ ≤
∥
∥
∥
∥
∥

(
∂Fn

∂x

)−1

|(x,d)

∥
∥
∥
∥
∥

‖Fn(x(d), d) − F (x(d), d)‖.

Thanks to (2.13) we can thus conclude that ‖x(d) − xn(d)‖ → 0 for n → ∞.
The result that has just been proved, although stated in qualitative terms,
is a milestone in numerical analysis, known as equivalence theorem (or Lax-
Richtmyer theorem): “for a consistent numerical method, stability is equivalent
to convergence”. A rigorous proof of this theorem is available in [Dah56] for
the case of linear Cauchy problems, or in [Lax65] and in [RM67] for linear
well-posed initial value problems.

42 2 Principles of Numerical Mathematics

2.3 A priori and a posteriori Analysis

The stability analysis of a numerical method can be carried out following
different strategies:

1. forward analysis, which provides a bound to the variations ‖δxn‖ on the
solution due to both perturbations in the data and to errors that are
intrinsic to the numerical method;

2. backward analysis, which aims at estimating the perturbations that should
be “impressed” to the data of a given problem in order to obtain the
results actually computed under the assumption of working in exact
arithmetic. Equivalently, given a certain computed solution x̂n, backward
analysis looks for the perturbations δdn on the data such that Fn(x̂n, dn +
δdn) = 0. Notice that, when performing such an estimate, no account at
all is taken into the way x̂n has been obtained (that is, which method has
been employed to generate it).

Forward and backward analyses are two different instances of the so called
a priori analysis. This latter can be applied to investigate not only the stability
of a numerical method, but also its convergence. In this case it is referred to as
a priori error analysis, which can again be performed using either a forward
or a backward technique.

A priori error analysis is distincted from the so called a posteriori error
analysis, which aims at producing an estimate of the error on the grounds of
quantities that are actually computed by a specific numerical method. Typi-
cally, denoting by x̂n the computed numerical solution, approximation to the
solution x of problem (2.1), the a posteriori error analysis aims at evaluating
the error x − x̂n as a function of the residual rn = F (x̂n, d) by means of
constants that are called stability factors (see [EEHJ96]).

Example 2.8 For the sake of illustration, consider the problem of finding the zeros
α1, . . . , αn of a polynomial pn(x) =

∑n

k=0
akxk of degree n.

Denoting by p̃n(x) =
∑n

k=0
ãkxk a perturbed polynomial whose zeros are α̃i,

forward analysis aims at estimating the error between two corresponding zeros αi

and α̃i, in terms of the variations on the coefficients ak − ãk, k = 0, 1, . . . , n.
On the other hand, let {α̂i} be the approximate zeros of pn (computed somehow).

Backward analysis provides an estimate of the perturbations δak which should be
impressed to the coefficients so that

∑n

k=0
(ak + δak)α̂k

i = 0, for a fixed α̂i. The goal
of a posteriori error analysis would rather be to provide an estimate of the error
αi − α̂i as a function of the residual value pn(α̂i).

This analysis will be carried out in Section 6.1. •

Example 2.9 Consider the linear system Ax=b, where A∈ R
n×n is a nonsingular

matrix.
For the perturbed system Ãx̃ = b̃, forward analysis provides an estimate of the

error x − x̃ in terms of A − Ã and b − b̃, while backward analysis estimates the
perturbations δA = (δaij) and δb = (δbi) which should be impressed to the entries

2.4 Sources of Error in Computational Models 43

of A and b in order to get (A + δA)x̂n = b + δb, x̂n being the solution of the
linear system (computed somehow). Finally, a posteriori error analysis looks for an
estimate of the error x − x̂n as a function of the residual rn = b − Ax̂n.

We will develop this analysis in Section 3.1. •

It is important to point out the role played by the a posteriori analysis in devis-
ing strategies for adaptive error control. These strategies, by suitably changing
the discretization parameters (for instance, the spacing between nodes in the
numerical integration of a function or a differential equation), employ the a
posteriori analysis in order to ensure that the error does not exceed a fixed
tolerance.

A numerical method that makes use of an adaptive error control is called
adaptive numerical method. In practice, a method of this kind applies in the
computational process the idea of feedback, by activating on the grounds of
a computed solution a convergence test which ensures the control of error
within a fixed tolerance. In case the convergence test fails, a suitable strategy
for modifying the discretization parameters is automatically adopted in order
to enhance the accuracy of the solution to be newly computed, and the overall
procedure is iterated until the convergence check is passed.

2.4 Sources of Error in Computational Models

Whenever the numerical problem (2.12) is an approximation to the mathe-
matical problem (2.1) and this latter is in turn a model of a physical problem
(which will be shortly denoted by PP), we shall say that (2.12) is a computa-
tional model for PP.

In this process the global error, denoted by e, is expressed by the difference
between the actually computed solution, x̂n, and the physical solution, xph,
of which x provides a model. The global error e can thus be interpreted as
being the sum of the error em of the mathematical model, given by x − xph,
and the error ec of the computational model, x̂n − x, that is e = em + ec (see
Figure 2.1).

The error em will in turn take into account the error of the mathematical
model in strict sense (that is, the extent at which the functional equation (2.1)
does realistically describe the problem PP) and the error on the data (that is,
how much accurately does d provide a measure of the real physical data). In
the same way, ec turns out to be the combination of the numerical discretiza-
tion error en = xn − x, the error ea introduced by the numerical algorithm
and the roundoff error introduced by the computer during the actual solution
of problem (2.12) (see Sect. 2.5).

In general, we can thus outline the following sources of error:

1. errors due to the model, that can be controlled by a proper choice of the
mathematical model;

44 2 Principles of Numerical Mathematics

PP : xph

F (x, d) = 0

Fn(xn, dn) = 0

em

x̂n

e

ea

ec

en

Fig. 2.1. Errors in computational models

2. errors in the data, that can be reduced by enhancing the accuracy in the
measurement of the data themselves;

3. truncation errors, arising from having replaced in the numerical model
limits by operations that involve a finite number of steps;

4. rounding errors.

The errors at the items 3. and 4. give rise to the computational error. A
numerical method will thus be convergent if this error can be made arbitrarily
small by increasing the computational effort. Of course, convergence is the
primary, albeit not unique, goal of a numerical method, the others being
accuracy, reliability and efficiency.

Accuracy means that the errors are small with respect to a fixed tolerance.
It is usually quantified by the order of infinitesimal of the error en with respect
to the discretization characteristic parameter (for instance the largest grid
spacing between the discretization nodes). By the way, we notice that machine
precision does not limit, on theoretical grounds, the accuracy.

Reliability means it is likely that the global error can be guaranteed to be
below a certain tolerance. Of course, a numerical model can be considered to
be reliable only if suitably tested, that is, successfully applied to several test
cases.

Efficiency means that the computational complexity that is needed to con-
trol the error (that is, the amount of operations and the size of the memory
required) is as small as possible.
Having encountered the term algorithm several times in this section, we can-
not refrain from providing an intuitive description of it. By algorithm we
mean a directive that indicates, through elementary operations, all the pas-
sages that are needed to solve a specific problem. An algorithm can in turn
contain sub-algorithms and must have the feature of terminating after a fi-
nite number of elementary operations. As a consequence, the executor of the
algorithm (machine or human being) must find within the algorithm itself all

2.5 Machine Representation of Numbers 45

the instructions to completely solve the problem at hand (provided that the
necessary resources for its execution are available).

For instance, the statement that a polynomial of second degree surely
admits two roots in the complex plane does not characterize an algorithm,
whereas the formula yielding the roots is an algorithm (provided that the sub-
algorithms needed to correctly execute all the operations have been defined
in turn).

Finally, the complexity of an algorithm is a measure of its executing time.
Calculating the complexity of an algorithm is therefore a part of the analysis
of the efficiency of a numerical method. Since several algorithms, with differ-
ent complexities, can be employed to solve the same problem P , it is useful to
introduce the concept of complexity of a problem, this latter meaning the com-
plexity of the algorithm that has minimum complexity among those solving
P . The complexity of a problem is typically measured by a parameter directly
associated with P . For instance, in the case of the product of two square
matrices, the computational complexity can be expressed as a function of a
power of the matrix size n (see, [Str69]).

2.5 Machine Representation of Numbers

Any machine operation is affected by rounding errors or roundoff. They are
due to the fact that on a computer only a finite subset of the set of real
numbers can be represented. In this section, after recalling the positional
notation of real numbers, we introduce their machine representation.

2.5.1 The Positional System

Let a base β ∈ N be fixed with β ≥ 2, and let x be a real number with a
finite number of digits xk with 0 ≤ xk < β for k = −m, . . . , n. The notation
(conventionally adopted)

xβ = (−1)s [xnxn−1 . . . x1x0.x−1x−2 . . . x−m] , xn �= 0 (2.26)

is called the positional representation of x with respect to the base β. The
point between x0 and x−1 is called decimal point if the base is 10, binary
point if the base is 2, while s depends on the sign of x (s = 0 if x is positive,
1 if negative). Relation (2.26) actually means

xβ = (−1)s

(
n∑

k=−m

xkβk

)

.

Example 2.10 The conventional writing x10 = 425.33 denotes the number x =
4 · 102 + 2 · 10 + 5 + 3 · 10−1 + 3 · 10−2, while x6 = 425.33 would denote the real
number x = 4 · 62 +2 · 6+5+3 · 6−1 +3 · 6−2. A rational number can of course have

46 2 Principles of Numerical Mathematics

a finite number of digits in a base and an infinite number of digits in another base.
For example, the fraction 1/3 has infinite digits in base 10, being x10 = 0.3̄, while
it has only one digit in base 3, being x3 = 0.1. •

Any real number can be approximated by numbers having a finite represen-
tation. Indeed, having fixed the base β, the following property holds

∀ε > 0, ∀xβ ∈ R, ∃yβ ∈ R such that |yβ − xβ | < ε,

where yβ has finite positional representation.
In fact, given the positive number xβ = xnxn−1 . . . x0.x−1 . . . x−m . . . with a
number of digits, finite or infinite, for any r ≥ 1 one can build two numbers

x
(l)
β =

r−1∑

k=0

xn−kβn−k, x
(u)
β = x

(l)
β + βn−r+1,

having r digits, such that x
(l)
β < xβ < x

(u)
β and x

(u)
β − x

(l)
β = βn−r+1. If

r is chosen in such a way that βn−r+1 < ε, then taking yβ equal to x
(l)
β

or x
(u)
β yields the desired inequality. This result legitimates the computer

representation of real numbers (and thus by a finite number of digits).
Although theoretically speaking all the bases are equivalent, in the com-

putational practice three are the bases generally employed: base 2 or binary,
base 10 or decimal (the most natural) and base 16 or hexadecimal. Almost all
modern computers use base 2, apart from a few which traditionally employ
base 16. In what follows, we will assume that β is an even integer.

In the binary representation, digits reduce to the two symbols 0 and 1,
called bits (binary digits), while in the hexadecimal case the symbols used
for the representation of the digits are 0,1,...,9,A,B,C,D,E,F. Clearly, the
smaller the adopted base, the longer the string of characters needed to repre-
sent the same number.

To simplify notations, we shall write x instead of xβ , leaving the base β
understood.

2.5.2 The Floating-point Number System

Assume a given computer has N memory positions in which to store any
number. The most natural way to make use of these positions in the repre-
sentation of a real number x different from zero is to fix one of them for its
sign, N − k− 1 for the integer digits and k for the digits beyond the point, in
such a way that

x = (−1)s · [aN−2aN−3 . . . ak . ak−1 . . . a0] , (2.27)

s being equal to 1 or 0. Notice that one memory position is equivalent to
one bit storage only when β = 2. The set of numbers of this kind is called
fixed-point system. Equation (2.27) stands for

2.5 Machine Representation of Numbers 47

x = (−1)s · β−k
N−2∑

j=0

ajβ
j (2.28)

and therefore this representation amounts to fixing a scaling factor for all the
representable numbers.
The use of fixed point strongly limits the value of the minimum and maximum
numbers that can be represented on the computer, unless a very large number
N of memory positions is employed. This drawback can be easily overcome
if the scaling in (2.28) is allowed to be varying. In such a case, given a non
vanishing real number x, its floating-point representation is given by

x = (−1)s · (0.a1a2 . . . at) · βe = (−1)s · m · βe−t, (2.29)

where t ∈ N is the number of allowed significant digits ai (with 0 ≤ ai ≤ β−1),
m = a1a2 . . . at an integer number called mantissa such that 0 ≤ m ≤ βt − 1
and e an integer number called exponent. Clearly, the exponent can vary
within a finite interval of admissible values: we let L ≤ e ≤ U (typically
L < 0 and U > 0). The N memory positions are now distributed among the
sign (one position), the significant digits (t positions) and the digits for the
exponent (the remaining N − t−1 positions). The number zero has a separate
representation.

Typically, on the computer there are two formats available for the floating-
point number representation: single and double precision. In the case of binary
representation, these formats correspond in the standard version to the rep-
resentation with N = 32 bits (single precision)

1

s
8 bits

e
23 bits

m

and with N = 64 bits (double precision)

1

s
11 bits

e
52 bits

m

Let us denote by

F(β, t, L, U) = {0} ∪
{

x ∈ R : x = (−1)sβe
t∑

i=1

aiβ
−i

}

the set of floating-point numbers with t significant digits, base β ≥ 2, 0 ≤ ai ≤
β − 1, and range (L,U) with L ≤ e ≤ U .

In order to enforce uniqueness in a number representation, it is typically
assumed that a1 �= 0 and m ≥ βt−1. In such an event a1 is called the principal
significant digit, while at is the last significant digit and the representation
of x is called normalized. The mantissa m is now varying between βt−1 and
βt − 1.

48 2 Principles of Numerical Mathematics

For instance, in the case β = 10, t = 4, L = −1 and U = 4, without the as-
sumption that a1 �= 0, the number 1 would admit the following representations

0.1000 · 101, 0.0100 · 102, 0.0010 · 103, 0.0001 · 104.

To always have uniqueness in the representation, it is assumed that also the
number zero has its own sign (typically s = 0 is assumed).
It can be immediately noticed that if x ∈ F(β, t, L, U) then also −x ∈
F(β, t, L, U). Moreover, the following lower and upper bounds hold for the
absolute value of x

xmin = βL−1 ≤ |x| ≤ βU (1 − β−t) = xmax. (2.30)

The cardinality of F(β, t, L, U) (henceforth shortly denoted by F) is

card F = 2(β − 1)βt−1(U − L + 1) + 1.

From (2.30) it turns out that it is not possible to represent any number (apart
from zero) whose absolute value is less than xmin. This latter limitation can
be overcome by completing F by the set FD of the floating-point de-normalized
numbers obtained by removing the assumption that a1 is non null, only for
the numbers that are referred to the minimum exponent L. In such a way
the uniqueness in the representation is not lost and it is possible to generate
numbers that have mantissa between 1 and βt−1−1 and belong to the interval
(−βL−1, βL−1). The smallest number in this set has absolute value equal
to βL−t.

Example 2.11 The positive numbers in the set F(2, 3,−1, 2) are

(0.111) · 22 =
7

2
, (0.110) · 22 = 3, (0.101) · 22 =

5

2
, (0.100) · 22 = 2,

(0.111) · 2 =
7

4
, (0.110) · 2 =

3

2
, (0.101) · 2 =

5

4
, (0.100) · 2 = 1,

(0.111) =
7

8
, (0.110) =

3

4
, (0.101) =

5

8
, (0.100) =

1

2
,

(0.111) · 2−1 =
7

16
, (0.110) · 2−1 =

3

8
, (0.101) · 2−1 =

5

16
, (0.100) · 2−1 =

1

4
.

They are included between xmin = βL−1 = 2−2 = 1/4 and xmax = βU (1 − β−t) =
22(1−2−3) = 7/2. As a whole, we have (β−1)βt−1(U−L+1) = (2−1)23−1(2+1+1) =
16 strictly positive numbers. Their opposites must be added to them, as well as the
number zero. We notice that when β = 2, the first significant digit in the normalized
representation is necessarily equal to 1 and thus it may not be stored in the computer
(in such an event, we call it hidden bit).

When considering also the positive de-normalized numbers, we should complete
the above set by adding the following numbers

2.5 Machine Representation of Numbers 49

(.011)2 · 2−1 =
3

16
, (.010)2 · 2−1 =

1

8
, (.001)2 · 2−1 =

1

16
.

According to what previously stated, the smallest de-normalized number is βL−t =
2−1−3 = 1/16. •

2.5.3 Distribution of Floating-point Numbers

The floating-point numbers are not equally spaced along the real line, but they
get dense close to the smallest representable number. It can be checked that
the spacing between a number x ∈ F and its next nearest y ∈ F, where both
x and y are assumed to be non null, is at least β−1εM |x| and at most εM |x|,
being εM = β1−t the machine epsilon. This latter represents the distance
between the number 1 and the nearest floating-point number, and therefore it
is the smallest number of F such that 1 + εM > 1.
Having instead fixed an interval of the form [βe, βe+1], the numbers of F that
belong to such an interval are equally spaced and have distance equal to βe−t.
Decreasing (or increasing) by one the exponent gives rise to a decrement (or
increment) of a factor β of the distance between consecutive numbers.

Unlike the absolute distance, the relative distance between two consecutive
numbers has a periodic behavior which depends only on the mantissa m.
Indeed, denoting by (−1)sm(x)βe−t one of the two numbers, the distance ∆x
from the successive one is equal to (−1)sβe−t, which implies that the relative
distance is

∆x

x
=

(−1)sβe−t

(−1)sm(x)βe−t
=

1
m(x)

. (2.31)

Within the interval [βe, βe+1], the ratio in (2.31) is decreasing as x increases
since in the normalized representation the mantissa varies from βt−1 to βt−1
(not included). However, as soon as x = βe+1, the relative distance gets back
to the value β−t+1 and starts decreasing on the successive intervals, as shown
in Figure 2.2. This oscillatory phenomenon is called wobbling precision and
the greater the base β, the more pronounced the effect. This is another reason
why small bases are preferably employed in computers.

2.5.4 IEC/IEEE Arithmetic

The possibility of building sets of floating-point numbers that differ in base,
number of significant digits and range of the exponent has prompted in the
past the development, for almost any computer, of a particular system F. In
order to avoid this proliferation of numerical systems, a standard has been
fixed that is nowadays almost universally accepted. This standard was devel-
oped in 1985 by the Institute of Electrical and Electronics Engineers (shortly,
IEEE) and was approved in 1989 by the International Electronical Commis-
sion (IEC) as the international standard IEC559 and it is now known by this

50 2 Principles of Numerical Mathematics

2
-123

2
-124

2
-125

2
-126

2-24

2-23

Fig. 2.2. Variation of relative distance for the set of numbers F(2, 24,−125, 128)
IEC/IEEE in single precision

Table 2.1. Lower or upper limits in the standard IEC559 for the extended format
of floating-point numbers

single double single double

N ≥ 43 bits ≥ 79 bits t ≥ 32 ≥ 64
L ≤ −1021 ≤ 16381 U ≥ 1024 ≥ 16384

Table 2.2. IEC559 codings of some exceptional values

value exponent mantissa

±0 L − 1 0
±∞ U + 1 0
NaN U + 1 �= 0

name (IEC is an organization analogue to the International Standardization
Organization (ISO) in the field of electronics). The standard IEC559 endorses
two formats for the floating-point numbers: a basic format, made by the sys-
tem F(2, 24,−125, 128) for the single precision, and by F(2, 53,−1021, 1024)
for the double precision, both including the de-normalized numbers, and an
extended format, for which only the main limitations are fixed (see Table 2.1).
Almost all the computers nowadays satisfy the requirements above. We sum-
marize in Table 2.2 the special codings that are used in IEC559 to deal with
the values ±0, ±∞ and with the so-called non numbers (shortly, NaN , that
is not a number), which correspond for instance to 0/0 or to other exceptional
operations.

2.5.5 Rounding of a Real Number in its Machine Representation

The fact that on any computer only a subset F(β, t, L, U) of R is actually
available poses several practical problems, first of all the representation in F

2.5 Machine Representation of Numbers 51

of any given real number. To this concern, notice that, even if x and y were
two numbers in F, the result of an operation on them does not necessarily
belong to F. Therefore, we must define an arithmetic also on F.

The simplest approach to solve the first problem consists of rounding x ∈ R

in such a way that the rounded number belongs to F. Among all the possible
rounding operations, let us consider the following one. Given x ∈ R in the
normalized positional notation let us substitute x by its representant fl(x) in
F, defined as

fl(x) = (−1)s(0. a1a2 . . . ãt) · βe, ãt =
{

at if at+1 < β/2,
at + 1 if at+1 ≥ β/2.

(2.32)

The mapping fl : R → F is the most commonly used and is called rounding
(in the chopping one would take more trivially ãt = at). Clearly, fl(x) = x if
x ∈ F and moreover fl(x) ≤ fl(y) if x ≤ y ∀x, y ∈ R (monotonicity property).

Remark 2.3 (Overflow and underflow) Everything written so far holds
only for the numbers that in (2.29) have exponent e within the range of F. If,
indeed, x ∈ (−∞,−xmax) ∪ (xmax,∞) the value fl(x) is not defined, while
if x ∈ (−xmin, xmin) the operation of rounding is defined anyway (even in
absence of de-normalized numbers). In the first case, if x is the result of an
operation on numbers of F, we speak about overflow, in the second case about
underflow (or graceful underflow if de-normalized numbers are accounted for).
The overflow is handled by the system through an interrupt of the executing
program. �

Apart from exceptional situations, we can easily quantify the error, ab-
solute and relative, that is made by substituting fl(x) for x. The following
result can be shown (see for instance [Hig96], Theorem 2.2).

Property 2.1 If x ∈ R is such that xmin ≤ |x| ≤ xmax, then

fl(x) = x(1 + δ) with |δ| ≤ u (2.33)

where

u =
1
2
β1−t =

1
2
εM (2.34)

is the so-called roundoff unit (or machine precision).

As a consequence of (2.33), the following bound holds for the relative error

Erel(x) =
|x − fl(x)|

|x| ≤ u, (2.35)

while, for the absolute error, one gets

E(x) = |x − fl(x)| ≤ βe−t|(a1 . . . at.at+1 . . .) − (a1 . . . ãt)|.

52 2 Principles of Numerical Mathematics

From (2.32), it follows that

|(a1 . . . at.at+1 . . .) − (a1 . . . ãt)| ≤ β−1 β

2
,

from which

E(x) ≤ 1
2
β−t+e.

Remark 2.4 In the MATLAB environment it is possible to know immedi-
ately the value of εM , which is given by the system variable eps. �

2.5.6 Machine Floating-point Operations

As previously stated, it is necessary to define on the set of machine numbers
an arithmetic which is analogous, as far as possible, to the arithmetic in R.
Thus, given any arithmetic operation ◦ : R × R → R on two operands in R

(the symbol ◦ may denote sum, subtraction, multiplication or division), we
shall denote by ◦ the corresponding machine operation

◦ : R × R → F, x ◦ y = fl(fl(x) ◦ fl(y)).

From the properties of floating-point numbers one could expect that for the
operations on two operands, whenever well defined, the following property
holds: ∀x, y ∈ F, ∃δ ∈ R such that

x ◦ y = (x ◦ y)(1 + δ) with |δ| ≤ u. (2.36)

In order for (2.36) to be satisfied when ◦ is the operator of subtraction, it will
require an additional assumption on the structure of the numbers in F, that
is the presence of the so-called round digit (which is addressed at the end of
this section). In particular, when ◦ is the sum operator, it follows that for all
x, y ∈ F (see Exercise 10)

|x + y − (x + y)|
|x + y| ≤ u(1 + u)

|x| + |y|
|x + y| + u, (2.37)

so that the relative error associated with every machine operation will be
small, unless x + y is not small by itself. An aside comment is deserved by
the case of the sum of two numbers close in module, but opposite in sign.
In fact, in such a case x + y can be quite small, this generating the so-called
cancellation errors (as evidenced in Example 2.6).

It is important to notice that, together with properties of standard arith-
metic that are preserved when passing to floating-point arithmetic (like, for
instance, the commutativity of the sum of two addends, or the product of two
factors), other properties are lost. An example is given by the associativity of
sum: it can indeed be shown (see Exercise 11) that in general

2.5 Machine Representation of Numbers 53

Table 2.3. Results for some exceptional operations

exception examples result

non valid operation 0/0, 0 · ∞ NaN
overflow ±∞
division by zero 1/0 ±∞
underflow subnormal numbers

x + (y + z) �= (x + y) + z.

We shall denote by flop the single elementary floating-point operation (sum,
subtraction, multiplication or division) (the reader is warned that in some
texts flop identifies an operation of the form a + b · c). According to the
previous convention, a scalar product between two vectors of length n will
require 2n − 1 flops, a product matrix-vector 2(m − 1)n flops if the matrix
is n × m and finally, a product matrix-matrix 2(r − 1)mn flops if the two
matrices are m × r and r × n respectively.

Remark 2.5 (IEC559 arithmetic) The IEC559 standard also defines a
closed arithmetic on F, this meaning that any operation on it produces a
result that can be represented within the system itself, although not neces-
sarily being expected from a pure mathematical standpoint. As an example,
in Table 2.3 we report the results that are obtained in exceptional situations.
The presence of a NaN (Not a Number) in a sequence of operations automat-
ically implies that the result is a NaN . General acceptance of this standard
is still ongoing. �

We mention that not all the floating-point systems satisfy (2.36). One of the
main reasons is the absence of the round digit in subtraction, that is, an extra-
bit that gets into action on the mantissa level when the subtraction between
two floating-point numbers is performed. To demonstrate the importance of
the round digit, let us consider the following example with a system F having
β = 10 and t = 2. Let us subtract 1 and 0.99. We have

101 · 0.1 101 · 0.10
100 · 0.99 ⇒ 101 · 0.09

101 · 0.01 −→ 100 · 0.10

that is, the result differs from the exact one by a factor 10. If we now execute
the same subtraction using the round digit, we obtain the exact result. Indeed

101 · 0.1 101 · 0.10
100 · 0.99 ⇒ 101 · 0.09 9

101 · 0.00 1 −→ 100 · 0.01

In fact, it can be shown that addition and subtraction, if executed without
round digit, do not satisfy the property

54 2 Principles of Numerical Mathematics

fl(x ± y) = (x ± y)(1 + δ) with |δ| ≤ u,

but the following one

fl(x ± y) = x(1 + α) ± y(1 + β) with |α| + |β| ≤ u.

An arithmetic for which this latter event happens is called aberrant. In some
computers the round digit does not exist, most of the care being spent on
velocity in the computation. Nowadays, however, the trend is to use even two
round digits (see [HP94] for technical details about the subject).

2.6 Exercises

1. Use (2.7) to compute the condition number K(d) of the following expressions

(1) x − ad = 0, a > 0 (2) d − x + 1 = 0,

d being the datum, a a parameter and x the “unknown”.
[Solution : (1) K(d) � |d|| log a|, (2) K(d) = |d|/|d + 1|.]

2. Study the well posedness and the conditioning in the infinity norm of the fol-
lowing problem as a function of the datum d: find x and y such that

{
x + dy = 1,
dx + y = 0.

[Solution : the given problem is a linear system whose matrix is A =

[
1 d
d 1

]

.

It is well-posed if A is nonsingular, i.e., if d �= ±1. In such a case, K∞(A) =
|(|d| + 1)/(|d| − 1)|.]

3. Study the conditioning of the solving formula x± = −p±
√

p2 + q for the second
degree equation x2 + 2px − q with respect to changes in the parameters p and
q separately.
[Solution : K(p) = |p|/

√
p2 + q, K(q) = |q|/(2|x±|

√
p2 + q).]

4. Consider the following Cauchy problem

{
x′(t) = x0e

at (a cos(t) − sin(t)) , t > 0,
x(0) = x0,

(2.38)

whose solution is x(t) = x0e
at cos(t) (a is a given real number). Study the con-

ditioning of (2.38) with respect to the choice of the initial datum and check that
on unbounded intervals it is well conditioned if a < 0, while it is ill conditioned
if a > 0.
[Hint : consider the definition of Kabs(a).]

5. Let x̂ �= 0 be an approximation of a nonnull quantity x. Find the relation
between the relative error ε = |x − x̂|/|x| and Ẽ = |x − x̂|/|x̂|.

6. Determine all the elements of the set F = (10, 6,−9, 9), in both normalized and
de-normalized cases.

2.6 Exercises 55

7. Consider the set of the de-normalized numbers FD and study the behavior of
the absolute distance and of the relative distance between two of these numbers.
Does the wobbling precision effect arise again?
[Hint : for these numbers, uniformity in the relative density is lost. As a con-
sequence, the absolute distance remains constant (equal to βL−t), while the
relative one rapidly grows as x tends to zero.]

8. What is the value of 00 in IEEE arithmetic?
[Solution : ideally, the outcome should be NaN . In practice, IEEE systems
recover the value 1. A motivation of this result can be found in [Gol91].]

9. Show that, due to cancellation errors, the following sequence

I0 = log
6

5
, Ik + 5Ik−1 =

1

k
, k = 1, 2, . . . , n, (2.39)

is not well suited to finite arithmetic computations of the integral In =
∫ 1

0

xn

x + 5
dx when n is sufficiently large, although it works in infinite arithmetic.

[Hint : consider the initial perturbed datum Ĩ0 = I0 + µ0 and study the propa-
gation of the error µ0 within (2.39).]

10. Prove (2.37).
[Solution : notice that

|x + y − (x + y)|
|x + y| ≤

|x + y − (fl(x) + fl(y))|
|x + y| +

|fl(x) − x + fl(y) − y|
|x + y| .

Then, use (2.36) and (2.35).]
11. Given x, y, z ∈ F with x + y, y + z, x + y + z that fall into the range of F, show

that

|(x + y) + z − (x + y + z)| ≤ C1 � (2|x + y| + |z|)u

|x + (y + z) − (x + y + z)| ≤ C2 � (|x| + 2|y + z|)u.

12. Which among the following approximations of π,

π = 4
(
1 − 1

3
+

1

5
− 1

7
+

1

9
− . . .

)
,

π = 6

(

0.5 +
(0.5)3

2 · 3 +
3(0.5)5

2 · 4 · 5 +
3 · 5(0.5)7

2 · 4 · 6 · 7 + . . .

) (2.40)

better limits the propagation of rounding errors? Compare using MATLAB the
obtained results as a function of the number of the terms in each sum in (2.40).

13. Analyze the stability, with respect to propagation of rounding errors, of the
following two MATLAB codes to evaluate f(x) = (ex − 1)/x for |x| � 1

% Algorithm 1
if x == 0

f = 1;
else

f = (exp(x) - 1) / x;
end

% Algorithm 2
y = exp (x);
if y == 1

f = 1;
else

f = (y - 1) / log (y);
end

56 2 Principles of Numerical Mathematics

[Solution : the first algorithm is inaccurate due to cancellation errors, while the
second one (in presence of round digit) is stable and accurate.]

14. In binary arithmetic one can show [Dek71] that the rounding error in the sum
of two numbers a and b, with a ≥ b, can be computed as

((a + b) − a) − b).

Based on this property, a method has been proposed, called Kahan compensated
sum, to compute the sum of n addends ai in such a way that the rounding
errors are compensated. In practice, letting the initial rounding error e1 = 0
and s1 = a1, at the i-th step, with i ≥ 2, the algorithm evaluates yi = xi −ei−1,
the sum is updated setting si = si−1+yi and the new rounding error is computed
as ei = (si − si−1) − yi. Implement this algorithm in MATLAB and check its
accuracy by evaluating again the second expression in (2.40).

15. The area A(T) of a triangle T with sides a, b and c, can be computed using the
following formula

A(T) =
√

p(p − a)(p − b)(p − c),

where p is half the perimeter of T . Show that in the case of strongly deformed
triangles (a � b + c), this formula lacks accuracy and check this experimentally.

Part II

Numerical Linear Algebra

3

Direct Methods for the Solution of Linear
Systems

A system of m linear equations in n unknowns consists of a set of algebraic
relations of the form

n∑

j=1

aijxj = bi, i = 1, . . . ,m, (3.1)

where xj are the unknowns, aij are the coefficients of the system and bi are
the components of the right hand side. System (3.1) can be more conveniently
written in matrix form as

Ax = b, (3.2)

where we have denoted by A = (aij) ∈ C
m×n the coefficient matrix, by

b=(bi) ∈ C
m the right side vector and by x=(xi) ∈ C

n the unknown vector,
respectively. We call a solution of (3.2) any n-tuple of values xi which satisfies
(3.1).

In this chapter we shall be mainly dealing with real-valued square systems
of order n, that is, systems of the form (3.2) with A ∈ R

n×n and b ∈ R
n. In

such cases existence and uniqueness of the solution of (3.2) are ensured if one
of the following (equivalent) hypotheses holds:

1. A is invertible;
2. rank(A)=n;
3. the homogeneous system Ax=0 admits only the null solution.

The solution of system (3.2) is formally provided by Cramer’s rule

xj =
∆j

det(A)
, j = 1, . . . , n, (3.3)

where ∆j is the determinant of the matrix obtained by substituting the j-th
column of A with the right hand side b. This formula is, however, of little prac-
tical use. Indeed, if the determinants are evaluated by the recursive relation

60 3 Direct Methods for the Solution of Linear Systems

(1.4), the computational effort of Cramer’s rule is of the order of (n + 1)! flops
and therefore turns out to be unacceptable even for small dimensions of A (for
instance, a computer able to perform 109 flops per second would take 9.6 ·1047

years to solve a linear system of only 50 equations).
For this reason, numerical methods that are alternatives to Cramer’s rule have
been developed. They are called direct methods if they yield the solution of
the system in a finite number of steps, iterative if they require (theoretically)
an infinite number of steps. Iterative methods will be addressed in the next
chapter. We notice from now on that the choice between a direct and an itera-
tive method does not depend only on the theoretical efficiency of the scheme,
but also on the particular type of matrix, on memory storage requirements
and, finally, on the architecture of the computer.

3.1 Stability Analysis of Linear Systems

Solving a linear system by a numerical method invariably leads to the intro-
duction of rounding errors. Only using stable numerical methods can keep
away the propagation of such errors from polluting the accuracy of the solu-
tion. In this section two aspects of stability analysis will be addressed.

Firstly, we will analyze the sensitivity of the solution of (3.2) to changes in
the data A and b (forward a priori analysis). Secondly, assuming that an ap-
proximate solution x̂ of (3.2) is available, we shall quantify the perturbations
on the data A and b in order for x̂ to be the exact solution of a perturbed
system (backward a priori analysis). The size of these perturbations will in
turn allow us to measure the accuracy of the computed solution x̂ by the use
of a posteriori analysis.

3.1.1 The Condition Number of a Matrix

The condition number of a matrix A ∈ C
n×n is defined as

K(A) = ‖A‖ ‖A−1‖, (3.4)

where ‖·‖ is an induced matrix norm. In general K(A) depends on the choice of
the norm; this will be made clear by introducing a subscript into the notation,
for instance, K∞(A) = ‖A‖∞ ‖A−1‖∞. More generally, Kp(A) will denote the
condition number of A in the p-norm. Remarkable instances are p = 1, p = 2
and p = ∞ (we refer to Exercise 1 for the relations among K1(A), K2(A) and
K∞(A)).

As already noticed in Example 2.3, an increase in the condition number
produces a higher sensitivity of the solution of the linear system to changes
in the data. Let us start by noticing that K(A) ≥ 1 since

1 = ‖AA−1‖ ≤ ‖A‖ ‖A−1‖ = K(A).

3.1 Stability Analysis of Linear Systems 61

Moreover, K(A−1) = K(A) and ∀α ∈ C with α �= 0, K(αA) = K(A). Finally,
if A is orthogonal, K2(A) = 1 since ‖A‖2 =

√
ρ(AT A) =

√
ρ(I) = 1 and

A−1 = AT . The condition number of a singular matrix is set equal to infinity.
For p = 2, K2(A) can be characterized as follows. Starting from (1.21), it

can be proved that

K2(A) = ‖A‖2 ‖A−1‖2 =
σ1(A)
σn(A)

,

where σ1(A) and σn(A) are the maximum and minimum singular values of
A (see Property 1.7). As a consequence, in the case of symmetric positive
definite matrices we have

K2(A) =
λmax

λmin
= ρ(A)ρ(A−1), (3.5)

where λmax and λmin are the maximum and minimum eigenvalues of A. To
check (3.5), notice that

‖A‖2 =
√

ρ(AT A) =
√

ρ(A2) =
√

λ2
max = λmax.

Moreover, since λ(A−1) = 1/λ(A), one gets ‖A−1‖2 = 1/λmin from which
(3.5) follows. For that reason, K2(A) is called spectral condition number.

Remark 3.1 Define the relative distance of A ∈ C
n×n from the set of singular

matrices with respect to the p-norm by

distp(A) = min
{
‖δA‖p

‖A‖p
: A + δA is singular

}

.

It can then be shown that ([Kah66], [Gas83])

distp(A) =
1

Kp(A)
. (3.6)

Equation (3.6) suggests that a matrix A with a high condition number can
behave like a singular matrix of the form A+δA. In other words, null pertur-
bations in the right hand side do not necessarily yield nonvanishing changes in
the solution since, if A+δA is singular, the homogeneous system (A+δA)z = 0
does no longer admit only the null solution. Notice that if the following con-
dition holds

‖A−1‖p‖δA‖p < 1. (3.7)

then the matrix A+δA is nonsingular (see, e.g., [Atk89], Theorem 7.12). �

Relation (3.6) seems to suggest that a natural candidate for measuring
the ill-conditioning of a matrix is its determinant, since from (3.3) one is
prompted to conclude that small determinants mean nearly-singular matri-
ces. However this conclusion is wrong, as there exist examples of matrices
with small (respectively, high) determinants and small (respectively, high)
condition numbers (see Exercise 2).

62 3 Direct Methods for the Solution of Linear Systems

3.1.2 Forward a priori Analysis

In this section we introduce a measure of the sensitivity of the system to
changes in the data. These changes will be interpreted in Section 3.10 as
being the effects of rounding errors induced by the numerical method used to
solve the system. For a more comprehensive analysis of the subject we refer
to [Dat95], [GL89], [Ste73] and [Var62].

Due to rounding errors, a numerical method for solving (3.2) does not
provide the exact solution but only an approximate one, which satisfies a per-
turbed system. In other words, a numerical method yields an (exact) solution
x + δx of the perturbed system

(A + δA)(x + δx) = b + δb. (3.8)

The next result provides an estimate of δx in terms of δA and δb.

Theorem 3.1 Let A ∈ R
n×n be a nonsingular matrix and δA ∈ R

n×n be
such that (3.7) is satisfied for an induced matrix norm ‖ · ‖. Then, if x∈ R

n

is the solution of Ax=b with b ∈ R
n (b �= 0) and δx ∈ R

n satisfies (3.8) for
δb ∈ R

n,

‖δx‖
‖x‖ ≤ K(A)

1 − K(A)‖δA‖/‖A‖

(
‖δb‖
‖b‖ +

‖δA‖
‖A‖

)

. (3.9)

Proof. From (3.7) it follows that the matrix A−1δA has norm less than 1. Then,
due to Theorem 1.5, I + A−1δA is invertible and from (1.26) it follows that

‖(I + A−1δA)−1‖ ≤ 1

1 − ‖A−1δA‖ ≤ 1

1 − ‖A−1‖ ‖δA‖ . (3.10)

On the other hand, solving for δx in (3.8) and recalling that Ax = b, one gets

δx = (I + A−1δA)−1A−1(δb − δAx),

from which, passing to the norms and using (3.10), it follows that

‖δx‖ ≤ ‖A−1‖
1 − ‖A−1‖ ‖δA‖ (‖δb‖ + ‖δA‖ ‖x‖) .

Finally, dividing both sides by ‖x‖ (which is nonzero since b �= 0 and A is nonsin-

gular) and noticing that ‖x‖ ≥ ‖b‖/‖A‖, the result follows. �

Well-conditioning alone is not enough to yield an accurate solution of the
linear system. It is indeed crucial, as pointed out in Chapter 2, to resort
to stable algorithms. Conversely, ill-conditioning does not necessarily exclude
that for particular choices of the right side b the overall conditioning of the
system is good (see Exercise 4).
A particular case of Theorem 3.1 is the following.

3.1 Stability Analysis of Linear Systems 63

Theorem 3.2 Assume that the conditions of Theorem 3.1 hold and let
δA = 0. Then

1
K(A)

‖δb‖
‖b‖ ≤ ‖δx‖

‖x‖ ≤ K(A)
‖δb‖
‖b‖ . (3.11)

Proof. We will prove only the first inequality since the second one directly follows

from (3.9). Relation δx = A−1δb yields ‖δb‖ ≤ ‖A‖ ‖δx‖. Multiplying both sides by

‖x‖ and recalling that ‖x‖ ≤ ‖A−1‖ ‖b‖ it follows that ‖x‖ ‖δb‖ ≤ K(A)‖b‖ ‖δx‖,
which is the desired inequality. �

In order to employ the inequalities (3.9) and (3.11) in the analysis of propa-
gation of rounding errors in the case of direct methods, ‖δA‖ and ‖δb‖ should
be bounded in terms of the dimension of the system and of the characteristics
of the floating-point arithmetic that is being used.

It is indeed reasonable to expect that the perturbations induced by a
method for solving a linear system are such that ‖δA‖ ≤ γ‖A‖ and ‖δb‖ ≤
γ‖b‖, γ being a positive number that depends on the roundoff unit u (for
example, we shall assume henceforth that γ = β1−t, where β is the base and
t is the number of digits of the mantissa of the floating-point system F). In
such a case (3.9) can be completed by the following theorem.

Theorem 3.3 Assume that ‖δA‖ ≤ γ‖A‖, ‖δb‖ ≤ γ‖b‖ with γ ∈ R
+ and

δA ∈ R
n×n, δb ∈ R

n. Then, if γK(A) < 1 the following inequalities hold

‖x + δx‖
‖x‖ ≤ 1 + γK(A)

1 − γK(A)
, (3.12)

‖δx‖
‖x‖ ≤ 2γ

1 − γK(A)
K(A). (3.13)

Proof. From (3.8) it follows that (I + A−1δA)(x + δx) = x + A−1δb. Moreover,
since γK(A) < 1 and ‖δA‖ ≤ γ‖A‖ it turns out that I + A−1δA is nonsingular.
Taking the inverse of such a matrix and passing to the norms we get ‖x + δx‖ ≤
‖(I + A−1δA)−1‖

(
‖x‖ + γ‖A−1‖ ‖b‖

)
. From Theorem 1.5 it then follows that

‖x + δx‖ ≤ 1

1 − ‖A−1δA‖
(
‖x‖ + γ‖A−1‖ ‖b‖

)
,

which implies (3.12), since ‖A−1δA‖ ≤ γK(A) and ‖b‖ ≤ ‖A‖ ‖x‖.
Let us prove (3.13). Subtracting (3.2) from (3.8) it follows that

Aδx = −δA(x + δx) + δb.

Inverting A and passing to the norms, the following inequality is obtained

‖δx‖ ≤ ‖A−1δA‖ ‖x + δx‖ + ‖A−1‖ ‖δb‖

≤ γK(A)‖x + δx‖ + γ‖A−1‖ ‖b‖.
(3.14)

64 3 Direct Methods for the Solution of Linear Systems

Dividing both sides by ‖x‖ and using the triangular inequality ‖x + δx‖ ≤ ‖δx‖ +

‖x‖, we finally get (3.13). �

Remarkable instances of perturbations δA and δb are those for which |δA| ≤
γ|A| and |δb| ≤ γ|b| with γ ≥ 0. Hereafter, the absolute value notation
B = |A| denotes the matrix n×n having entries bij = |aij | with i, j = 1, . . . , n
and the inequality C ≤ D, with C,D ∈ R

m×n has the following meaning

cij ≤ dij for i = 1, . . . ,m, j = 1, . . . , n.

If ‖ · ‖∞ is considered, from (3.14) it follows that

‖δx‖∞
‖x‖∞

≤ γ
‖ |A−1| |A| |x| + |A−1| |b| ‖∞
(1 − γ‖ |A−1| |A| ‖∞)‖x‖∞

≤ 2γ

1 − γ‖ |A−1| |A| ‖∞
‖ |A−1| |A| ‖∞.

(3.15)

Estimate (3.15) is generally too pessimistic; however, the following componen-
twise error estimates of δx can be derived from (3.15)

|δxi| ≤ γ|rT
(i)| |A| |x + δx|, i = 1, . . . , n if δb = 0,

|δxi|
|xi|

≤ γ
|rT

(i)| |b|
|rT

(i)b|
, i = 1, . . . , n if δA = 0,

(3.16)

being rT
(i) the row vector eT

i A−1. Estimates (3.16) are more stringent than
(3.15), as can be seen in Example 3.1. The first inequality in (3.16) can be
used when the perturbed solution x + δx is known, being henceforth x + δx
the solution computed by a numerical method.

In the case where |A−1| |b| = |x|, the parameter γ in (3.15) is equal to 1.
For such systems the components of the solution are insensitive to perturba-
tions to the right side. A slightly worse situation occurs when A is a triangular
M-matrix and b has positive entries. In such a case γ is bounded by 2n − 1,
since

|rT
(i)| |A| |x| ≤ (2n − 1)|xi|.

For further details on the subject we refer to [Ske79], [CI95] and [Hig89].
Results linking componentwise estimates to normwise estimates through the
so-called hypernorms can be found in [ADR92].

Example 3.1 Consider the linear system Ax=b with

A =

[
α 1

α

0 1
α

]

, b =

[
α2 + 1

α

1
α

]

3.1 Stability Analysis of Linear Systems 65

which has solution x = [α, 1]T , where 0 < α < 1. Let us compare the results obtained
using (3.15) and (3.16). From

|A−1| |A| |x| = |A−1| |b| =
[
α +

2

α2
, 1
]T

(3.17)

it follows that the supremum of (3.17) is unbounded as α → 0, exactly as it happens
in the case of ‖A‖∞. On the other hand, the amplification factor of the error in
(3.16) is bounded. Indeed, the component of the maximum absolute value, x2, of
the solution, satisfies |rT

(2)| |A| |x|/|x2| = 1. •

3.1.3 Backward a priori Analysis

The numerical methods that we shall consider in the following do not require
the explicit computation of the inverse of A to solve Ax=b. However, we can
always assume that they yield an approximate solution of the form x̂ = Cb,
where the matrix C, due to rounding errors, is an approximation of A−1.
In practice, C is very seldom constructed; in case this should happen, the
following result yields an estimate of the error that is made substituting C for
A−1 (see [IK66], Chapter 2, Theorem 7).

Property 3.1 Let R = AC − I; if ‖R‖ < 1, then A and C are nonsingular
and

‖A−1‖ ≤ ‖C‖
1 − ‖R‖ ,

‖R‖
‖A‖ ≤ ‖C − A−1‖ ≤ ‖C‖ ‖R‖

1 − ‖R‖ . (3.18)

In the frame of backward a priori analysis we can interpret C as being the
inverse of A + δA (for a suitable unknown δA). We are thus assuming that
C(A + δA) = I. This yields

δA = C−1 − A = −(AC − I)C−1 = −RC−1

and, as a consequence, if ‖R‖ < 1 it turns out that

‖δA‖ ≤ ‖R‖ ‖A‖
1 − ‖R‖ , (3.19)

having used the first inequality in (3.18), where A is assumed to be an ap-
proximation of the inverse of C (notice that the roles of C and A can be
interchanged).

3.1.4 A posteriori Analysis

Having approximated the inverse of A by a matrix C turns into having an
approximation of the solution of the linear system (3.2). Let us denote by y a
known approximate solution. The aim of the a posteriori analysis is to relate

66 3 Direct Methods for the Solution of Linear Systems

the (unknown) error e = y − x to quantities that can be computed using y
and C.

The starting point of the analysis relies on the fact that the residual vector
r = b − Ay is in general nonzero, since y is just an approximation to the
unknown exact solution. The residual can be related to the error through
Property 3.1 as follows. We have e = A−1(Ay − b) = −A−1r and thus, if
‖R‖ < 1 then

‖e‖ ≤ ‖r‖ ‖C‖
1 − ‖R‖ . (3.20)

Notice that the estimate does not necessarily require y to coincide with the
solution x̂ = Cb of the backward a priori analysis. One could therefore think
of computing C only for the purpose of using the estimate (3.20) (for instance,
in the case where (3.2) is solved through the Gauss elimination method, one
can compute C a posteriori using the LU factorization of A, see Sections 3.3
and 3.3.1).

We conclude by noticing that if δb is interpreted in (3.11) as being the
residual of the computed solution y = x + δx, it also follows that

‖e‖
‖x‖ ≤ K(A)

‖r‖
‖b‖ . (3.21)

The estimate (3.21) is not used in practice since the computed residual is
affected by rounding errors. A more significant estimate (in the ‖ · ‖∞ norm)
is obtained letting r̂ = fl(b − Ay) and assuming that r̂ = r + δr with |δr| ≤
γn+1(|A| |y|+ |b|), where γn+1 = (n + 1)u/(1− (n + 1)u) > 0, from which we
have

‖e‖∞
‖y‖∞

≤ ‖ |A−1|(|r̂| + γn+1(|A||y| + |b|))‖∞
‖y‖∞

.

Formulae like this last one are implemented in the library for linear algebra
LAPACK (see [ABB+92]).

3.2 Solution of Triangular Systems

Consider the nonsingular 3×3 lower triangular system
⎡

⎣
l11 0 0
l21 l22 0
l31 l32 l33

⎤

⎦

⎡

⎣
x1

x2

x3

⎤

⎦ =

⎡

⎣
b1

b2

b3

⎤

⎦ .

Since the matrix is nonsingular, its diagonal entries lii, i = 1, 2, 3, are nonva-
nishing, hence we can solve sequentially for the unknown values xi, i = 1, 2, 3,
as follows

3.2 Solution of Triangular Systems 67

x1 = b1/l11,
x2 = (b2 − l21x1)/l22,
x3 = (b3 − l31x1 − l32x2)/l33.

This algorithm can be extended to systems n × n and is called forward sub-
stitution. In the case of a system Lx=b, with L being a nonsingular lower
triangular matrix of order n (n ≥ 2), the method takes the form

x1 =
b1

l11
,

xi =
1
lii

⎛

⎝bi −
i−1∑

j=1

lijxj

⎞

⎠ , i = 2, . . . , n.
(3.22)

The number of multiplications and divisions to execute the algorithm is equal
to n(n + 1)/2, while the number of sums and subtractions is n(n− 1)/2. The
global operation count for (3.22) is thus n2 flops.

Similar conclusions can be drawn for a linear system Ux=b, where U
is a nonsingular upper triangular matrix of order n (n ≥ 2). In this case
the algorithm is called backward substitution and in the general case can be
written as

xn =
bn

unn
,

xi =
1

uii

⎛

⎝bi −
n∑

j=i+1

uijxj

⎞

⎠ , i = n − 1, . . . , 1.
(3.23)

Its computational cost is still n2 flops.

3.2.1 Implementation of Substitution Methods

Each i-th step of algorithm (3.22) requires performing the scalar product be-
tween the row vector L(i, 1 : i−1) (this notation denoting the vector extracted
from matrix L taking the elements of the i-th row from the first to the (i-1)-th
column) and the column vector x(1 : i− 1). The access to matrix L is thus by
row; for that reason, the forward substitution algorithm, when implemented
in the form above, is called row-oriented.

Its coding is reported in Program 1.

Program 1 - forwardrow : Forward substitution: row-oriented version

function [x]=forwardrow(L,b)
% FORWARDROW forward substitution: row oriented version.
% X=FORWARDROW(L,B) solves the lower triangular system L*X=B with the
% forward substitution method in the row-oriented version.
[n,m]=size(L);
if n ˜= m, error(’Only square systems’); end
if min(abs(diag(L))) == 0, error(’The system is singular’); end

68 3 Direct Methods for the Solution of Linear Systems

x(1,1) = b(1)/L(1,1);
for i = 2:n

x (i,1) = (b(i)-L(i,1:i-1)*x(1:i-1,1))/L(i,i);
end
return

To obtain a column-oriented version of the same algorithm, we take ad-
vantage of the fact that i-th component of the vector x, once computed, can
be conveniently eliminated from the system.

An implementation of such a procedure, where the solution x is overwritten
on the right vector b, is reported in Program 2.

Program 2 - forwardcol : Forward substitution: column-oriented version

function [b]=forwardcol(L,b)
% FORWARDCOL forward substitution: column oriented version.
% X=FORWARDCOL(L,B) solves the lower triangular system L*X=B with the
% forward substitution method in the column-oriented version.
[n,m]=size(L);
if n ˜= m, error(’Only square systems’); end
if min(abs(diag(L))) == 0, error(’The system is singular’); end
for j=1:n-1

b(j)= b(j)/L(j,j); b(j+1:n)=b(j+1:n)-b(j)*L(j+1:n,j);
end
b(n) = b(n)/L(n,n);
return

Implementing the same algorithm by a row-oriented rather than a column-
oriented approach, might dramatically change its performance (but of course,
not the solution). The choice of the form of implementation must therefore
be subordinated to the specific hardware that is used.

Similar considerations hold for the backward substitution method, pre-
sented in (3.23) in its row-oriented version.
In Program 3 only the column-oriented version of the algorithm is coded. As
usual, the vector x is overwritten on b.

Program 3 - backwardcol : Backward substitution: column-oriented
version

function [b]=backwardcol(U,b)
% BACKWARDCOL backward substitution: column oriented version.
% X=BACKWARDCOL(U,B) solves the upper triangular system U*X=B with the
% backward substitution method in the column-oriented version.
[n,m]=size(U);
if n ˜= m, error(’Only square systems’); end
if min(abs(diag(U))) == 0, error(’The system is singular’); end
for j = n:-1:2,

b(j)=b(j)/U(j,j); b(1:j-1)=b(1:j-1)-b(j)*U(1:j-1,j);
end

3.2 Solution of Triangular Systems 69

b(1) = b(1)/U(1,1);
return

When large triangular systems must be solved, only the triangular portion
of the matrix should be stored leading to considerable saving of memory re-
sources.

3.2.2 Rounding Error Analysis

The analysis developed so far has not accounted for the presence of rounding
errors. When including these, the forward and backward substitution algo-
rithms no longer yield the exact solutions to the systems Lx=b and Ux=b,
but rather provide approximate solutions x̂ that can be regarded as being
exact solutions to the perturbed systems

(L + δL)x̂ = b, (U + δU)x̂ = b,

where δL = (δlij) and δU = (δuij) are perturbation matrices. In order to apply
the estimates (3.9) carried out in Section 3.1.2, we must provide estimates of
the perturbation matrices, δL and δU, as a function of the entries of L and
U, of their size and of the characteristics of the floating-point arithmetic. For
this purpose, it can be shown that

|δT| ≤ nu

1 − nu
|T|, (3.24)

where T is equal to L or U, u = 1
2β1−t is the roundoff unit defined in (2.34).

Clearly, if nu < 1 from (3.24) it turns out that, using a Taylor expansion,
|δT| ≤ nu|T| + O(u2). Moreover, from (3.24) and (3.9) it follows that, if
nuK(T) < 1, then

‖x − x̂‖
‖x‖ ≤ nuK(T)

1 − nuK(T)
= nuK(T) + O(u2) (3.25)

for the norms ‖·‖1, ‖·‖∞ and the Frobenius norm. If u is sufficiently small (as
typically happens), the perturbations introduced by the rounding errors in the
solution of a triangular system can thus be neglected. As a consequence, the
accuracy of the solution computed by the forward or backward substitution
algorithm is generally very high.

These results can be improved by introducing some additional assumptions
on the entries of L or U. In particular, if the entries of U are such that
|uii| ≥ |uij | for any j > i, then

|xi − x̂i| ≤ 2n−i+1 nu

1 − nu
max
j≥i

|x̂j |, 1 ≤ i ≤ n.

The same result holds if T=L, provided that |lii| ≥ |lij | for any j < i, or if L
and U are diagonally dominant. The previous estimates will be employed in
Sections 3.3.1 and 3.4.2.

For the proofs of the results reported so far, see [FM67], [Hig89] and
[Hig88].

70 3 Direct Methods for the Solution of Linear Systems

3.2.3 Inverse of a Triangular Matrix

The algorithm (3.23) can be employed to explicitly compute the inverse of
an upper triangular matrix. Indeed, given an upper triangular matrix U, the
column vectors vi of the inverse V=(v1, . . . ,vn) of U satisfy the following
linear systems

Uvi = ei, i = 1, . . . , n, (3.26)

where {ei} is the canonical basis of R
n (defined in Example 1.3). Solving for

vi thus requires the application of algorithm (3.23) n times to (3.26).
This procedure is quite inefficient since at least half the entries of the

inverse of U are null. Let us take advantage of this as follows. Denote by
v′

k = (v′
1k, . . . , v′kk)T the vector of size k such that

U(k)v′
k = lk k = 1, . . . , n, (3.27)

where U(k) is the principal submatrix of U of order k and lk the vector of R
k

having null entries, except the first one which is equal to 1. Systems (3.27) are
upper triangular, but have order k and can be again solved using the method
(3.23). We end up with the following inversion algorithm for upper triangular
matrices: for k = n, n − 1, . . . , 1 compute

v′
kk = u−1

kk ,

v′
ik = −u−1

ii

k∑

j=i+1

uijv
′
jk, for i = k − 1, k − 2, . . . , 1.

(3.28)

At the end of this procedure the vectors v′
k furnish the nonvanishing entries

of the columns of U−1. The algorithm requires about n3/3 + (3/4)n2 flops.
Once again, due to rounding errors, the algorithm (3.28) no longer yields the
exact solution, but an approximation of it. The error that is introduced can
be estimated using the backward a priori analysis carried out in Section 3.1.3.

A similar procedure can be constructed from (3.22) to compute the inverse
of a lower triangular system.

3.3 The Gaussian Elimination Method (GEM) and LU
Factorization

The Gaussian elimination method aims at reducing the system Ax=b to an
equivalent system (that is, having the same solution) of the form Ux=b̂,

where U is an upper triangular matrix and b̂ is an updated right side vector.
This latter system can then be solved by the backward substitution method.
Let us denote the original system by A(1)x = b(1). During the reduction

3.3 The Gaussian Elimination Method (GEM) and LU Factorization 71

procedure we basically employ the property which states that replacing one
of the equations by the difference between this equation and another one
multiplied by a nonnull constant yields an equivalent system (i.e., one with
the same solution).

Thus, consider a nonsingular matrix A ∈ R
n×n, and suppose that the

diagonal entry a11 is nonvanishing. Introducing the multipliers

mi1 =
a
(1)
i1

a
(1)
11

, i = 2, 3, . . . , n,

where a
(1)
ij denote the elements of A(1), it is possible to eliminate the unknown

x1 from the rows other than the first one by simply subtracting from row i,
with i = 2, . . . , n, the first row multiplied by mi1 and doing the same on the
right side. If we now define

a
(2)
ij = a

(1)
ij − mi1a

(1)
1j , i, j = 2, . . . , n,

b
(2)
i = b

(1)
i − mi1b

(1)
1 , i = 2, . . . , n,

where b
(1)
i denote the components of b(1), we get a new system of the form

⎡

⎢
⎢
⎢
⎢
⎣

a
(1)
11 a

(1)
12 . . . a

(1)
1n

0 a
(2)
22 . . . a

(2)
2n

...
...

...
0 a

(2)
n2 . . . a

(2)
nn

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

x1

x2
...

xn

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

b
(1)
1

b
(2)
2
...

b
(2)
n

⎤

⎥
⎥
⎥
⎥
⎦

,

which we denote by A(2)x = b(2), that is equivalent to the starting one.
Similarly, we can transform the system in such a way that the unknown x2 is
eliminated from rows 3, . . . , n. In general, we end up with the finite sequence
of systems

A(k)x = b(k), 1 ≤ k ≤ n, (3.29)

where, for k ≥ 2, matrix A(k) takes the following form

A(k) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a
(1)
11 a

(1)
12 a

(1)
1n

0 a
(2)
22 a

(2)
2n

...
. . .

...
0 . . . 0 a

(k)
kk . . . a

(k)
kn

...
...

...
...

0 . . . 0 a
(k)
nk . . . a

(k)
nn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

having assumed that a
(i)
ii �= 0 for i = 1, . . . , k− 1. It is clear that for k = n we

obtain the upper triangular system A(n)x = b(n)

72 3 Direct Methods for the Solution of Linear Systems

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a
(1)
11 a

(1)
12 a

(1)
1n

0 a
(2)
22 a

(2)
2n

...
. . .

...

0
. . .

...
0 a

(n)
nn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1

x2
...
...

xn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b
(1)
1

b
(2)
2
...
...

b
(n)
n

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Consistently with the notations that have been previously introduced, we
denote by U the upper triangular matrix A(n). The entries a

(k)
kk are called

pivots and must obviously be nonnull for k = 1, . . . , n − 1.
In order to highlight the formulae which transform the k-th system into

the k + 1-th one, for k = 1, . . . , n − 1 we assume that a
(k)
kk �= 0 and define the

multiplier

mik =
a
(k)
ik

a
(k)
kk

, i = k + 1, . . . , n. (3.30)

Then we let

a
(k+1)
ij = a

(k)
ij − mika

(k)
kj , i, j = k + 1, . . . , n

b
(k+1)
i = b

(k)
i − mikb

(k)
k , i = k + 1, . . . , n.

(3.31)

Example 3.2 Let us use GEM to solve the following system

(A(1)x = b(1))

⎧
⎪⎪⎨

⎪⎪⎩

x1 + 1
2
x2 + 1

3
x3 = 11

6

1
2
x1 + 1

3
x2 + 1

4
x3 = 13

12

1
3
x1 + 1

4
x2 + 1

5
x3 = 47

60

,

which admits the solution x=[1, 1, 1]T . At the first step we compute the multipliers
m21 = 1/2 and m31 = 1/3, and subtract from the second and third equation of
the system the first row multiplied by m21 and m31, respectively. We obtain the
equivalent system

(A(2)x = b(2))

⎧
⎪⎪⎨

⎪⎪⎩

x1 + 1
2
x2 + 1

3
x3 = 11

6

0 + 1
12

x2 + 1
12

x3 = 1
6

0 + 1
12

x2 + 4
45

x3 = 31
180

.

If we now subtract the second row multiplied by m32 = 1 from the third one, we
end up with the upper triangular system

(A(3)x = b(3))

⎧
⎪⎪⎨

⎪⎪⎩

x1 + 1
2
x2 + 1

3
x3 = 11

6

0 + 1
12

x2 + 1
12

x3 = 1
6

0 + 0 + 1
180

x3 = 1
180

,

from which we immediately compute x3 = 1 and then, by back substitution, the
remaining unknowns x1 = x2 = 1. •

3.3 The Gaussian Elimination Method (GEM) and LU Factorization 73

Remark 3.2 The matrix in Example 3.2 is called the Hilbert matrix of
order 3. In the general n × n case, its entries are

hij = 1/(i + j − 1), i, j = 1, . . . , n. (3.32)

As we shall see later on, this matrix provides the paradigm of an ill-conditioned
matrix. �

To complete Gaussian elimination 2(n− 1)n(n + 1)/3 + n(n− 1) flops are re-
quired, plus n2 flops to backsolve the triangular system U x = b(n). Therefore,
about (2n3/3 + 2n2) flops are needed to solve the linear system using GEM.
Neglecting the lower order terms, we can state that the Gaussian elimination
process has a cost of 2n3/3 flops.
As previously noticed, GEM terminates safely iff the pivotal elements a

(k)
kk ,

for k = 1, . . . , n−1, are nonvanishing. Unfortunately, having nonnull diagonal
entries in A is not enough to prevent zero pivots to arise during the elimina-
tion process. For example, matrix A in (3.33) is nonsingular and has nonzero
diagonal entries

A =

⎡

⎣
1 2 3
2 4 5
7 8 9

⎤

⎦ , A(2) =

⎡

⎣
1 2 3
0 0 −1
0 −6 −12

⎤

⎦ . (3.33)

Nevertheless, when GEM is applied, it is interrupted at the second step since
a
(2)
22 = 0.

More restrictive conditions on A are thus needed to ensure the applicabil-
ity of the method. We shall see in Section 3.3.1 that if the leading dominating
minors di of A are nonzero for i = 1, . . . , n−1, then the corresponding pivotal
entries a

(i)
ii must necessarily be nonvanishing. We recall that di is the determi-

nant of Ai, the i-th principal submatrix made by the first i rows and columns
of A. The matrix in the previous example does not satisfy this condition,
having d1 = 1 and d2 = 0.
Classes of matrices exist such that GEM can be always safely employed in its
basic form (3.31). Among them, we recall the following ones:

1. matrices diagonally dominant by rows;
2. matrices diagonally dominant by columns. In such a case one can even

show that the multipliers are in module less than or equal to 1 (see
Property 3.2);

3. matrices symmetric and positive definite (see Theorem 3.6).

For a rigorous derivation of these results, we refer to the forthcoming
sections.

3.3.1 GEM as a Factorization Method

In this section we show how GEM is equivalent to performing a factorization of
the matrix A into the product of two matrices, A=LU, with U=A(n). Since L

74 3 Direct Methods for the Solution of Linear Systems

and U depend only on A and not on the right hand side, the same factorization
can be reused when solving several linear systems having the same matrix A
but different right hand side b, with a considerable reduction of the operation
count (indeed, the main computational effort, about 2n3/3 flops, is spent in
the elimination procedure).

Let us go back to Example 3.2 concerning the Hilbert matrix H3. In prac-
tice, to pass from A(1)=H3 to the matrix A(2) at the second step, we have
multiplied the system by the matrix

M1 =

⎡

⎢
⎢
⎢
⎣

1 0 0

− 1
2 1 0

− 1
3 0 1

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

1 0 0

−m21 1 0

−m31 0 1

⎤

⎥
⎥
⎥
⎦

.

Indeed,

M1A = M1A(1) =

⎡

⎢
⎢
⎢
⎣

1 1
2

1
3

0 1
12

1
12

0 1
12

4
45

⎤

⎥
⎥
⎥
⎦

= A(2).

Similarly, to perform the second (and last) step of GEM, we must multiply
A(2) by the matrix

M2 =

⎡

⎢
⎢
⎢
⎣

1 0 0

0 1 0

0 −1 1

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

1 0 0

0 1 0

0 −m32 1

⎤

⎥
⎥
⎥
⎦

,

where A(3) = M2A(2). Therefore

M2M1A = A(3) = U. (3.34)

On the other hand, matrices M1 and M2 are lower triangular, their product
is still lower triangular, as is their inverse; thus, from (3.34) one gets

A = (M2M1)−1U = LU,

which is the desired factorization of A.
This identity can be generalized as follows. Setting

mk = [0, . . . , 0,mk+1,k, . . . ,mn,k]T ∈ R
n,

3.3 The Gaussian Elimination Method (GEM) and LU Factorization 75

and defining

Mk =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 . . . 0 0 . . . 0
...

. . .
...

...
...

0 1 0 0
0 −mk+1,k 1 0
...

...
...

...
. . .

...
0 . . . −mn,k 0 . . . 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= In − mkeT
k

as the k-th Gaussian transformation matrix, one finds out that

(Mk)ip = δip − (mkeT
k)ip = δip − mikδkp, i, p = 1, . . . , n.

On the other hand, from (3.31) we have that

a
(k+1)
ij = a

(k)
ij − mikδkka

(k)
kj =

n∑

p=1

(δip − mikδkp)a
(k)
pj , i, j = k + 1, . . . , n,

or, equivalently,

A(k+1) = MkA(k). (3.35)

As a consequence, at the end of the elimination process the matrices Mk, with
k = 1, . . . , n − 1, and the matrix U have been generated such that

Mn−1Mn−2 · · ·M1A = U.

The matrices Mk are unit lower triangular with inverse given by

M−1
k = 2In − Mk = In + mkeT

k , (3.36)

while the matrix (mieT
i)(mjeT

j) is equal to the null matrix if i �= j. As a
consequence, we have

A = M−1
1 M−1

2 · · ·M−1
n−1U

= (In + m1eT
1)(In + m2eT

2) · · · (In + mn−1eT
n−1)U

=

(

In +
n−1∑

i=1

mieT
i

)

U

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0

m21 1
...

... m32
. . .

...

...
...

. . . 0

mn1 mn2 . . . mn,n−1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

U.

(3.37)

76 3 Direct Methods for the Solution of Linear Systems

Defining L = (Mn−1Mn−2 · · ·M1)−1 = M−1
1 · · ·M−1

n−1, it follows that

A = LU.

We notice that, due to (3.37), the subdiagonal entries of L are the multipliers
mik produced by GEM, while the diagonal entries are equal to one.

Once the matrices L and U have been computed, solving the linear system
consists only of solving successively the two triangular systems

Ly = b,

Ux = y.

The computational cost of the factorization process is obviously the same as
that required by GEM.

The following result establishes a link between the leading dominant mi-
nors of a matrix and its LU factorization induced by GEM.

Theorem 3.4 Let A ∈ R
n×n. The LU factorization of A with lii = 1 for

i = 1, . . . , n exists and is unique iff the principal submatrices Ai of A of order
i = 1, . . . , n − 1 are nonsingular.

Proof. The existence of the LU factorization can be proved following the steps
of the GEM. Here we prefer to pursue an alternative approach, which allows for
proving at the same time both existence and uniqueness and that will be used again
in later sections.

Let us assume that the principal submatrices Ai of A are nonsingular for
i = 1, . . . , n − 1 and prove, by induction on i, that under this hypothesis the LU
factorization of A(= An) with lii = 1 for i = 1, . . . , n, exists and is unique.

The property is obviously true if i = 1. Assume therefore that there exists an
unique LU factorization of Ai−1 of the form Ai−1 = L(i−1)U(i−1) with l

(i−1)
kk = 1 for

k = 1, . . . , i − 1, and show that there exists an unique factorization also for Ai. We
partition Ai by block matrices as

Ai =

[
Ai−1 c

dT aii

]

,

and look for a factorization of Ai of the form

Ai = L(i)U(i) =

[
L(i−1) 0

lT 1

] [
U(i−1) u

0T uii

]

, (3.38)

having also partitioned by blocks the factors L(i) and U(i). Computing the product
of these two factors and equating by blocks the elements of Ai, it turns out that the
vectors l and u are the solutions to the linear systems L(i−1)u = c, lT U(i−1) = dT .

On the other hand, since 0 �= det(Ai−1) = det(L(i−1))det(U(i−1)), the matrices
L(i−1) and U(i−1) are nonsingular and, as a result, u and l exist and are unique.

Thus, there exists a unique factorization of Ai, where uii is the unique solution
of the equation uii = aii − lT u. This completes the induction step of the proof.

3.3 The Gaussian Elimination Method (GEM) and LU Factorization 77

It now remains to prove that, if the factorization at hand exists and is unique,
then the first n − 1 principal submatrices of A must be nonsingular. We shall dis-
tinguish the case where A is singular and when it is nonsingular.

Let us start from the second one and assume that the LU factorization of A
with lii = 1 for i = 1, . . . , n, exists and is unique. Then, due to (3.38), we have
Ai = L(i)U(i) for i = 1, . . . , n. Thus

det(Ai) = det(L(i))det(U(i)) = det(U(i)) = u11u22 · · ·uii, (3.39)

from which, taking i = n and A nonsingular, we obtain u11u22 · · ·unn �= 0, and thus,
necessarily, det(Ai) = u11u22 · · ·uii �= 0 for i = 1, . . . , n − 1.

Now let A be a singular matrix and assume that (at least) one diagonal entry

of U is equal to zero. Denote by ukk the null entry of U with minimum index k.

Thanks to (3.38), the factorization can be computed without troubles until the

k + 1-th step. From that step on, since the matrix U(k) is singular, existence and

uniqueness of the vector lT are certainly lost, and, thus, the same holds for the

uniqueness of the factorization. In order for this not to occur before the process has

factorized the whole matrix A, the ukk entries must all be nonzero up to the index

k = n − 1 included, and thus, due to (3.39), all the principal submatrices Ak must

be nonsingular for k = 1, . . . , n − 1. �

From the above theorem we conclude that, if an Ai, with i = 1, . . . , n − 1, is
singular, then the factorization may either not exist or not be unique.

Example 3.3 Consider the matrices

B =

[
1 2
1 2

]

, C =

[
0 1
1 0

]

, D =

[
0 1
0 2

]

.

According to Theorem 3.4, the singular matrix B, having nonsingular leading minor
B1 = 1, admits a unique LU factorization. The remaining two examples outline that,
if the assumptions of the theorem are not fulfilled, the factorization may fail to exist
or be unique.

Actually, the nonsingular matrix C, with C1 singular, does not admit any factor-
ization, while the (singular) matrix D, with D1 singular, admits an infinite number
of factorizations of the form D = LβUβ , with

Lβ =

[
1 0
β 1

]

, Uβ =

[
0 1
0 2 − β

]

, ∀β ∈ R.

•

In the case where the LU factorization is unique, we point out that, because
det(A) = det(LU) = det(L) det(U) = det(U), the determinant of A is given by

det(A) = u11 · · ·unn.

Let us now recall the following property (referring for its proof to [GL89] or
[Hig96]).

78 3 Direct Methods for the Solution of Linear Systems

Property 3.2 If A is a matrix diagonally dominant by rows or by columns,
then the LU factorization of A exists and is unique. In particular, if A is
diagonally dominant by columns, then |lij | ≤ 1 ∀i, j.

In the proof of Theorem 3.4 we exploited the fact the the diagonal entries
of L are equal to 1. In a similar manner, we could have fixed to 1 the diagonal
entries of the upper triangular matrix U, obtaining a variant of GEM that
will be considered in Section 3.3.4.

The freedom in setting up either the diagonal entries of L or those of U,
implies that several LU factorizations exist which can be obtained one from
the other by multiplication with a suitable diagonal matrix (see Section 3.4.1).

3.3.2 The Effect of Rounding Errors

If rounding errors are taken into account, the factorization process induced
by GEM yields two matrices, L̂ and Û, such that L̂Û = A + δA, δA being a
perturbation matrix. The size of such a perturbation can be estimated by

|δA| ≤ nu

1 − nu
|L̂| |Û|, (3.40)

where u is the roundoff unit, under the assumption that nu < 1. (For the proof
of this result we refer to [Hig89].) From (3.40) it is seen that the presence
of small pivotal entries can make the right side of the inequality virtually
unbounded, with a consequent loss of control on the size of the perturbation
matrix δA. The interest is thus in finding out estimates like (3.40) of the form

|δA| ≤ g(u)|A|,

where g(u) is a suitable positive function of u. For instance, assuming that L̂
and Û have nonnegative entries, then since |L̂| |Û| = |L̂Û| one gets

|L̂| |Û| = |L̂Û| = |A + δA| ≤ |A| + |δA| ≤ |A| + nu

1 − nu
|L̂| |Û|, (3.41)

from which the desired bound is achieved by taking g(u) = nu/(1−2nu), with
nu < 1/2.

The technique of pivoting, examined in Section 3.5, keeps the size of the
pivotal entries under control and makes it possible to obtain estimates like
(3.41) for any matrix.

3.3.3 Implementation of LU Factorization

Since L is a lower triangular matrix with diagonal entries equal to 1 and U is
upper triangular, it is possible (and convenient) to store the LU factorization
directly in the same memory area that is occupied by the matrix A. More
precisely, U is stored in the upper triangular part of A (including the diagonal),

3.3 The Gaussian Elimination Method (GEM) and LU Factorization 79

whilst L occupies the lower triangular portion of A (the diagonal entries of L
are not stored since they are implicitly assumed to be 1).

A coding of the algorithm is reported in Program 4. The output matrix A
contains the overwritten LU factorization.

Program 4 - lukji : LU factorization of matrix A: kji version

function [A]=lukji(A)
% LUKJI LU factorization of a matrix A in the kji version
% Y=LUKJI(A): U is stored in the upper triangular part of Y and L is stored
% in the strict lower triangular part of Y.
[n,m]=size(A);
if n ˜= m, error(’Only square systems’); end
for k=1:n-1

if A(k,k)==0; error(’Null pivot element’); end
A(k+1:n,k)=A(k+1:n,k)/A(k,k);
for j=k+1:n

i=[k+1:n]; A(i,j)=A(i,j)-A(i,k)*A(k,j);
end

end
return

This implementation of the factorization algorithm is commonly referred
to as the kji version, due to the order in which the cycles are executed. In a
more appropriate notation, it is called the SAXPY − kji version, due to the
fact that the basic operation of the algorithm, which consists of multiplying
a scalar A by a vector X, summing another vector Y and then storing the
result, is usually called SAXPY (i.e. Scalar A X P lus Y).

The factorization can of course be executed by following a different order.
In general, the forms in which the cycle on index i precedes the cycle on j are
called row-oriented, whilst the others are called column-oriented. As usual,
this terminology refers to the fact that the matrix is accessed by rows or by
columns.

An example of LU factorization, jki version and column-oriented, is given
in Program 5. This version is commonly called GAXPY − jki, since the
basic operation (a product matrix-vector), is called GAXPY which stands
for Generalized sAXPY (see for further details [DGK84]). In the GAXPY
operation the scalar A of the SAXPY operation is replaced by a matrix.

Program 5 - lujki : LU factorization of matrix A: jki version

function [A]=lujki(A)
% LUJKI LU factorization of a matrix A in the jki version
% Y=LUJKI(A): U is stored in the upper triangular part of Y and L is stored
% in the strict lower triangular part of Y.
[n,m]=size(A);
if n ˜= m, error(’Only square systems’); end
for j=1:n

80 3 Direct Methods for the Solution of Linear Systems

if A(j,j)==0; error(’Null pivot element’); end
for k=1:j-1

i=[k+1:n]; A(i,j)=A(i,j)-A(i,k)*A(k,j);
end
i=[j+1:n]; A(i,j)=A(i,j)/A(j,j);

end
return

3.3.4 Compact Forms of Factorization

Remarkable variants of LU factorization are the Crout factorization and
Doolittle factorization, and are known also as compact forms of the Gauss
elimination method. This name is due to the fact that these approaches require
less intermediate results than the standard GEM to generate the factorization
of A.

Computing the LU factorization of A is formally equivalent to solving the
following nonlinear system of n2 equations

aij =
min(i,j)∑

r=1

lirurj , (3.42)

the unknowns being the n2 + n coefficients of the triangular matrices L and
U. If we arbitrarily set n coefficients to 1, for example the diagonal entries of
L or U, we end up with the Doolittle and Crout methods, respectively, which
provide an efficient way to solve system (3.42).

In fact, supposing that the first k − 1 columns of L and rows of U are
available and setting lkk = 1 (Doolittle method), the following equations are
obtained from (3.42)

akj =
k−1∑

r=1

lkrurj + ukj , j = k, . . . , n,

aik =
k−1∑

r=1

lirurk + lik ukk, i = k + 1, . . . , n.

Note that these equations can be solved in a sequential way with respect to
the boxed variables ukj and lik. From the Doolittle compact method we thus
obtain first the k-th row of U and then the k-th column of L, as follows: for
k = 1, . . . , n

ukj = akj −
k−1∑

r=1

lkrurj , j = k, . . . , n,

lik =
1

ukk

(

aik −
k−1∑

r=1

lirurk

)

, i = k + 1, . . . , n.

(3.43)

The Crout factorization is generated similarly, computing first the k-th column
of L and then the k-th row of U: for k = 1, . . . , n

3.4 Other Types of Factorization 81

lik = aik −
k−1∑

r=1

lirurk, i = k, . . . , n,

ukj =
1

lkk

(

akj −
k−1∑

r=1

lkrurj

)

, j = k + 1, . . . , n,

where we set ukk = 1. Recalling the notations introduced above, the Doolittle
factorization is nothing but the ijk version of GEM.

We provide in Program 6 the implementation of the Doolittle scheme.
Notice that now the main computation is a dot product, so this scheme is also
known as the DOT − ijk version of GEM.

Program 6 - luijk : LU factorization of the matrix A: ijk version

function [A]=luijk(A)
% LUIJK LU factorization of a matrix A in the ijk version
% Y=LUIJK(A): U is stored in the upper triangular part of Y and L is stored
% in the strict lower triangular part of Y.
[n,m]=size(A);
if n ˜= m, error(’Only square systems’); end
for i=1:n

for j=2:i
if A(j,j)==0; error(’Null pivot element’); end
A(i,j-1)=A(i,j-1)/A(j-1,j-1);
k=[1:j-1]; A(i,j)=A(i,j)-A(i,k)*A(k,j);

end
k=[1:i-1];
for j=i+1:n

A(i,j)=A(i,j)-A(i,k)*A(k,j);
end

end
return

3.4 Other Types of Factorization

We now address factorizations suitable for symmetric and rectangular
matrices.

3.4.1 LDMT Factorization

It is possible to devise other types of factorizations of A. Specifically, we will
address some variants where the factorization of A is of the form

A = LDMT ,

82 3 Direct Methods for the Solution of Linear Systems

where L, MT and D are lower triangular, upper triangular and diagonal ma-
trices, respectively.

After the construction of this factorization, the resolution of the system
can be carried out solving first the lower triangular system Ly=b, then the
diagonal one Dz=y, and finally the upper triangular system MT x=z, with a
cost of n2 + n flops. In the symmetric case, we obtain M = L and the LDLT

factorization can be computed with half the cost (see Section 3.4.2).
The LDMT factorization enjoys a property analogous to the one in Theo-

rem 3.4 for the LU factorization. In particular, the following result holds.

Theorem 3.5 If all the principal minors of a matrix A∈ R
n×n are nonzero

then there exist a unique diagonal matrix D, a unique unit lower triangular
matrix L and a unique unit upper triangular matrix MT , such that A = LDMT .

Proof. By Theorem 3.4 we already know that there exists a unique LU factorization

of A with lii = 1 for i = 1, . . . , n. If we set the diagonal entries of D equal to uii

(nonzero because U is nonsingular), then A = LU = LD(D−1U). Upon defining

MT = D−1U, the existence of the LDMT factorization follows, where D−1U is a unit

upper triangular matrix. The uniqueness of the LDMT factorization is a consequence

of the uniqueness of the LU factorization. �

The above proof shows that, since the diagonal entries of D coincide with
those of U, we could compute L, MT and D starting from the LU factorization
of A. It suffices to compute MT as D−1U. Nevertheless, this algorithm has
the same cost as the standard LU factorization. Likewise, it is also possible
to compute the three matrices of the factorization by enforcing the identity
A=LDMT entry by entry.

3.4.2 Symmetric and Positive Definite Matrices: The Cholesky
Factorization

As already pointed out, the factorization LDMT simplifies considerably when
A is symmetric because in such a case M=L, yielding the so-called LDLT

factorization. The computational cost halves, with respect to the LU factor-
ization, to about (n3/3) flops.

As an example, the Hilbert matrix of order 3 admits the following LDLT

factorization

H3 =

⎡

⎢
⎢
⎢
⎣

1 1
2

1
3

1
2

1
3

1
4

1
3

1
4

1
5

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

1 0 0

1
2 1 0

1
3 1 1

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

1 0 0

0 1
12 0

0 0 1
180

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

1 1
2

1
3

0 1 1

0 0 1

⎤

⎥
⎥
⎥
⎦

.

In the case that A is also positive definite, the diagonal entries of D in the
LDLT factorization are positive. Moreover, we have the following result.

3.4 Other Types of Factorization 83

Theorem 3.6 Let A ∈ R
n×n be a symmetric and positive definite matrix.

Then, there exists a unique upper triangular matrix H with positive diagonal
entries such that

A = HTH. (3.44)

This factorization is called Cholesky factorization and the entries hij of HT

can be computed as follows: h11 =
√

a11 and, for i = 2, . . . , n,

hij =

(

aij −
j−1∑

k=1

hikhjk

)

/hjj , j = 1, . . . , i − 1,

hii =

(

aii −
i−1∑

k=1

h2
ik

)1/2

.

(3.45)

Proof. Let us prove the theorem proceeding by induction on the size i of the matrix
(as done in Theorem 3.4), recalling that if Ai ∈ R

i×i is symmetric positive definite,
then all its principal submatrices enjoy the same property.

For i = 1 the result is obviously true. Thus, suppose that it holds for i − 1 and
prove that it also holds for i. There exists an upper triangular matrix Hi−1 such
that Ai−1 = HT

i−1Hi−1. Let us partition Ai as

Ai =

[
Ai−1 v
vT α

]

,

with α ∈ R
+, v ∈ R

i−1 and look for a factorization of Ai of the form

Ai = HT
i Hi =

[
HT

i−1 0
hT β

] [
Hi−1 h
0T β

]

.

Enforcing the equality with the entries of Ai yields the equations HT
i−1h = v and

hT h+β2 = α. The vector h is thus uniquely determined, since HT
i−1 is nonsingular.

As for β, due to the properties of determinants

0 < det(Ai) = det(HT
i) det(Hi) = β2(det(Hi−1))

2,

we can conclude that it must be a real number. As a result, β =
√

α − hT h is the
desired diagonal entry and this concludes the inductive argument.

Let us now prove formulae (3.45). The fact that h11 =
√

a11 is an immedi-

ate consequence of the induction argument for i = 1. In the case of a generic i,

relations (3.45)1 are the forward substitution formulae for the solution of the lin-

ear system HT
i−1h = v = (a1i, a2i, . . . , ai−1,i)

T , while formulae (3.45)2 state that

β =
√

α − hT h, where α = aii. �

The algorithm which implements (3.45) requires about (n3/3) flops and it
turns out to be stable with respect to the propagation of rounding errors. It
can indeed be shown that the upper triangular matrix H̃ is such that H̃T H̃ =
A+δA, where δA is a pertubation matrix such that ‖δA‖2 ≤ 8n(n+1)u‖A‖2,

84 3 Direct Methods for the Solution of Linear Systems

when the rounding errors are considered and assuming that 2n(n + 1)u ≤
1 − (n + 1)u (see [Wil68]).

Also, for the Cholesky factorization it is possible to overwrite the matrix
HT in the lower triangular portion of A, without any further memory storage.
By doing so, both A and the factorization are preserved, noting that A is
stored in the upper triangular section since it is symmetric and that its diag-
onal entries can be computed as a11 = h2

11, aii = h2
ii +

∑i−1
k=1 h2

ik, i = 2, . . . , n.
An example of implementation of the Cholesky factorization is coded in
Program 7.

Program 7 - chol2 : Cholesky factorization

function [A]=chol2(A)
% CHOL2 Cholesky factorization of a s.p.d. matrix A.
% R=CHOL2(A) produces an upper triangular matrix R such that R’*R=A.
[n,m]=size(A);
if n ˜= m, error(’Only square systems’); end
for k=1:n-1

if A(k,k) ¡= 0, error(’Null or negative pivot element’); end
A(k,k)=sqrt(A(k,k)); A(k+1:n,k)=A(k+1:n,k)/A(k,k);
for j=k+1:n, A(j:n,j)=A(j:n,j)-A(j:n,k)*A(j,k); end

end
A(n,n)=sqrt(A(n,n));
A = tril(A); A=A’;
return

3.4.3 Rectangular Matrices: The QR Factorization

Definition 3.1 A matrix A ∈ R
m×n, with m ≥ n, admits a QR factorization

if there exist an orthogonal matrix Q ∈ R
m×m and an upper trapezoidal

matrix R ∈ R
m×n with null rows from the n + 1-th one on, such that

A = QR. (3.46)

�

This factorization can be constructed either using suitable transformation
matrices (Givens or Householder matrices, see Section 5.6.1) or using the
Gram-Schmidt orthogonalization algorithm discussed below.

It is also possible to generate a reduced version of the QR factorization
(3.46), as stated in the following result.

Property 3.3 Let A ∈ R
m×n be a matrix of rank n for which a QR factor-

ization is known. Then there exists a unique factorization of A of the form

A = Q̃R̃ (3.47)

3.4 Other Types of Factorization 85

n

Am =

m − n

Q̃

R̃
0

n n

n

m − n

Fig. 3.1. The reduced factorization. The matrices of the QR factorization are drawn
in dashed lines

where Q̃ and R̃ are submatrices of Q and R given respectively by

Q̃ = Q(1 : m, 1 : n), R̃ = R(1 : n, 1 : n). (3.48)

Moreover, Q̃ has orthonormal vector columns and R̃ is upper triangular and
coincides with the Cholesky factor H of the symmetric positive definite matrix
AT A, that is, AT A = R̃T R̃.

If A has rank n (i.e., full rank), then the column vectors of Q̃ form an
orthonormal basis for the vector space range(A) (defined in (1.5)). As a con-
sequence, constructing the QR factorization can also be interpreted as a pro-
cedure for generating an orthonormal basis for a given set of vectors. If A has
rank r < n, the QR factorization does not necessarily yield an orthonormal
basis for range(A). However, one can obtain a factorization of the form

QT AP =
[

R11 R12

0 0

]

,

where Q is orthogonal, P is a permutation matrix and R11 is a nonsingular
upper triangular matrix of order r.

In general, when using the QR factorization, we shall always refer to its
reduced form (3.47) as it finds a remarkable application in the solution of
overdetermined systems (see Section 3.13).

The matrix factors Q̃ and R̃ in (3.47) can be computed using the Gram-
Schmidt orthogonalization. Starting from a set of linearly independent vectors,
x1, . . . ,xn, this algorithm generates a new set of mutually orthogonal vectors,
q1, . . . ,qn, given by

q1 = x1,

qk+1 = xk+1 −
k∑

i=1

(qi,xk+1)
(qi,qi)

qi, k = 1, . . . , n − 1.
(3.49)

Denoting by a1, . . . ,an the column vectors of A, we set q̃1 = a1/‖a1‖2 and,
for k = 1, . . . , n − 1, compute the column vectors of Q̃ as

86 3 Direct Methods for the Solution of Linear Systems

q̃k+1 = qk+1/‖qk+1‖2,

where

qk+1 = ak+1 −
k∑

j=1

(q̃j ,ak+1)q̃j .

Next, imposing that A=Q̃R̃ and exploiting the fact that Q̃ is orthogonal (that
is, Q̃−1 = Q̃T), the entries of R̃ can easily be computed. The overall compu-
tational cost of the algorithm is of the order of mn2 flops.

It is also worth noting that if A has full rank, the matrix AT A is symmetric
and positive definite (see Section 1.9) and thus it admits a unique Cholesky
factorization of the form HT H. On the other hand, since the orthogonality of
Q̃ implies

HT H = AT A = R̃T Q̃T Q̃R̃ = R̃T R̃,

we conclude that R̃ is actually the Cholesky factor H of AT A. Thus, the
diagonal entries of R̃ are all nonzero only if A has full rank.
The Gram-Schmidt method is of little practical use since the generated vectors
lose their linear independence due to rounding errors. Indeed, in floating-point
arithmetic the algorithm produces very small values of ‖qk+1‖2 and r̃kk with
a consequent numerical instability and loss of orthogonality for matrix Q̃ (see
Example 3.4).

These drawbacks suggest employing a more stable version, known as mod-
ified Gram-Schmidt method. At the beginning of the k + 1-th step, the pro-
jections of the vector ak+1 along the vectors q̃1, . . . , q̃k are progressively sub-
tracted from ak+1. On the resulting vector, the orthogonalization step is then
carried out. In practice, after computing (q̃1,ak+1)q̃1 at the k + 1-th step,
this vector is immediately subtracted from ak+1. As an example, one lets

a(1)
k+1 = ak+1 − (q̃1,ak+1)q̃1.

This new vector a(1)
k+1 is projected along the direction of q̃2 and the obtained

projection is subtracted from a(1)
k+1, yielding

a(2)
k+1 = a(1)

k+1 − (q̃2,a
(1)
k+1)q̃2

and so on, until a(k)
k+1 is computed.

It can be checked that a(k)
k+1 coincides with the corresponding vector qk+1

in the standard Gram-Schmidt process, since, due to the orthogonality of
vectors q̃1, q̃2, . . . , q̃k,

a(k)
k+1 = ak+1 − (q̃1,ak+1)q̃1 − (q̃2,ak+1 − (q̃1,ak+1)q̃1) q̃2 + . . .

= ak+1 −
k∑

j=1

(q̃j ,ak+1)q̃j .

3.5 Pivoting 87

Program 8 implements the modified Gram-Schmidt method. Notice that
it is not possible to overwrite the computed QR factorization on the matrix
A. In general, the matrix R̃ is overwritten on A, whilst Q̃ is stored separately.
The computational cost of the modified Gram-Schmidt method has the order
of 2mn2 flops.

Program 8 - modgrams : Modified Gram-Schmidt method

function [Q,R]=modgrams(A)
% MODGRAMS QR factorization of a matrix A.
% [Q,R]=MODGRAMS(A) produces an upper trapezoidal matrix R and an orthogonal
% matrix Q such that Q*R=A.
[m,n]=size(A);
Q=zeros(m,n); Q(1:m,1) = A(1:m,1); R=zeros(n); R(1,1)=1;
for k = 1:n

R(k,k) = norm(A(1:m,k));
Q(1:m,k) = A(1:m,k)/R(k,k);
j=[k+1:n];
R(k,j) = Q (1:m,k)’*A(1:m,j);
A(1:m,j) = A (1:m,j)-Q(1:m,k)*R(k,j);

end
return

Example 3.4 Let us consider the Hilbert matrix H4 of order 4 (see (3.32)). The
matrix Q̃, generated by the standard Gram-Schmidt algorithm, is orthogonal up to
the order of 10−10, being

I − Q̃T Q̃ = 10−10

⎡

⎢
⎣

0.0000 −0.0000 0.0001 −0.0041
−0.0000 0 0.0004 −0.0099

0.0001 0.0004 0 −0.4785
−0.0041 −0.0099 −0.4785 0

⎤

⎥
⎦

and ‖I − Q̃T Q̃‖∞ = 4.9247 · 10−11. Using the modified Gram-Schmidt method, we
would obtain

I − Q̃T Q̃ = 10−12

⎡

⎢
⎣

0.0001 −0.0005 0.0069 −0.2853
−0.0005 0 −0.0023 0.0213

0.0069 −0.0023 0.0002 −0.0103
−0.2853 0.0213 −0.0103 0

⎤

⎥
⎦

and this time ‖I − Q̃T Q̃‖∞ = 3.1686 · 10−13.
An improved result can be obtained using, instead of Program 8, the intrinsic

function qr of MATLAB. This function can be properly employed to generate both
the factorization (3.46) as well as its reduced version (3.47). •

3.5 Pivoting

As previously pointed out, the GEM process breaks down as soon as a zero
pivotal entry is computed. In such an event, one needs to resort to the so-called

88 3 Direct Methods for the Solution of Linear Systems

pivoting technique, which amounts to exchanging rows (or columns) of the
system in such a way that nonvanishing pivots are obtained.

Example 3.5 Let us go back to matrix (3.33) for which GEM furnishes at the
second step a zero pivotal element. By simply exchanging the second row with the
third one, we can execute one step further of the elimination method, finding a
nonzero pivot. The generated system is equivalent to the original one and it can be
noticed that it is already in upper triangular form. Indeed

A(2) =

[
1 2 3
0 −6 −12
0 0 −1

]

= U,

while the transformation matrices are given by

M1 =

[
1 0 0
−2 1 0
−7 0 1

]

, M2 =

[
1 0 0
0 1 0
0 0 1

]

.

From an algebraic standpoint, a permutation of the rows of A has been performed.

In fact, it now no longer holds that A=M−1
1 M−1

2 U, but rather A=M−1
1 P M−1

2 U, P
being the permutation matrix

P =

[
1 0 0
0 0 1
0 1 0

]

. (3.50)

•

The pivoting strategy adopted in Example 3.5 can be generalized by looking,
at each step k of the elimination procedure, for a nonzero pivotal entry by
searching within the entries of the subcolumn A(k)(k : n, k). For that reason,
it is called partial pivoting (by rows).

From (3.30) it can be seen that a large value of mik (generated for example
by a small value of the pivot a

(k)
kk) might amplify the rounding errors affecting

the entries a
(k)
kj . Therefore, in order to ensure a better stability, the pivotal

element is chosen as the largest entry (in module) of the column A(k)(k : n, k)
and partial pivoting is generally performed at every step of the elimination
procedure, even if not strictly necessary (that is, even if nonzero pivotal entries
are found).

Alternatively, the searching process could have been extended to the whole
submatrix A(k)(k : n, k : n), ending up with a complete pivoting (see Figure
3.2). Notice, however, that while partial pivoting requires an additional cost of
about n2 searches, complete pivoting needs about 2n3/3, with a considerable
increase of the computational cost of GEM.

Example 3.6 Let us consider the linear system Ax = b with

A =

[
10−13 1

1 1

]

3.5 Pivoting 89

Fig. 3.2. Partial pivoting by row (left) or complete pivoting (right). Darker areas
of the matrix are those involved in the searching for the pivotal entry

and where b is chosen in such a way that x = (1, 1)T is the exact solution. Suppose
we use base 2 and 16 significant digits. GEM without pivoting would give xGEM =
[0.99920072216264, 1]T , while GEM plus partial pivoting furnishes the exact solution
up to the 16-th digit. •

Let us analyze how partial pivoting affects the LU factorization induced by
GEM. At the first step of GEM with partial pivoting, after finding out the
entry ar1 of maximum module in the first column, the elementary permutation
matrix P1 which exchanges the first row with the r-th row is constructed (if
r = 1, P1 is the identity matrix). Next, the first Gaussian transformation
matrix M1 is generated and we set A(2) = M1P1A(1). A similar approach is
now taken on A(2), searching for a new permutation matrix P2 and a new
matrix M2 such that

A(3) = M2P2A(2) = M2P2M1P1A(1).

Executing all the elimination steps, the resulting upper triangular matrix U
is now given by

U = A(n) = Mn−1Pn−1 · · ·M1P1A(1). (3.51)

Letting M = Mn−1Pn−1 · · ·M1P1 and P = Pn−1 · · ·P1, we obtain that U=MA
and, thus, U = (MP−1)PA. It can easily be checked that the matrix L = PM−1

is unit lower triangular, so that the LU factorization reads

PA = LU. (3.52)

One should not be worried by the presence of the inverse of M, since M−1 =
P−1

1 M−1
1 · · ·P−1

n−1M
−1
n−1 and P−1

i = PT
i , while M−1

i = 2In − Mi.
Once L, U and P are available, solving the initial linear system amounts to

solving the triangular systems Ly = Pb and Ux = y. Notice that the entries

90 3 Direct Methods for the Solution of Linear Systems

of the matrix L coincide with the multipliers computed by LU factorization,
without pivoting, when applied to the matrix PA.
If complete pivoting is performed, at the first step of the process, once the
element aqr of largest module in submatrix A(1 : n, 1 : n) has been found, we
must exchange the first row and column with the q-th row and the r-th col-
umn. This generates the matrix P1A(1)Q1, where P1 and Q1 are permutation
matrices by rows and by columns, respectively.

As a consequence, the action of matrix M1 is now such that A(2) =
M1P1A(1)Q1. Repeating the process, at the last step, instead of (3.51) we
obtain

U = A(n) = Mn−1Pn−1 · · ·M1P1A(1)Q1 · · ·Qn−1.

In the case of complete pivoting the LU factorization becomes

PAQ = LU,

where Q = Q1 · · ·Qn−1 is a permutation matrix accounting for all permuta-
tions that have been operated. By construction, matrix L is still lower tri-
angular, with module entries less than or equal to 1. As happens in partial
pivoting, the entries of L are the multipliers produced by the LU factorization
process without pivoting, when applied to the matrix PAQ.

Program 9 is an implementation of the LU factorization with complete
pivoting. For an efficient computer implementation of the LU factorization
with partial pivoting, we refer to the MATLAB intrinsic function lu.

Program 9 - LUpivtot : LU factorization with complete pivoting

function [L,U,P,Q]=LUpivtot(A)
%LUPIVTOT LU factorization with complete pivoting
% [L,U,P,Q]=LUPIVTOT(A) returns unit lower triangular matrix L, upper
% triangular matrix U and permutation matrices P and Q so that P*A*Q=L*U.
[n,m]=size(A);
if n ˜= m, error(’Only square systems’); end
P=eye(n); Q=P; Minv=P; I=eye(n);
for k=1:n-1

[Pk,Qk]=pivot(A,k,n,I); A=Pk*A*Qk;
[Mk,Mkinv]=MGauss(A,k,n);
A=Mk*A; P=Pk*P; Q=Q*Qk;
Minv=Minv*Pk*Mkinv;

end
U=triu(A); L=P*Minv;
return

function [Mk,Mkinv]=MGauss(A,k,n)
Mk=eye(n);
i=[k+1:n];
Mk(i,k)=-A(i,k)/A(k,k);

3.6 Computing the Inverse of a Matrix 91

Mkinv=2*eye(n)-Mk;
return

function [Pk,Qk]=pivot(A,k,n,I)
[y,i]=max(abs(A(k:n,k:n)));
[piv,jpiv]=max(y);
ipiv=i(jpiv);
jpiv=jpiv+k-1;
ipiv=ipiv+k-1;
Pk=I; Pk(ipiv,ipiv)=0; Pk(k,k)=0; Pk(k,ipiv)=1; Pk(ipiv,k)=1;
Qk=I; Qk(jpiv,jpiv)=0; Qk(k,k)=0; Qk(k,jpiv)=1; Qk(jpiv,k)=1;
return

Remark 3.3 The presence of large pivotal entries is not in itself sufficient
to guarantee accurate solutions, as demonstrated by the following example
(taken from [JM92]). For the linear system

⎡

⎣
−4000 2000 2000

2000 0.78125 0
2000 0 0

⎤

⎦

⎡

⎣
x1

x2

x3

⎤

⎦ =

⎡

⎣
400

1.3816
1.9273

⎤

⎦ ,

at the first step the pivotal entry coincides with the diagonal entry −4000
itself. However, executing GEM with 8 digits on such a matrix yields the
solution

x̂ = [0.00096365, −0.698496, 0.90042329]T ,

whose first component drastically differs from that of the exact solution
x = [1.9273, −0.698496, 0.9004233]T . The cause of this behaviour should
be ascribed to the wide variations among the system coefficients. Such cases
can be remedied by a suitable scaling of the matrix (see Section 3.12.1). �

Remark 3.4 (Pivoting for symmetric matrices) As already noticed,
pivoting is not strictly necessary if A is symmetric and positive definite. A
separate comment is deserved when A is symmetric but not positive definite,
since pivoting could destroy the symmetry of the matrix. This can be avoided
by employing a complete pivoting of the form PAPT , even though this piv-
oting can only turn out into a reordering of the diagonal entries of A. As a
consequence, the presence on the diagonal of A of small entries might inhibit
the advantages of the pivoting. To deal with matrices of this kind, special
algorithms are needed (like the Parlett-Reid method [PR70] or the Aasen
method [Aas71]) for whose description we refer to [GL89], and to [JM92] for
the case of sparse matrices. �

3.6 Computing the Inverse of a Matrix

The explicit computation of the inverse of a matrix can be carried out using
the LU factorization as follows. Denoting by X the inverse of a nonsingular

92 3 Direct Methods for the Solution of Linear Systems

matrix A∈ R
n×n, the column vectors of X are the solutions to the linear

systems Axi = ei, for i = 1, . . . , n.
Supposing that PA=LU, where P is the partial pivoting permutation ma-

trix, we must solve 2n triangular systems of the form

Lyi = Pei, Uxi = yi, i = 1, . . . , n,

i.e., a succession of linear systems having the same coefficient matrix but
different right hand sides. The computation of the inverse of a matrix is a
costly procedure which can sometimes be even less stable than GEM (see
[Hig88]).

An alternative approach for computing the inverse of A is provided by the
Faddev or Leverrier formula, which, letting B0=I, recursively computes

αk =
1
k

tr(ABk−1), Bk = −ABk−1 + αkI, k = 1, 2, . . . , n.

Since Bn = 0, if αn �= 0 we get

A−1 =
1

αn
Bn−1,

and the computational cost of the method for a full matrix is equal to (n−1)n3

flops (for further details see [FF63], [Bar89]).

3.7 Banded Systems

Discretization methods for boundary value problems often lead to solving lin-
ear systems with matrices having banded, block or sparse forms. Exploiting
the structure of the matrix allows for a dramatic reduction in the compu-
tational costs of the factorization and of the substitution algorithms. In the
present and forthcoming sections, we shall address special variants of GEM
or LU factorization that are properly devised for dealing with matrices of this
kind. For the proofs and a more comprehensive treatment, we refer to [GL89]
and [Hig88] for banded or block matrices, while we refer to [JM92], [GL81]
and [Saa96] for sparse matrices and the techniques for their storage.

The main result for banded matrices is the following.

Property 3.4 Let A∈ R
n×n. Suppose that there exists a LU factorization

of A. If A has upper bandwidth q and lower bandwidth p, then L has lower
bandwidth p and U has upper bandwidth q.

In particular, notice that the same memory area used for A is enough to
also store its LU factorization. Consider, indeed, that a matrix A having
upper bandwidth q and lower bandwidth p is usually stored in a matrix B
(p + q + 1) × n, assuming that

3.7 Banded Systems 93

bi−j+q+1,j = aij

for all the indices i, j that fall into the band of the matrix. For instance, in
the case of the tridiagonal matrix A=tridiag5(−1, 2,−1) (where q = p = 1),
the compact storage reads

B =

⎡

⎣
0 −1 −1 −1 −1
2 2 2 2 2

−1 −1 −1 −1 0

⎤

⎦ .

The same format can be used for storing the factorization LU of A. It is clear
that this storage format can be quite inconvenient in the case where only a
few bands of the matrix are large. In the limit, if only one column and one
row were full, we would have p = q = n and thus B would be a full matrix
with a lot of zero entries.

Finally, we notice that the inverse of a banded matrix is generally full (as
happens for the matrix A considered above).

3.7.1 Tridiagonal Matrices

Consider the particular case of a linear system with nonsingular tridiagonal
matrix A given by

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

a1 c1 0
b2 a2

. . .
. . . cn−1

0 bn an

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

In such an event, the matrices L and U of the LU factorization of A are
bidiagonal matrices of the form

L =

⎡

⎢
⎢
⎢
⎢
⎣

1 0
β2 1

.

0 βn 1

⎤

⎥
⎥
⎥
⎥
⎦

, U =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

α1 c1 0
α2

. . .

. . . cn−1

0 αn

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

The coefficients αi and βi can easily be computed by the following relations

α1 = a1, βi =
bi

αi−1
, αi = ai − βici−1, i = 2, . . . , n. (3.53)

This is known as the Thomas algorithm and can be regarded as a particular
instance of the Doolittle factorization, without pivoting. When one is not
interested in storing the coefficients of the original matrix, the entries αi and
βi can be overwritten on A.

94 3 Direct Methods for the Solution of Linear Systems

The Thomas algorithm can also be extended to solve the whole tridiagonal
system Ax = f . This amounts to solving two bidiagonal systems Ly = f and
Ux = y, for which the following formulae hold:

(Ly = f) y1 = f1, yi = fi − βiyi−1, i = 2, . . . , n, (3.54)

(Ux = y) xn =
yn

αn
, xi = (yi − cixi+1) /αi, i = n − 1, . . . , 1. (3.55)

The algorithm requires only 8n − 7 flops: precisely, 3(n − 1) flops for the
factorization (3.53) and 5n − 4 flops for the substitution procedure (3.54)-
(3.55).

As for the stability of the method, if A is a nonsingular tridiagonal matrix
and L̂ and Û are the factors actually computed, then

|δA| ≤ (4u + 3u2 + u3)|L̂| |Û|,

where δA is implicitly defined by the relation A + δA = L̂Û while u is the
roundoff unit. In particular, if A is also symmetric and positive definite or it
is an M-matrix, we have

|δA| ≤ 4u + 3u2 + u3

1 − u
|A|,

which implies the stability of the factorization procedure in such cases. A
similar result holds even if A is diagonally dominant.

3.7.2 Implementation Issues

An implementation of the LU factorization for banded matrices is shown in
Program 10.

Program 10 - luband : LU factorization for a banded matrix

function [A]=luband(A,p,q)
%LUBAND LU factorization for a banded matrix
% Y=LUBAND(A,P,Q): U is stored in the upper triangular part of Y and L is stored
% in the strict lower triangular part of Y for a banded matrix A
% with an upper bandwidth Q and a lower bandwidth P.
[n,m]=size(A);
if n ˜= m, error(’Only square systems’); end
for k = 1:n-1

for i = k+1:min(k+p,n), A(i,k)=A(i,k)/A(k,k); end
for j = k+1:min(k+q,n)

i = [k+1:min(k+p,n)];
A(i,j)=A(i,j)-A(i,k)*A(k,j);

end
end
return

3.7 Banded Systems 95

In the case where n � p and n � q, this algorithm approximately takes 2npq
flops, with a considerable saving with respect to the case in which A is a full
matrix.

Similarly, ad hoc versions of the substitution methods can be devised (see
Programs 11 and 12). Their costs are, respectively, of the order of 2np flops
and 2nq flops, always assuming that n � p and n � q.

Program 11 - forwband : Forward substitution for a banded matrix L

function [b]=forwband (L,p,b)
%FORWBAND forward substitution for a banded matrix
% X=FORWBAND(L,P,B) solves the lower triangular system L*X=B
% where L is a matrix with lower bandwidth P.
[n,m]=size(L);
if n ˜= m, error(’Only square systems’); end
for j = 1:n

i=[j+1:min(j+p,n)]; b(i) = b(i) - L(i,j)*b(j);
end
return

Program 12 - backband : Backward substitution for a banded matrix U

function [b]=backband (U,q,b)
%BACKBAND forward substitution for a banded matrix
% X=BACKBAND(U,Q,B) solves the upper triangular system U*X=B
% where U is a matrix with upper bandwidth Q.
[n,m]=size(U);
if n ˜= m, error(’Only square systems’); end
for j=n:-1:1

b (j) = b (j) / U (j,j);
i = [max(1,j-q):j-1]; b(i)=b(i)-U(i,j)*b(j);

end
return

The programs assume that the whole matrix is stored (including also the zero
entries).

Concerning the tridiagonal case, the Thomas algorithm can be imple-
mented in several ways. In particular, when implementing it on computers
where divisions are more costly than multiplications, it is possible (and con-
venient) to devise a version of the algorithm without divisions in (3.55), by
resorting to the following form of the factorization

A = LDMT =

⎡

⎢
⎢
⎢
⎣

γ−1
1 0 0

b2 γ−1
2

. . .

. . .
. . . 0

0 bn γ−1
n

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

γ1 0
γ2

. . .

0 γn

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

γ−1
1 c1 0

0 γ−1
2

. . .

. . .
. . . cn−1

0 0 γ−1
n

⎤

⎥
⎥
⎥
⎦

.

96 3 Direct Methods for the Solution of Linear Systems

The coefficients γi can be recursively computed by the formulae

γi = (ai − biγi−1ci−1)−1, i = 1, . . . , n,

where γ0 = 0, b1 = 0 and cn = 0 have been assumed. The forward and
backward substitution algorithms respectively read:

(Ly = f) y1 = γ1f1, yi = γi(fi − biyi−1), i = 2, . . . , n,

(Ux = y) xn = yn xi = yi − γicixi+1, i = n − 1, . . . , 1.
(3.56)

In Program 13 we show an implementation of the Thomas algorithm in the
form (3.56), without divisions. The input vectors a, b and c contain the co-
efficients of the tridiagonal matrix {ai}, {bi} and {ci}, respectively, while the
vector f contains the components fi of the right-hand side f.

Program 13 - modthomas : Thomas algorithm, modified version

function [x] = modthomas (a,b,c,f)
%MODTHOMAS modified version of the Thomas algorithm
% X=MODTHOMAS(A,B,C,F) solves the system T*X=F where T
% is the tridiagonal matrix T=tridiag(B,A,C).
n=length(a);
b=[0; b];
c=[c; 0];
gamma(1)=1/a(1);
for i=2:n

gamma(i)=1/(a(i)-b(i)*gamma(i-1)*c(i-1));
end
y(1)=gamma(1)*f (1);
for i =2:n

y(i)=gamma(i)*(f(i)-b(i)*y(i-1));
end
x(n,1)=y(n);
for i=n-1:-1:1

x(i,1)=y(i)-gamma(i)*c(i)*x(i+1,1);
end
return

3.8 Block Systems

In this section we deal with the LU factorization of block-partitioned ma-
trices, where each block can possibly be of a different size. Our aim is
twofold: optimizing the storage occupation by suitably exploiting the struc-
ture of the matrix and reducing the computational cost of the solution of the
system.

3.8 Block Systems 97

3.8.1 Block LU Factorization

Let A∈ R
n×n be the following block partitioned matrix

A =
[

A11 A12

A21 A22

]

,

where A11 ∈ R
r×r is a nonsingular square matrix whose factorization

L11D1R11 is known, while A22 ∈ R
(n−r)×(n−r). In such a case it is possi-

ble to factorize A using only the LU factorization of the block A11. Indeed, it
is true that

[
A11 A12

A21 A22

]

=
[

L11 0
L21 In−r

] [
D1 0
0 ∆2

] [
R11 R12

0 In−r

]

,

where

L21 = A21R−1
11 D−1

1 , R12 = D−1
1 L−1

11 A12,

∆2 = A22 − L21D1R12.

If necessary, the reduction procedure can be repeated on the matrix ∆2, thus
obtaining a block-version of the LU factorization.

If A11 were a scalar, the above approach would reduce by one the size of
the factorization of a given matrix. Applying iteratively this method yields an
alternative way of performing the Gauss elimination.

We also notice that the proof of Theorem 3.4 can be extended to the case
of block matrices, obtaining the following result.

Theorem 3.7 Let A ∈ R
n×n be partitioned in m × m blocks Aij with

i, j = 1, . . . ,m. A admits a unique LU block factorization (with L having
unit diagonal entries) iff the m− 1 dominant principal block minors of A are
nonzero.

Since the block factorization is an equivalent formulation of the standard LU
factorization of A, the stability analysis carried out for the latter holds for its
block-version as well. Improved results concerning the efficient use in block
algorithms of fast forms of matrix-matrix product are dealt with in [Hig88].
In the forthcoming section we focus solely on block-tridiagonal matrices.

3.8.2 Inverse of a Block-partitioned Matrix

The inverse of a block matrix can be constructed using the LU factorization
introduced in the previous section. A remarkable application is when A is a
block matrix of the form

A = C + UBV,

where C is a block matrix that is “easy” to invert (for instance, when C is
given by the diagonal blocks of A), while U, B and V take into account the

98 3 Direct Methods for the Solution of Linear Systems

connections between the diagonal blocks. In such an event A can be inverted
by using the Sherman-Morrison or Woodbury formula

A−1 = (C + UBV)−1 = C−1 − C−1U
(
I + BVC−1U

)−1
BVC−1, (3.57)

having assumed that C and I + BVC−1U are two nonsingular matrices. This
formula has several practical and theoretical applications, and is particularly
effective if connections between blocks are of modest relevance.

3.8.3 Block Tridiagonal Systems

Consider block tridiagonal systems of the form

Anx =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

A11 A12 0
A21 A22

. . .
. An−1,n

0 An,n−1 Ann

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

x1

...

...
xn

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

b1

...

...
bn

⎤

⎥
⎥
⎥
⎥
⎦

, (3.58)

where Aij are matrices of order ni × nj and xi and bi are column vectors of
size ni, for i, j = 1, . . . , n. We assume that the diagonal blocks are squared,
although not necessarily of the same size. For k = 1, . . . , n, set

Ak =

⎡

⎢
⎢
⎢
⎢
⎣

In1 0
L1 In2

.

0 Lk−1 Ink

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎣

U1 A12 0
U2

. . .

. . . Ak−1,k

0 Uk

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

Equating for k = n the matrix above with the corresponding blocks of An, it
turns out that U1 = A11, while the remaining blocks can be obtained solving
sequentially, for i = 2, . . . , n, the systems Li−1Ui−1 = Ai,i−1 for the columns
of L and computing Ui = Aii − Li−1Ai−1,i.
This procedure is well defined only if all the matrices Ui are nonsingular,
which is the case if, for instance, the matrices A1, . . . ,An are nonsingular. As
an alternative, one could resort to factorization methods for banded matrices,
even if this requires the storage of a large number of zero entries (unless a
suitable reordering of the rows of the matrix is performed).

A remarkable instance is when the matrix is block tridiagonal and symmet-
ric, with symmetric and positive definite blocks. In such a case (3.58) takes
the form

⎡

⎢
⎢
⎢
⎢
⎢
⎣

A11 AT
21 0

A21 A22
. . .

. AT
n,n−1

0 An,n−1 Ann

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

x1

...

...
xn

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

b1

...

...
bn

⎤

⎥
⎥
⎥
⎥
⎦

.

3.9 Sparse Matrices 99

Here we consider an extension to the block case of the Thomas algorithm,
which aims at transforming A into a block bidiagonal matrix. To this purpose,
we first have to eliminate the block corresponding to matrix A21. Assume that
the Cholesky factorization of A11 is available and denote by H11 the Cholesky
factor. If we multiply the first row of the block system by H−T

11 , we find

H11x1 + H−T
11 AT

21x2 = H−T
11 b1.

Letting H21 = H−T
11 AT

21 and c1 = H−T
11 b1, it follows that A21 = HT

21H11 and
thus the first two rows of the system are

H11x1 + H21x2 = c1,

HT
21H11x1 + A22x2 + AT

32x3 = b2.

As a consequence, multiplying the first row by HT
21 and subtracting it from

the second one, the unknown x1 is eliminated and the following equivalent
equation is obtained

A(1)
22 x2 + AT

32x3 = b2 − H21c1,

with A(1)
22 = A22 − HT

21H21. At this point, the factorization of A(1)
22 is carried

out and the unknown x2 is eliminated from the third row of the system, and
the same is repeated for the remaining rows of the system. At the end of the
procedure, which requires solving (n− 1)

∑n−1
j=1 nj linear systems to compute

the matrices Hi+1,i, i = 1, . . . , n − 1, we end up with the following block
bidiagonal system

⎡

⎢
⎢
⎢
⎢
⎢
⎣

H11 H21 0
H22

. . .

. . . Hn,n−1

0 Hnn

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

x1

...

...
xn

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

c1

...

...
cn

⎤

⎥
⎥
⎥
⎥
⎦

,

which can be solved with a (block) back substitution method. If all blocks have
the same size p, then the number of multiplications required by the algorithm
is about (7/6)(n − 1)p3 flops (assuming both p and n very large).

3.9 Sparse Matrices

In this section we briefly address the numerical solution of linear sparse sys-
tems, that is, systems where the matrix A∈ R

n×n has a number of nonzero
entries of the order of n (and not n2). We call a pattern of a sparse matrix
the set of its nonzero coefficients.

Banded matrices with sufficiently small bands are sparse matrices. Obvi-
ously, for a sparse matrix the matrix structure itself is redundant and it can be

100 3 Direct Methods for the Solution of Linear Systems

more conveniently substituted by a vector-like structure by means of matrix
compacting techniques, like the banded matrix format discussed in Section 3.7.

For sake of convenience, we associate with a sparse matrix A an oriented
graph G(A). A graph is a pair (V,X) where V is a set of p points and X is a
set of q ordered pairs of elements of V that are linked by a line. The elements
of V are called the vertices of the graph, while the connection lines are called
the paths of the graph.

The graph G(A) associated with a matrix A∈ R
m×n can be constructed

by identifying the vertices with the set of the indices from 1 to the maximum
between m and n and supposing that a path exists which connects two vertices
i and j if aij �= 0 and is directed from i to j, for i = 1, . . . ,m and j = 1, . . . , n.
For a diagonal entry aii �= 0, the path joining the vertex i with itself is called
a loop. Since an orientation is associated with each side, the graph is called
oriented (or finite directed). As an example, Figure 3.3 displays the pattern
of a symmetric and sparse 12× 12 matrix, together with its associated graph.

As previously noticed, during the factorization procedure, nonzero entries
can be generated in memory positions that correspond to zero entries in the
starting matrix. This action is referred to as fill-in. Figure 3.4 shows the effect
of fill-in on the sparse matrix whose pattern is shown in Figure 3.3. Since use
of pivoting in the factorization process makes things even more complicated,
we shall only consider the case of symmetric positive definite matrices for
which pivoting is not necessary.

A first remarkable result concerns the amount of fill-in. Let mi(A) = i −
min {j < i : aij �= 0} and denote by E(A) the convex hull of A, given by

E(A) = {(i, j) : 0 < i − j ≤ mi(A)} . (3.59)

1

2

3
4

5

6

7

8

9

10

11

12

Fig. 3.3. Pattern of a symmetric sparse matrix (left) and of its associated graph
(right). For the sake of clarity, the loops have not been drawn; moreover, since the
matrix is symmetric, only one of the two sides associated with each aij �= 0 has been
reported

3.9 Sparse Matrices 101

x
x
x x
x x
x x

x x x
x
x

x

x
x x

xx

xx
xx

xx

x
x x
x

x x

xx

x x
x x x x
x x x

x x x x
x x

x x

x

x
x x
x x x x

x x x
xx x

x
xx

xx
xx

x x x x

x x
x x
x

x x x
x
x

xx

Fig. 3.4. The shaded regions in the left figure show the areas of the matrix that
can be affected by fill-in, for the matrix considered in Figure 3.3. Solid lines denote
the boundary of E(A). The right figure displays the factors that have been actually
computed. Black dots denote the elements of A that were originarily equal to zero

For a symmetric positive definite matrix, we have

E(A) = E(H + HT), (3.60)

where H is the Cholesky factor, so that fill-in is confined within the convex
hull of A (see Figure 3.4). Moreover, if we denote by lk(A) the number of
active rows at the k-th step of the factorization (i.e., the number of rows of A
with i > k and aik �= 0), the computational cost of the factorization process is

1
2

n∑

k=1

lk(A) (lk(A) + 3) flops, (3.61)

having accounted for all the nonzero entries of the convex hull. Confinement of
fill-in within E(A) ensures that the LU factorization of A can be stored without
extra memory areas simply by storing all the entries of E(A) (including the
null elements). However, such a procedure might still be highly inefficient due
to the large number of zero entries in the hull (see Exercise 11).

On the other hand, from (3.60) one gets that the reduction in the convex
hull reflects a reduction of fill-in, and in turn, due to (3.61), of the number
of operations needed to perform the factorization. For this reason several
strategies for reordering the graph of the matrix have been devised. Among
them, we recall the Cuthill-McKee method, which will be addressed in the
next section.

An alternative consists of decomposing the matrix into sparse submatri-
ces, with the aim of reducing the original problem to the solution of sub-
problems of reduced size, where matrices can be stored in full format. This
approach leads to submatrix decomposition methods which will be addressed
in Section 3.9.2.

102 3 Direct Methods for the Solution of Linear Systems

3.9.1 The Cuthill-McKee Algorithm

The Cuthill-McKee algorithm is a simple and effective method for reordering
the system variables. The first step of the algorithm consists of associating
with each vertex of the graph the number of its connections with neighboring
vertices, called the degree of the vertex. Next, the following steps are taken:

1. a vertex with a low number of connections is chosen as the first vertex of
the graph;

2. the vertices connected to it are progressively re-labeled starting from those
having lower degrees;

3. the procedure is repeated starting from the vertices connected to the sec-
ond vertex in the updated list. The nodes already re-labeled are ignored.
Then, a third new vertex is considered, and so on, until all the vertices
have been explored.

The usual way to improve the efficiency of the algorithm is based on the so-
called reverse form of the Cuthill-McKee method. This consists of executing
the Cuthill-McKee algorithm described above where, at the end, the i-th ver-
tex is moved into the n − i + 1-th position of the list, n being the number of
nodes in the graph. Figure 3.5 reports, for comparison, the graphs obtained
using the direct and reverse Cuthill-McKee reordering in the case of the ma-
trix pattern represented in Figure 3.3, while in Figure 3.6 the factors L and
U are compared. Notice the absence of fill-in when the reverse Cuthill-McKee
method is used.

Remark 3.5 For an efficient solution of linear systems with sparse matri-
ces, we mention the public domain libraries SPARSKIT [Saa90], UMFPACK
[DD95] and the MATLAB sparfun package. �

1 (3)

2 (4)

3 (2)
4 (5)

5 (6)

6 (1)

7 (12)

8 (8)

9 (10)

10 (9)

11 (11)

12 (7)

1 (10)

2 (9)

3 (11)
4 (8)

6 (7)

7 (6)

8 (5)

5 (12)

9 (3)

10 (4)
11 (2)

12 (1)

Fig. 3.5. Reordered graphs using the direct (left) and reverse (right) Cuthill-McKee
algorithm. The label of each vertex, before reordering is performed, is reported in
braces

3.9 Sparse Matrices 103

x x x x
x x

x x
x x

x x
x x

x

x x x
x x

xx x

x
xx

xx

x

x
x

x

x
x
x

xx
x

x x
x x

x

x

x x

x x

x

x

x

x
x

x

x
x x x
x x

x x
x x

x
x x
x x

x x
xx x

x
xx

x

x
x

x
x

x

x
x

x

x
x

x

x x
x
x

x
x

x x x x
x x x

x x
x

x
xx

Fig. 3.6. Factors L and U after the direct (left) and reverse (right) Cuthill-McKee
reordering. In the second case, fill-in is absent

51 7

2 3

6 4

10
8

9

11

12

Substructure I

Substructure II

Fig. 3.7. Decomposition into two substructures

3.9.2 Decomposition into Substructures

These methods have been developed in the framework of numerical approxi-
mation of partial differential equations. Their basic strategy consists of split-
ting the solution of the original linear system into subsystems of smaller size
which are almost independent from each other and can be easily interpreted
as a reordering technique.

We describe the methods on a special example, referring for a more com-
prehensive presentation to [BSG96]. Consider the linear system Ax=b, where
A is a symmetric positive definite matrix whose pattern is shown in Figure
3.3. To help develop an intuitive understanding of the method, we draw the
graph of A in the form as in Figure 3.7.

We then partition the graph of A into the two subgraphs (or substructures)
identified in the figure and denote by xk, k = 1, 2, the vectors of the unknowns
relative to the nodes that belong to the interior of the k-th substructure. We
also denote by x3 the vector of the unknowns that lie along the interface
between the two substructures. Referring to the decomposition in Figure 3.7,
we have x1 = [2, 3, 4, 6]T , x2 = [8, 9, 10, 11, 12]T and x3 = [1, 5, 7]T .

104 3 Direct Methods for the Solution of Linear Systems

As a result of the decomposition of the unknowns, matrix A will be parti-
tioned in blocks, so that the linear system can be written in the form

⎡

⎣
A11 0 A13

0 A22 A23

AT
13 AT

23 A33

⎤

⎦

⎡

⎣
x1

x2

x3

⎤

⎦ =

⎡

⎣
b1

b2

b3

⎤

⎦ ,

having reordered the unknowns and partitioned accordingly the right hand
side of the system. Suppose that A33 is decomposed into two parts, A′

33 and
A′′

33, which represent the contributions to A33 of each substructure. Similarly,
let the right hand side b3 be decomposed as b′

3 + b′′
3 . The original linear

system is now equivalent to the following pair
[

A11 A13

AT
13 A′

33

] [
x1

x3

]

=
[
b1

b′
3 + γ3

]

,

[
A22 A23

AT
23 A′′

33

] [
x2

x3

]

=
[
b2

b′′
3 − γ3

]

,

having denoted by γ3 a vector that takes into account the coupling between
the substructures. A typical way of proceeding in decomposition techniques
consists of eliminating γ3 to end up with independent systems, one for each
substructure. Let us apply this strategy to the example at hand. The linear
system for the first substructure is

[
A11 A13

AT
13 A′

33

] [
x1

x3

]

=
[
b1

b′
3 + γ3

]

. (3.62)

Let us now factorize A11 as HT
11H11 and proceed with the reduction method

already described in Section 3.8.3 for block tridiagonal matrices. We obtain
the system

[
H11 H21

0 A′
33 − HT

21H21

] [
x1

x3

]

=
[
c1

b′
3 + γ3 − HT

21c1

]

,

where H21 = H−T
11 A13 and c1 = H−T

11 b1. The second equation of this system
yields γ3 explicitly as

γ3 =
(
A′

33 − HT
21H21

)
x3 − b′

3 + HT
21c1.

Substituting this equation into the system for the second substructure, one
ends up with a system only in the unknowns x2 and x3

[
A22 A23

AT
23 A′′′

33

] [
x2

x3

]

=
[
b2

b′′′
3

]

, (3.63)

where A′′′
33 = A33−HT

21H21 and b′′′
3 = b3−HT

21c1. Once (3.63) has been solved,
it will be possible, by backsubstitution into (3.62), to compute also x1.

3.9 Sparse Matrices 105

The technique described above can be easily extended to the case of several
substructures and its efficiency will increase the more the substructures are
mutually independent. It reproduces in nuce the so-called frontal method (in-
troduced by Irons [Iro70]), which is quite popular in the solution of finite
element systems (for an implementation, we refer to the UMFPACK library
[DD95]).

Remark 3.6 (The Schur complement) An approach that is dual to the
above method consists of reducing the starting system to a system acting only
on the interface unknowns x3, passing through the assembling of the Schur
complement of matrix A, defined in the 3×3 case at hand as

S = A33 − AT
13A

−1
11 A13 − AT

23A
−1
22 A23.

The original problem is thus equivalent to the system

Sx3 = b3 − AT
13A

−1
11 b1 − AT

23A
−1
22 b2.

This system is full (even if the matrices Aij were sparse) and can be solved
using either a direct or an iterative method, provided that a suitable pre-
conditioner is available. Once x3 has been computed, one can get x1 and
x2 by solving two systems of reduced size, whose matrices are A11 and A22,
respectively.

We also notice that if the block matrix A is symmetric and positive definite,
then the linear system on the Schur complement S is no more ill-conditioned
than the original system on A, since

K2(S) ≤ K2(A)

(for a proof, see Lemma 3.12, [Axe94]. See also [CM94] and [QV99]). �

3.9.3 Nested Dissection

This is a renumbering technique quite similar to substructuring. In practice,
it consists of repeating the decomposition process several times at each sub-
structure level, until the size of each single block is made sufficiently small.
In Figure 3.8 a possible nested dissection is shown in the case of the matrix
considered in the previous section. Once the subdivision procedure has been
completed, the vertices are renumbered starting with the nodes belonging to
the latest substructuring level and moving progressively up to the first level.
In the example at hand, the new node ordering is 11, 9, 7, 6, 12, 8, 4, 2, 1,
5, 3.

This procedure is particularly effective if the problem has a large size and
the substructures have few connections between them or exhibit a repetitive
pattern [Geo73].

106 3 Direct Methods for the Solution of Linear Systems

1

2A

A

1

2

21 A

A

A

3

4

5

6

B

C

3

B
4

5
6
C

A

3 4 B 5 6 C

Fig. 3.8. Two steps of nested dissection. Graph partitioning (left) and matrix re-
ordering (right)

3.10 Accuracy of the Solution Achieved Using GEM

Let us analyze the effects of rounding errors on the accuracy of the solution
yielded by GEM. Suppose that A and b are a matrix and a vector of floating-
point numbers. Denoting by L̂ and Û, respectively, the matrices of the LU
factorization induced by GEM and computed in floating-point arithmetic, the
solution x̂ yielded by GEM can be regarded as being the solution (in exact
arithmetic) of the perturbed system (A+δA)x̂ = b, where δA is a perturbation
matrix such that

|δA| ≤ nu
(
3|A| + 5|L̂||Û|

)
+ O(u2), (3.64)

where u is the roundoff unit and the matrix absolute value notation has been
used (see [GL89], Section 3.4.6). As a consequence, the entries of δA will be
small in size if the entries of L̂ and Û are small. Using partial pivoting allows
for bounding below 1 the module of the entries of L̂ in such a way that, passing
to the infinity norm and noting that ‖L̂‖∞ ≤ n, the estimate (3.64) becomes

‖δA‖∞ ≤ nu
(
3‖A‖∞ + 5n‖Û‖∞

)
+ O(u2). (3.65)

3.10 Accuracy of the Solution Achieved Using GEM 107

The bound for ‖δA‖∞ in (3.65) is of practical use only if it is possible to
provide an estimate for ‖Û‖∞. With this aim, backward analysis can be carried
out introducing the so-called growth factor

ρn =
max
i,j,k

|â(k)
ij |

max
i,j

|aij |
. (3.66)

Taking advantage of the fact that |ûij | ≤ ρnmax
i,j

|aij |, the following result due

to Wilkinson can be drawn from (3.65),

‖δA‖∞ ≤ 8un3ρn‖A‖∞ + O(u2). (3.67)

The growth factor can be bounded by 2n−1 and, although in most of the cases
it is of the order of 10, there exist matrices for which the inequality in (3.67)
becomes an equality (see, for instance, Exercise 5). For some special classes
of matrices, a sharp bound for ρn can be found:

1. for banded matrices with upper and lower bands equal to p, ρn ≤ 22p−1 −
(p − 1)2p−2. As a consequence, in the tridiagonal case one gets ρn ≤ 2;

2. for Hessenberg matrices, ρn ≤ n;
3. for symmetric positive definite matrices, ρn = 1;
4. for matrices strictly diagonally dominant by columns, ρn ≤ 2.

To achieve better stability when using GEM for arbitrary matrices, resort-
ing to complete pivoting would seem to be mandatory, since it ensures that
ρn ≤ n1/2

(
2 · 31/2 · . . . · n1/(n−1)

)1/2
. Indeed, this growth is slower than

2n−1 as n increases.
However, apart from very special instances, GEM with only partial piv-

oting exhibits acceptable growth factors. This make it the most commonly
employed method in the computational practice.

Example 3.7 Consider the linear system (3.2) with

A =

[
ε 1
1 0

]

, b =

[
1 + ε

1

]

, (3.68)

which admits the exact solution x=1 for any value of ε. The matrix is well-
conditioned, having K∞(A) = (1+ε)2. Attempting to solve the system for ε = 10−15

by the LU factorization with 16 significant digits, and using the Programs 5, 2 and
3, yields the solution x̂ = [0.8881784197001253, 1.000000000000000]T , with an error
greater than 11% on the first component. Some insight into the causes of the inac-
curacy of the computed solution can be drawn from (3.64). Indeed this latter does
not provide a uniformly small bound for all the entries of matrix δA, rather

|δA| ≤
[

3.55 · 10−30 1.33 · 10−15

1.33 · 10−15 2.22

]

.

Notice that the entries of the corresponding matrices L̂ and Û are quite large in
module. Conversely, resorting to GEM with partial or complete pivoting yields the
exact solution of the system (see Exercise 6). •

108 3 Direct Methods for the Solution of Linear Systems

Let us now address the role of the condition number in the error analysis
for GEM. GEM yields a solution x̂ that is typically characterized by having
a small residual r̂ = b − Ax̂ (see [GL89]). This feature, however, does not
ensure that the error x − x̂ is small when K(A) � 1 (see Example 3.8). In
fact, if δb in (3.11) is regarded as being the residual, then

‖x − x̂‖
‖x‖ ≤ K(A)‖r̂‖ 1

‖A‖‖x‖ ≤ K(A)
‖r̂‖
‖b‖ .

This result will be applied to devise methods, based on the a posteriori
analysis, for improving the accuracy of the solution of GEM (see Section 3.12).

Example 3.8 Consider the linear system Ax = b with

A =

[
1 1.0001

1.0001 1

]

, b =

[
1
1

]

,

which admits the solution x = [0.499975 . . . , 0.499975 . . .]T . Assuming as an ap-
proximate solution the vector x̂ = [−4.499775, 5.5002249]T , one finds the residual
r̂ � [−0.001, 0]T , which is small although x̂ is quite different from the exact solution.
The reason for this is due to the ill-conditioning of matrix A. Indeed in this case
K∞(A) = 20001. •

An estimate of the number of exact significant digits of a numerical solution
of a linear system can be given as follows. From (3.13), letting γ = u and
assuming that uK∞(A) ≤ 1/2 we get

‖δx‖∞
‖x‖∞

≤ 2uK∞(A)
1 − uK∞(A)

≤ 4uK∞(A).

As a consequence

‖x̂ − x‖∞
‖x‖∞

� uK∞(A). (3.69)

Assuming that u � β−t and K∞(A) � βm, one gets that the solution x̂
computed by GEM will have at least t − m exact digits, t being the number
of digits available for the mantissa. In other words, the ill-conditioning of a
system depends both on the capability of the floating-point arithmetic that is
being used and on the accuracy that is required in the solution.

3.11 An Approximate Computation of K(A)

Suppose that the linear system (3.2) has been solved by a factorization
method. To determine the accuracy of the computed solution, the analysis
carried out in Section 3.10 can be used if an estimate of the condition number

3.11 An Approximate Computation of K(A) 109

K(A) of A, which we denote by K̂(A), is available. Indeed, although evaluat-
ing ‖A‖ can be an easy task if a suitable norm is chosen (for instance, ‖ · ‖1

or ‖ · ‖∞), it is by no means reasonable (or computationally convenient) to
compute A−1 if the only purpose is to evaluate ‖A−1‖. For this reason, we de-
scribe in this section a procedure (proposed in [CMSW79]) that approximates
‖A−1‖ with a computational cost of the order of n2 flops.

The basic idea of the algorithm is as follows: ∀d ∈ R
n with d �= 0, thanks

to the definition of matrix norm, ‖A−1‖ ≥ ‖y‖/‖d‖ = γ(d) with Ay = d.
Thus, we look for d in such a way that γ(d) is as large as possible and assume
the obtained value as an estimate of ‖A−1‖.

For the method to be effective, the selection of d is crucial. To explain
how to do this, we start by assuming that the QR factorization of A has been
computed and that K2(A) is to be approximated. In such an event, since
K2(A) = K2(R) due to Property 1.8, it suffices to estimate ‖R−1‖2 instead
of ‖A−1‖2. Considerations related to the SVD of R induce approximating
‖R−1‖2 by the following algorithm:

compute the vectors x and y, solutions to the systems

RT x = d, Ry = x, (3.70)

then estimate ‖R−1‖2 by the ratio γ2 = ‖y‖2/‖x‖2. The vector d appearing
in (3.70) should be determined in such a way that γ2 is as close as possible to
the value actually attained by ‖R−1‖2. It can be shown that, except in very
special cases, γ2 provides for any choice of d a reasonable (although not very
accurate) estimate of ‖R−1‖2 (see Exercise 15). As a consequence, a proper
selection of d can encourage this natural trend.

Before going on, it is worth noting that computing K2(R) is not an easy
matter even if an estimate of ‖R−1‖2 is available. Indeed, it would remain to
compute ‖R‖2 =

√
ρ(RT R). To overcome this difficulty, we consider hence-

forth K1(R) instead of K2(R) since ‖R‖1 is easily computable. Then, heuristics
allows us to assume that the ratio γ1 = ‖y‖1/‖x‖1 is an estimate of ‖R−1‖1,
exactly as γ2 is an estimate of ‖R−1‖2.

Let us now deal with the choice of d. Since RT x = d, the generic compo-
nent xk of x can be formally related to x1, . . . , xk−1 through the formulae of
forward substitution as

r11x0 = d1,

rkkxk = dk − (r1kx1 + . . . + rk−1,kxk−1), k ≥ 1.
(3.71)

Assume that the components of d are of the form dk = ±θk, where θk are
random numbers and set arbitrarily d1 = θ1. Then, x1 = θ1/r11 is completely
determined, while x2 = (d2 − r12x1)/r22 depends on the sign of d2. We set
the sign of d2 as the opposite of r12x1 in such a way to make ‖x(1 : 2)‖1 =
|x1|+ |x2|, for a fixed x1, the largest possible. Once x2 is known, we compute
x3 following the same criterion, and so on, until xn.

110 3 Direct Methods for the Solution of Linear Systems

This approach sets the sign of each component of d and yields a vector
x with a presumably large ‖ · ‖1. However, it can fail since it is based on
the idea (which is in general not true) that maximizing ‖x‖1 can be done
by selecting at each step k in (3.71) the component xk which guarantees the
maximum increase of ‖x(1 : k− 1)‖1 (without accounting for the fact that all
the components are related).

Therefore, we need to modify the method by including a sort of “look-
ahead” strategy, which accounts for the way of choosing dk affects all later
values xi, with i > k, still to be computed. Concerning this point, we notice
that for a generic row i of the system it is always possible to compute at step
k the vector p(k−1) with components

p
(k−1)
i = 0, i = 1, . . . , k − 1,

p
(k−1)
i = r1ix1 + . . . + rk−1,ixk−1, i = k, . . . , n.

Thus xk = (±θk − p
(k−1)
k)/rkk. We denote the two possible values of xk by

x+
k and x−

k . The choice between them is now taken not only accounting for
which of the two most increases ‖x(1 : k)‖1, but also evaluating the increase
of ‖p(k)‖1. This second contribution accounts for the effect of the choice of dk

on the components that are still to be computed. We can include both criteria
in a unique test. Denoting by

p
(k)+

i = 0, p
(k)−

i = 0, i = 1, . . . , k,

p
(k)+

i = p
(k−1)
i + rkix

+
k , p

(k)−

i = p
(k−1)
i + rkix

−
k , i = k + 1, . . . , n,

the components of the vectors p(k)+ and p(k)− respectively, we set each k-th
step dk = +θk or dk = −θk according to whether |rkkx+

k |+‖p(k)+‖1 is greater
or less than |rkkx−

k | + ‖p(k)−‖1.
Under this choice d is completely determined and the same holds for x.

Now, solving the system Ry = x, we are warranted that ‖y‖1/‖x‖1 is a reliable
approximation to ‖R−1‖1, so that we can set K̂1(A) = ‖R‖1‖y‖1/‖x‖1.

In practice the PA=LU factorization introduced in Section 3.5 is usually
available. Based on the previous considerations and on some heuristics, an
analogous procedure to that shown above can be conveniently employed to
approximate ‖A−1‖1. Precisely, instead of systems (3.70), we must now solve

(LU)T x = d, LUy = x.

We set ‖y‖1/‖x‖1 as the approximation of ‖A−1‖1 and, consequently, we
define K̂1(A). The strategy for selecting d can be the same as before; indeed,
solving (LU)T x = d amounts to solving

UT z = d, LT x = z, (3.72)

3.11 An Approximate Computation of K(A) 111

and thus, since UT is lower triangular, we can proceed as in the previous
case. A remarkable difference concerns the computation of x. Indeed, while
the matrix RT in the second system of (3.70) has the same condition number
as R, the second system in (3.72) has a matrix LT which could be even more
ill-conditioned than UT . If this were the case, solving for x could lead to an
inaccurate outcome, thus making the whole process useless.

Fortunately, resorting to partial pivoting prevents this circumstance from
occurring, ensuring that any ill-condition in A is reflected in a corresponding
ill-condition in U. Moreover, picking θk randomly between 1/2 and 1 guar-
antees accurate results even in the special cases where L turns out to be
ill-conditioned.

The algorithm presented below is implemented in the LINPACK library
[BDMS79] and in the MATLAB function rcond. This function, in order to
avoid rounding errors, returns as output parameter the reciprocal of K̂1(A).
A more accurate estimator, described in [Hig88], is implemented in the MAT-
LAB function condest.

Program 14 implements the approximate evaluation of K1 for a matrix
A of generic form. The input parameters are the size n of the matrix A, the
matrix A, the factors L, U of its PA=LU factorization and the vector theta
containing the random numbers θk, for k = 1, . . . , n.

Program 14 - condest2 : Algorithm for the approximation of K1(A)

function [k1]=condest2(A,L,U,theta)
%CONDEST2 Condition number
% K1=CONDEST2(A,L,U,THETA) returns an approximation of the condition
% number of a matrix A. L and U are the factor of the LU factorization of A.
% THETA contains random numbers.
[n,m]=size(A);
if n ˜= m, error(’Only square matrices’); end
p = zeros(1,n);
for k=1:n

zplus=(theta(k)-p(k))/U(k,k); zminu=(-theta(k)-p(k))/U(k,k);
splus=abs(theta(k)-p(k)); sminu=abs(-theta(k)-p(k));
for i=k+1:n

splus=splus+abs(p(i)+U(k,i)*zplus);
sminu=sminu+abs(p(i)+U(k,i)*zminu);

end
if splus >= sminu, z(k)=zplus; else, z(k)=zminu; end
i=[k+1:n]; p(i)=p(i)+U(k,i)*z(k);

end
z = z’;
x = backwardcol(L’,z);
w = forwardcol(L,x);
y = backwardcol(U,w);
k1=norm(A,1)*norm(y,1)/norm(x,1);
return

112 3 Direct Methods for the Solution of Linear Systems

Example 3.9 Let us consider the Hilbert matrix H4. Its condition number K1(H4),
computed using the MATLAB function invhilb which returns the exact inverse of
H4, is 2.8375 ·104. Running Program 14 with theta=[1, 1, 1, 1]T gives the reasonable

estimate K̂1(H4) = 2.1509 · 104 (which is the same as the output of rcond), while
the function condest returns the exact result. •

3.12 Improving the Accuracy of GEM

As previously noted if the matrix of the system is ill-conditioned, the solution
generated by GEM could be inaccurate even though its residual is small. In
this section, we mention two techniques for improving the accuracy of the
solution computed by GEM.

3.12.1 Scaling

If the entries of A vary greatly in size, it is likely that during the elimination
process large entries are summed to small entries, with a consequent onset of
rounding errors. A remedy consists of performing a scaling of the matrix A
before the elimination is carried out.

Example 3.10 Consider again the matrix A of Remark 3.3. Multiplying it on the
right and on the left with matrix D=diag(0.0005, 1, 1), we obtain the scaled matrix

Ã = DAD =

[−0.001 1 1
1 0.78125 0
1 0 0

]

.

Applying GEM to the scaled system Ãx̃ = Db = [0.2, 1.3816, 1.9273]T , we get the
correct solution x = Dx̃. •

Row scaling of A amounts to finding a diagonal nonsingular matrix D1

such that the diagonal entries of D1A are of the same size. The linear system
Ax = b transforms into

D1Ax = D1b.

When both rows and columns of A are to be scaled, the scaled version of (3.2)
becomes

(D1AD2)y = D1b with y = D−1
2 x,

having also assumed that D2 is invertible. Matrix D1 scales the equations,
while D2 scales the unknowns. Notice that, to prevent rounding errors, the
scaling matrices are chosen in the form

D1 = diag(βr1 , . . . , βrn), D2 = diag(βc1 , . . . , βcn),

3.12 Improving the Accuracy of GEM 113

where β is the base of the used floating-point arithmetic and the exponents
r1, . . . , rn, c1, . . . , cn must be determined. It can be shown that

‖D−1
2 (x̂ − x)‖∞
‖D−1

2 x‖∞
� uK∞(D1AD2).

Therefore, scaling will be effective if K∞(D1AD2) is much less than K∞(A).
Finding convenient matrices D1 and D2 is not in general an easy matter.

A strategy consists, for instance, of picking up D1 and D2 in such a way
that ‖D1AD2‖∞ and ‖D1AD2‖1 belong to the interval [1/β, 1], where β is the
base of the used floating-point arithmetic (see [McK62] for a detailed analysis
in the case of the Crout factorization).

Remark 3.7 (The Skeel condition number) The Skeel condition num-
ber, defined as cond(A) = ‖ |A−1| |A| ‖∞, is the supremum over the set
x∈ R

n, with x �= 0, of the numbers

cond(A,x) =
‖ |A−1| |A| |x| ‖∞

‖x‖∞
.

Unlike what happens for K(A), cond(A,x) is invariant with respect to a scaling
by rows of A, that is, to transformations of A of the form DA, where D is
a nonsingular diagonal matrix. As a consequence, cond(A) provides a sound
indication of the ill-conditioning of a matrix, irrespectively of any possible
row diagonal scaling. �

3.12.2 Iterative Refinement

Iterative refinement is a technique for improving the accuracy of a solution
yielded by a direct method. Suppose that the linear system (3.2) has been
solved by means of LU factorization (with partial or complete pivoting), and
denote by x(0) the computed solution. Having fixed an error tolerance, tol, the
iterative refinement performs as follows: for i = 0, 1, . . ., until convergence:

1. compute the residual r(i) = b − Ax(i);
2. solve the linear system Az = r(i) using the LU factorization of A;
3. update the solution setting x(i+1) = x(i) + z;
4. if ‖z‖/‖x(i+1)‖ < tol, then terminate the process returning the solution

x(i+1). Otherwise, the algorithm restarts at step 1.

In absence of rounding errors, the process would stop at the first step, yielding
the exact solution. The convergence properties of the method can be improved
by computing the residual r(i) in double precision, while computing the other
quantities in single precision. We call this procedure mixed-precision iterative
refinement (shortly, MPR), as compared to fixed-precision iterative refinement
(FPR).

114 3 Direct Methods for the Solution of Linear Systems

It can be shown that, if ‖ |A−1| |L̂| |Û| ‖∞ is sufficiently small, then at
each step i of the algorithm, the relative error ‖x − x(i)‖∞/‖x‖∞ is reduced
by a factor ρ, which is given by

ρ � 2 n cond(A,x)u (FPR),

ρ � u (MPR),

where ρ is independent of the condition number of A in the case of MPR. Slow
convergence of FPR is a clear indication of the ill-conditioning of the matrix,
as it can be shown that, if p is the number of iterations for the method to
converge, then K∞(A) � βt(1−1/p).

Even if performed in fixed precision, iterative refinement is worth using
since it improves the overall stability of any direct method for solving the
system. We refer to [Ric81], [Ske80], [JW77] [Ste73], [Wil63] and [CMSW79]
for an overview of this subject.

3.13 Undetermined Systems

We have seen that the solution of the linear system Ax=b exists and is unique
if n = m and A is nonsingular. In this section we give a meaning to the
solution of a linear system both in the overdetermined case, where m > n,
and in the underdetermined case, corresponding to m < n. We notice that an
undetermined system generally has no solution unless the right side b is an
element of range(A).
For a detailed presentation, we refer to [LH74], [GL89] and [Bjö88].

Given A∈ R
m×n with m ≥ n, b∈ R

m, we say that x∗ ∈ R
n is a solution

of the linear system Ax=b in the least-squares sense if

Φ(x∗) = ‖Ax∗ − b‖2
2 ≤ min

x∈Rn
‖Ax − b‖2

2 = min
x∈Rn

Φ(x). (3.73)

The problem thus consists of minimizing the Euclidean norm of the resid-
ual. The solution of (3.73) can be found by imposing the condition that the
gradient of the function Φ in (3.73) must be equal to zero at x∗. From

Φ(x) = (Ax − b)T (Ax − b) = xT AT Ax − 2xT AT b + bT b,

we find that

∇Φ(x∗) = 2AT Ax∗ − 2AT b = 0,

from which it follows that x∗ must be the solution of the square system

AT Ax∗ = AT b (3.74)

known as the system of normal equations. The system is nonsingular if A has
full rank and in such a case the least-squares solution exists and is unique.

3.13 Undetermined Systems 115

We notice that B = AT A is a symmetric and positive definite matrix. Thus,
in order to solve the normal equations, one could first compute the Cholesky
factorization B = HT H and then solve the two systems HT y = AT b and
Hx∗ = y. However, due to roundoff errors, the computation of AT A may
be affected by a loss of significant digits, with a consequent loss of positive
definiteness or nonsingularity of the matrix, as happens in the following ex-
ample (implemented in MATLAB) where for a matrix A with full rank, the
corresponding matrix fl(AT A) turns out to be singular

A =

⎡

⎣
1 1
2−27 0
0 2−27

⎤

⎦ , f l(AT A) =
[

1 1
1 1

]

.

Therefore, in the case of ill-conditioned matrices it is more convenient to utilize
the QR factorization introduced in Section 3.4.3. Indeed, the following result
holds.

Theorem 3.8 Let A ∈ R
m×n, with m ≥ n, be a full rank matrix. Then the

unique solution of (3.73) is given by

x∗ = R̃−1Q̃T b, (3.75)

where R̃ ∈ R
n×n and Q̃ ∈ R

m×n are the matrices defined in (3.48) starting
from the QR factorization of A. Moreover, the minimum of Φ is given by

Φ(x∗) =
m∑

i=n+1

[(QT b)i]2.

Proof. The QR factorization of A exists and is unique since A has full rank. Thus,
there exist two matrices, Q∈ R

m×m and R∈ R
m×n such that A=QR, where Q is

orthogonal. Since orthogonal matrices preserve the Euclidean scalar product (see
Property 1.8), it follows that

‖Ax − b‖2
2 = ‖Rx − QT b‖2

2.

Recalling that R is upper trapezoidal, we have

‖Rx − QT b‖2
2 = ‖R̃x − Q̃T b‖2

2 +

m∑

i=n+1

[(QT b)i]
2,

so that the minimum is achieved when x = x∗. �

For more details about the analysis of the computational cost of the algo-
rithm (which depends on the actual implementation of the QR factorization),
as well as for results about its stability, we refer the reader to the texts quoted
at the beginning of the section.

If A does not have full rank, the solution techniques above fail, since in
this case if x∗ is a solution to (3.73), the vector x∗ + z, with z ∈ ker(A), is
a solution too. We must therefore introduce a further constraint to enforce

116 3 Direct Methods for the Solution of Linear Systems

the uniqueness of the solution. Typically, one requires that x∗ has minimal
Euclidean norm, so that the least-squares problem can be formulated as:

find x∗ ∈ R
n with minimal Euclidean norm such that

‖Ax∗ − b‖2
2 ≤ min

x∈Rn
‖Ax − b‖2

2.
(3.76)

This problem is consistent with (3.73) if A has full rank, since in this case
(3.73) has a unique solution which necessarily must have minimal Euclidean
norm.

The tool for solving (3.76) is the singular value decomposition (or SVD,
see Section 1.9), for which the following theorem holds.

Theorem 3.9 Let A ∈ R
m×n with SVD given by A = UΣVT . Then the

unique solution to (3.76) is

x∗ = A†b, (3.77)

where A† is the pseudo-inverse of A introduced in Definition 1.15.

Proof. Using the SVD of A, problem (3.76) is equivalent to finding w = VT x such
that w has minimal Euclidean norm and

‖Σw − UT b‖2
2 ≤ ‖Σy − UT b‖2

2, ∀y ∈ R
n.

If r is the number of nonzero singular values σi of A, then

‖Σw − UT b‖2
2 =

r∑

i=1

(
σiwi − (UT b)i

)2
+

m∑

i=r+1

(
(UT b)i

)2
,

which is minimum if wi = (UT b)i/σi for i = 1, . . . , r. Moreover, it is clear that

among the vectors w of R
n having the first r components fixed, the one with minimal

Euclidean norm has the remaining n−r components equal to zero. Thus the solution

vector is w∗ = Σ†UT b, that is, x∗ = VΣ†UT b = A†b, where Σ† is the diagonal

matrix defined in (1.11). �

As for the stability of problem (3.76), we point out that if the matrix
A does not have full rank, the solution x∗ is not necessarily a continuous
function of the data, so that small changes on these latter might produce
large variations in x∗. An example of this is shown below.

Example 3.11 Consider the system Ax = b with

A =

[
1 0
0 0
0 0

]

, b =

[
1
2
3

]

, rank(A) = 1.

Using the MATLAB function svd we can compute the SVD of A. Then comput-
ing the pseudo-inverse, one finds the solution vector x∗ = (1, 0)T . If we per-
turb the null entry a22, with the value 10−12, the perturbed matrix has (full)
rank 2 and the solution (which is unique in the sense of (3.73)) is now given by

x̂∗ =
(
1, 2 · 1012

)T
. •

3.14 Applications 117

We refer the reader to Section 5.8.3 for the approximate computation of
the SVD of a matrix.

In the case of underdetermined systems, for which m < n, if A has full
rank the QR factorization can still be used. In particular, when applied to the
transpose matrix AT , the method yields the solution of minimal Euclidean
norm. If, instead, the matrix has not full rank, one must resort to SVD.

Remark 3.8 If m = n (square system), both SVD and QR factorization
can be used to solve the linear system Ax=b, as alternatives to GEM. Even
though these algorithms require a number of flops far superior to GEM (SVD,
for instance, requires 12n3 flops), they turn out to be more accurate when the
system is ill-conditioned and nearly singular. �

Example 3.12 Compute the solution to the linear system H15x=b, where H15 is
the Hilbert matrix of order 15 (see (3.32)) and the right-hand side is chosen in such
a way that the exact solution is the unit vector x = 1. Using GEM with partial
pivoting yields a solution affected by a relative error larger than 100%. A solution of
much better quality is obtained by passing through the computation of the pseudo-
inverse, where the entries in Σ that are less than 10−13 are set equal to zero. •

3.14 Applications

In this section we present two problems, suggested by structural mechanics
and grid generation in finite element analysis, whose solutions require solving
large linear systems.

3.14.1 Nodal Analysis of a Structured Frame

Let us consider a structured frame which is made by rectilinear beams con-
nected among them through hinges (referred to as the nodes) and suitably
constrained to the ground. External loads are assumed to be applied at the
nodes of the frame and for any beam in the frame the internal actions amount
to a unique force of constant strength and directed as the beam itself. If the
normal stress acting on the beam is a traction we assume that it has positive
sign, otherwise the action has negative sign. Structured frames are frequently
employed as covering structures for large size public buildings like exhibition
stands, railway stations or airport halls.

To determine the internal actions in the frame, that are the unknowns of
the mathematical problem, a nodal analysis is used (see [Zie77]): the equilib-
rium with respect to translation is imposed at every node of the frame yielding
a sparse and large-size linear system. The resulting matrix has a sparsity pat-
tern which depends on the numbering of the unknowns and that can strongly
affect the computational effort of the LU factorization due to fill-in. We will
show that the fill-in can be dramatically reduced by a suitable reordering of
the unknowns.

118 3 Direct Methods for the Solution of Linear Systems

Fig. 3.9. A structured frame loaded at the point (0, 1)

The structure shown in Figure 3.9 is arc-shaped and is symmetric with re-
spect to the origin. The radii r and R of the inner and outer circles are equal
to 1 and 2, respectively. An external vertical load of unit size directed down-
wards is applied at (0, 1) while the frame is constrained to ground through a
hinge at (−(r + R), 0) and a bogie at (r + R, 0). To generate the structure
we have partitioned the half unit circle in nθ uniform slices, resulting in a
total number of n = 2(nθ + 1) nodes and a matrix size of m = 2n. The struc-
ture in Figure 3.9 has nθ = 7 and the unknowns are numbered following a
counterclockwise labeling of the beams starting from the node at (1, 0).

We have represented the structure along with the internal actions com-
puted by solving the nodal equilibrium equations where the width of the
beams is proportional to the strength of the computed action. Black is used to
identify tractions whereas gray is associated with compressions. As expected
the maximum traction stress is attained at the node where the external load
is applied.

We show in Figure 3.10 the sparsity pattern of matrix A (left) and that
of the L-factor of its LU factorization with partial pivoting (right) in the case
nθ = 40 which corresponds to a size of 164×164. Notice the large fill-in effect
arising in the lower part of L which results in an increase of the nonzero entries
from 645 (before the factorization) to 1946 (after the factorization).

In view of the solution of the linear system by a direct method, the increase
of the nonzero entries demands for a suitable reordering of the unknowns. For
this purpose we use the MATLAB function symrcm which implements the
symmetric reverse Cuthill-McKee algorithm described in Section 3.9.1. The
sparsity pattern, after reordering, is shown in Figure 3.11 (left) while the
L-factor of the LU factorization of the reordered matrix is shown in Figure
3.11 (right). The results indicate that the reordering procedure has “scattered”
the sparsity pattern throughout the matrix with a relatively modest increase
of the nonzero entries from 645 to 1040.

The effectiveness of the symmetric reverse Cuthill-McKee reordering pro-
cedure is demonstrated in Figure 3.12 which shows the number of nonzero

3.14 Applications 119

0 20 40 60 80 100 120 140 160

0

20

40

60

80

100

120

140

160

nz = 645
0 20 40 60 80 100 120 140 160

0

20

40

60

80

100

120

140

160

nz = 1946

Fig. 3.10. Sparsity pattern of matrix A (left) and of the L-factor of the LU factor-
ization with partial pivoting (right) in the case nθ = 40

0 20 40 60 80 100 120 140 160

0

20

40

60

80

100

120

140

160

nz = 645
0 20 40 60 80 100 120 140 160

0

20

40

60

80

100

120

140

160

nz = 1040

Fig. 3.11. Sparsity pattern of matrix A (left) after a reordering with the symmetric
reverse Cuthill-McKee algorithm and the L-factor of the LU factorization of the
reordered matrix with partial pivoting (right) in the case nθ = 40

entries nz in the L-factor of A as a function of the size m of the matrix (repre-
sented on the x-axis). In the reordered case (solid line) a linear increase of nz
with m can be clearly appreciated at the expense of a dramatic fill-in growing
with m if no reordering is performed (dashed line).

120 3 Direct Methods for the Solution of Linear Systems

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6
x 104

Fig. 3.12. Number of nonzero entries in the L-factor of A as a function of the size
m of the matrix, with (solid line) and without (dashed line) reordering

3.14.2 Regularization of a Triangular Grid

The numerical solution of a problem in a two-dimensional domain D of polygo-
nal form, for instance by finite element or finite difference methods, very often
requires that D be decomposed in smaller subdomains, usually of triangular
form (see for instance Section 9.9.2).

Suppose that D =
⋃

T∈Th

T , where Th is the considered triangulation (also

called computational grid) and h is a positive parameter which characterizes
the triangulation. Typically, h denotes the maximum length of the triangle
edges. We shall also assume that two triangles of the grid, T1 and T2, have
either null intersection or share a vertex or a side.
The geometrical properties of the computational grid can heavily affect the
quality of the approximate numerical solution. It is therefore convenient to
devise a sufficiently regular triangulation, such that, for any T ∈ Th, the ratio
between the maximum length of the sides of T (the diameter of T) and the
diameter of the circle inscribed within T (the sphericity of T) is bounded by a
constant independent of T . This latter requirement can be satisfied employing
a regularization procedure, applied to an existing grid. We refer to [Ver96] for
further details on this subject.
Let us assume that Th contains NT triangles and N vertices, of which Nb,
lying on the boundary ∂D of D, are kept fixed and having coordinates x(∂D)

i =
[x(∂D)

i , y
(∂D)
i]T . We denote by Nh the set of grid nodes, excluding the boundary

nodes, and for each node xi = (xi, yi)T ∈ Nh, let Pi and Zi respectively be
the set of triangles T ∈ Th sharing xi (called the patch of xi) and the set of
nodes of Pi except node xi itself (see Figure 3.13, right). We let ni = dim(Zi).

The regularization procedure consists of moving the generic node xi to
a new position which is determined by the center of gravity of the poly-
gon generated by joining the nodes of Zi, and for that reason it is called a
barycentric regularization. The effect of such a procedure is to force all the

3.14 Applications 121

T
xi

xj

xk

Fig. 3.13. An example of a decomposition into triangles of a polygonal domain D
(left), and the effect of the barycentric regularization on a patch of triangles (right).
The newly generated grid is plotted in dashed line

triangles that belong to the interior of the domain to assume a shape that
is as regular as possible (in the limit, each triangle should be equilateral). In
practice, we let

xi =

⎛

⎝
∑

xj∈Zi

xj

⎞

⎠ /ni, ∀xi ∈ Nh, xi = x(∂D)
i if xi ∈ ∂D.

Two systems must then be solved, one for the x-components {xi} and the
other for the y-components {yi}. Denoting by zi the generic unknown, the
i-th row of the system, in the case of internal nodes, reads

nizi −
∑

zj∈Zi

zj = 0, ∀i ∈ Nh, (3.78)

while for the boundary nodes the identities zi = z
(∂D)
i hold. Equations (3.78)

yield a system of the form Az = b, where A is a symmetric and positive
definite matrix of order N − Nb which can be shown to be an M-matrix (see
Section 1.12). This property ensures that the new grid coordinates satisfy
minimum and maximum discrete principles, that is, they take a value which
is between the minimum and the maximum values attained on the boundary.
Let us apply the regularization technique to the triangulation of the unit
square in Figure 3.14, which is affected by a severe non uniformity of the
triangle size. The grid consists of NT = 112 triangles and N = 73 vertices,
of which Nb = 32 are on the boundary. The size of each of the two linear
systems (3.78) is thus equal to 41 and their solution is carried out by the
LU factorization of matrix A in its original form and using its sparse format,
obtained using the Cuthill-McKee inverse reordering algorithm described in
Section 3.9.1.

122 3 Direct Methods for the Solution of Linear Systems

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 3.14. Triangulation before (left) and after (right) the regularization

0 5 10 15 20 25 30 35 40

0

5

10

15

20

25

30

35

40

nz = 237
0 5 10 15 20 25 30 35 40

0

5

10

15

20

25

30

35

40

nz = 237

Fig. 3.15. Sparsity patterns of matrix A without and with reordering (left and right,
respectively)

In Figure 3.15 the sparsity patterns of A are displayed, without and with re-
ordering; the integer nz = 237 denotes the number of nonzero entries in the
matrix. Notice that in the second case there is a decrease in the bandwidth
of the matrix, to which corresponds a large reduction in the operation count
from 61623 to 5552. The final configuration of the grid is displayed in Fig-
ure 3.14 (right), which clearly shows the effectiveness of the regularization
procedure.

3.15 Exercises 123

3.15 Exercises

1. For any square matrix A∈ R
n×n, prove the following relations

1

n
K2(A) ≤ K1(A) ≤ nK2(A),

1

n
K∞(A) ≤ K2(A) ≤ nK∞(A),

1

n2
K1(A) ≤ K∞(A) ≤ n2K1(A).

They allow us to conclude that if a matrix is ill-conditioned in a certain norm
it remains so even in another norm, up to a factor depending on n.

2. Check that the matrix B ∈ R
n×n: bii = 1, bij = −1 if i < j, bij = 0 if i > j, has

determinant equal to 1, yet K∞(B) is large (equal to n2n−1).
3. Prove that K(AB) ≤ K(A)K(B), for any two square nonsingular matrices A,B∈

R
n×n.

4. Given the matrix A ∈ R
2×2, a11 = a22 = 1, a12 = γ, a21 = 0, check that

for γ ≥ 0, K∞(A) = K1(A) = (1 + γ)2. Next, consider the linear system
Ax = b where b is such that x = (1 − γ, 1)T is the solution. Find a bound for
‖δx‖∞/‖x‖∞ in terms of ‖δb‖∞/‖b‖∞ when δb = (δ1, δ2)

T . Is the problem
well- or ill-conditioned?

5. Consider the matrix A ∈ R
n×n, with entries aij = 1 if i = j or j = n, aij = −1

if i > j, zero otherwise. Show that A admits an LU factorization, with |lij | ≤ 1
and unn = 2n−1.

6. Consider matrix (3.68) in Example 3.7. Prove that the matrices L̂ and Û have
entries very large in module. Check that using GEM with complete pivoting
yields the exact solution.

7. Devise a variant of GEM that transforms a nonsingular matrix A ∈ R
n×n di-

rectly into a diagonal matrix D. This process is commonly known as the Gauss-
Jordan method. Find the Gauss-Jordan transformation matrices Gi, i = 1, . . . , n,
such that Gn · · ·G1A = D.

8. Let A be a sparse matrix of order n. Prove that the computational cost of the
LU factorization of A is given by (3.61). Prove also that it is always less than

1

2

n∑

k=1

mk(A) (mk(A) + 3) .

9. Prove that, if A is a symmetric and positive definite matrix, solving the linear
system Ax = b amounts to computing x=

∑n

i=1
(ci/λi)vi, where λi are the

eigenvalues of A and vi are the corresponding eigenvectors.
10. (From [JM92]). Consider the following linear system

[
1001 1000
1000 1001

] [
x1

x2

]

=

[
b1

b2

]

.

Using Exercise 9, explain why, when b = [2001, 2001]T , a small change δb =
[1, 0]T produces large variations in the solution, while, conversely, when b =
[1, −1]T , a small variation δx = [0.001, 0]T in the solution induces a large
change in b.
[Hint : expand the right hand side on the basis of the eigenvectors of the matrix.]

124 3 Direct Methods for the Solution of Linear Systems

11. Characterize the fill-in for a matrix A ∈ R
n×n having nonzero entries only on

the main diagonal and on the first column and last row. Propose a permutation
that minimizes the fill-in.
[Hint : it suffices to exchange the first row and the first column with the last
row and the last column, respectively.]

12. Consider the linear system Hnx = b, where Hn is the Hilbert matrix of order
n. Estimate, as a function of n, the maximum number of significant digits that
are expected when solving the system by GEM.

13. Given the vectors

v1 = [1, 1, 1, −1]T , v2 = [2, −1, −1, 1]T ,

v3 = [0, 3, 3, −3]T , v4 = [−1, 2, 2, 1]T ,

generate an orthonormal system using the Gram-Schmidt algorithm, in either
its standard and modified versions, and compare the obtained results. What is
the dimension of the space generated by the given vectors?

14. Prove that if A=QR then

1

n
K1(A) ≤ K1(R) ≤ nK1(A),

while K2(A) = K2(R).
15. Let A ∈ R

n×n be a nonsingular matrix. Determine the conditions under which
the ratio ‖y‖2/‖x‖2, with x and y as in (3.70), approximates ‖A−1‖2.
[Solution : let UΣVT be the singular value decomposition of A. Denote by ui,
vi the column vectors of U and V, respectively, and expand the vector d in
(3.70) on the basis spanned by {vi}. Then d =

∑n

i=1
d̃ivi and, from (3.70),

x =
∑n

i=1
(d̃i/σi)ui, y =

∑n

i=1
(d̃i/σ2

i)vi, having denoted the singular values of
A by σ1, . . . , σn.
The ratio

‖y‖2/‖x‖2 =

[
n∑

i=1

(d̃i/σ2
i)2/

n∑

i=1

(d̃i/σi)
2

]1/2

is about equal to σ−1
n = ‖A−1‖2 if: (i) y has a relevant component in the

direction of vn (i.e., if d̃n is not excessively small), and (ii) the ratio d̃n/σn is
not negligible with respect to the ratios d̃i/σi for i = 1, . . . , n − 1. This last
circumstance certainly occurs if A is ill-conditioned in the ‖ · ‖2-norm since
σn � σ1.]

4

Iterative Methods for Solving Linear Systems

Iterative methods formally yield the solution x of a linear system after an
infinite number of steps. At each step they require the computation of the
residual of the system. In the case of a full matrix, their computational cost is
therefore of the order of n2 operations for each iteration, to be compared with
an overall cost of the order of 2

3n3 operations needed by direct methods. Itera-
tive methods can therefore become competitive with direct methods provided
the number of iterations that are required to converge (within a prescribed
tolerance) is either independent of n or scales sublinearly with respect to n.

In the case of large sparse matrices, as discussed in Section 3.9, direct
methods may be unconvenient due to the dramatic fill-in, although extremely
efficient direct solvers can be devised on sparse matrices featuring special
structures like, for example, those encountered in the approximation of partial
differential equations (see Chapters 12 and 13).

Finally, we notice that, when A is ill-conditioned, a combined use of direct
and iterative methods is made possible by preconditioning techniques that
will be addressed in Section 4.3.2.

4.1 On the Convergence of Iterative Methods

The basic idea of iterative methods is to construct a sequence of vectors x(k)

that enjoy the property of convergence

x = lim
k→∞

x(k), (4.1)

where x is the solution to (3.2). In practice, the iterative process is stopped at
the minimum value of n such that ‖x(n) −x‖ < ε, where ε is a fixed tolerance
and ‖ · ‖ is any convenient vector norm. However, since the exact solution is
obviously not available, it is necessary to introduce suitable stopping criteria
to monitor the convergence of the iteration (see Section 4.6).

126 4 Iterative Methods for Solving Linear Systems

To start with, we consider iterative methods of the form

given x(0), x(k+1) = Bx(k) + f , k ≥ 0, (4.2)

having denoted by B an n × n square matrix called the iteration matrix and
by f a vector that is obtained from the right hand side b.

Definition 4.1 An iterative method of the form (4.2) is said to be consistent
with (3.2) if f and B are such that x = Bx + f . Equivalently,

f = (I − B)A−1b.

�

Having denoted by

e(k) = x(k) − x (4.3)

the error at the k-th step of the iteration, the condition for convergence (4.1)
amounts to requiring that lim

k→∞
e(k) = 0 for any choice of the initial datum

x(0) (often called the initial guess).
Consistency alone does not suffice to ensure the convergence of the iterative

method (4.2), as shown in the following example.

Example 4.1 To solve the linear system 2Ix = b, consider the iterative method

x(k+1) = −x(k) + b,

which is obviously consistent. This scheme is not convergent for any choice of the
initial guess. If, for instance, x(0) = 0, the method generates the sequence x(2k) = 0,
x(2k+1) = b, k = 0, 1,

On the other hand, if x(0) = 1
2
b the method is convergent. •

Theorem 4.1 Let (4.2) be a consistent method. Then, the sequence of vectors{
x(k)

}
converges to the solution of (3.2) for any choice of x(0) iff ρ(B) < 1.

Proof. From (4.3) and the consistency assumption, the recursive relation e(k+1) =
Be(k) is obtained. Therefore,

e(k) = Bke(0), ∀k = 0, 1, . . . (4.4)

Thus, thanks to Theorem 1.5, it follows that lim
k→∞

Bke(0) = 0 for any e(0) iff ρ(B) < 1.

Conversely, suppose that ρ(B) > 1, then there exists at least one eigenvalue

λ(B) with module greater than 1. Let e(0) be an eigenvector associated with λ; then

Be(0) = λe(0) and, therefore, e(k) = λke(0). As a consequence, e(k) cannot tend to

0 as k → ∞, since |λ| > 1. �

From (1.23) and Theorem 1.4 it follows that a sufficient condition for conver-
gence to hold is that ‖B‖ < 1, for any consistent matrix norm. It is reasonable

4.1 On the Convergence of Iterative Methods 127

to expect that the convergence is faster when ρ(B) is smaller so that an es-
timate of ρ(B) might provide a sound indication of the convergence of the
algorithm. Other remarkable quantities in convergence analysis are contained
in the following definition.

Definition 4.2 Let B be the iteration matrix. We call:

1. ‖Bm‖ the convergence factor after m steps of the iteration;
2. ‖Bm‖1/m the average convergence factor after m steps;
3. Rm(B) = − 1

m log ‖Bm‖ the average convergence rate after m steps.

�

These quantities are too expensive to compute since they require evaluating
Bm. Therefore, it is usually preferred to estimate the asymptotic convergence
rate, which is defined as

R(B) = lim
k→∞

Rk(B) = − log ρ(B), (4.5)

where Property 1.14 has been accounted for. In particular, if B were sym-
metric, we would have

Rm(B) = − 1
m

log ‖Bm‖2 = − log ρ(B).

In the case of nonsymmetric matrices, ρ(B) sometimes provides an overop-
timistic estimate of ‖Bm‖1/m (see [Axe94], Section 5.1). Indeed, although
ρ(B) < 1, the convergence to zero of the sequence ‖Bm‖ might be non-
monotone (see Exercise 1). We finally notice that, due to (4.5), ρ(B) is the
asymptotic convergence factor. Criteria for estimating the quantities defined
so far will be addressed in Section 4.6.

Remark 4.1 The iterations introduced in (4.2) are a special instance of
iterative methods of the form

x(0) = f0(A,b),

x(n+1) = fn+1(x(n),x(n−1), . . . ,x(n−m),A,b), for n ≥ m,

where fi and x(m), . . . ,x(1) are given functions and vectors, respectively. The
number of steps which the current iteration depends on is called the order of
the method. If the functions fi are independent of the step index i, the method
is called stationary, otherwise it is nonstationary. Finally, if fi depends linearly
on x(0), . . . ,x(m), the method is called linear, otherwise it is nonlinear.

In the light of these definitions, the methods considered so far are therefore
stationary linear iterative methods of first order. In Section 4.3, examples of
nonstationary linear methods will be provided. �

128 4 Iterative Methods for Solving Linear Systems

4.2 Linear Iterative Methods

A general technique to devise consistent linear iterative methods is based on
an additive splitting of the matrix A of the form A=P−N, where P and N are
two suitable matrices and P is nonsingular. For reasons that will be clear in
the later sections, P is called preconditioning matrix or preconditioner.

Precisely, given x(0), one can compute x(k) for k ≥ 1, solving the systems

Px(k+1) = Nx(k) + b, k ≥ 0. (4.6)

The iteration matrix of method (4.6) is B = P−1N, while f = P−1b. Alterna-
tively, (4.6) can be written in the form

x(k+1) = x(k) + P−1r(k), (4.7)
where

r(k) = b − Ax(k) (4.8)

denotes the residual vector at step k. Relation (4.7) outlines the fact that a
linear system, with coefficient matrix P, must be solved to update the solution
at step k +1. Thus P, besides being nonsingular, ought to be easily invertible,
in order to keep the overall computational cost low. (Notice that, if P were
equal to A and N=0, method (4.7) would converge in one iteration, but at
the same cost of a direct method).

Let us mention two results that ensure convergence of the iteration (4.7),
provided suitable conditions on the splitting of A are fulfilled (for their proof,
we refer to [Hac94]).

Property 4.1 Let A = P−N, with A and P symmetric and positive definite.
If the matrix 2P − A is positive definite, then the iterative method defined in
(4.7) is convergent for any choice of the initial datum x(0) and

ρ(B) = ‖B‖A = ‖B‖P < 1.

Moreover, the convergence of the iteration is monotone with respect to the
norms ‖ · ‖P and ‖ · ‖A (i.e., ‖e(k+1)‖P < ‖e(k)‖P and ‖e(k+1)‖A < ‖e(k)‖A

k = 0, 1, . . .).

Property 4.2 Let A = P − N with A being symmetric and positive definite.
If the matrix P+PT −A is positive definite, then P is invertible, the iterative
method defined in (4.7) is monotonically convergent with respect to norm ‖·‖A

and ρ(B) ≤ ‖B‖A < 1.

4.2.1 Jacobi, Gauss-Seidel and Relaxation Methods

In this section we consider some classical linear iterative methods.
If the diagonal entries of A are nonzero, we can single out in each equation

the corresponding unknown, obtaining the equivalent linear system

4.2 Linear Iterative Methods 129

xi =
1
aii

⎡

⎢
⎣bi −

n∑

j=1
j �=i

aijxj

⎤

⎥
⎦ , i = 1, . . . , n. (4.9)

In the Jacobi method, once an arbitrarily initial guess x(0) has been chosen,
x(k+1) is computed by the formulae

x
(k+1)
i =

1
aii

⎡

⎢
⎣bi −

n∑

j=1
j �=i

aijx
(k)
j

⎤

⎥
⎦ , i = 1, . . . , n. (4.10)

This amounts to performing the following splitting for A

P = D, N = D − A = E + F,

where D is the diagonal matrix of the diagonal entries of A, E is the lower
triangular matrix of entries eij = −aij if i > j, eij = 0 if i ≤ j, and F is the
upper triangular matrix of entries fij = −aij if j > i, fij = 0 if j ≤ i. As a
consequence, A = D − (E + F).

The iteration matrix of the Jacobi method is thus given by

BJ = D−1(E + F) = I − D−1A. (4.11)

A generalization of the Jacobi method is the over-relaxation method
(or JOR), in which, having introduced a relaxation parameter ω, (4.10) is
replaced by

x
(k+1)
i =

ω

aii

⎡

⎢
⎣bi −

n∑

j=1
j �=i

aijx
(k)
j

⎤

⎥
⎦+ (1 − ω)x(k)

i , i = 1, . . . , n.

The corresponding iteration matrix is

BJω
= ωBJ + (1 − ω)I. (4.12)

In the form (4.7), the JOR method corresponds to

x(k+1) = x(k) + ωD−1r(k).

This method is consistent for any ω �= 0 and for ω = 1 it coincides with the
Jacobi method.

The Gauss-Seidel method differs from the Jacobi method in the fact that
at the k + 1-th step the available values of x

(k+1)
i are being used to update

the solution, so that, instead of (4.10), one has

130 4 Iterative Methods for Solving Linear Systems

x
(k+1)
i =

1
aii

⎡

⎣bi −
i−1∑

j=1

aijx
(k+1)
j −

n∑

j=i+1

aijx
(k)
j

⎤

⎦ , i = 1, . . . , n. (4.13)

This method amounts to performing the following splitting for A

P = D − E, N = F,

and the associated iteration matrix is

BGS = (D − E)−1F. (4.14)

Starting from Gauss-Seidel method, in analogy to what was done for
Jacobi iterations, we introduce the successive over-relaxation method (or SOR
method)

x
(k+1)
i =

ω

aii

⎡

⎣bi −
i−1∑

j=1

aijx
(k+1)
j −

n∑

j=i+1

aijx
(k)
j

⎤

⎦+ (1 − ω)x(k)
i , (4.15)

for i = 1, . . . , n. The method (4.15) can be written in vector form as

(I − ωD−1E)x(k+1) = [(1 − ω)I + ωD−1F]x(k) + ωD−1b, (4.16)

from which the iteration matrix is

B(ω) = (I − ωD−1E)−1[(1 − ω)I + ωD−1F]. (4.17)

Multiplying by D both sides of (4.16) and recalling that A = D − (E + F)
yields the following form (4.7) of the SOR method

x(k+1) = x(k) +
(

1
ω

D − E
)−1

r(k).

It is consistent for any ω �= 0 and for ω = 1 it coincides with Gauss-Seidel
method. In particular, if ω ∈ (0, 1) the method is called under-relaxation,
while if ω > 1 it is called over-relaxation.

4.2.2 Convergence Results for Jacobi and Gauss-Seidel Methods

There exist special classes of matrices for which it is possible to state a priori
some convergence results for the methods examined in the previous section.
The first result in this direction is the following.

Theorem 4.2 If A is a strictly diagonally dominant matrix by rows, the
Jacobi and Gauss-Seidel methods are convergent.

4.2 Linear Iterative Methods 131

Proof. Let us prove the part of the theorem concerning the Jacobi method, while for

the Gauss-Seidel method we refer to [Axe94]. Since A is strictly diagonally dominant

by rows, |aii| >
∑n

j=1
|aij | for j �= i and i = 1, . . . , n. As a consequence, ‖BJ‖∞ =

max
i=1,...,n

n∑

j=1,j �=i

|aij |/|aii| < 1, so that the Jacobi method is convergent. �

Theorem 4.3 If A and 2D−A are symmetric and positive definite matrices,
then the Jacobi method is convergent and ρ(BJ) = ‖BJ‖A = ‖BJ‖D.

Proof. The theorem follows from Property 4.1 taking P=D. �

In the case of the JOR method, the assumption on 2D − A can be removed,
yielding the following result.

Theorem 4.4 If A is symmetric positive definite, then the JOR method is
convergent if 0 < ω < 2/ρ(D−1A).

Proof. The result immediately follows from (4.12) and noting that A has real

positive eigenvalues. �

Concerning the Gauss-Seidel method, the following result holds.

Theorem 4.5 If A is symmetric positive definite, the Gauss-Seidel method is
monotonically convergent with respect to the norm ‖ · ‖A.

Proof. We can apply Property 4.2 to the matrix P=D−E, upon checking that
P + PT − A is positive definite. Indeed

P + PT − A = 2D − E − F − A = D,

having observed that (D−E)T = D−F. We conclude by noticing that D is positive

definite, since it is the diagonal of A. �

Finally, if A is tridiagonal (or block tridiagonal), it can be shown that

ρ(BGS) = ρ2(BJ) (4.18)

(see [You71] for the proof). From (4.18) we can conclude that both methods
converge or fail to converge at the same time. In the former case, the Gauss-
Seidel method is more rapidly convergent than the Jacobi method, and the
asymptotic convergence rate of the Gauss-Seidel method is twice than that of
the Jacobi method. In particular, if A is tridiagonal and symmetric positive
definite, Theorem 4.5 implies convergence of the Gauss-Seidel method, and
(4.18) ensures convergence also for the Jacobi method.

Relation (4.18) holds even if A enjoys the following A-property.

Definition 4.3 A consistently ordered matrix M ∈ R
n×n (that is, a matrix

such that αD−1E + α−1D−1F, for α �= 0, has eigenvalues that do not depend

132 4 Iterative Methods for Solving Linear Systems

on α, where M = D − E − F, D = diag(m11, . . . ,mnn), E and F are strictly
lower and upper triangular matrices, respectively) enjoys the A-property if it
can be partitioned in the 2 × 2 block form

M =
[

D̃1 M12

M21 D̃2

]

,

where D̃1 and D̃2 are diagonal matrices. �

When dealing with general matrices, no a priori conclusions on the conver-
gence properties of the Jacobi and Gauss-Seidel methods can be drawn, as
shown in Example 4.2.

Example 4.2 Consider the 3 × 3 linear systems of the form Aix = bi, where bi is
always taken in such a way that the solution of the system is the unit vector, and
the matrices Ai are

A1 =

[
3 0 4
7 4 2

−1 1 2

]

, A2 =

[−3 3 −6
−4 7 −8

5 7 −9

]

,

A3 =

[
4 1 1
2 −9 0
0 −8 −6

]

, A4 =

[
7 6 9
4 5 −4

−7 −3 8

]

.

It can be checked that the Jacobi method does fail to converge for A1 (ρ(BJ) = 1.33),
while the Gauss-Seidel scheme is convergent. Conversely, in the case of A2, the Jacobi
method is convergent, while the Gauss-Seidel method fails to converge (ρ(BGS) =
1.1̄). In the remaining two cases, the Jacobi method is more slowly convergent than
the Gauss-Seidel method for matrix A3 (ρ(BJ) = 0.44 against ρ(BGS) = 0.018), and
the converse is true for A4 (ρ(BJ) = 0.64 while ρ(BGS) = 0.77). •

We conclude the section with the following result.

Theorem 4.6 If the Jacobi method is convergent, then the JOR method
converges if 0 < ω ≤ 1.

Proof. From (4.12) we obtain that the eigenvalues of BJω are

µk = ωλk + 1 − ω, k = 1, . . . , n,

where λk are the eigenvalues of BJ . Then, recalling the Euler formula for the repre-
sentation of a complex number, we let λk = rkeiθk and get

|µk|2 = ω2r2
k + 2ωrk cos(θk)(1 − ω) + (1 − ω)2 ≤ (ωrk + 1 − ω)2,

which is less than 1 if 0 < ω ≤ 1. �

4.2.3 Convergence Results for the Relaxation Method

The following result provides a necessary condition on ω in order the SOR
method to be convergent.

4.2 Linear Iterative Methods 133

Theorem 4.7 For any ω ∈ R we have ρ(B(ω)) ≥ |ω − 1|; therefore, the SOR
method fails to converge if ω ≤ 0 or ω ≥ 2.

Proof. If {λi} denote the eigenvalues of the SOR iteration matrix, then
∣
∣
∣
∣
∣

n∏

i=1

λi

∣
∣
∣
∣
∣
=
∣
∣det

[
(1 − ω)I + ωD−1F

]∣
∣ = |1 − ω|n.

Therefore, at least one eigenvalue λi must exist such that |λi| ≥ |1 − ω| and thus,

in order for convergence to hold, we must have |1 − ω| < 1, that is 0 < ω < 2. �

Assuming that A is symmetric and positive definite, the condition 0 < ω < 2,
besides being necessary, becomes also sufficient for convergence. Indeed the
following result holds (for the proof, see [Hac94]).

Property 4.3 (Ostrowski) If A is symmetric and positive definite, then
the SOR method is convergent iff 0 < ω < 2. Moreover, its convergence is
monotone with respect to ‖ · ‖A.

Finally, if A is strictly diagonally dominant by rows, the SOR method con-
verges if 0 < ω ≤ 1.

The results above show that the SOR method is more or less rapidly con-
vergent, depending on the choice of the relaxation parameter ω. The question
of how to determine the value ωopt for which the convergence rate is the high-
est possible can be given a satisfactory answer only in special cases (see, for
instance, [Axe94], [You71], [Var62] or [Wac66]). Here we limit ourselves to
quoting the following result (whose proof is in [Axe94]).

Property 4.4 If the matrix A enjoys the A-property and if BJ has real eigen-
values, then the SOR method converges for any choice of x(0) iff ρ(BJ) < 1
and 0 < ω < 2. Moreover,

ωopt =
2

1 +
√

1 − ρ2(BJ)
(4.19)

and the corresponding asymptotic convergence factor is

ρ(B(ωopt)) =
1 −

√
1 − ρ2(BJ)

1 +
√

1 − ρ2(BJ)
.

4.2.4 A priori Forward Analysis

In the previous analysis we have neglected the rounding errors. However, as
shown in the following example (taken from [HW76]), they can dramatically
affect the convergence rate of the iterative method.

134 4 Iterative Methods for Solving Linear Systems

Example 4.3 Let A be a lower bidiagonal matrix of order 100 with entries aii = 1.5
and ai,i−1 = 1, and let b ∈ R

100 be the right-side with bi = 2.5. The exact solution of
the system Ax = b has components xi = 1−(−2/3)i. The SOR method with ω = 1.5
should be convergent, working in exact arithmetic, since ρ(B(1.5)) = 0.5 (far below
one). However, running Program 16 with x(0) = fl(x) + εM , which is extremely
close to the exact value, the sequence x(k) diverges and after 100 iterations the
algorithm yields a solution with ‖x(100)‖∞ = 1013. The flaw is due to rounding error
propagation and must not be ascribed to a possible ill-conditioning of the matrix
since K∞(A) � 5. •

To account for rounding errors, let us denote by x̂(k+1) the solution (in finite
arithmetic) generated by an iterative method of the form (4.6) after k steps.
Due to rounding errors, x̂(k+1) can be regarded as the exact solution to the
problem

Px̂(k+1) = Nx̂(k) + b − ζk, (4.20)

with

ζk = δPk+1x̂(k+1) − gk.

The matrix δPk+1 accounts for the rounding errors in the solution of (4.6),
while the vector gk includes the errors made in the evaluation of Nx̂(k) + b.
From (4.20), we obtain

x̂(k+1) = Bk+1x(0) +
k∑

j=0

BjP−1(b − ζk−j)

and for the absolute error ê(k+1) = x − x̂(k+1)

ê(k+1) = Bk+1e(0) +
k∑

j=0

BjP−1ζk−j .

The first term represents the error that is made by the iterative method
in exact arithmetic; if the method is convergent, this error is negligible for
sufficiently large values of k. The second term refers instead to rounding error
propagation; its analysis is quite technical and is carried out, for instance, in
[Hig88] in the case of Jacobi, Gauss-Seidel and SOR methods.

4.2.5 Block Matrices

The methods of the previous sections are also referred to as point (or line)
iterative methods, since they act on single entries of matrix A. It is possible
to devise block versions of the algorithms, provided that D denotes the block
diagonal matrix whose entries are the m × m diagonal blocks of matrix A
(see Section 1.6).

4.2 Linear Iterative Methods 135

The block Jacobi method is obtained taking again P=D and N=D-A. The
method is well-defined only if the diagonal blocks of D are nonsingular. If A
is decomposed in p × p square blocks, the block Jacobi method is

Aiix
(k+1)
i = bi −

p∑

j=1
j �=i

Aijx
(k)
j , i = 1, . . . , p,

having also decomposed the solution vector and the right side in blocks of
size p, denoted by xi and bi, respectively. As a result, at each step, the block
Jacobi method requires solving p linear systems of matrices Aii. Theorem 4.3 is
still valid, provided that D is substituted by the corresponding block diagonal
matrix.

In a similar manner, the block Gauss-Seidel and block SOR methods can
be introduced.

4.2.6 Symmetric Form of the Gauss-Seidel and SOR Methods

Even if A is a symmetric matrix, the Gauss-Seidel and SOR methods generate
iteration matrices that are not necessarily symmetric. For that, we introduce
in this section a technique that allows for symmetrizing these schemes. The
final aim is to provide an approach for generating symmetric preconditioners
(see Section 4.3.2).

Firstly, let us remark that an analogue of the Gauss-Seidel method can be
constructed, by simply exchanging E with F. The following iteration can thus
be defined, called the backward Gauss-Seidel method

(D − F)x(k+1) = Ex(k) + b,

with iteration matrix given by BGSb = (D − F)−1E.
The symmetric Gauss-Seidel method is obtained by combining an iteration
of Gauss-Seidel method with an iteration of backward Gauss-Seidel method.
Precisely, the k-th iteration of the symmetric Gauss-Seidel method is

(D − E)x(k+1/2) = Fx(k) + b, (D − F)x(k+1) = Ex(k+1/2) + b.

Eliminating x(k+1/2), the following scheme is obtained

x(k+1) = BSGSx(k) + bSGS ,

BSGS = (D − F)−1E(D − E)−1F,

bSGS = (D − F)−1[E(D − E)−1 + I]b. (4.21)

The preconditioning matrix associated with (4.21) is

PSGS = (D − E)D−1(D − F).

The following result can be proved (see [Hac94]).

136 4 Iterative Methods for Solving Linear Systems

Property 4.5 If A is a symmetric positive definite matrix, the symmetric
Gauss-Seidel method is convergent, and, moreover, BSGS is symmetric posi-
tive definite.

In a similar manner, defining the backward SOR method

(D − ωF)x(k+1) = [ωE + (1 − ω)D]x(k) + ωb,

and combining it with a step of SOR method, the following symmetric SOR
method or SSOR, is obtained

x(k+1) = Bs(ω)x(k) + bω,

where

Bs(ω) = (D − ωF)−1(ωE + (1 − ω)D)(D − ωE)−1(ωF + (1 − ω)D),

bω = ω(2 − ω)(D − ωF)−1D(D − ωE)−1b.

The preconditioning matrix of this scheme is

PSSOR(ω) =
(

1
ω

D − E
)

ω

2 − ω
D−1

(
1
ω

D − F
)

. (4.22)

If A is symmetric and positive definite, the SSOR method is convergent if
0 < ω < 2 (see [Hac94] for the proof). Typically, the SSOR method with an
optimal choice of the relaxation parameter converges more slowly than the
corresponding SOR method. However, the value of ρ(Bs(ω)) is less sensitive
to a choice of ω around the optimal value (in this respect, see the behavior of
the spectral radii of the two iteration matrices in Figure 4.1). For this reason,
the optimal value of ω that is chosen in the case of SSOR method is usually
the same used for the SOR method (for further details, we refer to [You71]).

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ω

ρ

SSOR

SOR

Fig. 4.1. Spectral radius of the iteration matrix of SOR and SSOR methods, as a
function of the relaxation parameter ω for the matrix tridiag10(−1, 2,−1)

4.2 Linear Iterative Methods 137

4.2.7 Implementation Issues

We provide the programs implementing the Jacobi and Gauss-Seidel methods
in their point form and with relaxation.

In Program 15 the JOR method is implemented (the Jacobi method is
obtained as a special case setting omega = 1). The stopping test monitors the
Euclidean norm of the residual at each iteration, normalized to the value of
the initial residual.
Notice that each component x(i) of the solution vector can be computed
independently; this method can thus be easily parallelized.

Program 15 - jor : JOR method

function [x,iter]=jor(A,b,x0,nmax,tol,omega)
%JOR JOR method
% [X,ITER]=JOR(A,B,X0,NMAX,TOL,OMEGA) attempts to solve the system
% A*X=B with the JOR method. TOL specifies the tolerance of the method.
% NMAX specifies the maximum number of iterations. X0 specifies the initial
% guess. OMEGA is the relaxation parameter. ITER is the iteration number at
% which X is computed.
[n,m]=size(A);
if n ˜= m, error(’Only square systems’); end
iter=0;
r = b-A*x0; r0=norm(r); err=norm(r); x=x0;
while err > tol & iter < nmax

iter = iter + 1;
for i=1:n

s = 0;
for j = 1:i-1, s=s+A(i,j)*x(j); end
for j = i+1:n, s=s+A(i,j)*x(j); end
xnew(i,1)=omega*(b(i)-s)/A(i,i)+(1-omega)*x(i);

end
x=xnew; r=b-A*x; err=norm(r)/r0;

end
return

Program 16 implements the SOR method. Taking omega=1 yields the
Gauss-Seidel method.
Unlike the Jacobi method, this scheme is fully sequential. However, it can be
efficiently implemented without storing the solution of the previous step, with
a saving of memory storage.

Program 16 - sor : SOR method

function [x,iter]=sor(A,b,x0,nmax,tol,omega)
%SOR SOR method
% [X,ITER]=SOR(A,B,X0,NMAX,TOL,OMEGA) attempts to solve the system
% A*X=B with the SOR method. TOL specifies the tolerance of the method.

138 4 Iterative Methods for Solving Linear Systems

% NMAX specifies the maximum number of iterations. X0 specifies the initial
% guess. OMEGA is the relaxation parameter. ITER is the iteration number at
% which X is computed.
[n,m]=size(A);
if n ˜= m, error(‘Only square systems’); end
iter=0; r=b-A*x0; r0=norm(r); err=norm(r); xold=x0;
while err > tol & iter < nmax

iter = iter + 1;
for i=1:n

s=0;
for j = 1:i-1, s=s+A(i,j)*x(j); end
for j = i+1:n, s=s+A(i,j)*xold(j); end
x(i,1)=omega*(b(i)-s)/A(i,i)+(1-omega)*xold(i);

end
xold=x; r=b-A*x; err=norm(r)/r0;

end
return

4.3 Stationary and Nonstationary Iterative Methods

Denote by

RP = I − P−1A

the iteration matrix associated with (4.7). Proceeding as in the case of re-
laxation methods, (4.7) can be generalized introducing a relaxation (or ac-
celeration) parameter α. This leads to the following stationary Richardson
method

x(k+1) = x(k) + αP−1r(k), k ≥ 0. (4.23)

More generally, allowing α to depend on the iteration index, the nonstationary
Richardson method or semi-iterative method is given by

x(k+1) = x(k) + αkP−1r(k), k ≥ 0. (4.24)

The iteration matrix at the k-th step for (4.24) (depending on k) is

Rαk
= I − αkP−1A,

with αk = α in the stationary case. If P = I, the family of methods (4.24)
will be called nonpreconditioned. The Jacobi and Gauss-Seidel methods can
be regarded as stationary Richardson methods with P = D and P = D − E,
respectively (and α = 1 in both cases).

We can rewrite (4.24) (and, thus, also (4.23)) in a form of greater interest
for computation. Letting z(k) = P−1r(k) (the so-called preconditioned resid-
ual), we get x(k+1) = x(k)+αkz(k) and r(k+1) = b−Ax(k+1) = r(k)−αkAz(k).

4.3 Stationary and Nonstationary Iterative Methods 139

To summarize, a nonstationary Richardson method requires at each k + 1-th
step the following operations:

solve the linear system Pz(k) = r(k),

compute the acceleration parameter αk,

update the solution x(k+1) = x(k) + αkz(k),

update the residual r(k+1) = r(k) − αkAz(k).

(4.25)

4.3.1 Convergence Analysis of the Richardson Method

Let us first consider the stationary Richardson methods for which αk = α for
k ≥ 0. The following convergence result holds.

Theorem 4.8 For any nonsingular matrix P, the stationary Richardson
method (4.23) is convergent iff

2Reλi

α|λi|2
> 1 ∀i = 1, . . . , n, (4.26)

where λi ∈ C are the eigenvalues of P−1A.

Proof. Let us apply Theorem 4.1 to the iteration matrix Rα = I − αP−1A. The
condition |1 − αλi| < 1 for i = 1, . . . , n yields the inequality

(1 − αReλi)
2 + α2(Imλi)

2 < 1,

from which (4.26) immediately follows. �

Let us notice that, if the sign of the real parts of the eigenvalues of P−1A is
not constant, the stationary Richardson method cannot converge.
More specific results can be obtained provided that suitable assumptions are
made on the spectrum of P−1A.

Theorem 4.9 Assume that P is a nonsingular matrix and that P−1A has
positive real eigenvalues, ordered in such a way that λ1 ≥ λ2 ≥ . . . ≥ λn > 0.
Then, the stationary Richardson method (4.23) is convergent iff 0 < α < 2/λ1.
Moreover, letting

αopt =
2

λ1 + λn
, (4.27)

the spectral radius of the iteration matrix Rα is minimum if α = αopt, with

ρopt = min
α

[ρ(Rα)] =
λ1 − λn

λ1 + λn
. (4.28)

140 4 Iterative Methods for Solving Linear Systems

1
λn

1
λ1

αopt
2
λ1

ρ = 1
|1 − αλ1|

|1 − αλn|

ρopt

|1 − αλk|

α

Fig. 4.2. Spectral radius of Rα as a function of the eigenvalues of P−1A

Proof. The eigenvalues of Rα are given by λi(Rα) = 1 − αλi, so that (4.23) is

convergent iff |λi(Rα)| < 1 for i = 1, . . . , n, that is, if 0 < α < 2/λ1. It follows

(see Figure 4.2) that ρ(Rα) is minimum when 1 − αλn = αλ1 − 1, that is, for

α = 2/(λ1 + λn), which furnishes the desired value for αopt. By substitution, the

desired value of ρopt is obtained. �

If P−1A is symmetric positive definite, it can be shown that the convergence
of the Richardson method is monotone with respect to either ‖ · ‖2 and ‖ · ‖A.
In such a case, using (4.28), we can also relate ρopt to K2(P−1A) as follows

ρopt =
K2(P−1A) − 1
K2(P−1A) + 1

, αopt =
2‖A−1P‖2

K2(P−1A) + 1
. (4.29)

The choice of a suitable preconditioner P is, therefore, of paramount impor-
tance for improving the convergence of a Richardson method. Of course, such
a choice should also account for the need of keeping the computational effort
as low as possible. In Section 4.3.2, some preconditioners of common use in
practice will be described.

Corollary 1 Assume that A is a symmetric positive definite matrix with
eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn. Then, if 0 < α < 2/λ1, the nonprecon-
ditioned stationary Richardson method is convergent and

‖e(k+1)‖A ≤ ρ(Rα)‖e(k)‖A, k ≥ 0. (4.30)

The same result holds for the preconditioned Richardson method, provided that
the matrices P, A and P−1A are symmetric positive definite.

Proof. The convergence is a consequence of Theorem 4.8. Moreover, we notice that

‖e(k+1)‖A = ‖Rαe(k)‖A = ‖A1/2Rαe(k)‖2 ≤ ‖A1/2RαA−1/2‖2‖A1/2e(k)‖2.

4.3 Stationary and Nonstationary Iterative Methods 141

The matrix Rα is symmetric positive definite and is similar to A1/2RαA−1/2.
Therefore,

‖A1/2RαA−1/2‖2 = ρ(Rα).

The result (4.30) follows by noting that ‖A1/2e(k)‖2 = ‖e(k)‖A. A similar proof can

be carried out in the preconditioned case, provided we replace A with P−1A. �

Finally, the inequality (4.30) holds even if only P and A are symmetric positive
definite (for the proof, see [QV94], Chapter 2).

4.3.2 Preconditioning Matrices

All the methods introduced in the previous sections can be cast in the form
(4.2), so that they can be regarded as being methods for solving the system

(I − B)x = f = P−1b.

On the other hand, since B = P−1N, system (3.2) can be equivalently refor-
mulated as

P−1Ax = P−1b. (4.31)

The latter is the preconditioned system, being P the preconditioning matrix or
left preconditioner. Right and centered preconditioners can be introduced as
well, if system (3.2) is transformed, respectively, as

AP−1y = b, y = Px,

or

P−1
L AP−1

R y = P−1
L b, y = PRx.

There are point preconditioners and block preconditioners, depending on
whether they are applied to the single entries of A or to the blocks of a parti-
tion of A. The iterative methods considered so far correspond to fixed-point
iterations on a left-preconditioned system. As stressed by (4.25), computing
the inverse of P is not mandatory; actually, the role of P is to “precondition”
the residual r(k) through the solution of the additional system Pz(k) = r(k).

Since the preconditioner acts on the spectral radius of the iteration matrix,
it would be useful to pick up, for a given linear system, an optimal precondi-
tioner, i.e., a preconditioner which is able to make the number of iterations
required for convergence independent of the size of the system. Notice that
the choice P=A is optimal but, trivially, “inefficient”; some alternatives of
greater computational interest will be examined below.

There is not a general roadmap to devise optimal preconditioners. How-
ever, an established “rule of thumb” is that P is a good preconditioner for
A if P−1A is near to being a normal matrix and if its eigenvalues are clus-
tered within a sufficiently small region of the complex field. The choice of a

142 4 Iterative Methods for Solving Linear Systems

preconditioner must also be guided by practical considerations, noticeably, its
computational cost and its memory requirements.

Preconditioners can be divided into two main categories: algebraic and
functional preconditioners, the difference being that the algebraic precon-
ditioners are independent of the problem that originated the system to be
solved, and are actually constructed via algebraic procedures, while the func-
tional preconditioners take advantage of the knowledge of the problem and
are constructed as a function of it. In addition to the preconditioners already
introduced in Section 4.2.6, we give a description of other algebraic precondi-
tioners of common use.

1. Diagonal preconditioners: choosing P as the diagonal of A is generally
effective if A is symmetric positive definite. A usual choice in the nonsym-
metric case is to set

pii =

⎛

⎝
n∑

j=1

a2
ij

⎞

⎠

1/2

.

Block diagonal preconditioners can be constructed in a similar manner.
We remark that devising an optimal diagonal preconditioner is far from
being trivial, as previously noticed in Section 3.12.1 when dealing with
the scaling of a matrix.

2. Incomplete LU factorization (shortly ILU) and Incomplete Cholesky fac-
torization (shortly IC).
An incomplete factorization of A is a process that computes P = LinUin,
where Lin is a lower triangular matrix and Uin is an upper triangular
matrix. These matrices are approximations of the exact matrices L, U of
the LU factorization of A and are chosen in such a way that the residual
matrix R = A − LinUin satisfies some prescribed requirements, such as
having zero entries in specified locations.
For a given matrix M, the L-part (U-part) of M will mean henceforth
the lower (upper) triangular part of M. Moreover, we assume that the
factorization process can be carried out without resorting to pivoting.
The basic approach to incomplete factorization, consists of requiring the
approximate factors Lin and Uin to have the same sparsity pattern as the
L-part and U-part of A, respectively. A general algorithm for constructing
an incomplete factorization is to perform Gauss elimination as follows:
at each step k, compute mik = a

(k)
ik /a

(k)
kk only if aik �= 0 for i = k +

1, . . . , n. Then, compute for j = k + 1, . . . , n a
(k+1)
ij only if aij �= 0. This

algorithm is implemented in Program 17, where the matrices Lin and Uin

are progressively overwritten onto the L-part and U-part of A.

Program 17 - basicILU : Incomplete LU factorization

function [A] = basicILU(A)
%BASICILU Incomplete LU factorization.

4.3 Stationary and Nonstationary Iterative Methods 143

% Y=BASICILU(A): U is stored in the upper triangular part of Y and L is stored
% in the strict lower triangular part of Y. The factors L and U have the
% same sparsity as that of the matrix A.
[n,m]=size(A);
if n ˜= m, error(’Only square matrices’); end
for k=1:n-1

for i=k+1:n,
if A(i,k) ˜= 0

if A(k,k) == 0, error(’Null pivot element’); end
A(i,k)=A(i,k)/A(k,k);
for j=k+1:n

if A(i,j) ˜= 0
A(i,j)=A(i,j)-A(i,k)*A(k,j);

end
end

end
end

end
return

We notice that having Lin and Uin with the same patterns as the L and
U-parts of A, respectively, does not necessarily imply that R has the same
sparsity pattern as A, but guarantees that rij = 0 if aij �= 0, as is shown
in Figure 4.3.
The resulting incomplete factorization is known as ILU(0), where “0”
means that no fill-in has been introduced in the factorization process.
An alternative strategy might be to fix the structure of Lin and Uin

0 1 2 3 4 5 6 7 8 9 10 11

0

1

2

3

4

5

6

7

8

9

10

11

Fig. 4.3. The sparsity pattern of the original matrix A is represented by the squares,
while the pattern of R = A − LinUin, computed by Program 17, is drawn by the
bullets

144 4 Iterative Methods for Solving Linear Systems

irrespectively of that of A, in such a way that some computational criteria
are satisfied (for example, that the incomplete factors have the simplest
possible structure).
The accuracy of the ILU(0) factorization can obviously be improved by
allowing some fill-in to arise, and thus, by accepting nonzero entries in
the factorization whereas A has elements equal to zero. To this purpose,
it is convenient to introduce a function, which we call fill-in level, that
is associated with each entry of A and that is being modified during the
factorization process. If the fill-in level of an element is greater than an
admissible value p ∈ N, the corresponding entry in Uin or Lin is set equal
to zero.
Let us explain how this procedure works, assuming that the matrices Lin

and Uin are progressively overwritten to A (as happens in Program 4).
The fill-in level of an entry a

(k)
ij is denoted by levij , where the dependence

on k is understood, and it should provide a reasonable estimate of the size
of the entry during the factorization process. Actually, we are assuming
that if levij = q then |aij | � δq with δ ∈ (0, 1), so that q is greater when
|a(k)

ij | is smaller.
At the starting step of the procedure, the level of the nonzero entries of
A and of the diagonal entries is set equal to 0, while the level of the null
entries is set equal to infinity. For any row i = 2, . . . , n, the following
operations are performed: if levik ≤ p, k = 1, . . . , i − 1, the entry mik of
Lin and the entries a

(k+1)
ij of Uin, j = i+1, . . . , n, are updated. Moreover,

if a
(k+1)
ij �= 0 the value levij is updated as being the minimum between

the available value of levij and levik + levkj +1. The reason of this choice
is that |a(k+1)

ij | = |a(k)
ij − mika

(k)
kj | � |δlevij − δlevik+levkj+1|, so that one

can assume that the size of |a(k+1)
ij | is the maximum between δlevij and

δlevik+levkj+1.
The above factorization process is called ILU(p) and turns out to be
extremely efficient (with p small) provided that it is coupled with a suit-
able matrix reordering (see Section 3.9).
Program 18 implements the ILU(p) factorization; it returns in output the
approximate matrices Lin and Uin (overwritten to the input matrix a),
with the diagonal entries of Lin equal to 1, and the matrix lev containing
the fill-in level of each entry at the end of the factorization.

Program 18 - ilup : ILU(p) factorization

function [A,lev]=ilup(A,p)
%ILUP Incomplete LU(p) factorization.
% [Y,LEV]=ILUP(A): U is stored in the upper triangular part of Y and L is stored
% in the strict lower triangular part of Y. The factors L and U
% have a fill-in level P. LEV contains the fill-in level of
% each entry at the end of the factorization.

4.3 Stationary and Nonstationary Iterative Methods 145

[n,m]=size(A);
if n ˜= m, error(’Only square matrices’); end
lev=Inf*ones(n,n);
i=(A˜=0);
lev(i)=0,
for i=2:n

for k=1:i-1
if lev(i,k) <= p

if A(k,k)==0, error(’Null pivot element’); end
A(i,k)=A(i,k)/A(k,k);
for j=k+1:n

A(i,j)=A(i,j)-A(i,k)*A(k,j);
if A(i,j) ˜= 0

lev(i,j)=min(lev(i,j),lev(i,k)+lev(k,j)+1);
end

end
end

end
for j=1:n, if lev(i,j) > p, A(i,j) = 0; end, end

end
return

Example 4.4 Consider the matrix A ∈ R
46×46 associated with the finite

difference approximation of the Laplace operator ∆· = ∂2·
∂x2 + ∂2·

∂y2 (see Sec-

tion 12.6). This matrix can be generated with the following MATLAB com-
mands: G=numgrid(’B’,10); A=delsq(G) and corresponds to the discretization
of the differential operator on a domain having the shape of the exterior of a
butterfly and included in the square [−1, 1]2. The number of nonzero entries of
A is 174. Figure 4.4 shows the pattern of matrix A (drawn by the bullets) and
the entries in the pattern added by the ILU(1) and ILU(2) factorizations due
to fill-in (denoted by the squares and the triangles, respectively). Notice that
these entries are all contained within the envelope of A since no pivoting has
been performed. •

The ILU(p) process can be carried out without knowing the actual values
of the entries of A, but only working on their fill-in levels. Therefore,
we can distinguish between a symbolic factorization (the generation of
the levels) and an actual factorization (the computation of the entries
of ILU(p) starting from the informations contained in the level function).
The scheme is thus particularly effective when several linear systems must
be solved, with matrices having the same structure but different entries.
On the other hand, for certain classes of matrices, the fill-in level does
not always provide a sound indication of the actual size attained by the
entries. In such cases, it is better to monitor the size of the entries of R
by neglecting each time the entries that are too small. For instance, one
can drop out the entries a

(k+1)
ij such that

146 4 Iterative Methods for Solving Linear Systems

0 5 10 15 20 25 30 35 40 45

0

5

10

15

20

25

30

35

40

45

Fig. 4.4. Pattern of the matrix A in Example 4.4 (bullets); entries added by the
ILU(1) and ILU(2) factorizations (squares and triangles, respectively)

|a(k+1)
ij | ≤ c|a(k+1)

ii a
(k+1)
jj |1/2, i, j = 1, . . . , n,

with 0 < c < 1 (see [Axe94]).
In the strategies considered so far, the entries of the matrix that are
dropped out can no longer be recovered in the incomplete factorization
process. Some remedies exist for this drawback: for instance, at the end
of each k-th step of the factorization, one can sum, row by row, the dis-
carded entries to the diagonal entries of Uin. By doing so, an incomplete
factorization known as MILU (Modified ILU) is obtained, which enjoys
the property of being exact with respect to the constant vectors, i.e., such
that R1 = 0 (see [Axe94] for other formulations). In the practice, this
simple trick provides, for a wide class of matrices, a better preconditioner
than obtained with the ILU method. In the case of symmetric positive
definite matrices one can resort to the Modified Incomplete Cholesky Fac-
torization (MICh).
We conclude by mentioning the ILUT factorization, which collects the
features of ILU(p) and MILU. This factorization can also include partial
pivoting by columns with a slight increase of the computational cost. For
an efficient implementation of incomplete factorizations, we refer to the
MATLAB function luinc in the toolbox sparfun.
The existence of the ILU factorization is not guaranteed for all nonsin-
gular matrices (see for an example [Elm86]) and the process stops if zero
pivotal entries arise. Existence theorems can be proved if A is an M-matrix
[MdV77] or diagonally dominant [Man80]. It is worth noting that some-
times the ILU factorization turns out to be more stable than the complete
LU factorization [GM83].

4.3 Stationary and Nonstationary Iterative Methods 147

3. Polynomial preconditioners: the preconditioning matrix is defined as

P−1 = p(A),

where p is a polynomial in A, usually of low degree.
A remarkable example is given by Neumann polynomial preconditioners.
Letting A = D − C, we have A = (I − CD−1)D, from which

A−1 = D−1(I − CD−1)−1 = D−1(I + CD−1 + (CD−1)2 + . . .).

A preconditioner can then be obtained by truncating the series above at
a certain power p. This method is actually effective only if ρ(CD−1) < 1,
which is the necessary condition in order the series to be convergent.

4. Least-squares preconditioners: A−1 is approximated by a least-squares
polynomial ps(A) (see Section 3.13). Since the aim is to make matrix
I−P−1A as close as possible to the null matrix, the least-squares approx-
imant ps(A) is chosen in such a way that the function ϕ(x) = 1 − ps(x)x
is minimized. This preconditioning technique works effectively only if A
is symmetric and positive definite.

For further results on preconditioners, see [dV89] and [Axe94].

Example 4.5 Consider the matrix A∈ R
324×324 associated with the finite differ-

ence approximation of the Laplace operator on the square [−1, 1]2. This matrix
can be generated with the following MATLAB commands: G=numgrid(‘N’,20);

A=delsq(G). The condition number of the matrix is K2(A) = 211.3. In Table 4.1 we
show the values of K2(P

−1A) computed using the ILU(p) and Neumann precondi-
tioners, with p = 0, 1, 2, 3. In the last case D is the diagonal part of A. •

Remark 4.2 Let A and P be real symmetric matrices of order n, with P posi-
tive definite. The eigenvalues of the preconditioned matrix P−1A are solutions
of the algebraic equation

Ax = λPx, (4.32)

where x is an eigenvector associated with the eigenvalue λ. Equation (4.32) is
an example of generalized eigenvalue problem (see Section 5.9 for a thorough

Table 4.1. Spectral condition numbers of the preconditioned matrix A of Example
4.5 as a function of p

p ILU(p) Neumann

0 22.3 211.3
1 12 36.91
2 8.6 48.55
3 5.6 18.7

148 4 Iterative Methods for Solving Linear Systems

discussion) and the eigenvalue λ can be computed through the following gen-
eralized Rayleigh quotient

λ =
(Ax,x)
(Px,x)

.

Applying the Courant-Fisher Theorem (see Section 5.11) yields

λmin(A)
λmax(P)

≤ λ ≤ λmax(A)
λmin(P)

. (4.33)

Relation (4.33) provides a lower and upper bound for the eigenvalues of the
preconditioned matrix as a function of the extremal eigenvalues of A and P,
and therefore it can be profitably used to estimate the condition number of
P−1A. �

4.3.3 The Gradient Method

The expression of the optimal parameter that has been provided in Theo-
rem 4.9 is of limited usefulness in practical computations, since it requires the
knowledge of the extremal eigenvalues of the matrix P−1A. In the special case
of symmetric and positive definite matrices, however, the optimal acceleration
parameter can be dynamically computed at each step k as follows.

We first notice that, for such matrices, solving system (3.2) is equivalent
to finding the minimizer x ∈ R

n of the quadratic form

Φ(y) =
1
2
yT Ay − yT b,

which is called the energy of system (3.2). Indeed, the gradient of Φ is given by

∇Φ(y) =
1
2
(AT + A)y − b = Ay − b. (4.34)

As a consequence, if ∇Φ(x) = 0 then x is a solution of the original system.
Conversely, if x is a solution, then

Φ(y) = Φ(x + (y − x)) = Φ(x) +
1
2
(y − x)T A(y − x), ∀y ∈ R

n

and thus, Φ(y) > Φ(x) if y �= x, i.e. x is a minimizer of the functional Φ.
Notice that the previous relation is equivalent to

1
2
‖y − x‖2

A = Φ(y) − Φ(x), (4.35)

where ‖ · ‖A is the A-norm or energy norm, defined in (1.28).
The problem is thus to determine the minimizer x of Φ starting from a

point x(0) ∈ R
n and, consequently, to select suitable directions along which

moving to get as close as possible to the solution x. The optimal direction,
that joins the starting point x(0) to the solution point x, is obviously unknown

4.3 Stationary and Nonstationary Iterative Methods 149

a priori. Therefore, we must take a step from x(0) along a given direction p(0),
and then fix along this latter a new point x(1) from which to iterate the process
until convergence.

Precisely, at the generic step k, x(k+1) is computed as

x(k+1) = x(k) + αkp(k), (4.36)

where αk is the value which fixes the length of the step along the direction p(k).
The most natural idea is to take as p(k) the direction of maximum descent
along the functional Φ in x(k), which is given by −∇Φ(x(k)). This yields the
gradient method, also called steepest descent method.

Due to (4.34), ∇Φ(x(k)) = Ax(k) − b = −r(k), so that the direction of
the gradient of Φ coincides with that of residual and can be immediately
computed using the current iterate. This shows that the gradient method, as
well as the Richardson method (4.24) with P = I, moves at each step k along
the direction p(k) = r(k) = −∇Φ(x(k)).

To compute the parameter αk let us write explicitly Φ(x(k+1)) as a function
of a parameter α

Φ(x(k+1)) =
1
2
(x(k) + αr(k))T A(x(k) + αr(k)) − (x(k) + αr(k))T b.

Differentiating with respect to α and setting it equal to zero yields the desired
value of αk

αk =
r(k)T

r(k)

r(k)T Ar(k)
, (4.37)

which depends only on the residual at the k-th step. For this reason, the non-
stationary nonpreconditioned Richardson method employing (4.37) to evalu-
ate the acceleration parameter is also called the gradient method.
Summarizing, the gradient (or steepest descent) method can be described as
follows:
given x(0) ∈ R

n, set r(0) = b − Ax(0), and, for k = 0, 1, . . . until convergence,
compute

αk =
r(k)T

r(k)

r(k)T Ar(k)
,

x(k+1) = x(k) + αkr(k),

r(k+1) = r(k) − αkAr(k).

Theorem 4.10 Let A be a symmetric and positive definite matrix; then the
gradient method is convergent for any choice of the initial datum x(0). More-
over

‖e(k+1)‖A ≤ K2(A) − 1
K2(A) + 1

‖e(k)‖A, k = 0, 1, . . . , (4.38)

where ‖ · ‖A is the energy norm defined in (1.28).

150 4 Iterative Methods for Solving Linear Systems

Proof. Let x(k) be the solution generated by the gradient method at the k-th step.
Then, let x

(k+1)
R be the vector generated by taking one step of the nonpreconditioned

Richardson method with optimal parameter starting from x(k), i.e., x
(k+1)
R = x(k) +

αoptr
(k).

Due to Corollary 1 and to (4.28), we have

‖e(k+1)
R ‖A ≤ K2(A) − 1

K2(A) + 1
‖e(k)‖A,

where e
(k+1)
R = x

(k+1)
R − x. Moreover, from (4.35) we have that the vector x(k+1),

generated by the gradient method, is the one that minimizes the A-norm of the

error among all vectors of the form x(k) + θr(k), with θ ∈ R. Therefore, ‖e(k+1)‖A ≤
‖e(k+1)

R ‖A which is the desired result. �

Let us now consider the preconditioned gradient method and assume that the
matrix P is symmetric positive definite. In such a case the optimal value of
αk in algorithm (4.25) is

αk =
z(k)T

r(k)

z(k)T Az(k)

and we have

‖e(k+1)‖A ≤ K2(P−1A) − 1
K2(P−1A) + 1

‖e(k)‖A.

For the proof of this convergence result see, e.g., [QV94], Section 2.4.1.
We notice that the line through x(k) and x(k+1) is tangent at the point
x(k+1) to the ellipsoidal level surface

{
x ∈ R

n : Φ(x) = Φ(x(k+1))
}

(see also
Figure 4.5).

Relation (4.38) shows that convergence of the gradient method can be
quite slow if K2(A) = λ1/λn is large. A simple geometric interpretation of
this result can be given in the case n = 2. Suppose that A=diag(λ1, λ2), with
0 < λ2 ≤ λ1 and b = (b1, b2)T .

In such a case, the curves corresponding to Φ(x1, x2) = c, as c varies
in R

+, form a sequence of concentric ellipses whose semi-axes have length

−2 0 2

−2

−1

0

1

2

x(1)

x(0)

−1 −0.5 0 0.5 1

−0.5

0

0.5

1

x(2)

x(3)

Fig. 4.5. The first iterates of the gradient method on the level curves of Φ

4.3 Stationary and Nonstationary Iterative Methods 151

inversely proportional to the values λ1 and λ2. If λ1 = λ2, the ellipses degen-
erate into circles and the direction of the gradient crosses the center directly,
in such a way that the gradient method converges in one iteration. Con-
versely, if λ1 � λ2, the ellipses become strongly eccentric and the method
converges quite slowly, as shown in Figure 4.5, moving along a “zig-zag”
trajectory.

Program 19 provides an implementation of the preconditioned gradient
method. Here and in the programs reported in the remainder of the section,
the input parameters A, b, x, P, nmax and tol respectively represent the co-
efficient matrix of the linear system, the right-hand side, the initial datum
x(0), a possible preconditioner, the maximum number of admissible itera-
tions and a tolerance for the stopping test. This stopping test checks if the
ratio ‖r(k)‖2/‖b‖2 is less than tol. The output parameters of the code are
the the number of iterations iter required to fulfill the stopping test, the
vector x with the solution computed after iter iterations and the normal-
ized residual relres = ‖r(niter)‖2/‖b‖2. A null value of the parameter flag
warns the user that the algorithm has actually satisfied the stopping test and
it has not terminated due to reaching the maximum admissible number of
iterations.

Program 19 - gradient : Preconditioned gradient method

function [x,relres,iter,flag]=gradient(A,b,x,P,nmax,tol)
%GRADIENT Gradient method
% [X,RELRES,ITER,FLAG]=GRADIENT(A,B,X0,NMAX,TOL,OMEGA) attempts
% to solve the system A*X=B with the gradient method. TOL specifies the
% tolerance of the method. NMAX specifies the maximum number of iterations.
% X0 specifies the initial guess. P is a preconditioner. RELRES is the relative
% residual. If FLAG is 1, then RELRES > TOL. ITER is the iteration number
% at which X is computed.
[n,m]=size(A);
if n ˜= m, error(’Only square systems’); end
flag = 0; iter = 0; bnrm2 = norm(b);
if bnrm2==0, bnrm2 = 1; end
r=b-A*x; relres=norm(r)/bnrm2;
if relres<tol, return, end
for iter=1:nmax

z=P\r;
rho=r’*z;
q=A*z;
alpha=rho/(z’*q);
x=x+alpha*z;
r=r-alpha*q;
relres=norm(r)/bnrm2;
if relres<=tol, break, end

end
if relres>tol, flag = 1; end
return

152 4 Iterative Methods for Solving Linear Systems

0 50 100 150 200 250
10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

(a)
(b)

(c)

(d)

Fig. 4.6. The residual normalized to the starting one, as a function of the number
of iterations, for the gradient method applied to the systems in Example 4.6. The
curves labelled (a) and (b) refer to the case m = 16 with the nonpreconditioned
and preconditioned method, respectively, while the curves labelled (c) and (d) re-
fer to the case m = 400 with the nonpreconditioned and preconditioned method,
respectively

Example 4.6 Let us solve with the gradient method the linear system with
matrix Am ∈ R

m×m generated with the MATLAB commands G=numgrid(’S’,n);

A=delsq(G) where m = (n−2)2. This matrix is associated with the discretization of
the differential Laplace operator on the domain [−1, 1]2. The right-hand side bm is
selected in such a way that the exact solution is the vector 1 ∈ R

m. The matrix Am

is symmetric and positive definite for any m and becomes ill-conditioned for large
values of m. We run Program 19 in the cases m = 16 and m = 400, with x(0) = 0,
tol=10−10 and nmax=200. If m = 400, the method fails to satisfy the stopping test
within the admissible maximum number of iterations and exhibits an extremely slow
reduction of the residual (see Figure 4.6). Actually, K2(A400) � 258. If, however, we
precondition the system with the matrix P = RT

inRin, where Rin is the lower tri-
angular matrix in the Cholesky incomplete factorization of A, the algorithm fulfills
the convergence within the maximum admissible number of iterations (indeed, now
K2(P

−1A400) � 38). •

4.3.4 The Conjugate Gradient Method

The gradient method consists essentially of two phases: choosing a direction
p(k) (which turns out to coincide with the one of the residual) and picking up
a point of local minimum for Φ along that direction. The latter request can
be accommodated by choosing αk as the value of the parameter α such that
Φ(x(k) + αp(k)) is minimized. Differentiating with respect to α and setting to
zero the derivative at the minimizer, yields

αk =
p(k)T

r(k)

p(k)T Ap(k)
. (4.39)

4.3 Stationary and Nonstationary Iterative Methods 153

(This reduces to (4.37) when p(k) = r(k).) The question is whether a different
choice of the search direction p(k) exists, that might provide a faster conver-
gence of the Richardson method in the case where K2(A) is large. Since, by
(4.36), we have

r(k+1) = r(k) − αkAp(k), (4.40)

using (4.39) shows that

(p(k))T r(k+1) = 0,

that is, the new residual becomes orthogonal to the search direction. For the
next iteration step, the strategy is thus to find a new search direction p(k+1)

in such a way that

(Ap(j))T p(k+1) = 0, j = 0, . . . , k. (4.41)

To see how the k + 1 relations (4.41) can be obtained in a practical way, we
proceed as follows.

Assume that for k ≥ 1, p(0),p(1), . . . ,p(k) are mutually conjugate orthog-
onal (or A-orthogonal). This means that

(Ap(i))T p(j) = 0, ∀i, j = 0, . . . , k, i �= j. (4.42)

This makes sense (in exact arithmetic) provided k < n. Assume also, without
loss of generality, that

(p(j))T r(k) = 0, j = 0, 1, . . . , k − 1. (4.43)

We claim that for every k ≥ 0, the new residual r(k+1) is orthogonal to the
directions p(j), j = 0, . . . , k, that is

(p(j))T r(k+1) = 0, j = 0, . . . , k. (4.44)

This can be proven by induction on k. For k = 0, r(1) = r(0) − α0Ar(0), thus
(p(0))T r(1) = 0 since α0 = (p(0))T r(0)/((p(0))T Ap(0)), and (4.43) therefore
holds. Equation (4.40) yields (since A is symmetric)

(p(j))T r(k+1) = (p(j))T r(k) − αk(Ap(j))T p(k).

Unless for j = k, (Ap(j))T p(k) vanishes owing to (4.42), whereas (p(j))T r(k)

is zero due to the induction assumption. On the other hand, when j = k the
right hand side is zero due to the choice (4.39) of αk.

It remains only to compute the sequence of search directions p(0),p(1), . . . ,
p(k) in an efficient way to make them mutually A-orthogonal. To this end, let

p(k+1) = r(k+1) − βkp(k), k = 0, 1, . . . , (4.45)

154 4 Iterative Methods for Solving Linear Systems

where initially we let p(0) = r(0) and β0, β1, . . . are still to be determined.
Using (4.45) in (4.41) for j = k yields

βk =
(Ap(k))T r(k+1)

(Ap(k))T p(k)
, k = 0, 1, (4.46)

We also notice that, for every j = 0, . . . , k, relation (4.45) implies

(Ap(j))T p(k+1) = (Ap(j))T r(k+1) − βk(Ap(j))T p(k).

Now, by the induction assumption for j ≤ k − 1, the last scalar product is
zero. To prove that also the first scalar product on the right hand side is
zero, we proceed as follows. Let Vk = span(p(0), . . . ,p(k)). Then, if we choose
p(0) = r(0), using (4.45) we see that Vk has the alternative representation
Vk = span(r(0), . . . , r(k)). Hence, Ap(k) ∈ Vk+1 for all k ≥ 0 owing to (4.40).
Since r(k+1) is orthogonal to any vector in Vk (see (4.44)), then

(Ap(j))T r(k+1) = 0, j = 0, 1, . . . , k − 1.

We have therefore proven (4.41) by induction on k, provided the A-orthogonal
directions are chosen as in (4.45) and (4.46).
The method obtained by choosing the search directions p(k) as in (4.45) and
the acceleration parameter αk as in (4.39) is called conjugate gradient method
(CG). The CG method reads as follows: given x(0) ∈ R

n, set r(0) = b−Ax(0)

and p(0) = r(0) then, for k = 0, 1, . . ., until convergence, compute

αk =
p(k)T

r(k)

p(k)T Ap(k)
,

x(k+1) = x(k) + αkp(k),

r(k+1) = r(k) − αkAp(k),

βk =
(Ap(k))T r(k+1)

(Ap(k))T p(k)
,

p(k+1) = r(k+1) − βkp(k).

It can also be shown (see Exercise 12) that the two parameters αk and βk

may be alternatively expressed as

αk =
‖r(k)‖2

2

p(k)T Ap(k)
, βk = −‖r(k+1)‖2

2

‖r(k)‖2
2

. (4.47)

We finally notice that, eliminating the search directions from r(k+1) =
r(k) − αkAp(k), the following recursive three-terms relation is obtained for
the residuals (see Exercise 13)

4.3 Stationary and Nonstationary Iterative Methods 155

Ar(k) = − 1
αk

r(k+1) +
(

1
αk

− βk−1

αk−1

)

r(k) +
βk

αk−1
r(k−1). (4.48)

As for the convergence of the CG method, we have the following results.

Theorem 4.11 Let A be a symmetric and positive definite matrix. Any
method which employs conjugate directions to solve (3.2) terminates after at
most n steps, yielding the exact solution.

Proof. The directions p(0),p(1), . . . ,p(n−1) form an A-orthogonal basis in R
n.

Moreover, from (4.43) it follows that r(k) is orthogonal to the space Vk−1 =

span(p(0),p(1), . . . ,p(k−1)). As a consequence, r(n) ⊥ Vn−1 = R
n and thus r(n) = 0

which implies x(n) = x. �

Going back to the example discussed in Section 4.3.3, Figure 4.7 shows
the performance of the conjugate gradient (CG) method, compared to the
gradient (G) method. In the present case (n = 2), the CG scheme converges
in two iterations due to the property of A-orthogonality, while the gradient
method converges very slowly, due to the above described “zig-zag” trajectory
of the search directions.

Theorem 4.12 Let A be a symmetric and positive definite matrix. The con-
jugate gradient method for solving (3.2) converges after at most n steps. More-
over, the error e(k) at the k-th iteration (with k < n) is orthogonal to p(j),
for j = 0, . . . , k − 1 and

‖e(k)‖A ≤ 2ck

1 + c2k
‖e(0)‖A, with c =

√
K2(A) − 1

√
K2(A) + 1

. (4.49)

Proof. The convergence of the CG method in n steps is a consequence of
Theorem 4.11.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

CG
G

Fig. 4.7. Directions for the conjugate gradient method (denoted by CG, dashed line)
and the gradient method (denoted by G, solid line). Notice that the CG method
reaches the solution after two iterations

156 4 Iterative Methods for Solving Linear Systems

Let us prove the error estimate, assuming for simplicity that x(0) = 0. Notice
first that, for fixed k

x(k+1) =

k∑

j=0

γjA
jb,

for suitable γj ∈ R. Moreover, by construction, x(k+1) is the vector which min-
imizes the A-norm of the error at step k + 1, among all vectors of the form
z =

∑k

j=0
δjA

jb = pk(A)b, where pk(ξ) =
∑k

j=0
δjξ

j is a polynomial of degree

k and pk(A) denotes the corresponding matrix polynomial. As a consequence

‖e(k+1)‖2
A ≤ (x − z)T A(x − z) = xT qk+1(A)Aqk+1(A)x, (4.50)

where qk+1(ξ) = 1−pk(ξ)ξ ∈ P
0,1
k+1, being P

0,1
k+1 = {q ∈ Pk+1 : q(0) = 1} and qk+1(A)

the associated matrix polynomial. From (4.50) we get

‖e(k+1)‖2
A = min

qk+1∈P
0,1
k+1

xT qk+1(A)Aqk+1(A)x. (4.51)

Since A is symmetric positive definite, there exists an orthogonal matrix Q such
that A = QΛQT with Λ = diag(λ1, . . . , λn), with λ1 and λn the largest and smallest
eigenvalues of A, respectively. Noticing that qk+1(A) = Qqk+1(Λ)QT , we get from
(4.51)

‖e(k+1)‖2
A = min

qk+1∈P
0,1
k+1

xT Qqk+1(Λ)QT QΛQT Qqk+1(Λ)QT x

= min
qk+1∈P

0,1
k+1

xT Qqk+1(Λ)Λqk+1(Λ)QT x

= min
qk+1∈P

0,1
k+1

yT diag(qk+1(λi)λiqk+1(λi))y

= min
qk+1∈P

0,1
k+1

n∑

i=1

y2
i λi(qk+1(λi))

2,

having set y = Qx. Thus, we can conclude that

‖e(k+1)‖2
A ≤

[

min
qk+1∈P

0,1
k+1

max
λi∈σ(A)

(qk+1(λi))
2

]
n∑

i=1

y2
i λi.

Recalling that

n∑

i=1

y2
i λi = ‖e(0)‖2

A, we have

‖e(k+1)‖A

‖e(0)‖A
≤ min

qk+1∈P
0,1
k+1

max
λi∈σ(A)

|qk+1(λi)|.

Let us now recall the following property

Property 4.6 The problem of minimizing max
λn≤z≤λ1

|q(z)| over the space

P
0,1
k+1([λn, λ1]) admits a unique solution, given by the polynomial

4.3 Stationary and Nonstationary Iterative Methods 157

pk+1(ξ) = Tk+1

(
λ1 + λn − 2ξ

λ1 − λn

)
/Ck+1, ξ ∈ [λn, λ1],

where Ck+1 = Tk+1(
λ1+λn
λ1−λn

) and Tk+1 is the Chebyshev polynomial of degree k + 1

(see Section 10.10).The value of the minimum is 1/Ck+1.

Using this property we get

‖e(k+1)‖A

‖e(0)‖A
≤ 1

Tk+1

(
λ1 + λn

λ1 − λn

) ,

from which the thesis follows since in the case of a symmetric positive definite matrix

1

Ck+1
=

2ck+1

1 + c2(k+1)
.

�

The generic k-th iteration of the conjugate gradient method is well defined
only if the search direction p(k) is nonnull. Besides, if p(k) = 0, then the iterate
x(k) must necessarily coincide with the solution x of the system. Moreover,
irrespectively of the choice of the parameters βk, one can show (see [Axe94],
p. 463) that the sequence x(k) generated by the CG method is such that either
x(k) �= x, p(k) �= 0, αk �= 0 for any k, or there must exist an integer m such
that x(m) = x, where x(k) �= x, p(k) �= 0 and αk �= 0 for k = 0, 1, . . . ,m − 1.

The particular choice made for βk in (4.47) ensures that m ≤ n. In absence
of rounding errors, the CG method can thus be regarded as being a direct
method, since it terminates after a finite number of steps. However, for ma-
trices of large size, it is usually employed as an iterative scheme, where the
iterations are stopped when the error gets below a fixed tolerance. In this re-
spect, the dependence of the error reduction factor on the condition number
of the matrix is more favorable than for the gradient method. We also notice
that estimate (4.49) is often overly pessimistic and does not account for the
fact that in this method, unlike what happens for the gradient method, the
convergence is influenced by the whole spectrum of A, and not only by its
extremal eigenvalues.

Remark 4.3 (Effect of rounding errors) The termination property of
the CG method is rigorously valid only in exact arithmetic. The cumulating
rounding errors prevent the search directions from being A-conjugate and can
even generate null denominators in the computation of coefficients αk and βk.
This latter phenomenon, known as breakdown, can be avoided by introducing
suitable stabilization procedures; in such an event, we speak about stabilized
gradient methods.

Despite the use of these strategies, it may happen that the CG method fails
to converge (in finite arithmetic) after n iterations. In such a case, the only
reasonable possibility is to restart the iterative process, taking as residual
the last computed one. By so doing, the cyclic CG method or CG method

158 4 Iterative Methods for Solving Linear Systems

with restart is obtained, for which, however, the convergence properties of the
original CG method are no longer valid. �

4.3.5 The Preconditioned Conjugate Gradient Method

If P is a symmetric and positive definite matrix, the preconditioned conjugate
gradient method (PCG) consists of applying the CG method to the precon-
ditioned system

P−1/2AP−1/2y = P−1/2b, with y = P1/2x.

In practice, the method is implemented without explicitly requiring the com-
putation of P1/2 or P−1/2. After some algebra, the following scheme is ob-
tained:
given x(0) ∈ R

n, set r(0) = b − Ax(0), z(0) = P−1r(0) and p(0) = z(0), for
k = 0, 1, . . . until convergence, compute

αk =
z(k)T

r(k)

p(k)T Ap(k)
,

x(k+1) =x(k) + αkp(k),

r(k+1) = r(k) − αkAp(k),

Pz(k+1) = r(k+1),

βk =
z(k+1)T

r(k+1)

z(k)T r(k)
,

p(k+1) = z(k+1) + βkp(k).

The computational cost is increased with respect to the CG method, as one
needs to solve at each step the linear system Pz(k+1) = r(k+1). For this system
the symmetric preconditioners examined in Section 4.3.2 can be used. The
error estimate is the same as for the nonpreconditioned method, provided the
matrix A is replaced by P−1A.

In Program 20 an implementation of the PCG method is reported. For a
description of the input/output parameters, see Program 19.

Program 20 - conjgrad : Preconditioned conjugate gradient method

function [x,relres,iter,flag]=conjgrad(A,b,x,P,nmax,tol)
%CONJGRAD Conjugate gradient method
% [X,RELRES,ITER,FLAG]=CONJGRAD(A,B,X0,NMAX,TOL,OMEGA) attempts
% to solve the system A*X=B with the conjugate gradient method. TOL specifies
% the tolerance of the method. NMAX specifies the maximum number of iterations.
% X0 specifies the initial guess. P is a preconditioner. RELRES is the relative

4.3 Stationary and Nonstationary Iterative Methods 159

% residual. If FLAG is 1, then RELRES > TOL. ITER is the iteration number at which
% X is computed.
flag=0; iter=0; bnrm2=norm(b);
if bnrm2==0, bnrm2=1; end
r=b-A*x; relres=norm(r)/bnrm2;
if relres<tol, return, end
for iter = 1:nmax

z=P\r; rho=r’*z;
if iter>1

beta=rho/rho1;
p=z+beta*p;

else
p=z;

end
q=A*p;
alpha=rho/(p’*q);
x=x+alpha*p;
r=r-alpha*q;
relres=norm(r)/bnrm2;
if relres<=tol, break, end
rho1 = rho;

end
if relres>tol, flag = 1; end
return

Example 4.7 Let us consider again the linear system of Example 4.6. The CG
method has been run with the same input data as in the previous example. It
converges in 3 iterations for m = 16 and in 45 iterations for m = 400. Using the

0 5 10 15 20 25 30 35 40 45
10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

Fig. 4.8. Behavior of the residual, normalized to the right-hand side, as a function
of the number of iterations for the conjugate gradient method applied to the systems
of Example 4.6 in the case m = 400. The curve in dashed line refers to the nonpre-
conditioned method, while the curve in solid line refers to the preconditioned one

160 4 Iterative Methods for Solving Linear Systems

same preconditioner as in Example 4.6, the number of iterations decreases from 45
to 26, in the case m = 400. •

4.3.6 The Alternating-Direction Method

Assume that A = A1 + A2, with A1 and A2 symmetric and positive defi-
nite. The alternating direction method (ADI), as introduced by Peaceman
and Rachford [PJ55], is an iterative scheme for (3.2) which consists of solving
the following systems ∀k ≥ 0

(I + α1A1)x(k+1/2) = (I − α1A2)x(k) + α1b,

(I + α2A2)x(k+1) = (I − α2A1)x(k+1/2) + α2b,
(4.52)

where α1 and α2 are two real parameters. The ADI method can be cast in
the form (4.2) setting

B = (I + α2A2)−1(I − α2A1)(I + α1A1)−1(I − α1A2),

f = (I + α2A2)−1
[
α1(I − α2A1)(I + α1A1)−1 + α2I

]
b.

Both B and f depend on α1 and α2. The following estimate holds

ρ(B) ≤ max
i=1,...,n

∣
∣
∣
∣
∣

1 − α2λ
(1)
i

1 + α1λ
(1)
i

∣
∣
∣
∣
∣

max
i=1,...,n

∣
∣
∣
∣
∣

1 − α1λ
(2)
i

1 + α2λ
(2)
i

∣
∣
∣
∣
∣
,

where λ
(1)
i and λ

(2)
i , for i = 1, . . . , n, are the eigenvalues of A1 and A2,

respectively. The method converges if ρ(B) < 1, which is always verified if
α1 = α2 = α > 0. Moreover (see [Axe94]) if γ ≤ λ

(j)
i ≤ δ ∀i = 1, . . . , n,

∀j = 1, 2, for suitable γ and δ then the ADI method converges with the choice
α1 = α2 = 1/

√
δγ, provided that γ/δ tends to 0 as the size of A grows. In

such an event the corresponding spectral radius satisfies

ρ(B) ≤
(

1 −
√

γ/δ

1 +
√

γ/δ

)2

.

4.4 Methods Based on Krylov Subspace Iterations

In this section we introduce iterative methods based on Krylov subspace
iterations. For the proofs and further analysis, we refer to [Saa96], [Axe94],
[Hac94] and [vdV03].

Consider the Richardson method (4.24) with P = I; the residual at the k-th
step can be related to the initial residual as

4.4 Methods Based on Krylov Subspace Iterations 161

r(k) =
k−1∏

j=0

(I − αjA)r(0), (4.53)

so that r(k) = pk(A)r(0), where pk(A) is a polynomial in A of degree k. If we
introduce the space

Km(A;v) = span
{
v,Av, . . . ,Am−1v

}
, (4.54)

it immediately appears from (4.53) that r(k) ∈ Kk+1(A; r(0)). The space de-
fined in (4.54) is called the Krylov subspace of order m. It is a subspace of the
set spanned by all the vectors u ∈ R

n that can be written as u = pm−1(A)v,
where pm−1 is a polynomial in A of degree ≤ m − 1.

In an analogous manner as for (4.53), it is seen that the iterate x(k) of the
Richardson method is given by

x(k) = x(0) +
k−1∑

j=0

αjr(j),

so that x(k) belongs to the following space

Wk =
{
v = x(0) + y, y ∈ Kk(A; r(0))

}
. (4.55)

Notice also that
∑k−1

j=0 αjr(j) is a polynomial in A of degree less than k − 1. In
the nonpreconditioned Richardson method we are thus looking for an approx-
imate solution to x in the space Wk. More generally, we can think of devising
methods that search for approximate solutions of the form

x(k) = x(0) + qk−1(A)r(0), (4.56)

where qk−1 is a polynomial selected in such a way that x(k) be, in a sense that
must be made precise, the best approximation of x in Wk. A method that
looks for a solution of the form (4.56) with Wk defined as in (4.55) is called a
Krylov method.

A first question concerning Krylov subspace iterations is whether the
dimension of Km(A;v) increases as the order m grows. A partial answer is
provided by the following result.

Property 4.7 Let A ∈ R
n×n and v ∈ R

n. The Krylov subspace Km(A;v)
has dimension equal to m iff the degree of v with respect to A, denoted by
degA(v), is not less than m, where the degree of v is defined as the minimum
degree of a monic nonnull polynomial p in A, for which p(A)v = 0.

The dimension of Km(A;v) is thus equal to the minimum between m and
the degree of v with respect to A and, as a consequence, the dimension of the
Krylov subspaces is certainly a nondecreasing function of m. Notice that the
degree of v cannot be greater than n due to the Cayley-Hamilton Theorem
(see Section 1.7).

162 4 Iterative Methods for Solving Linear Systems

Example 4.8 Consider the matrix A = tridiag4(−1, 2,−1). The vector v =
[1, 1, 1, 1]T has degree 2 with respect to A since p2(A)v = 0 with p2(A) =
I4−3A+A2, while there is no monic polynomial p1 of degree 1 for which p1(A)v = 0.
As a consequence, all Krylov subspaces from K2(A;v) on, have dimension equal to
2. The vector w = [1, 1,−1, 1]T has, instead, degree 4 with respect to A. •

For a fixed m, it is possible to compute an orthonormal basis for Km(A;v)
using the so-called Arnoldi algorithm.

Setting v1 = v/‖v‖2, this method generates an orthonormal basis {vi}
for Km(A;v1) using the Gram-Schmidt procedure (see Section 3.4.3). For
k = 1, . . . , m, the Arnoldi algorithm computes

hik = vT
i Avk, i = 1, 2, . . . , k,

wk = Avk −
k∑

i=1

hikvi, hk+1,k = ‖wk‖2.
(4.57)

If wk = 0 the process terminates and in such a case we say that a breakdown
of the algorithm has occurred; otherwise, we set vk+1 = wk/‖wk‖2 and the
algorithm restarts, incrementing k by 1.

It can be shown that if the method terminates at the step m then the
vectors v1, . . . ,vm form a basis for Km(A;v). In such a case, if we denote by
Vm ∈ R

n×m the matrix whose columns are the vectors vi, we have

VT
mAVm = Hm, VT

m+1AVm = Ĥm, (4.58)

where Ĥm ∈ R
(m+1)×m is the upper Hessenberg matrix whose entries hij are

given by (4.57) and Hm ∈ R
m×m is the restriction of Ĥm to the first m rows

and m columns.
The algorithm terminates at an intermediate step k < m iff degA(v1) = k.

As for the stability of the procedure, all the considerations valid for the Gram-
Schmidt method hold. For more efficient and stable computational variants of
(4.57), we refer to [Saa96].

The functions arnoldialg and GSarnoldi, invoked by Program 21, pro-
vide an implementation of the Arnoldi algorithm. In output, the columns
of V contain the vectors of the generated basis, while the matrix H stores the
coefficients hik computed by the algorithm. If m steps are carried out, V = Vm

and H(1 : m, 1 : m) = Hm.

Program 21 - arnoldialg : The Arnoldi algorithm

function [V,H]=arnoldialg(A,v,m)
% ARNOLDIALG Arnoldi algorithm
% [B,H]=ARNOLDIALG(A,V,M) computes for a fixed M an orthonormal basis B for
% K˙M(A,V) such that VˆT*A*V=H.
v=v/norm(v,2); V=v; H=[]; k=0;

4.4 Methods Based on Krylov Subspace Iterations 163

while k <= m-1
[k,V,H] = GSarnoldi(A,m,k,V,H);

end
return

function [k,V,H]=GSarnoldi(A,m,k,V,H)
% GSARNOLDI Gram-Schmidt method for the Arnoldi algorithm
k=k+1; H=[H,V(:,1:k)’*A*V(:,k)];
s=0;
for i=1:k

s=s+H(i,k)*V(:,i);
end
w=A*V(:,k)-s; H(k+1,k)=norm(w,2);
if H(k+1,k)>=eps & k¡m

V=[V,w/H(k+1,k)];
else

k=m+1;
end
return

Having introduced an algorithm for generating the basis for a Krylov subspace
of any order, we can now solve the linear system (3.2) by a Krylov method.
As already noticed, for all of these methods the iterate x(k) is always of the
form (4.56) and, for a given r(0), the vector x(k) is selected as being the unique
element in Wk which satisfies a criterion of minimal distance from x. Thus,
the feature distinguishing two different Krylov methods is the criterion for
selecting x(k).

The most natural idea consists of searching for x(k) ∈ Wk as the vector
which minimizes the Euclidean norm of the error. This approach, however,
does not work in practice since x(k) would depend on the (unknown) solu-
tion x.

Two alternative strategies can be pursued:

1. compute x(k) ∈ Wk enforcing that the residual r(k) is orthogonal to any
vector in Kk(A; r(0)), i.e., we look for x(k) ∈ Wk such that

vT (b − Ax(k)) = 0 ∀v ∈ Kk(A; r(0)); (4.59)

2. compute x(k) ∈ Wk minimizing the Euclidean norm of the residual ‖r(k)‖2,
i.e.

‖b − Ax(k)‖2 = min
v∈Wk

‖b − Av‖2. (4.60)

Satisfying (4.59) leads to the Arnoldi method for linear systems (more com-
monly known as FOM, full orthogonalization method), while satisfying (4.60)
yields the GMRES (generalized minimum residual) method.

In the two forthcoming sections we shall assume that k steps of the Arnoldi
algorithm have been carried out, in such a way that an orthonormal basis for

164 4 Iterative Methods for Solving Linear Systems

Kk(A; r(0)) has been generated and stored into the column vectors of the
matrix Vk with v1 = r(0)/‖r(0)‖2. In such a case the new iterate x(k) can
always be written as

x(k) = x(0) + Vkz(k), (4.61)

where z(k) must be selected according to a fixed criterion.

4.4.1 The Arnoldi Method for Linear Systems

Let us enforce that r(k) be orthogonal to Kk(A; r(0)) by requiring that (4.59)
holds for all the basis vectors vi, i.e.

VT
k r(k) = 0. (4.62)

Since r(k) = b − Ax(k) with x(k) of the form (4.61), relation (4.62) becomes

VT
k (b − Ax(0)) − VT

k AVkz(k) = VT
k r(0) − VT

k AVkz(k) = 0. (4.63)

Due to the orthonormality of the basis and the choice of v1, VT
k r(0) =

‖r(0)‖2e1, e1 being the first unit vector of R
k. Recalling (4.58), from (4.63) it

turns out that z(k) is the solution to the linear system

Hkz(k) = ‖r(0)‖2e1. (4.64)

Once z(k) is known, we can compute x(k) from (4.61). Since Hk is an upper
Hessenberg matrix, the linear system in (4.64) can be easily solved, for in-
stance, resorting to the LU factorization of Hk.

We notice that the method, if working in exact arithmetic, cannot execute
more than n steps and that it terminates after m < n steps only if a breakdown
in the Arnoldi algorithm occurs. As for the convergence of the method, the
following result holds.

Theorem 4.13 In exact arithmetic the Arnoldi method yields the solution of
(3.2) after at most n iterations.

Proof. If the method terminates at the n-th iteration, then it must necessarily
be x(n) = x since Kn(A; r(0)) = R

n. Conversely, if a breakdown occurs after m
iterations, for a suitable m < n, then x(m) = x. Indeed, inverting the first relation
in (4.58), we get

x(m) = x(0) + Vmz(m) = x(0) + VmH−1
m VT

mr(0) = A−1b.

�

In its naive form, FOM does not require an explicit computation of the solution
or the residual, unless a breakdown occurs. Therefore, monitoring its conver-
gence (by computing, for instance, the residual at each step) might be com-
putationally expensive. The residual, however, is available without explicitly
requiring to compute the solution since at the k-th step we have

4.4 Methods Based on Krylov Subspace Iterations 165

‖b − Ax(k)‖2 = hk+1,k|eT
k zk|

and, as a consequence, one can decide to stop the method if

hk+1,k|eT
k zk|/‖r(0)‖2 ≤ ε (4.65)

ε > 0 being a fixed tolerance.
The most relevant consequence of Theorem 4.13 is that FOM can be

regarded as a direct method, since it yields the exact solution after a fi-
nite number of steps. However, this fails to hold when working in floating
point arithmetic due to the cumulating rounding errors. Moreover, if we also
account for the high computational effort, which, for a number of m steps and
a sparse matrix of order n with nz nonzero entries, is of the order of 2(nz+mn)
flops, and the large memory occupation needed to store the matrix Vm, we
conclude that the Arnoldi method cannot be used in the practice, except for
small values of m.

Several remedies to this drawback are available, one of which consisting
of preconditioning the system (using, for instance, one of the preconditioners
proposed in Section 4.3.2). Alternatively, we can also introduce some modified
versions of the Arnoldi method following two approaches:

1. no more than m consecutive steps of FOM are taken, m being a small
fixed number (usually, m � 10). If the method fails to converge, we set
x(0) = x(m) and FOM is repeated for other m steps. This procedure is
carried out until convergence is achieved. This method, known as FOM(m)
or FOM with restart, reduces the memory occupation, only requiring to
store matrices with m columns at most;

2. a limitation is set on the number of directions involved in the orthogo-
nalization procedure in the Arnoldi algorithm, yielding the incomplete
orthogonalization method or IOM. In the practice, the k-th step of the
Arnoldi algorithm generates a vector vk+1 which is orthonormal, at most,
to the q preceding vectors, where q is fixed according to the amount of
available memory.

It is worth noticing that Theorem 4.13 does no longer hold for the methods
stemming from the two strategies above.

Program 22 provides an implementation of the FOM algorithm with a
stopping criterion based on the residual (4.65). The input parameter m is the
maximum admissible size of the Krylov subspace that is being generated and
represents, as a consequence, the maximum admissible number of iterations.

Program 22 - arnoldimet : The Arnoldi method for linear systems

function [x,iter]=arnoldimet(A,b,x0,m,tol)
%ARNOLDIMET Arnoldi method.
% [X,ITER]=ARNOLDIMET(A,B,X0,M,TOL) attempts to solve the system A*X=B
% with the Arnoldi method. TOL specifies the tolerance of the method.

166 4 Iterative Methods for Solving Linear Systems

% M specifies the maximum size of the Krylov subspace. X0 specifies
% the initial guess. ITER is the iteration number at which X is computed.
r0=b-A*x0; nr0=norm(r0,2);
if nr0 ˜= 0

v1=r0/nr0; V=[v1]; H=[]; iter=0; istop=0;
while (iter <= m-1) & (istop == 0)

[iter,V,H] = GSarnoldi(A,m,iter,V,H);
[nr,nc]=size(H); e1=eye(nc);
y=(e1(:,1)’*nr0)/H(1:nc,:);
residual = H(nr,nc)*abs(y*e1(:,nc));
if residual <= tol

istop = 1; y=y’;
end

end
if istop==0

[nr,nc]=size(H); e1=eye(nc);
y=(e1(:,1)’*nr0)/H(1:nc,:); y=y’;

end
x=x0+V(:,1:nc)*y;

else
x=x0;

end

Example 4.9 Let us employ Program 22 to solve the linear system Ax = b with
A = tridiag100(−1, 2, −1) and b such that the solution is x = 1. The initial vector
is x(0) = 0 and tol=10−10. The method converges in 50 iterations and Figure 4.9
reports its convergence history. Notice the sudden, dramatic, reduction of the resi-
dual, which is a typical warning that the last generated subspace Wk is sufficiently
rich to contain the exact solution of the system. •

0 10 20 30 40 50 60
10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

102

Fig. 4.9. The behavior of the residual as a function of the number of iterations for
the Arnoldi method applied to the linear system in Example 4.9

4.4 Methods Based on Krylov Subspace Iterations 167

4.4.2 The GMRES Method

This method is characterized by selecting x(k) in such a way to minimize the
Euclidean norm of the residual at each k-th step. Recalling (4.61) we have

r(k) = r(0) − AVkz(k), (4.66)

but, since r(0) = v1‖r(0)‖2 and (4.58) holds, relation (4.66) becomes

r(k) = Vk+1(‖r(0)‖2e1 − Ĥkz(k)), (4.67)

where e1 is the first unit vector of R
k+1. Therefore, in the GMRES method

the solution at step k can be computed through (4.61) as

z(k) chosen in such a way to minimize ‖ ‖r(0)‖2e1 − Ĥkz(k)‖2 (4.68)

(the matrix Vk+1 appearing in (4.67) does not change the value of ‖ · ‖2 since
it is orthogonal). Having to solve at each step a least-squares problem of size
k, the GMRES method will be the more effective the smaller is the number of
iterations. Exactly as for the Arnoldi method, the GMRES method terminates
at most after n iterations, yielding the exact solution. Premature stops are due
to a breakdown in the orthonormalization Arnoldi algorithm. More precisely,
we have the following result.

Property 4.8 A breakdown occurs for the GMRES method at a step m (with
m < n) iff the computed solution x(m) coincides with the exact solution to the
system.

A basic implementation of the GMRES method is provided in Program 23.
This latter requires in input the maximum admissible size m for the Krylov
subspace and the tolerance tol on the Euclidean norm of the residual normal-
ized to the initial residual. This implementation of the method computes the
solution x(k) at each step in order to evaluate the residual, with a consequent
increase of the computational effort.

Program 23 - gmres : The GMRES method for linear systems

function [x,iter]=gmres(A,b,x0,m,tol)
%GMRES GMRES method.
% [X,ITER]=GMRES(A,B,X0,M,TOL) attempts to solve the system A*X=B
% with the GMRES method. TOL specifies the tolerance of the method.
% M specifies the maximum size of the Krylov subspace. X0 specifies
% the initial guess. ITER is the iteration number at which X is computed.
r0=b-A*x0; nr0=norm(r0,2);
if nr0 ˜= 0

v1=r0/nr0; V=[v1]; H=[]; iter=0; residual=1;

168 4 Iterative Methods for Solving Linear Systems

while iter <= m-1 & residual > tol,
[iter,V,H] = GSarnoldi(A,m,iter,V,H);
[nr,nc]=size(H); y=(H’*H) \ (H’*nr0*[1;zeros(nr-1,1)]);
x=x0+V(:,1:nc)*y; residual = norm(b-A*x,2)/nr0;

end
else

x=x0;
end

To improve the efficiency of the GMRES algorithm it is necessary to devise a
stopping criterion which does not require the explicit evaluation of the residual
at each step. This is possible, provided that the linear system with upper
Hessenberg matrix Ĥk is appropriately solved.

In practice, Ĥk is transformed into an upper triangular matrix Rk ∈
R

(k+1)×k with rk+1,k = 0 such that QT
k Rk = Ĥk, where Qk is a matrix

obtained as the product of k Givens rotations (see Section 5.6.3). Then, since
Qk is orthogonal, it can be seen that minimizing ‖‖r(0)‖2e1 − Ĥkz(k)‖2 is
equivalent to minimize ‖fk − Rkz(k)‖2, with fk = Qk‖r(0)‖2e1. It can also be
shown that the k + 1-th component of fk is, in absolute value, the Euclidean
norm of the residual at the k-th step.

As FOM, the GMRES method entails a high computational effort and
a large amount of memory, unless convergence occurs after few iterations.
For this reason, two variants of the algorithm are available, one named
GMRES(m) and based on the restart after m steps, the other named Quasi-
GMRES or QGMRES and based on stopping the Arnoldi orthogonalization
process. It is worth noting that these two methods do not enjoy Property 4.8.

Remark 4.4 (Projection methods) Denoting by Yk and Lk two generic
m-dimensional subspaces of R

n, we call projection method a process which
generates an approximate solution x(k) at step k, enforcing that x(k) ∈ Yk

and that the residual r(k) = b − Ax(k) be orthogonal to Lk. If Yk = Lk, the
projection process is said to be orthogonal, oblique otherwise (see [Saa96]).

The Krylov subspace iterations can be regarded as being projection meth-
ods. For instance, the Arnoldi method is an orthogonal projection method
where Lk = Yk = Kk(A; r(0)), while the GMRES method is an oblique pro-
jection method with Yk = Kk(A; r(0)) and Lk = AYk. It is worth noticing that
some classical methods introduced in previous sections fall into this category.
For example, the Gauss-Seidel method is an orthogonal projection method
where at the k-th step Kk(A; r(0)) = span(ek), with k = 1, . . . , n. The projec-
tion steps are carried out cyclically from 1 to n until convergence. �

4.4.3 The Lanczos Method for Symmetric Systems

The Arnoldi algorithm simplifies considerably if A is symmetric since the
matrix Hm is tridiagonal and symmetric (indeed, from (4.58) it turns out that

4.4 Methods Based on Krylov Subspace Iterations 169

Hm must be symmetric, so that, being upper Hessenberg by construction, it
must necessarily be tridiagonal). In such an event the method is more com-
monly known as the Lanczos algorithm. For ease of notation, we henceforth
let αi = hii and βi = hi−1,i.

An implementation of the Lanczos algorithm is provided in Program 24.
Vectors alpha and beta contain the coefficients αi and βi computed by the
scheme.

Program 24 - lanczos : The Lanczos algorithm

function [V,alpha,beta]=lanczos(A,m)
%LANCZOS Lanczos algorithm.
% [V,ALPHA,BETA]=LANCZOS(A,M) computes matrices V and H of dimension
% equal to M in (4.58).
n=size(A); V=[0*[1:n]’,[1,0*[1:n-1]]’];
beta(1)=0; normb=1; k=1;
while k <= m & normb >= eps

vk = V(:,k+1); w = A*vk-beta(k)*V(:,k);
alpha(k)= w’*vk; w = w - alpha(k)*vk
normb = norm(w,2);
if normb ˜= 0

beta(k+1)=normb; V=[V,w/normb]; k=k+1;
end

end
[n,m]=size(V); V=V(:,2:m-1);
alpha=alpha(1:n); beta=beta(2:n);

The algorithm, which is far superior to Arnoldi’s one as far as memory
saving is concerned, is not numerically stable since only the first generated
vectors are actually orthogonal. For this reason, several stable variants have
been devised.

As in previous cases, also the Lanczos algorithm can be employed as a
solver for linear systems, yielding a symmetric form of the FOM method. It
can be shown that r(k) = γkvk+1, for a suitable γk (analogously to (4.65)) so
that the residuals are all mutually orthogonal.

Remark 4.5 (The conjugate gradient method) If A is symmetric and
positive definite, starting from the Lanczos method for linear systems it is
possible to derive the conjugate gradient method already introduced in Section
4.3.4 (see [Saa96]). The conjugate gradient method is a variant of the Lanczos
method where the orthonormalization process remains incomplete.

As a matter of fact, the A-conjugate directions of the CG method can
be characterized as follows. If we carry out at the generic k-th step the LU
factorization Hk = LkUk, with Lk (resp., Uk) lower (resp., upper) bidiagonal,
the iterate x(k) of the Lanczos method for systems reads

x(k) = x(0) + PkL−1
k ‖r(0)‖2e1,

170 4 Iterative Methods for Solving Linear Systems

with Pk = VkU−1
k . The column vectors of Pk are mutually A-conjugate.

Indeed, PT
k APk is symmetric and bidiagonal since

PT
k APk = U−T

k HkU−1
k = U−T

k Lk,

so that it must necessarily be diagonal. As a result, (p(j))
T
Ap(i) = 0 if i �= j,

having denoted by p(i) the i-th column vector of matrix Pk. �

As happens for the FOM method, also the GMRES method simplifies if A
is symmetric. The resulting scheme is called conjugate residuals or CR method
since it enjoys the property that the residuals are mutually A-conjugate. Vari-
ants of this method are the generalized conjugate residuals method (GCR) and
the method commonly known as ORTHOMIN (obtained by truncation of the
orthonormalization process as done for the IOM method).

4.5 The Lanczos Method for Unsymmetric Systems

The Lanczos orthogonalization process can be extended to deal with un-
symmetric matrices through a bi-orthogonalization procedure as follows. Two
bases, {vi}m

i=1 and {zi}m
i=1, are generated for the subspaces Km(A;v1) and

Km(AT ; z1), respectively, with zT
1 v1 = 1, such that

zT
i vj = δij , i, j = 1, . . . , m. (4.69)

Two sets of vectors satisfying (4.69) are said to be bi-orthogonal and can be
obtained through the following algorithm: setting β1 = γ1 = 0 and z0 = v0 =
0T , at the generic k-th step, with k = 1, . . . , m, we set αk = zT

k Avk, then we
compute

ṽk+1 = Avk − αkvk − βkvk−1, z̃k+1 = AT zk − αkzk − γkzk−1.

If γk+1 =
√

|z̃T
k+1ṽk+1| = 0 the algorithm is stopped, otherwise we set βk+1 =

z̃T
k+1ṽk+1/γk+1 and generate two new vectors in the basis as

vk+1 = ṽk+1/γk+1, zk+1 = z̃k+1/βk+1.

If the process terminates after m steps, denoting by Vm and Zm the matrices
whose columns are the vectors of the basis that has been generated, we have

ZT
mAVm = Tm,

Tm being the following tridiagonal matrix

Tm =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

α1 β2 0
γ2 α2

. . .
. βm

0 γm αm

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

4.5 The Lanczos Method for Unsymmetric Systems 171

As in the symmetric case, the bi-orthogonalization Lanczos algorithm can be
utilized to solve the linear system (3.2). For this purpose, for m fixed, once
the bases {vi}m

i=1 and {zi}m
i=1 have been constructed, it suffices to set

x(m) = x(0) + Vmy(m),

where y(m) is the solution to the linear system Tmy(m) = ‖r(0)‖2e1. It is
also possible to introduce a stopping criterion based on the residual, without
computing it explicitly, since

‖r(m)‖2 = |γm+1eT
my(m)| ‖vm+1‖2.

An implementation of the Lanczos method for unsymmetric systems is given
in Program 25. If a breakdown of the algorithm occurs, i.e., if γk+1 = 0, the
method stops returning in output a negative value of the variable niter which
denotes the number of iterations necessary to reduce the initial residual by a
factor tol.

Program 25 - lanczosnosym : The Lanczos method for unsymmetric
systems

function [xk,relres,iter]=lanczosnosym(A,b,x0,m,tol)
%LANCZOSNOSYM Lanczos method
% [X,RELRES,ITER]=LANCZOSNOSYM(A,B,X0,M,TOL) attempts to solve the
% system A*X=B with the Lanczos method. TOL specifies the tolerance of the
% method. M specifies the maximum number of iterations. X0 specifies the initial
guess. ITER is the iteration number at which X is computed.
r0=b-A*x0; relres0=norm(r0,2);
if relres0 ˜= 0

V=r0/relres0; Z=V; gamma(1)=0; beta(1)=0; k=1; relres=1;
while k <= m & relres > tol

vk=V(:,k); zk=Z(:,k);
if k==1

vk1=0*vk; zk1=0*zk;
else

vk1=V(:,k-1); zk1=Z(:,k-1);
end
alpha(k)=zk’*A*vk;
tildev=A*vk-alpha(k)*vk-beta(k)*vk1;
tildez=A’*zk-alpha(k)*zk-gamma(k)*zk1;
gamma(k+1)=sqrt(abs(tildez’*tildev));
if gamma(k+1) == 0

k=m+2;
else

beta(k+1)=tildez’*tildev/gamma(k+1);
Z=[Z,tildez/beta(k+1)]; V=[V,tildev/gamma(k+1)];

end

172 4 Iterative Methods for Solving Linear Systems

if k˜=m+2
if k==1

Tk = alpha;
else

Tk=diag(alpha)+diag(beta(2:k),1)+diag(gamma(2:k),-1);
end
yk=Tk\(relres0*[1,0*[1:k-1]]’);
xk=x0+V(:,1:k)*yk;
relres=abs(gamma(k+1)*[0*[1:k-1],1]*yk)*norm(V(:,k+1),2)/relres0;
k=k+1;

end
end

else
x=x0;

end
if k==m+2, iter=-k; else, iter=k-1; end
return

Example 4.10 Let us solve the linear system with matrix A = tridiag100(−0.5, 2,
−1) and right-side b selected in such a way that the exact solution is x = 1. Using
Program 25 with tol= 10−13 and a randomly generated x0, the algorithm converges
in 59 iterations. Figure 4.10 shows the convergence history reporting the graph of
‖r(k)‖2/‖r(0)‖2 as a function of the number of iterations. •

We conclude recalling that some variants of the unsymmetric Lanczos method
have been devised, that are characterized by a reduced computational cost. We
refer the interested reader to the bibliography below for a complete description
of the algorithms and to the programs included in the MATLAB version of the
public domain library templates for their efficient implementation [BBC+94].

0 10 20 30 40 50 60
10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

Fig. 4.10. Graph of the residual normalized to the initial residual as a function of
the number of iterations for the Lanczos method applied to the system in Example
4.10

4.6 Stopping Criteria 173

1. The bi-conjugate gradient method (BiCG): it can be derived by the un-
symmetric Lanczos method in the same way as the conjugate gradient
method is obtained from the FOM method [Fle75];

2. the Quasi-Minimal Residual method (QMR): it is analogous to the
GMRES method, the only difference being the fact that the Arnoldi
orthonormalization process is replaced by the Lanczos bi-orthogonaliza-
tion;

3. the conjugate gradient squared method (CGS): the matrix-vector products
involving the transposed matrix AT are removed. A variant of this method,
known as BiCGStab, is characterized by a more regular convergence than
provided by the CGS method (see [Son89], [vdV92], [vdV03]).

4.6 Stopping Criteria

In this section we address the problem of how to estimate the error introduced
by an iterative method and the number kmin of iterations needed to reduce
the initial error by a factor ε.
In practice, kmin can be obtained by estimating the convergence rate of (4.2),
i.e. the rate at which ‖e(k)‖ → 0 as k tends to infinity. From (4.4), we get

‖e(k)‖
‖e(0)‖ ≤ ‖Bk‖,

so that ‖Bk‖ is an estimate of the reducing factor of the norm of the error after
k steps. Typically, the iterative process is continued until ‖e(k)‖ has reduced
with respect to ‖e(0)‖ by a certain factor ε < 1, that is

‖e(k)‖ ≤ ε‖e(0)‖. (4.70)

If we assume that ρ(B) < 1, then Property 1.13 implies that there exists a
suitable matrix norm ‖·‖ such that ‖B‖ < 1. As a consequence, ‖Bk‖ tends to
zero as k tends to infinity, so that (4.70) can be satisfied for a sufficiently large
k such that ‖Bk‖ ≤ ε holds. However, since ‖Bk‖ < 1, the previous inequality
amounts to requiring that

k ≥ log(ε)/
(

1
k

log ‖Bk‖
)

= − log(ε)/Rk(B), (4.71)

where Rk(B) is the average convergence rate introduced in Definition 4.2.
From a practical standpoint, (4.71) is useless, being nonlinear in k; if, however,
the asymptotic convergence rate is adopted, instead of the average one, the
following estimate for kmin is obtained

kmin � − log(ε)/R(B). (4.72)

This latter estimate is usually rather optimistic, as confirmed by Example
4.11.

174 4 Iterative Methods for Solving Linear Systems

Example 4.11 For the matrix A3 of Example 4.2, in the case of Jacobi method,
letting ε = 10−5, condition (4.71) is satisfied with kmin = 16, while (4.72) yields
kmin = 15, with a good agreement between the two estimates. Instead, on the matrix
A4 of Example 4.2, we find that (4.71) is satisfied with kmin = 30, while (4.72) yields
kmin = 26. •

4.6.1 A Stopping Test Based on the Increment

From the recursive error relation e(k+1) = Be(k), we get

‖e(k+1)‖ ≤ ‖B‖‖e(k)‖. (4.73)

Using the triangular inequality we get

‖e(k+1)‖ ≤ ‖B‖(‖e(k+1)‖ + ‖x(k+1) − x(k)‖),
from which it follows that

‖x − x(k+1)‖ ≤ ‖B‖
1 − ‖B‖‖x

(k+1) − x(k)‖. (4.74)

In particular, taking k = 0 in (4.74) and applying recursively (4.73) we also
get

‖x − x(k+1)‖ ≤ ‖B‖k+1

1 − ‖B‖‖x
(1) − x(0)‖,

which can be used to estimate the number of iterations necessary to fulfill the
condition ‖e(k+1)‖ ≤ ε, for a given tolerance ε.

In the practice, ‖B‖ can be estimated as follows: since

x(k+1) − x(k) = −(x − x(k+1)) + (x − x(k)) = B(x(k) − x(k−1)),

a lower bound of ‖B‖ is provided by c = δk+1/δk, where δj+1 = ‖x(j+1)−x(j)‖,
with j = k − 1, k. Replacing ‖B‖ by c, the right-hand side of (4.74) suggests
using the following indicator for ‖e(k+1)‖

ε(k+1) =
δ2
k+1

δk − δk+1
. (4.75)

Due to the kind of approximation of ‖B‖ that has been used, the reader is
warned that ε(k+1) should not be regarded as an upper bound for ‖e(k+1)‖.
However, often ε(k+1) provides a reasonable indication about the true error
behavior, as we can see in the following example.

Example 4.12 Consider the linear system Ax=b with

A =

[
4 1 1
2 −9 0
0 −8 −6

]

, b =

[
6

−7
−14

]

,

which admits the unit vector as exact solution. Let us apply the Jacobi method and
estimate the error at each step by using (4.75). Figure 4.11 shows an acceptable
agreement between the behavior of the error ‖e(k+1)‖∞ and that of its estimate
ε(k+1). •

4.7 Applications 175

0 5 10 15 20 25
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

Fig. 4.11. Absolute error (solid line) versus the error estimated by (4.75) (dashed
line). The number of iterations is indicated on the x-axis

4.6.2 A Stopping Test Based on the Residual

A different stopping criterion consists of continuing the iteration until ‖r(k)‖ ≤
ε, ε being a fixed tolerance. Note that

‖x − x(k)‖ = ‖A−1b − x(k)‖ = ‖A−1r(k)‖ ≤ ‖A−1‖ ε.

Considering instead a normalized residual, i.e. stopping the iteration as soon
as ‖r(k)‖/‖b‖ ≤ ε, we obtain the following control on the relative error

‖x − x(k)‖
‖x‖ ≤ ‖A−1‖ ‖r(k)‖

‖x‖ ≤ K(A)‖‖r
(k)‖
‖b‖ ≤ εK(A).

In the case of preconditioned methods, the residual is replaced by the precon-
ditioned residual, so that the previous criterion becomes

‖P−1r(k)‖
‖P−1r(0)‖ ≤ ε,

where P is the preconditioning matrix.

4.7 Applications

In this section we consider two examples arising in electrical network analysis
and structural mechanics which lead to the solution of large sparse linear
systems.

176 4 Iterative Methods for Solving Linear Systems

4.7.1 Analysis of an Electric Network

We consider a purely resistive electric network (shown in Figure 4.12, left)
which consists of a connection of n stages S (Figure 4.12, right) through the
series resistances R. The circuit is completed by the driving current generator
I0 and the load resistance RL. As an example, a purely resistive network is
a model of a signal attenuator for low-frequency applications where capaci-
tive and inductive effects can be neglected. The connecting points between
the electrical components will be referred to henceforth as nodes and are pro-
gressively labeled as drawn in the figure. For n ≥ 1, the total number of
nodes is 4n. Each node is associated with a value of the electric potential Vi,
i = 0, . . . , 4n − 1, which are the unknowns of the problem.
The nodal analysis method is employed to solve the problem. Precisely, the
Kirchhoff current law is written at any node of the network leading to the
linear system ỸṼ = Ĩ, where Ṽ ∈ R

N+1 is the vector of nodal potentials,
Ĩ ∈ R

N+1 is the load vector and the entries of the matrix Ỹ ∈ R
(N+1)×(N+1),

for i, j = 0, . . . , 4n − 1, are given by

Ỹij =

⎧
⎪⎨

⎪⎩

∑

k∈adj(i)

Gik, for i = j,

−Gij , for i �= j,

where adj(i) is the index set of the neighboring nodes of node i and Gij =
1/Rij is the admittance between node i and node j, provided Rij denotes the
resistance between the two nodes i and j. Since the potential is defined up
to an additive constant, we arbitrarily set V0 = 0 (ground potential). As a
consequence, the number of independent nodes for potential difference com-
putations is N = 4n− 1 and the linear system to be solved becomes YV = I,
where Y ∈ R

N×N , V ∈ R
N and I ∈ R

N are obtained eliminating the first row
and column in Ỹ and the first entry in Ṽ and Ĩ, respectively.
The matrix Y is symmetric, diagonally dominant and positive definite. This
last property follows by noting that

ṼT ỸṼ =
N∑

i=1

ỸiiV
2
i +

N∑

i,j=1

Gij(Vi − Vj)2,

2n+3

R

RL

21

R

I0

0

S2S1

3 4 2n

2n+1 4n-12n+2
6

R

RR

R

R

R

1

2

3

4

5

Fig. 4.12. Resistive electric network (left) and resistive stage S (right)

4.7 Applications 177

0 2 4 6 8 10 12

0

2

4

6

8

10

12
0

100

101

102

103

104

105

5 10 15 20 25 30 35 40 45 50

Fig. 4.13. Sparsity pattern of Y for n = 3 (left) and spectral condition number of
Y as a function of n (right)

0
10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

102

50 100 150 200 250

Fig. 4.14. Convergence history of several nonpreconditioned iterative methods

which is always a positive quantity, being equal to zero only if Ṽ = 0. The
sparsity pattern of Y in the case n = 3 is shown in Figure 4.13 (left) while
the spectral condition number of Y as a function of the number of blocks
n is reported in Figure 4.13 (right). Our numerical computations have been
carried out setting the resistance values equal to 1 Ohm, while I0 = 1 Ampère.

In Figure 4.14 we report the convergence history of several non precon-
ditioned iterative methods in the case n = 5 corresponding to a matrix size
of 19 × 19. The plots show the Euclidean norms of the residual normalized
to the initial residual. The dashed curve refers to the Gauss-Seidel method,
the dash-dotted line refers to the gradient method, while the solid and cir-
cled lines refer respectively to the conjugate gradient (CG) and SOR method
(with an optimal value of the relaxation parameter ω � 1.76 computed ac-
cording to (4.19) since Y is block tridiagonal symmetric positive definite). The
SOR method converges in 109 iterations, while the CG method converges in
10 iterations.

178 4 Iterative Methods for Solving Linear Systems

Table 4.2. Convergence iterations for the preconditioned CG method

n nz CG ICh(0) MICh(0) ε = 10−2 MICh(0) ε = 10−3

5 114 10 9 (54) 6 (78) 4 (98)
10 429 20 15 (114) 7 (173) 5 (233)
20 1659 40 23 (234) 10 (363) 6 (503)
40 6519 80 36 (474) 14 (743) 7 (1043)
80 25839 160 62 (954) 21 (1503) 10 (2123)

160 102879 320 110 (1914) 34 (3023) 14 (4283)

We have also considered the solution of the system at hand by the conju-
gate gradient (CG) method using the Cholesky version of the ILU(0) and
MILU(0) preconditioners, where drop tolerances equal to ε = 10−2, 10−3

have been chosen for the MILU(0) preconditioner (see Section 4.3.2). Calcula-
tions with both preconditioners have been done using the MATLAB functions
cholinc and michol. Table 4.2 shows the convergence iterations of the method
for n = 5, 10, 20, 40, 80, 160 and for the considered values of ε. We report in the
second column the number of nonzero entries in the Cholesky factor of matrix
Y, in the third column the number of iterations for the CG method with-
out preconditioning to converge, while the columns ICh(0) and MICh(0) with
ε = 10−2 and ε = 10−3 show the same information for the CG method using
the incomplete Cholesky and modified incomplete Cholesky preconditioners,
respectively.
The entries in the table are the number of iterations to converge and the
number in the brackets are the nonzero entries of the L-factor of the corre-
sponding preconditioners. Notice the decrease of the iterations as ε decreases,
as expected. Notice also the increase of the number of iterations with respect
to the increase of the size of the problem.

4.7.2 Finite Difference Analysis of Beam Bending

Consider the beam clamped at the endpoints that is drawn in Figure 4.15
(left). The structure, of length L, is subject to a distributed load P , varying
along the free coordinate x and expressed in [Kgm−1]. We assume hence-
forth that the beam has uniform rectangular section, of width r and depth s,
momentum of inertia J = rs3/12 and Young’s module E, expressed in [m4]
and [Kg m−2], respectively.
The transverse bending of the beam, under the assumption of small displace-
ments, is governed by the following fourth-order differential equation

(EJu′′)′′(x) = P (x), 0 < x < L, (4.76)

where u = u(x) denotes the vertical displacement. The following boundary
conditions (at the endpoints x = 0 and x = L)

u(0) = u(L) = 0, u′(0) = u′(L) = 0, (4.77)

4.7 Applications 179

P(x)

u(x)

x

0
10−20

10−15

10−10

10−5

100

105

20 40 60 80 100 120

n = 10 n = 60 n = 110

Fig. 4.15. Clamped beam (left); convergence histories for the preconditioned con-
jugate gradient method in the solution of system (4.78) (right)

model the effect of the two clampings (vanishing displacements and rotations).
To solve numerically the boundary-value problem (4.76)-(4.77), we use the
finite difference method (see Section 10.10.1 and Exercise 11 of Chapter 12).

With this aim, let us introduce the discretization nodes xj = jh, with
h = L/Nh and j = 0, . . . , Nh, and substitute at each node xj the fourth-order
derivative with an approximation through centered finite differences. Letting
f(x) = P (x)/(EJ), fj = f(xj) and denoting by ηj the (approximate) nodal
displacement of the beam at node xj , the finite difference discretization of
(4.76)-(4.77) is

{
ηj−2 − 4ηj−1 + 6ηj − 4ηj+1 + ηj+2 = h4fj , ∀j = 2, . . . , Nh − 2,

η0 = η1 = ηNh−1 = ηNh
= 0.

(4.78)

The null displacement boundary conditions in (4.78) that have been imposed
at the first and the last two nodes of the grid, require that Nh ≥ 4. Notice
that a fourth-order scheme has been used to approximate the fourth-order
derivative, while, for sake of simplicity, a first-order approximation has been
employed to deal with the boundary conditions (see Section 10.10.1).

The Nh−3 discrete equations (4.78) yield a linear system of the form Ax =
b where the unknown vector x ∈ R

Nh−3 and the load vector b ∈ R
Nh−3 are

given respectively by x = [η2, η3, . . . , ηNh−2]T and b = [f2, f3, . . . , fNh−2]T ,
while the coefficient matrix A ∈ R

(Nh−3)×(Nh−3) is pentadiagonal and sym-
metric, given by A = pentadiagNh−3(1,−4, 6,−4, 1).

The matrix A is symmetric and positive definite. Therefore, to solve system
Ax = b, the SSOR preconditioned conjugated gradient method (see Section
4.3.5) and the Cholesky factorization method have been employed. In the
remainder of the section, the two methods are identified by the symbols (CG)
and (CH).

The convergence histories of CG are reported in Figure 4.15 (right), where
the sequences ‖r(k)‖2/‖b(k)‖2, for the values n = 10, 60, 110, are plotted,
r(k) = b − Ax(k) being the residual at the k-th step. The results have been

180 4 Iterative Methods for Solving Linear Systems

obtained using Program 20, with tol= 10−15 and ω = 1.8 in (4.22). The
initial vector x(0) has been set equal to the null vector.
As a comment to the graphs, it is worth noting that CG has required 7, 33
and 64 iterations to converge, respectively, with a maximum absolute error
of 5 · 10−15 with respect to the solution produced by CH. This latter has
an overall computational cost of 136, 1286 and 2436 flops respectively, to be
compared with the corresponding 3117, 149424 and 541647 flops of method
CG. As for the performances of the SSOR preconditioner, we remark that the
spectral condition number of matrix A is equal to 192, 3.8 · 105 and 4.5 · 106,
respectively, while the corresponding values in the preconditioned case are 65,
1.2 · 104 and 1.3 · 105.

4.8 Exercises

1. The spectral radius of the matrix

B =

[
a 4
0 a

]

is ρ(B) = |a|. Check that if 0 < a < 1, then ρ(B) < 1, while ‖Bm‖1/m
2 can be

greater than 1.
2. Let A ∈ R

n×n be a strictly diagonally dominant matrix by rows. Show that the
Gauss-Seidel method for the solution of the linear system (3.2) is convergent.

3. Check that the matrix A = tridiag(−1, α,−1), with α ∈ R, has eigenvalues
given by

λj = α − 2 cos(jθ), j = 1, . . . , n,

where θ = π/(n + 1) and the corresponding eigenvectors are

qj = [sin(jθ), sin(2jθ), . . . , sin(njθ)]T .

Under which conditions on α is the matrix positive definite?
[Solution : α ≥ 2.]

4. Consider the pentadiagonal matrix A = pentadiagn(−1,−1, 10,−1,−1).
Assume n = 10 and A = M + N + D, with D = diag(8, . . . , 8) ∈ R

10×10,
M = pentadiag10(−1,−1, 1, 0, 0) and N = MT . To solve Ax = b, analyze the
convergence of the following iterative methods

(a) (M + D)x(k+1) = −Nx(k) + b,

(b) Dx(k+1) = −(M + N)x(k) + b,

(c) (M + N)x(k+1) = −Dx(k) + b.

[Solution : denoting respectively by ρa, ρb and ρc the spectral radii of the
iteration matrices of the three methods, we have ρa = 0.1450, ρb = 0.5 and
ρc = 12.2870 which implies convergence for methods (a) and (b) and divergence
for method (c).]

4.8 Exercises 181

5. For the solution of the linear system Ax = b with

A =

[
1 2
2 3

]

, b =

[
3
5

]

,

consider the following iterative method:

given x(0) ∈ R
2, x(k+1) = B(θ)x(k) + g(θ), k ≥ 0,

where θ is a real parameter and

B(θ) =
1

4

[
2θ2 + 2θ + 1 −2θ2 + 2θ + 1
−2θ2 + 2θ + 1 2θ2 + 2θ + 1

]

, g(θ) =

[
1
2
− θ

1
2
− θ

]

.

Check that the method is consistent ∀ θ ∈ R. Then, determine the values of θ
for which the method is convergent and compute the optimal value of θ (i.e.,
the value of the parameter for which the convergence rate is maximum).
[Solution : the method is convergent iff −1 < θ < 1/2 and the convergence rate
is maximum if θ = (1 −

√
3)/2.]

6. To solve the following block linear system
[

A1 B
B A2

] [
x
y

]

=

[
b1

b2

]

,

consider the two methods

(1) A1x
(k+1) + By(k) = b1, Bx(k) + A2y

(k+1) = b2;

(2) A1x
(k+1) + By(k) = b1, Bx(k+1) + A2y

(k+1) = b2.

Find sufficient conditions in order for the two schemes to be convergent for any
choice of the initial data x(0), y(0).
[Solution : method (1) is a decoupled system in the unknowns x(k+1) and y(k+1).
Assuming that A1 and A2 are invertible, method (1) converges if ρ(A−1

1 B) < 1
and ρ(A−1

2 B) < 1. In the case of method (2) we have a coupled system to solve at
each step in the unknowns x(k+1) and y(k+1). Solving formally the first equation
with respect to x(k+1) (which requires A1 to be invertible) and substituting into
the second one we see that method (2) is convergent if ρ(A−1

2 BA−1
1 B) < 1 (again

A2 must be invertible).]
7. Consider the linear system Ax = b with

A =

⎡

⎢
⎢
⎢
⎣

62 24 1 8 15
23 50 7 14 16
4 6 58 20 22
10 12 19 66 3
11 18 25 2 54

⎤

⎥
⎥
⎥
⎦

, b =

⎡

⎢
⎢
⎢
⎣

110
110
110
110
110

⎤

⎥
⎥
⎥
⎦

.

(1) Check if the Jacobi and Gauss-Seidel methods can be applied to solve this
system. (2) Check if the stationary Richardson method with optimal parameter
can be applied with P = I and P = D, where D is the diagonal part of A, and
compute the corresponding values of αopt and ρopt.
[Solution : (1): matrix A is neither diagonally dominant nor symmetric positive
definite, so that we must compute the spectral radii of the iteration matrices of

182 4 Iterative Methods for Solving Linear Systems

the Jacobi and Gauss-Seidel methods to verify if they are convergent. It turns
out that ρJ = 0.9280 and ρGS = 0.3066 which implies convergence for both
methods. (2): in the case P = I all the eigenvalues of A are positive so that the
Richardson method can be applied yielding αopt = 0.015 and ρopt = 0.6452. If
P = D the method is still applicable and αopt = 0.8510, ρopt = 0.6407.]

8. Consider the linear system Ax = b with

A =

⎡

⎢
⎣

5 7 6 5
7 10 8 7
6 8 10 9
5 7 9 10

⎤

⎥
⎦ , b =

⎡

⎢
⎣

23
32
33
31

⎤

⎥
⎦ .

Analyze the convergence properties of the Jacobi and Gauss-Seidel methods
applied to the system above in their point and block forms (for a 2 × 2 block
partition of A).
[Solution : both methods are convergent, the block form being the faster one.
Moreover, ρ2(BJ) = ρ(BGS).]

9. To solve the linear system Ax = b, consider the iterative method (4.6), with
P = D + ωF and N = −βF − E, ω and β being real numbers. Check that the
method is consistent only if β = 1 − ω. In such a case, express the eigenvalues
of the iteration matrix as a function of ω and determine for which values of
ω the method is convergent, as well as the value of ωopt, assuming that A =
tridiag10(−1, 2,−1).
[Hint : Take advantage of the result in Exercise 3.]

10. Let A ∈ R
n×n be such that A = (1 + ω)P − (N + ωP), with P−1N nonsingular

and with real eigenvalues 1 > λ1 ≥ λ2 ≥ . . . ≥ λn. Find the values of ω ∈ R for
which the following iterative method

(1 + ω)Px(k+1) = (N + ωP)x(k) + b, k ≥ 0,

converges ∀x(0) to the solution of the linear system (3.2). Determine also the
value of ω for which the convergence rate is maximum.
[Solution : ω > −(1 + λn)/2; ωopt = −(λ1 + λn)/2.]

11. Consider the linear system

Ax = b with A =

[
3 2
2 6

]

, b =

[
2

−8

]

.

Write the associated functional Φ(x) and give a graphical interpretation of the
solution of the linear system. Perform some iterations of the gradient method,
after proving convergence for it.

12. Show that the coefficients αk and βk in the conjugate gradient method can be
written in the alternative form (4.47).
[Solution: notice that Ap(k) = (r(k) − r(k+1))/αk and thus (Ap(k))T r(k+1) =
−‖r(k+1)‖2

2/αk. Moreover, αk(Ap(k))T p(k) = −‖r(k)‖2
2.]

13. Prove the three-terms recursive relation (4.48) for the residual in the conjugate
gradient method.
[Solution: subtract from both sides of Ap(k) = (r(k) − r(k+1))/αk the quantity
βk−1/αkr

(k) and recall that Ap(k) = Ar(k)−βk−1Ap(k−1). Then, expressing the
residual r(k) as a function of r(k−1) one immediately gets the desired relation.]

5

Approximation of Eigenvalues and
Eigenvectors

In this chapter we deal with approximations of the eigenvalues and eigenvec-
tors of a matrix A ∈ C

n×n. Two main classes of numerical methods exist to
this purpose, partial methods, which compute the extremal eigenvalues of A
(that is, those having maximum and minimum module), or global methods,
which approximate the whole spectrum of A.
It is worth noting that methods which are introduced to solve the matrix
eigenvalue problem are not necessarily suitable for calculating the matrix
eigenvectors. For example, the power method (a partial method, see Section
5.3) provides an approximation to a particular eigenvalue/eigenvector pair.

The QR method (a global method, see Section 5.5) instead computes the
real Schur form of A, a canonical form that displays all the eigenvalues of A
but not its eigenvectors. These eigenvectors can be computed, starting from
the real Schur form of A, with an extra amount of work, as described in Section
5.8.2.

Finally, some ad hoc methods for dealing effectively with the special case
where A is a symmetric (n × n) matrix are considered in Section 5.10.

5.1 Geometrical Location of the Eigenvalues

Since the eigenvalues of A are the roots of the characteristic polynomial pA(λ)
(see Section 1.7), iterative methods must be used for their approximation
when n ≥ 5. Knowledge of eigenvalue location in the complex plane can thus
be helpful in accelerating the convergence of the process.

A first estimate is provided by Theorem 1.4,

|λ| ≤ ‖A‖, ∀λ ∈ σ(A), (5.1)

for any consistent matrix norm ‖ · ‖. Inequality (5.1), which is often quite
rough, states that all the eigenvalues of A are contained in a circle of radius
R‖A‖ = ‖A‖ centered at the origin of the Gauss plane.

184 5 Approximation of Eigenvalues and Eigenvectors

Another result is obtained by extending Definition 1.23 to complex-valued
matrices.

Theorem 5.1 If A ∈ C
n×n, let

H =
(
A + AH

)
/2 and iS =

(
A − AH

)
/2

be the hermitian and skew-hermitian parts of A, respectively, i being the imag-
inary unit. For any λ ∈ σ(A)

λmin(H) ≤ Re(λ) ≤ λmax(H), λmin(S) ≤ Im(λ) ≤ λmax(S). (5.2)

Proof. From the definition of H and S it follows that A = H + iS. Let u ∈ C
n,

‖u‖2 = 1, be the eigenvector associated with the eigenvalue λ; the Rayleigh quotient
(introduced in Section 1.7) reads

λ = uHAu = uHHu + iuHSu. (5.3)

Notice that both H and S are hermitian matrices, whilst iS is skew-hermitian. Ma-
trices H and S are thus unitarily similar to a real diagonal matrix (see Section 1.7),
and therefore their eigenvalues are real. In such a case, (5.3) yields

Re(λ) = uHHu, Im(λ) = uHSu,

from which (5.2) follows. �

An a priori bound for the eigenvalues of A is given by the following result.

Theorem 5.2 (of the Gershgorin circles) Let A ∈ C
n×n. Then

σ(A) ⊆ SR =
n⋃

i=1

Ri, Ri = {z ∈ C : |z − aii| ≤
n∑

j=1
j �=i

|aij |}. (5.4)

The sets Ri are called Gershgorin circles.

Proof. Let us decompose A as A = D+E, where D is the diagonal part of A, whilst
eii = 0 for i = 1, . . . , n. For λ ∈ σ(A) (with λ �= aii, i = 1, . . . , n), let us introduce
the matrix Bλ = A−λI = (D−λI)+E. Since Bλ is singular, there exists a non-null
vector x ∈ C

n such that Bλx = 0. This means that ((D − λI) + E)x = 0, that is,
passing to the ‖ · ‖∞ norm,

x = −(D − λI)−1Ex, ‖x‖∞ ≤ ‖(D − λI)−1E‖∞‖x‖∞,

and thus

1 ≤ ‖(D − λI)−1E‖∞ =

n∑

j=1

|ekj |
|akk − λ| =

n∑

j=1
j �=k

|akj |
|akk − λ| , (5.5)

for a certain k, 1 ≤ k ≤ n. Inequality (5.5) implies λ ∈ Rk and thus (5.4). �

5.1 Geometrical Location of the Eigenvalues 185

The bounds (5.4) ensure that any eigenvalue of A lies within the union of the
circles Ri. Moreover, since A and AT share the same spectrum, Theorem 5.2
also holds in the form

σ(A) ⊆ SC =
n⋃

j=1

Cj , Cj = {z ∈ C : |z − ajj | ≤
n∑

i=1
i�=j

|aij |}. (5.6)

The circles Ri in the complex plane are called row circles, and Cj column
circles. The immediate consequence of (5.4) and (5.6) is the following.

Property 5.1 (First Gershgorin theorem) For a given matrix A ∈ C
n×n,

∀λ ∈ σ(A), λ ∈ SR
⋂

SC . (5.7)

The following two location theorems can also be proved (see [Atk89], pp. 588-
590 and [Hou75], pp. 66-67).

Property 5.2 (Second Gershgorin theorem) Let

S1 =
m⋃

i=1

Ri, S2 =
n⋃

i=m+1

Ri.

If S1 ∩ S2 = ∅, then S1 contains exactly m eigenvalues of A, each one being
accounted for with its algebraic multiplicity, while the remaining eigenvalues
are contained in S2.

Remark 5.1 Properties 5.1 and 5.2 do not exclude the possibility that
there exist circles containing no eigenvalues, as happens for the matrix in
Exercise 1. �

Definition 5.1 A matrix A ∈ C
n×n is called reducible if there exists a per-

mutation matrix P such that

PAPT =

[
B11 B12

0 B22

]

,

where B11 and B22 are square matrices; A is irreducible if it is not
reducible. �

To check if a matrix is reducible, the oriented graph of the matrix can be
conveniently employed. Recall from Section 3.9 that the oriented graph of a
real matrix A is obtained by joining n points (called vertices of the graph)
P1, . . . , Pn through a line oriented from Pi to Pj if the corresponding matrix
entry aij �= 0. An oriented graph is strongly connected if for any pair of distinct
vertices Pi and Pj there exists an oriented path from Pi to Pj . The following
result holds (see [Var62] for the proof).

186 5 Approximation of Eigenvalues and Eigenvectors

R2 R
2

3

3 10

C1

R1
C2

C3

Re(z)

Im(z)

Fig. 5.1. Row and column circles for matrix A in Example 5.1

Property 5.3 A matrix A ∈ C
n×n is irreducible iff its oriented graph is

strongly connected.

Property 5.4 (Third Gershgorin theorem) Let A ∈ C
n×n be an irre-

ducible matrix. An eigenvalue λ ∈ σ(A) cannot lie on the boundary of SR
unless it belongs to the boundary of every circle Ri, for i = 1, . . . , n.

Example 5.1 Let us consider the matrix

A =

⎡

⎢
⎣

10 2 3

−1 2 −1

0 1 3

⎤

⎥
⎦ ,

whose spectrum is (to four significant figures) σ(A) = {9.687, 2.656 ± i0.693}. The
following values of the norm of A: ‖A‖1 = 11, ‖A‖2 = 10.72, ‖A‖∞ = 15 and
‖A‖F = 11.36 can be used in the estimate (5.1). Estimate (5.2) provides instead
1.96 ≤ Re(λ(A)) ≤ 10.34, −2.34 ≤ Im(λ(A)) ≤ 2.34, while the row and column
circles are given respectively by R1 = {|z| : |z − 10| ≤ 5}, R2 = {|z| : |z − 2| ≤ 2},
R3 = {|z| : |z − 3| ≤ 1} and C1 = {|z| : |z − 10| ≤ 1}, C2 = {|z| : |z − 2| ≤ 3},
C3 = {|z| : |z − 3| ≤ 4}.
In Figure 5.1, for i = 1, 2, 3 the Ri and Ci circles and the intersection SR∩SC (shaded
areas) are drawn. In agreement with Property 5.2, we notice that an eigenvalue is
contained in C1, which is disjoint from C2 and C3, while the remaining eigenvalues,
thanks to Property 5.1, lie within the set R2 ∪ {C3 ∩R1}. •

5.2 Stability and Conditioning Analysis

In this section we introduce some a priori and a posteriori estimates that
are relevant in the stability analysis of the matrix eigenvalue and eigenvector
problem. The presentation follows the guidelines that have been traced in
Chapter 2.

5.2 Stability and Conditioning Analysis 187

5.2.1 A priori Estimates

Assume that A ∈ C
n×n is a diagonalizable matrix and denote by X =

(x1, . . . ,xn) ∈ C
n×n the matrix of its right eigenvectors, where xk ∈ C

n

for k = 1, . . . , n, such that D = X−1AX = diag(λ1, . . . , λn), λi being the
eigenvalues of A, i = 1, . . . , n. Moreover, let E ∈ C

n×n be a perturbation of
A. The following theorem holds.

Theorem 5.3 (Bauer-Fike) Let µ be an eigenvalue of the matrix A + E ∈
C

n×n; then

min
λ∈σ(A)

|λ − µ| ≤ Kp(X)‖E‖p, (5.8)

where ‖ · ‖p is any matrix p-norm and Kp(X) = ‖X‖p‖X−1‖p is called the
condition number of the eigenvalue problem for matrix A.

Proof. We first notice that if µ ∈ σ(A) then (5.8) is trivially verified, since
‖X‖p‖X−1‖p‖E‖p ≥ 0. Let us thus assume henceforth that µ �∈ σ(A). From the
definition of eigenvalue it follows that matrix (A + E− µI) is singular, which means
that, since X is invertible, the matrix X−1(A + E − µI)X = D + X−1EX − µI is
singular. Therefore, there exists a non-null vector x ∈ C

n such that

(
(D − µI) + X−1EX

)
x = 0.

Since µ �∈ σ(A), the diagonal matrix (D−µI) is invertible and the previous equation
can be written in the form

(
I + (D − µI)−1(X−1EX)

)
x = 0.

Passing to the ‖ · ‖p norm and proceeding as in the proof of Theorem 5.2, we get

1 ≤ ‖(D − µI)−1‖pKp(X)‖E‖p,

from which the estimate (5.8) follows, since

‖(D − µI)−1‖p = (min
λ∈σ(A)

|λ − µ|)−1.

�

If A is a normal matrix, from the Schur decomposition theorem (see Section
1.8) it follows that the similarity transformation matrix X is unitary so that
K2(X) = 1. This implies that

∀µ ∈ σ(A + E), min
λ∈σ(A)

|λ − µ| ≤ ‖E‖2, (5.9)

hence the eigenvalue problem is well-conditioned with respect to the absolute
error. This, however, does not prevent the matrix eigenvalue problem from
being affected by significant relative errors, especially when A has a widely
spread spectrum.

188 5 Approximation of Eigenvalues and Eigenvectors

Table 5.1. Relative and absolute errors in the calculation of the eigenvalues of the
Hilbert matrix (using the MATLAB intrinsic function eig). “Abs. Err.” and “Rel.
Err.” denote respectively the absolute and relative errors (with respect to λ)

n Abs. Err. Rel. Err. ‖En‖2 K2(Hn) K2(Hn + En)

1 1 · 10−3 1 · 10−3 1 · 10−3 1 · 10−3 1
2 1.677 · 10−4 1.446 · 10−3 2 · 10−3 19.28 19.26
4 5.080 · 10−7 2.207 · 10−3 4 · 10−3 1.551 · 104 1.547 · 104

8 1.156 · 10−12 3.496 · 10−3 8 · 10−3 1.526 · 1010 1.515 · 1010

10 1.355 · 10−15 4.078 · 10−3 1 · 10−2 1.603 · 1013 1.589 · 1013

Example 5.2 Let us consider, for 1 ≤ n ≤ 10, the calculation of the eigenvalues
of the Hilbert matrix Hn ∈ R

n×n (see Example 3.2, Chapter 3). It is symmetric
(thus, in particular, normal) and exhibits, for n ≥ 4, a very large condition number.
Let En ∈ R

n×n be a matrix having constant entries equal to η = 10−3. We show in
Table 5.1 the results of the computation of the minimum in (5.9). Notice how the
absolute error is decreasing, since the eigenvalue of minimum module tends to zero,
whilst the relative error is increasing as the size n of the matrix increases, due to
the higher sensitivity of “small” eigenvalues with respect to rounding errors. •

The Bauer-Fike theorem states that the matrix eigenvalue problem is well-
conditioned if A is a normal matrix. Failure to fulfil this property, however,
does not necessarily imply that A must exhibit a “strong” numerical sensi-
tivity to the computation of every one of its eigenvalues. In this respect, the
following result holds, which can be regarded as an a priori estimate of the
conditioning of the calculation of a particular eigenvalue of a matrix.

Theorem 5.4 Let A ∈ C
n×n be a diagonalizable matrix; let λ, x and y be a

simple eigenvalue of A and its associated right and left eigenvectors, respec-
tively, with ‖x‖2 = ‖y‖2 = 1. Moreover, for ε > 0, let A(ε) = A + εE, with
E ∈ C

n×n such that ‖E‖2 = 1. Denoting by λ(ε) and x(ε) the eigenvalue and
the corresponding eigenvector of A(ε), such that λ(0) = λ and x(0) = x, we
have ∣

∣
∣
∣
∂λ

∂ε
(0)

∣
∣
∣
∣ ≤

1
|yHx| . (5.10)

Proof. Let us first prove that yHx �= 0. Setting Y = (y1, . . . ,yn) = (XH)−1, with
yk ∈ C

n for k = 1, . . . , n, it follows that yH
k A = λky

H
k , i.e., the rows of X−1 = YH

are left eigenvectors of A. Then, since YHX = I, yH
i xj = δij for i, j = 1, . . . , n, δij

being the Kronecker symbol. This result is equivalent to saying that the eigenvectors
{x} of A and the eigenvectors {y} of AH form a bi-orthogonal set (see (4.69)).

Let us now prove (5.10). Since the roots of the characteristic equation are con-
tinuous functions of the coefficients of the characteristic polynomial associated with
A(ε), it follows that the eigenvalues of A(ε) are continuous functions of ε (see, for
instance, [Hen74], p. 281). Therefore, in a neighborhood of ε = 0,

(A + εE)x(ε) = λ(ε)x(ε).

5.2 Stability and Conditioning Analysis 189

Differentiating the previous equation with respect to ε and setting ε = 0 yields

A
∂x

∂ε
(0) + Ex =

∂λ

∂ε
(0)x + λ

∂x

∂ε
(0),

from which, left-multiplying both sides by yH and recalling that yH is a left eigen-
vector of A,

∂λ

∂ε
(0) =

yHEx

yHx
.

Using the Cauchy-Schwarz inequality gives the desired estimate (5.10). �

Notice that |yHx| = | cos(θλ)|, where θλ is the angle between the eigenvectors
yH and x (both having unit Euclidean norm). Therefore, if these two vectors
are almost orthogonal the computation of the eigenvalue λ turns out to be
ill-conditioned. The quantity

κ(λ) =
1

|yHx| =
1

| cos(θλ)| (5.11)

can thus be taken as the condition number of the eigenvalue λ. Obviously,
κ(λ) ≥ 1; when A is a normal matrix, since it is unitarily similar to a diagonal
matrix, the left and right eigenvectors y and x coincide, yielding κ(λ) =
1/‖x‖2

2 = 1.
Inequality (5.10) can be roughly interpreted as stating that perturbations

of the order of δε in the entries of matrix A induce changes of the order
of δλ = δε/| cos(θλ)| in the eigenvalue λ. If normal matrices are considered,
the calculation of λ is a well-conditioned problem; the case of a generic non-
symmetric matrix A can be conveniently dealt with using methods based on
similarity transformations, as will be seen in later sections.
It is interesting to check that the conditioning of the matrix eigenvalue prob-
lem remains unchanged if the transformation matrices are unitary. To this
end, let U ∈ C

n×n be a unitary matrix and let Ã = UHAU. Also let λj be
an eigenvalue of A and denote by κj the condition number (5.11). Moreover,
let κ̃j be the condition number of λj when it is regarded as an eigenvalue of
Ã. Finally, let {xk}, {yk} be the right and left eigenvectors of A respectively.
Clearly, {UHxk}, {UHyk} are the right and left eigenvectors of Ã. Thus, for
any j = 1, . . . , n,

κ̃j =
∣
∣yH

j UUHxj

∣
∣−1

= κj ,

from which it follows that the stability of the computation of λj is not affected
by performing similarity transformations using unitary matrices. It can also
be checked that unitary transformation matrices do not change the Euclidean
length and the angles between vectors in C

n. Moreover, the following a priori
estimate holds (see [GL89], p. 317)

fl
(
X−1AX

)
= X−1AX + E, with ‖E‖2 � uK2(X)‖A‖2, (5.12)

190 5 Approximation of Eigenvalues and Eigenvectors

where fl(M) is the machine representation of matrix M and u is the roundoff
unit (see Section 2.5). From (5.12) it follows that using nonunitary transfor-
mation matrices in the eigenvalue computation can lead to an unstable process
with respect to rounding errors.
We conclude this section with a stability result for the approximation of the
eigenvector associated with a simple eigenvalue. Under the same assumptions
of Theorem 5.4, the following result holds (see for the proof, [Atk89], Problem
6, pp. 649-650).

Property 5.5 The eigenvectors xk and xk(ε) of the matrices A and A(ε) =
A + εE, with ‖xk(ε)‖2 = ‖xk‖2 = 1 for k = 1, . . . , n, satisfy

‖xk(ε) − xk‖2 ≤ ε

minj �=k |λk − λj |
+ O(ε2), ∀k = 1, . . . , n.

Analogous to (5.11), the quantity

κ(xk) =
1

minj �=k |λk − λj |
can be regarded as being the condition number of the eigenvector xk. Com-
puting xk might be an ill-conditioned operation if some eigenvalues λj are
“very close” to the eigenvalue λk associated with xk.

5.2.2 A posteriori Estimates

The a priori estimates examined in the previous section characterize the sta-
bility properties of the matrix eigenvalue and eigenvector problem. From the
implementation standpoint, it is also important to dispose of a posteriori es-
timates that allow for a run-time control of the quality of the approximation
that is being constructed. Since the methods that will be considered later
are iterative processes, the results of this section can be usefully employed to
devise reliable stopping criteria for these latter.

Theorem 5.5 Let A ∈ C
n×n be an hermitian matrix and let (λ̂, x̂) be the com-

puted approximations of an eigenvalue/eigenvector pair (λ,x) of A. Defining
the residual as

r̂ = Ax̂ − λ̂x̂, x̂ �= 0,

it then follows that

min
λi∈σ(A)

|λ̂ − λi| ≤
‖r̂‖2

‖x̂‖2
. (5.13)

Proof. Since A is hermitian, it admits a system of orthonormal eigenvectors {uk}

which can be taken as a basis of C
n. In particular, x̂ =

n∑

i=1

αiui with αi = uH
i x̂,

and thus r̂ =

n∑

i=1

αi(λi − λ̂)ui. As a consequence

5.2 Stability and Conditioning Analysis 191

(
‖r̂‖2

‖x̂‖2

)2

=

n∑

i=1

βi(λi − λ̂)2, with βi = |αi|2/(

n∑

j=1

|αj |2). (5.14)

Since

n∑

i=1

βi = 1, the inequality (5.13) immediately follows from (5.14). �

The estimate (5.13) ensures that a small absolute error corresponds to a small
relative residual in the computation of the eigenvalue of the matrix A which
is closest to λ̂.
Let us now consider the following a posteriori estimate for the eigenvector x̂
(for the proof, see [IK66], pp. 142-143).

Property 5.6 Under the same assumptions of Theorem 5.5, suppose that
|λi − λ̂| ≤ ‖r̂‖2 for i = 1, . . . ,m and that |λi − λ̂| ≥ δ > 0 for i = m+1, . . . , n.
Then

d(x̂,Um) ≤ ‖r̂‖2

δ
, (5.15)

where d(x̂,Um) is the Euclidean distance between x̂ and the space Um gen-
erated by the eigenvectors ui, i = 1, . . . , m, associated with the eigenvalues λi

of A.

Notice that the a posteriori estimate (5.15) ensures that a small absolute
error corresponds to a small residual in the approximation of the eigenvector
associated with the eigenvalue of A that is closest to λ̂, provided that the
eigenvalues of A are well-separated (that is, if δ is sufficiently large).
In the general case of a nonhermitian matrix A, an a posteriori estimate can
be given for the eigenvalue λ̂ only when the matrix of the eigenvectors of A
is available. We have the following result (for the proof, we refer to [IK66],
p. 146).

Property 5.7 Let A ∈ C
n×n be a diagonalizable matrix, with matrix of eigen-

vectors X = [x1, . . . ,xn]. If, for some ε > 0,

‖r̂‖2 ≤ ε‖x̂‖2,

then

min
λi∈σ(A)

|λ̂ − λi| ≤ ε‖X−1‖2‖X‖2.

This estimate is of little practical use, since it requires the knowledge of all
the eigenvectors of A. Examples of a posteriori estimates that can actually
be implemented in a numerical algorithm will be provided in Sections 5.3.1
and 5.3.2.

192 5 Approximation of Eigenvalues and Eigenvectors

5.3 The Power Method

The power method is very good at approximating the extremal eigenvalues
of the matrix, that is, the eigenvalues having largest and smallest module,
denoted by λ1 and λn respectively, as well as their associated eigenvectors.

Solving such a problem is of great interest in several real-life applica-
tions (geosysmic, machine and structural vibrations, electric network analy-
sis, quantum mechanics,...) where the computation of λn (and its associated
eigenvector xn) arises in the determination of the proper frequency (and the
corresponding fundamental mode) of a given physical system. We shall come
back to this point in Section 5.12.

Having approximations of λ1 and λn can also be useful in the analysis of
numerical methods. For instance, if A is symmetric and positive definite, one
can compute the optimal value of the acceleration parameter of the Richardson
method and estimate its error reducing factor (see Chapter 4), as well as
perform the stability analysis of discretization methods for systems of ordinary
differential equations (see Chapter 11).

5.3.1 Approximation of the Eigenvalue of Largest Module

Let A ∈ C
n×n be a diagonalizable matrix and let X ∈ C

n×n be the matrix
of its right eigenvectors xi, for i = 1, . . . , n. Let us also suppose that the
eigenvalues of A are ordered as

|λ1| > |λ2| ≥ |λ3| . . . ≥ |λn|, (5.16)

where λ1 has algebraic multiplicity equal to 1. Under these assumptions, λ1

is called the dominant eigenvalue of matrix A.
Given an arbitrary initial vector q(0) ∈ C

n of unit Euclidean norm, consider
for k = 1, 2, . . . the following iteration based on the computation of powers of
matrices, commonly known as the power method:

z(k) = Aq(k−1),

q(k) = z(k)/‖z(k)‖2,

ν(k) = (q(k))HAq(k).

(5.17)

Let us analyze the convergence properties of method (5.17). By induction on
k one can check that

q(k) =
Akq(0)

‖Akq(0)‖2
, k ≥ 1. (5.18)

This relation explains the role played by the powers of A in the method.
Because A is diagonalizable, its eigenvectors xi form a basis of C

n; it is thus
possible to represent q(0) as

5.3 The Power Method 193

q(0) =
n∑

i=1

αixi, αi ∈ C, i = 1, . . . , n. (5.19)

Moreover, since Axi = λixi, we have

Akq(0) = α1λ
k
1

(

x1 +
n∑

i=2

αi

α1

(
λi

λ1

)k

xi

)

, k = 1, 2, . . . (5.20)

Since |λi/λ1| < 1 for i = 2, . . . , n, as k increases the vector Akq(0) (and
thus also q(k), due to (5.18)), tends to assume an increasingly significant
component in the direction of the eigenvector x1, while its components in the
other directions xj decrease. Using (5.18) and (5.20), we get

q(k) =
α1λ

k
1(x1 + y(k))

‖α1λk
1(x1 + y(k))‖2

= µk
x1 + y(k)

‖x1 + y(k)‖2
,

where µk is the sign of α1λ
k
1 and y(k) denotes a vector that vanishes as k → ∞.

As k → ∞, the vector q(k) thus aligns itself along the direction of eigen-
vector x1, and the following error estimate holds at each step k.

Theorem 5.6 Let A ∈ C
n×n be a diagonalizable matrix whose eigenvalues

satisfy (5.16). Assuming that α1 �= 0, there exists a constant C > 0 such that

‖q̃(k) − x1‖2 ≤ C

∣
∣
∣
∣
λ2

λ1

∣
∣
∣
∣

k

, k ≥ 1, (5.21)

where

q̃(k) =
q(k)‖Akq(0)‖2

α1λk
1

= x1 +
n∑

i=2

αi

α1

(
λi

λ1

)k

xi, k = 1, 2, . . . (5.22)

Proof. Since A is diagonalizable, without losing generality, we can pick up the
nonsingular matrix X in such a way that its columns have unit Euclidean length,
that is ‖xi‖2 = 1 for i = 1, . . . , n. From (5.20) it thus follows that

‖x1 +

n∑

i=2

[
αi

α1

(
λi

λ1

)k

xi

]

− x1‖2 = ‖
n∑

i=2

αi

α1

(
λi

λ1

)k

xi‖2

≤

(
n∑

i=2

[
αi

α1

]2 [λi

λ1

]2k
)1/2

≤
∣
∣
∣
λ2

λ1

∣
∣
∣
k
(

n∑

i=2

[
αi

α1

]2

)1/2

,

that is (5.21) with C =

(
n∑

i=2

(αi/α1)
2

)1/2

. �

194 5 Approximation of Eigenvalues and Eigenvectors

Estimate (5.21) expresses the convergence of the sequence q̃(k) towards x1.
Therefore the sequence of Rayleigh quotients

((q̃(k))HAq̃(k))/‖q̃(k)‖2
2 =

(
q(k)

)H

Aq(k) = ν(k)

will converge to λ1. As a consequence, limk→∞ ν(k) = λ1, and the convergence
will be faster when the ratio |λ2/λ1| is smaller.

If the matrix A is real and symmetric it can be proved, always assuming
that α1 �= 0, that (see [GL89], pp. 406-407)

|λ1 − ν(k)| ≤ |λ1 − λn| tan2(θ0)
∣
∣
∣
∣
λ2

λ1

∣
∣
∣
∣

2k

, (5.23)

where cos(θ0) = |xT
1 q(0)| �= 0. Inequality (5.23) outlines that the convergence

of the sequence ν(k) to λ1 is quadratic with respect to the ratio |λ2/λ1| (we
refer to Section 5.3.3 for numerical results).
We conclude the section by providing a stopping criterion for the iteration
(5.17). For this purpose, let us introduce the residual at step k

r(k) = Aq(k) − ν(k)q(k), k ≥ 1,

and, for ε > 0, the matrix εE(k) = −r(k)
[
q(k)

]H ∈ C
n×n with ‖E(k)‖2 = 1.

Since
εE(k)q(k) = −r(k), k ≥ 1, (5.24)

we obtain
(
A + εE(k)

)
q(k) = ν(k)q(k). As a result, at each step of the power

method ν(k) is an eigenvalue of the perturbed matrix A+εE(k). From (5.24) and
from definition (1.20) it also follows that ε = ‖r(k)‖2 for k = 1, 2, Plugging
this identity back into (5.10) and approximating the partial derivative in (5.10)
by the incremental ratio |λ1 − ν(k)|/ε, we get

|λ1 − ν(k)| � ‖r(k)‖2

| cos(θλ)| , k ≥ 1, (5.25)

where θλ is the angle between the right and the left eigenvectors, x1 and y1,
associated with λ1. Notice that, if A is an hermitian matrix, then cos(θλ) = 1,
so that (5.25) yields an estimate which is analogue to (5.13).

In practice, in order to employ the estimate (5.25) it is necessary at each
step k to replace | cos(θλ)| with the module of the scalar product between two
approximations q(k) and w(k) of x1 and y1, computed by the power method.
The following a posteriori estimate is thus obtained

|λ1 − ν(k)| � ‖r(k)‖2

|(w(k))Hq(k)| , k ≥ 1. (5.26)

Examples of applications of (5.26) will be provided in Section 5.3.3.

5.3 The Power Method 195

5.3.2 Inverse Iteration

In this section we look for an approximation of the eigenvalue of a matrix
A ∈ C

n×n which is closest to a given number µ ∈ C, where µ �∈ σ(A). For this,
the power iteration (5.17) can be applied to the matrix (Mµ)−1 = (A − µI)−1,
yielding the so-called inverse iteration or inverse power method. The number
µ is called a shift.

The eigenvalues of M−1
µ are ξi = (λi−µ)−1; let us assume that there exists

an integer m such that

|λm − µ| < |λi − µ|, ∀i = 1, . . . , n and i �= m. (5.27)

This amounts to requiring that the eigenvalue λm which is closest to µ has
multiplicity equal to 1. Moreover, (5.27) shows that ξm is the eigenvalue of
M−1

µ with largest module; in particular, if µ = 0, λm turns out to be the
eigenvalue of A with smallest module.

Given an arbitrary initial vector q(0) ∈ C
n of unit Euclidean norm, for

k = 1, 2, . . . the following sequence is constructed:

(A − µI) z(k) = q(k−1),

q(k) = z(k)/‖z(k)‖2,

σ(k) = (q(k))HAq(k).

(5.28)

Notice that the eigenvectors of Mµ are the same as those of A since
Mµ = X(Λ − µIn) X−1, where Λ = diag(λ1, . . . , λn). For this reason, the
Rayleigh quotient in (5.28) is computed directly on the matrix A (and not
on M−1

µ). The main difference with respect to (5.17) is that at each step
k a linear system with coefficient matrix Mµ = A − µI must be solved. For
numerical convenience, the LU factorization of Mµ is computed once for all
at k = 1, so that at each step only two triangular systems are to be solved,
with a cost of the order of n2 flops.

Although being more computationally expensive than the power method
(5.17), the inverse iteration has the advantage that it can converge to any de-
sired eigenvalue of A (namely, the one closest to the shift µ). Inverse iteration
is thus ideally suited for refining an initial estimate µ of an eigenvalue of A,
which can be obtained, for instance, by applying the localization techniques
introduced in Section 5.1. Inverse iteration can be also effectively employed
to compute the eigenvector associated with a given (approximate) eigenvalue,
as described in Section 5.8.1.
In view of the convergence analysis of the iteration (5.28) we assume that A is
diagonalizable, so that q(0) can be represented in the form (5.19). Proceeding
in the same way as in the power method, we let

q̃(k) = xm +
n∑

i=1,i �=m

αi

αm

(
ξi

ξm

)k

xi,

196 5 Approximation of Eigenvalues and Eigenvectors

where xi are the eigenvectors of M−1
µ (and thus also of A), while αi are as

in (5.19). As a consequence, recalling the definition of ξi and using (5.27), we
get

lim
k→∞

q̃(k) = xm, lim
k→∞

σ(k) = λm.

Convergence will be faster when µ is closer to λm. Under the same assumptions
made for proving (5.26), the following a posteriori estimate can be obtained
for the approximation error on λm

|λm − σ(k)| � ‖r̂(k)‖2

|(ŵ(k))Hq(k)| , k ≥ 1, (5.29)

where r̂(k) = Aq(k)−σ(k)q(k) and ŵ(k) is the k-th iterate of the inverse power
method to approximate the left eigenvector associated with λm.

5.3.3 Implementation Issues

The convergence analysis of Section 5.3.1 shows that the effectiveness of the
power method strongly depends on the dominant eigenvalues being well-
separated (that is, |λ2|/|λ1| � 1). Let us now analyze the behavior of
iteration (5.17) when two dominant eigenvalues of equal module exist (that
is, |λ2| = |λ1|). Three cases must be distinguished:

1. λ2 = λ1: the two dominant eigenvalues are coincident. The method is still
convergent, since for k sufficiently large (5.20) yields

Akq(0) � λk
1 (α1x1 + α2x2)

which is an eigenvector of A. For k → ∞, the sequence q̃(k) (after a
suitable redefinition) converges to a vector lying in the subspace spanned
by the eigenvectors x1 and x2, while the sequence ν(k) still converges to
λ1.

2. λ2 = −λ1: the two dominant eigenvalues are opposite. In this case the
eigenvalue of largest module can be approximated by applying the power
method to the matrix A2. Indeed, for i = 1, . . . , n, λi(A2) = [λi(A)]2,
so that λ2

1 = λ2
2 and the analysis falls into the previous case, where the

matrix is now A2.
3. λ2 = λ1: the two dominant eigenvalues are complex conjugate. Here, un-

damped oscillations arise in the sequence of vectors q(k) and the power
method is not convergent (see [Wil65], Chapter 9, Section 12).

As for the computer implementation of (5.17), it is worth noting that nor-
malizing the vector q(k) to 1 keeps away from overflow (when |λ1| > 1) or
underflow (when |λ1| < 1) in (5.20). We also point out that the requirement
α1 �= 0 (which is a priori impossible to fulfil when no information about the
eigenvector x1 is available) is not essential for the actual convergence of the
algorithm.

5.3 The Power Method 197

Indeed, although it can be proved that, working in exact arithmetic,
the sequence (5.17) converges to the pair (λ2,x2) if α1 = 0 (see Exercise
10), the arising of (unavoidable) rounding errors ensures that in practice the
vector q(k) contains a non-null component also in the direction of x1. This
allows for the eigenvalue λ1 to “show-up” and the power method to quickly
converge to it.
An implementation of the power method is given in Program 26. Here and
in the following algorithm, the convergence check is based on the a posteriori
estimate (5.26).

Here and in the remainder of the chapter, the input data z0, tol and nmax
are the initial vector, the tolerance for the stopping test and the maximum
admissible number of iterations, respectively. In output, lambda is the approxi-
mate eigenvalue, relres is the vector contain the sequence {‖r(k)‖2/| cos(θλ)|}
(see (5.26)), whilst x and iter are the approximation of the eigenvector x1

and the number of iterations taken by the algorithm to converge, respectively.

Program 26 - powerm : Power method

function [lambda,x,iter,relres]=powerm(A,z0,tol,nmax)
%POWERM Power method
% [LAMBDA,X,ITER,RELRES]=POWERM(A,Z0,TOL,NMAX) computes the
% eigenvalue LAMBDA of largest module of the matrix A and the corresponding
% eigenvector X of unit norm. TOL specifies the tolerance of the method.
% NMAX specifies the maximum number of iterations. Z0 specifies the initial
% guess. ITER is the iteration number at which X is computed.
q=z0/norm(z0); q2=q;
relres=tol+1; iter=0; z=A*q;
while relres(end)>=tol & iter<=nmax
q=z/norm(z); z=A*q;
lambda=q’*z; x=q;
z2=q2’*A; q2=z2/norm(z2); q2=q2’;
y1=q2; costheta=abs(y1’*x);
if costheta >= 5e-2

iter=iter+1;
temp=norm(z-lambda*q)/costheta;
relres=[relres; temp];

else
fprintf(’Multiple eigenvalue’); break;

end
end
return

A coding of the inverse power method is provided in Program 27. The
input parameter mu is the initial approximation of the eigenvalue. In output,
sigma is the approximation of the computed eigenvalue and relres is a vec-
tor that contain the sequence

{
‖r̂(k)‖2/|(ŵ(k))H q(k)|

}
(see (5.29)). The LU

factorization (with partial pivoting) of the matrix Mµ is carried out using the
MATLAB intrinsic function lu.

198 5 Approximation of Eigenvalues and Eigenvectors

Program 27 - invpower : Inverse power method

function [sigma,x,iter,relres]=invpower(A,z0,mu,tol,nmax)
%INVPOWER Inverse power method
% [SIGMA,X,ITER,RELRES]=INVPOWER(A,Z0,MU,TOL,NMAX) computes the
% eigenvalue LAMBDA of smallest module of the matrix A and the
% corresponding eigenvector X of unit norm. TOL specifies the tolerance of the
% method. NMAX specifies the maximum number of iterations. X0 specifies
% the initial guess. MU is the shift. ITER is the iteration number at which
% X is computed.
M=A-mu*eye(size(A)); [L,U,P]=lu(M);
q=z0/norm(z0); q2=q’; sigma=[];
relres=tol+1; iter=0;
while relres(end)>=tol & iter<=nmax

iter=iter+1;
b=P*q;
y=L\b; z=U\y;
q=z/norm(z); z=A*q; sigma=q’*z;
b=q2’; y=U’\b; w=L’\y;
q2=w’*P; q2=q2/norm(q2); costheta=abs(q2*q);
if costheta>=5e-2

temp=norm(z-sigma*q)/costheta; relres=[relres,temp];
else

fprintf(’Multiple eigenvalue’); break;
end
x=q;

end
return

Example 5.3 Let us consider the following matrices

A =

⎡

⎢
⎣

15 −2 2

1 10 −3

−2 1 0

⎤

⎥
⎦ , V =

⎡

⎢
⎣

−0.944 0.393 −0.088

−0.312 0.919 0.309

0.112 0.013 0.947

⎤

⎥
⎦ . (5.30)

Matrix A has the following eigenvalues (to five significant figures): λ1 = 14.103,
λ2 = 10.385 and λ3 = 0.512, while the corresponding eigenvectors are the vector
columns of matrix V.
To approximate the pair (λ1,x1), we have run the Program 26 with initial datum
z(0) = [1, 1, 1]T . After 71 iterations of the power method the absolute errors are

|λ1 − ν(71)| = 2.2341 · 10−10 and ‖x1 − x
(71)
1 ‖∞ = 1.42 · 10−11.

In a second run, we have used z(0) = x2 + x3 (notice that with this choice
α1 = 0). After 215 iterations the absolute errors are |λ1 − ν(215)| = 4.26 · 10−14 and

‖x1 − x
(215)
1 ‖∞ = 1.38 · 10−14.

Figure 5.2 (left) shows the reliability of the a posteriori estimate (5.26). The se-
quences |λ1 − ν(k)| (solid line) and the corresponding a posteriori estimates (5.26)

5.4 The QR Iteration 199

0 10 20 30 40 50 60 70 80
10−12

10−8

10−10

10−6

10−4

10−2

100

0 6 12 18

(S)

(NS)

10−12

10−14

10−8

10−10

10−6

10−4

10−2

100

Fig. 5.2. Comparison between the a posteriori error estimate and the actual ab-
solute error for matrix A in (5.30) (left); convergence curves for the power method
applied to matrix A in (5.31) in its symmetric (S) and nonsymmetric (NS) forms
(right)

(dashed line) are plotted as a function of the number of iterations (in abscissae).
Notice the excellent agreement between the two curves.
Let us now consider the matrices

A =

⎡

⎢
⎣

1 3 4

3 1 2

4 2 1

⎤

⎥
⎦ , T =

⎡

⎢
⎣

8 1 6

3 5 7

4 9 2

⎤

⎥
⎦ (5.31)

where A has the following spectrum: λ1 = 7.047, λ2 = −3.1879 and λ3 = −0.8868
(to five significant figures).
It is interesting to compare the behaviour of the power method when computing λ1

for the symmetric matrix A and for its similar matrix M = T−1AT, where T is the
nonsingular (and nonorthogonal) matrix in (5.31).
Running Program 26 with z(0) = [1, 1, 1]T , the power method converges to the eigen-
value λ1 in 18 and 30 iterations, for matrices A and M, respectively. The sequence
of absolute errors |λ1−ν(k)| is plotted in Figure 5.2 (right) where (S) and (NS) refer
to the computations on A and M, respectively. Notice the rapid error reduction in
the symmetric case, according to the quadratic convergence properties of the power
method (see Section 5.3.1).
We finally employ the inverse power method (5.28) to compute the eigenvalue of
smallest module λ3 = 0.512 of matrix A in (5.30). Running Program 27 with q(0) =
[1, 1, 1]T /

√
3, the method converges in 9 iterations, with absolute errors |λ3−σ(9)| =

1.194 · 10−12 and ‖x3 − x
(9)
3 ‖∞ = 4.59 · 10−13. •

5.4 The QR Iteration

In this section we present some iterative techniques for simultaneously ap-
proximating all the eigenvalues of a given matrix A. The basic idea consists of
reducing A, by means of suitable similarity transformations, into a form for
which the calculation of the eigenvalues is easier than on the starting matrix.

200 5 Approximation of Eigenvalues and Eigenvectors

The problem would be satisfactorily solved if the unitary matrix U of
the Schur decomposition theorem 1.5, such that T = UHAU, T being upper
triangular and with tii = λi(A) for i = 1, . . . , n, could be determined in a
direct way, that is, with a finite number of operations. Unfortunately, it is
a consequence of Abel’s theorem that, for n ≥ 5, the matrix U cannot be
computed in an elementary way (see Exercise 8). Thus, our problem can be
solved only resorting to iterative techniques.
The reference algorithm in this context is the QR iteration method, that is
here examined only in the case of real matrices. (For some remarks on the
extension of the algorithms to the complex case, see [GL89], Section 5.2.10
and [Dem97], Section 4.2.1).

Let A ∈ R
n×n; given an orthogonal matrix Q(0) ∈ R

n×n and letting T(0) =
(Q(0))T AQ(0), for k = 1, 2, . . ., until convergence, the QR iteration consists of:

determine Q(k),R(k) such that

Q(k)R(k) = T(k−1) (QR factorization);

then, let

T(k) = R(k)Q(k).

(5.32)

At each step k ≥ 1, the first phase of the iteration is the factorization of the
matrix T(k−1) into the product of an orthogonal matrix Q(k) with an upper
triangular matrix R(k) (see Section 5.6.3). The second phase is a simple matrix
product. Notice that

T(k) = R(k)Q(k) = (Q(k))T (Q(k)R(k))Q(k) = (Q(k))T T(k−1)Q(k)

= (Q(0)Q(1) · · ·Q(k))T A(Q(0)Q(1) · · ·Q(k)), k ≥ 0,
(5.33)

i.e., every matrix T(k) is orthogonally similar to A. This is particularly relevant
for the stability of the method, since, as shown in Section 5.2, the conditioning
of the matrix eigenvalue problem for T(k) is not worse than it is for A (see
also [GL89], p. 360).

A basic implementation of the QR iteration (5.32), assuming Q(0) = In, is
examined in Section 5.5, while a more computationally efficient version, start-
ing from T(0) in upper Hessenberg form, is described in detail in Section 5.6.
If A has real eigenvalues, distinct in module, it will be seen in Section 5.5 that
the limit of T(k) is an upper triangular matrix (with the eigenvalues of A on
the main diagonal). However, if A has complex eigenvalues the limit of T(k)

cannot be an upper triangular matrix T. Indeed if it were T would necessarily
have real eigenvalues, although it is similar to A.

Failure to converge to a triangular matrix may also happen in more general
situations, as addressed in Example 5.9.

For this, it is necessary to introduce variants of the QR iteration (5.32),
based on deflation and shift techniques (see Section 5.7 and, for a more detailed

5.5 The Basic QR Iteration 201

discussion of the subject, [GL89], Chapter 7, [Dat95], Chapter 8 and [Dem97],
Chapter 4).
These techniques allow for T(k) to converge to an upper quasi-triangular ma-
trix, known as the real Schur decomposition of A, for which the following result
holds (for the proof we refer to [GL89], pp. 341-342).

Property 5.8 Given a matrix A ∈ R
n×n, there exists an orthogonal matrix

Q ∈ R
n×n such that

QT AQ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

R11 R12 . . . R1m

0 R22 . . . R2m

...
...

. . .
...

0 0 . . . Rmm

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (5.34)

where each block Rii is either a real number or a matrix of order 2 having
complex conjugate eigenvalues, and

Q = lim
k→∞

[
Q(0)Q(1) · · ·Q(k)

]
(5.35)

Q(k) being the orthogonal matrix generated by the k-th factorization step of
the QR iteration (5.32).

The QR iteration can be also employed to compute all the eigenvectors
of a given matrix. For this purpose, we describe in Section 5.8 two possible
approaches, one based on the coupling between (5.32) and the inverse iteration
(5.28), the other working on the real Schur form (5.34).

5.5 The Basic QR Iteration

In the basic version of the QR method, one sets Q(0) = In in such a way
that T(0) = A. At each step k ≥ 1 the QR factorization of the matrix T(k−1)

can be carried out using the modified Gram-Schmidt procedure introduced in
Section 3.4.3, with a cost of the order of 2n3 flops (for a full matrix A). The
following convergence result holds (for the proof, see [GL89], Theorem 7.3.1,
or [Wil65], pp. 517-519).

Property 5.9 (Convergence of QR method) Let A ∈ R
n×n be a matrix

with real eigenvalues such that

|λ1| > |λ2| > . . . > |λn|.

202 5 Approximation of Eigenvalues and Eigenvectors

Then

lim
k→+∞

T(k) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

λ1 t12 . . . t1n

0 λ2 t23 . . .

...
...

. . .
...

0 0 . . . λn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (5.36)

As for the convergence rate, we have

|t(k)
i,i−1| = O

(∣
∣
∣
∣

λi

λi−1

∣
∣
∣
∣

k
)

, i = 2, . . . , n, for k → +∞. (5.37)

Under the additional assumption that A is symmetric, the sequence {T(k)}
tends to a diagonal matrix.

If the eigenvalues of A, although being distinct, are not well-separated, it
follows from (5.37) that the convergence of T(k) towards a triangular matrix
can be quite slow. With the aim of accelerating it, one can resort to the
so-called shift technique, which will be addressed in Section 5.7.

Remark 5.2 It is always possible to reduce the matrix A into a triangular
form by means of an iterative algorithm employing nonorthogonal similar-
ity transformations. In such a case, the so-called LR iteration (known also as
Rutishauser method, [Rut58]) can be used, from which the QR method has ac-
tually been derived (see also [Fra61], [Wil65]). The LR iteration is based on the
factorization of the matrix A into the product of two matrices L and R, respec-
tively unit lower triangular and upper triangular, and on the (nonorthogonal)
similarity transformation

L−1AL = L−1(LR)L = RL.

The rare use of the LR method in practical computations is due to the loss
of accuracy that can arise in the LR factorization because of the increase in
module of the upper diagonal entries of R. This aspect, together with the
details of the implementation of the algorithm and some comparisons with
the QR method, is examined in [Wil65], Chapter 8. �

Example 5.4 We apply the QR method to the symmetric matrix A∈ R
4×4 such

that aii = 4, for i = 1, . . . , 4, and aij = 4+ i− j for i < j ≤ 4, whose eigenvalues are
(to three significant figures) λ1 = 11.09, λ2 = 3.41, λ3 = 0.90 and λ4 = 0.59. After
20 iterations, we get

T(20) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

11.09 6.44 · 10−10 −3.62 · 10−15 9.49 · 10−15

6.47 · 10−10 3.41 1.43 · 10−11 4.60 · 10−16

1.74 · 10−21 1.43 · 10−11 0.90 1.16 · 10−4

2.32 · 10−25 2.68 · 10−15 1.16 · 10−4 0.58

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

5.6 The QR Method for Matrices in Hessenberg Form 203

Notice the “almost-diagonal” structure of the matrix T(20) and, at the same time, the
effect of rounding errors which slightly alter its expected symmetry. Good agreement
can also be found between the under-diagonal entries and the estimate (5.37). •

A computer implementation of the basic QR iteration is given in Program
28. The QR factorization is executed using the modified Gram-Schmidt
method (Program 8). The input parameter nmax denotes the maximum ad-
missible number of iterations, while the output parameters T, Q and R are the
matrices T, Q and R in (5.32) after nmax iterations of the QR procedure.

Program 28 - basicqr : Basic QR iteration

function [T,Q,R]=basicqr(A,nmax)
%BASICQR Basic QR iteration
% [T,Q,R]=BASICQR(A,NMAX) performs NMAX iterations of the basic QR
% algorithm.
T=A;
for i=1:nmax

[Q,R]=modgrams(T);
T=R*Q;

end
return

5.6 The QR Method for Matrices in Hessenberg Form

The naive implementation of the QR method discussed in the previous section
requires (for a full matrix) a computational effort of the order of n3 flops per
iteration. In this section we illustrate a variant for the QR iteration, known
as Hessenberg-QR iteration, with a greatly reduced computational cost. The
idea consists of starting the iteration from a matrix T(0) in upper Hessenberg
form, that is, t

(0)
ij = 0 for i > j + 1. Indeed, it can be checked that with this

choice the computation of T(k) in (5.32) requires only an order of n2 flops per
iteration.

To achieve maximum efficiency and stability of the algorithm, suitable
transformation matrices are employed. Precisely, the preliminary reduction
of matrix A into upper Hessenberg form is realized with Householder matri-
ces, whilst the QR factorization of T(k) is carried out using Givens matrices,
instead of the modified Gram-Schmidt procedure introduced in Section 3.4.3.
We briefly describe Householder and Givens matrices in the next section, re-
ferring to Section 5.6.5 for their implementation. The algorithm and examples
of computations of the real Schur form of A starting from its upper Hessenberg
form are then discussed in Section 5.6.4.

5.6.1 Householder and Givens Transformation Matrices

For any vector v ∈ R
n, let us introduce the orthogonal and symmetric

matrix

204 5 Approximation of Eigenvalues and Eigenvectors

π

x

y

v
xk

xi

q
x

y

Fig. 5.3. Reflection across the hyperplane orthogonal to v (left); rotation by an
angle θ in the plane (xi, xk) (right)

P = I − 2vvT /‖v‖2
2. (5.38)

Given a vector x ∈ R
n, the vector y = Px is the reflection of x with respect

to the hyperplane π = span{v}⊥ formed by the set of the vectors that are
orthogonal to v (see Figure 5.3, left). Matrix P and the vector v are called
the Householder reflection matrix and the Householder vector, respectively.
Householder matrices can be used to set to zero a block of components of a
given vector x ∈ R

n. If, in particular, one would like to set to zero all the
components of x, except the m-th one, the Householder vector ought to be
chosen as

v = x ± ‖x‖2em, (5.39)

em being the m-th unit vector of R
n. The matrix P computed by (5.38)

depends on the vector x itself, and it can be checked that

Px =

⎡

⎣0, 0, . . . ,±‖x‖2
︸ ︷︷ ︸

m

, 0, . . . , 0

⎤

⎦

T

. (5.40)

Example 5.5 Let x = [1, 1, 1, 1]T and m = 3; then

v =

⎡

⎢
⎢
⎢
⎢
⎣

1

1

3

1

⎤

⎥
⎥
⎥
⎥
⎦

, P =
1

6

⎡

⎢
⎢
⎢
⎢
⎣

5 −1 −3 −1

−1 5 −3 −1

−3 −3 −3 −3

−1 −1 −3 5

⎤

⎥
⎥
⎥
⎥
⎦

, Px =

⎡

⎢
⎢
⎢
⎢
⎣

0

0

−2

0

⎤

⎥
⎥
⎥
⎥
⎦

.

•

If, for some k ≥ 1, the first k components of x must remain unaltered, while
the components from k + 2 on are to be set to zero, the Householder matrix
P = P(k) takes the following form

5.6 The QR Method for Matrices in Hessenberg Form 205

P(k) =

⎡

⎣
Ik 0

0 Rn−k

⎤

⎦ , Rn−k = In−k − 2
w(k)(w(k))T

‖w(k)‖2
2

. (5.41)

As usual, Ik is the identity matrix of order k, while Rn−k is the elementary
Householder matrix of order n − k associated with the reflection across the
hyperplane orthogonal to the vector w(k) ∈ R

n−k. According to (5.39), the
Householder vector is given by

w(k) = x(n−k) ± ‖x(n−k)‖2e
(n−k)
1 , (5.42)

where x(n−k) ∈ R
n−k is the vector formed by the last n − k components of x

and e(n−k)
1 is the first unit vector of the canonical basis of R

n−k. We notice
that P(k) is a function of x through w(k). The criterion for fixing the sign in
the definition of w(k) will be discussed in Section 5.6.5.

The components of the transformed vector y = P(k) x read
⎧
⎪⎪⎨

⎪⎪⎩

yj = xj j = 1, . . . , k,

yj = 0 j = k + 2, . . . , n,

yk+1 = ±‖x(n−k)‖2.

The Householder matrices will be employed in Section 5.6.2 to carry out the
reduction of a given matrix A to a matrix H(0) in upper Hessenberg form.
This is the first step for an efficient implementation of the QR iteration (5.32)
with T(0) = H(0) (see Section 5.6).

Example 5.6 Let x=[1, 2, 3, 4, 5]T and k = 1 (this means that we want to set to
zero the components xj , with j = 3, 4, 5). The matrix P(1) and the transformed
vector y=P(1) x are given by

P(1) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0

0 0.2722 0.4082 0.5443 0.6804

0 0.4082 0.7710 −0.3053 −0.3816

0 0.5443 −0.3053 0.5929 −0.5089

0 0.6804 −0.3816 −0.5089 0.3639

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, y =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

7.3485

0

0

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

•

The Givens elementary matrices are orthogonal rotation matrices that allow
for setting to zero in a selective way the entries of a vector or matrix. For a
given pair of indices i and k, and a given angle θ, these matrices are defined
as

G(i, k, θ) = In − Y, (5.43)

where Y∈ R
n×n is a null matrix except for the following entries: yii = ykk =

1 − cos(θ), yik = − sin(θ) = −yki. A Givens matrix is of the form

206 5 Approximation of Eigenvalues and Eigenvectors

i k

G(i, k, θ) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0
1

. . .

cos(θ) sin(θ)

. . .

− sin(θ) cos(θ)

. . .

1

0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

i

k

For a given vector x ∈ R
n, the product y = (G(i, k, θ))T x is equivalent to

rotating x counterclockwise by an angle θ in the coordinate plane (xi, xk) (see
Figure 5.3, right). After letting c = cos θ, s = sin θ, it follows that

yj =

⎧
⎪⎪⎨

⎪⎪⎩

xj j �= i, k,

cxi − sxk j = i,

sxi + cxk j = k.

(5.44)

Let αik =
√

x2
i + x2

k and notice that if c and s satisfy c = xi/αik, s = −xk/αik

(in such a case, θ = arctan(−xk/xi)), we get yk = 0, yi = αik and yj = xj

for j �= i, k. Similarly, if c = xk/αik, s = xi/αik (that is, θ = arctan(xi/xk)),
then yi = 0, yk = αik and yj = xj for j �= i, k.
The Givens rotation matrices will be employed in Section 5.6.3 to carry out
the QR factorization step in the algorithm (5.32) and in Section 5.10.1 where
the Jacobi method for symmetric matrices is considered.

Remark 5.3 (Householder deflation for power iterations) The eleme-
ntary Householder tranformations can be conveniently employed to compute
the first (largest or smallest) eigenvalues of a given matrix A ∈ R

n×n. Assume
that the eigenvalues of A are ordered as in (5.16) and suppose that the eigen-
value/eigenvector pair (λ1,x1) has been computed using the power method.
Then the matrix A can be transformed into the following block form (see for
the proof [Dat95], Theorem 8.5.4, p. 418)

A1 = HAH =

[
λ1 bT

0 A2

]

,

where b ∈ R
n−1, H is the Householder matrix such that Hx1 = αx1 for some

α ∈ R, the matrix A2 ∈ R
(n−1)×(n−1) and the eigenvalues of A2 are the same

as those of A except for λ1. The matrix H can be computed using (5.38) with
v = x1 ± ‖x1‖2e1.

5.6 The QR Method for Matrices in Hessenberg Form 207

The deflation procedure consists of computing the second dominant (sub-
dominant) eigenvalue of A by applying the power method to A2 provided that
|λ2| �= |λ3|. Once λ2 is available, the corresponding eigenvector x2 can be com-
puted by applying the inverse power iteration to the matrix A taking µ = λ2

(see Section 5.3.2) and proceeding in the same manner with the remaining
eigenvalue/eigenvector pairs. An example of deflation will be presented in
Section 5.12.2. �

5.6.2 Reducing a Matrix in Hessenberg Form

A given matrix A∈ R
n×n can be transformed by similarity transformations

into upper Hessenberg form with a cost of the order of n3 flops. The algorithm
takes n − 2 steps and the similarity transformation Q can be computed as
the product of Householder matrices P(1) · · ·P(n−2). For this, the reduction
procedure is commonly known as the Householder method.

Precisely, the k-th step consists of a similarity transformation of A through
the Householder matrix P(k) which aims at setting to zero the elements in
positions k + 2, . . . , n of the k-th column of A, for k = 1, . . . , n − 2 (see
Section 5.6.1). For example, in the case n = 4 the reduction process yields

⎡

⎢
⎢
⎢
⎢
⎢
⎣

• • • •
• • • •
• • • •
• • • •

⎤

⎥
⎥
⎥
⎥
⎥
⎦

−→
P(1)

⎡

⎢
⎢
⎢
⎢
⎢
⎣

• • • •
• • • •
0 • • •
0 • • •

⎤

⎥
⎥
⎥
⎥
⎥
⎦

−→
P(2)

⎡

⎢
⎢
⎢
⎢
⎢
⎣

• • • •
• • • •
0 • • •
0 0 • •

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

having denoted by • the entries of the matrices that are a priori nonzero.
Given A(0) = A, the method generates a sequence of matrices A(k) that are
orthogonally similar to A

A(k) = PT
(k)A

(k−1)P(k) = (P(1) · · ·P(k))T A(P(1) · · ·P(k))

= QT
(k)AQ(k), k ≥ 1.

(5.45)

For any k ≥ 1 the matrix P(k) is given by (5.41), where x is substituted
by the k-th column vector in matrix A(k−1). From the definition (5.41) it
is easy to check that the operation PT

(k) A(k−1) leaves the first k rows of
A(k−1) unchanged, whilst PT

(k) A(k−1) P(k) = A(k) does the same on the first
k columns. After n−2 steps of the Householder reduction, we obtain a matrix
H = A(n−2) in upper Hessenberg form.

Remark 5.4 (The symmetric case) If A is symmetric, the transformation
(5.45) maintains such a property. Indeed

(A(k))T = (QT
(k)AQ(k))T = A(k), ∀k ≥ 1,

208 5 Approximation of Eigenvalues and Eigenvectors

so that H must be tridiagonal. Its eigenvalues can be efficiently computed
using the method of Sturm sequences with a cost of the order of n flops, as
will be addressed in Section 5.10.2. �

A coding of the Householder reduction method is provided in Program 29.
To compute the Householder vector, Program 32 is employed. In output, the
two matrices H and Q, respectively in Hessenberg form and orthogonal, are
such that H = QT AQ.

Program 29 - houshess : Hessenberg-Householder method

function [H,Q]=houshess(A)
%HOUSHESS Hessenberg-Householder method.
% [H,Q]=HOUSHESS(A) computes the matrices H and Q such that H=Q’AQ.
[n,m]=size(A);
if n˜=m; error(’Only square matrices’); end
Q=eye(n); H=A;
for k=1:n-2

[v,beta]=vhouse(H(k+1:n,k)); I=eye(k); N=zeros(k,n-k);
m=length(v);
R=eye(m)-beta*v*v’;
H(k+1:n,k:n)=R*H(k+1:n,k:n);
H(1:n,k+1:n)=H(1:n,k+1:n)*R; P=[I, N; N’, R]; Q=Q*P;

end
return

The algorithm coded in Program 29 requires a cost of 10n3/3 flops and is
well-conditioned with respect to rounding errors. Indeed, the following esti-
mate holds (see [Wil65], p. 351)

Ĥ = QT (A + E) Q, ‖E‖F ≤ cn2u‖A‖F , (5.46)

where Ĥ is the Hessenberg matrix computed by Program 29, Q is an orthog-
onal matrix, c is a constant, u is the roundoff unit and ‖ · ‖F is the Frobenius
norm (see (1.18)).

Example 5.7 Consider the reduction in upper Hessenberg form of the Hilbert ma-
trix H4 ∈ R

4×4. Since H4 is symmetric, its Hessenberg form should be a tridiagonal
symmetric matrix. Program 29 yields the following results

Q =

⎡

⎢
⎢
⎢
⎢
⎣

1.00 0 0 0

0 0.77 −0.61 0.20

0 0.51 0.40 −0.76

0 0.38 0.69 0.61

⎤

⎥
⎥
⎥
⎥
⎦

, H =

⎡

⎢
⎢
⎢
⎢
⎣

1.00 0.65 0 0

0.65 0.65 0.06 0

0 0.06 0.02 0.001

0 0 0.001 0.0003

⎤

⎥
⎥
⎥
⎥
⎦

.

The accuracy of the transformation procedure (5.45) can be measured by computing
the Frobenius norm (1.18) of the difference between H and QT H4Q. This yields
‖H − QT H4Q‖F = 3.38 · 10−17, which confirms the stability estimate (5.46). •

5.6 The QR Method for Matrices in Hessenberg Form 209

5.6.3 QR Factorization of a Matrix in Hessenberg Form

In this section we explain how to efficiently implement the generic step of the
QR iteration, starting from a matrix T(0) = H(0) in upper Hessenberg form.

For any k ≥ 1, the first phase consists of computing the QR factorization
of H(k−1) by means of n − 1 Givens rotations

(
Q(k)

)T

H(k−1) =
(
G(k)

1 · · ·G(k)
n−1

)T

H(k−1) = R(k), (5.47)

where, for any j = 1, . . . , n − 1, G(k)
j = G(j, j + 1, θj)(k) is, for any k ≥

1, the j-th Givens rotation matrix (5.43) in which θj is chosen according
to (5.44) in such a way that the entry of indices (j + 1, j) of the matrix
(
G(k)

1 · · ·G(k)
j

)T

H(k−1) is set equal to zero. The product (5.47) requires a

computational cost of the order of 3n2 flops.
The next step consists of completing the orthogonal similarity transforma-

tion
H(k) = R(k)Q(k) = R(k)

(
G(k)

1 · · ·G(k)
n−1

)
. (5.48)

The orthogonal matrix Q(k) =
(
G(k)

1 · · ·G(k)
n−1

)
is in upper Hessenberg form.

Indeed, taking for instance n = 3, and recalling Section 5.6.1, we get

Q(k) = G(k)
1 G(k)

2 =

⎡

⎢
⎢
⎣

• • 0

• • 0

0 0 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

1 0 0

0 • •
0 • •

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

• • •
• • •
0 • •

⎤

⎥
⎥
⎦ .

Also (5.48) requires a cost of the order of 3n2 operations, for an overall effort
of the order of 6n2 flops. In conclusion, performing the QR factorization with
elementary Givens rotations on a starting matrix in upper Hessenberg form
yields a reduction of the operation count of one order of magnitude with
respect to the corresponding factorization with the modified Gram-Schmidt
procedure of Section 5.5.

5.6.4 The Basic QR Iteration Starting from Upper Hessenberg
Form

A basic implementation of the QR iteration to generate the real Schur decom-
position of a matrix A is given in Program 30.

This program uses Program 29 to reduce A in upper Hessenberg form; then
each QR factorization step in (5.32) is carried out with Program 31 which
utilizes Givens rotations. The overall efficiency of the algorithm is ensured by
pre- and post-multiplying with Givens matrices as explained in Section 5.6.5,
and by constructing the matrix Q(k) = G(k)

1 . . . G(k)
n−1 in the function prodgiv,

with a cost of n2 − 2 flops and without explicitly forming the Givens matrices
G(k)

j , for j = 1, . . . , n − 1.

210 5 Approximation of Eigenvalues and Eigenvectors

As for the stability of the QR iteration with respect to rounding error prop-
agation, it can be shown that the computed real Schur form T̂ is orthogonally
similar to a matrix “close” to A, i.e.

T̂ = QT (A + E)Q,

where Q is orthogonal and ‖E‖2 � u‖A‖2, u being the machine roundoff unit.
Program 30 returns in output, after nmax iterations of the QR procedure,

the matrices T, Q and R in (5.32).

Program 30 - hessqr : Hessenberg-QR method

function [T,Q,R]=hessqr(A,nmax)
%HESSQR Hessenberg-QR method.
% [T,Q,R]=QR(A,NMAX) computes the real Schur decomposition of the matrix
% A in the Hessenberg form after NMAX iterations.
[n,m]=size(A);
if n˜=m, error(’Only square matrices’); end
[T,Qhess]=houshess(A);
for j=1:nmax

[Q,R,c,s]= qrgivens(T);
T=R;
for k=1:n-1,

T=gacol(T,c(k),s(k),1,k+1,k,k+1);
end

end
return

Program 31 - qrgivens : QR factorization with Givens rotations

function [Q,R,c,s]= qrgivens(H)
%QRGIVENS QR factorization with Givens rotations.
[m,n]=size(H);
for k=1:n-1

[c(k),s(k)]=givcos(H(k,k),H(k+1,k));
H=garow(H,c(k),s(k),k,k+1,k,n);

end
R=H; Q=prodgiv(c,s,n);
return

function Q=prodgiv(c,s,n)
n1=n-1; n2=n-2;
Q=eye(n); Q(n1,n1)=c(n1); Q(n,n)=c(n1);
Q(n1,n)=s(n1); Q(n,n1)=-s(n1);
for k=n2:-1:1,

k1=k+1; Q(k,k)=c(k); Q(k1,k)=-s(k);
q=Q(k1,k1:n); Q(k,k1:n)=s(k)*q;
Q(k1,k1:n)=c(k)*q;

end
return

5.6 The QR Method for Matrices in Hessenberg Form 211

Example 5.8 Consider the matrix A (already in Hessenberg form)

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

3 17 −37 18 −40

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

To compute its eigenvalues, given by −4, ±i, 2 and 5, we apply the QR method
and we compute the matrix T(40) after 40 iterations of Program 30. Notice that
the algorithm converges to the real Schur decomposition of A (5.34), with three
blocks Rii of order 1 (i = 1, 2, 3) and with the block R44 = T(40)(4 : 5, 4 : 5) having
eigenvalues equal to ±i

T(40) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

4.9997 18.9739 −34.2570 32.8760 −28.4604

0 −3.9997 6.7693 −6.4968 5.6216

0 0 2 −1.4557 1.1562

0 0 0 0.3129 −0.8709

0 0 0 1.2607 −0.3129

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

•

Example 5.9 Let us now employ the QR method to generate the Schur real de-
composition of the matrix A below, after reducing it to upper Hessenberg form

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

17 24 1 8 15

23 5 7 14 16

4 6 13 20 22

10 12 19 21 3

11 18 25 2 9

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The eigenvalues of A are real and given (to four significant figures) by λ1 = 65,
λ2,3 = ±21.28 and λ4,5 = ±13.13. After 40 iterations of Program 30, the computed
matrix reads

T(40) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

65 0 0 0 0

0 14.6701 14.2435 4.4848 −3.4375

0 16.6735 −14.6701 −1.2159 2.0416

0 0 0 −13.0293 −0.7643

0 0 0 −3.3173 13.0293

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

212 5 Approximation of Eigenvalues and Eigenvectors

It is not upper triangular, but block upper triangular, with a diagonal block R11 = 65
and the two blocks

R22 =

[
14.6701 14.2435

16.6735 −14.6701

]

, R33 =

[
−13.0293 −0.7643

−3.3173 13.0293

]

,

having spectrums given by σ(R22) = λ2,3 and σ(R33) = λ4,5 respectively.
It is important to recognize that matrix T(40) is not the real Schur decomposition

of A, but only a “cheating” version of it. In fact, in order for the QR method to
converge to the real Schur decomposition of A, it is mandatory to resort to the shift
techniques introduced in Section 5.7. •

5.6.5 Implementation of Transformation Matrices

In the definition (5.42) it is convenient to choose the minus sign, obtaining
w(k) = x(n−k) − ‖x(n−k)‖2e

(n−k)
1 , in such a way that the vector Rn−kx(n−k)

is a positive multiple of e(n−k)
1 . If xk+1 is positive, in order to avoid numerical

cancellations, the computation can be rationalized as follows

w
(k)
1 =

x2
k+1 − ‖x(n−k)‖2

2

xk+1 + ‖x(n−k)‖2
=

−
n∑

j=k+2

x2
j

xk+1 + ‖x(n−k)‖2
.

The construction of the Householder vector is performed by Program 32, which
takes as input a vector p ∈ R

n−k (formerly, the vector x(n−k)) and returns a
vector q ∈ R

n−k (the Householder vector w(k)), with a cost of the order of n
flops.

If M ∈ R
m×m is the generic matrix to which the Householder matrix P

(5.38) is applied (where I is the identity matrix of order m and v∈ R
m), letting

w = MT v, then
PM = M − βvwT , β = 2/‖v‖2

2. (5.49)

Therefore, performing the product PM amounts to a matrix-vector product
(w = MT v) plus an external product vector-vector (vwT). The overall com-
putational cost of the product PM is thus equal to 2(m2 + m) flops. Similar
considerations hold in the case where the product MP is to be computed;
defining w = Mv, we get

MP = M − βwvT . (5.50)

Notice that (5.49) and (5.50) do not require the explicit construction of the
matrix P. This reduces the computational cost to an order of m2 flops, whilst
executing the product PM without taking advantage of the special structure
of P would increase the operation count to an order of m3 flops.

5.6 The QR Method for Matrices in Hessenberg Form 213

Program 32 - vhouse : Construction of the Householder vector

function [v,beta]=vhouse(x)
%VHOUSE Householder vector
n=length(x); x=x/norm(x); s=x(2:n)’*x(2:n); v=[1; x(2:n)];
if s==0

beta=0;
else

mu=sqrt(x(1)ˆ2+s);
if x(1)¡=0

v(1)=x(1)-mu;
else

v(1)=-s/(x(1)+mu);
end
beta=2*v(1)ˆ2/(s+v(1)ˆ2); v=v/v(1);

end
return

Concerning the Givens rotation matrices, the computation of c and s is carried
out as follows. Let i and k be two fixed indices and assume that the k-th com-
ponent of a given vector x ∈ R

n must be set to zero. Letting r =
√

x2
i + x2

k,
relation (5.44) yields [

c −s

s c

][
xi

xk

]

=

[
r

0

]

, (5.51)

from which it turns out that there is no need of explicitly computing θ, nor
evaluating any trigonometric function.

Executing Program 33 to solve system (5.51), requires 5 flops, plus the
evaluation of a square root. As already noticed in the case of Householder
matrices, even for Givens rotations we don’t have to explicitly compute the
matrix G(i, k, θ) to perform its product with a given matrix M∈ R

m×m. For
that purpose Programs 34 and 35 are used, both at the cost of 6m flops.
Looking at the structure (5.43) of matrix G(i, k, θ), it is clear that the first
algorithm only modifies rows i and k of M, whilst the second one only changes
columns i and k of M.
We conclude by noticing that the computation of the Householder vector v
and of the Givens sine and cosine (c, s), are well-conditioned operations with
respect to rounding errors (see [GL89], pp. 212-217 and the references therein).

The solution of system (5.51) is implemented in Program 33. The input
parameters are the vector components xi and xk, whilst the output data are
the Givens cosine and sine c and s.

Program 33 - givcos : Computation of Givens cosine and sine

function [c,s]=givcos(xi, xk)
%GIVCOS Computes the Givens cosine and sine.
if xk==0

214 5 Approximation of Eigenvalues and Eigenvectors

c=1; s=0;
else

if abs(xk)>abs(xi)
t=-xi/xk; s=1/sqrt(1+tˆ2); c=s*t;

else
t=-xk/xi; c=1/sqrt(1+tˆ2); s=c*t;

end
end
return

Programs 34 and 35 compute G(i, k, θ)T M and MG(i, k, θ) respectively. The
input parameters c and s are the Givens cosine and sine. In Program 34, the
indices i and k identify the rows of the matrix M that are being affected by
the update M ← G(i, k, θ)T M, while j1 and j2 are the indices of the columns
involved in the computation. Similarly, in Program 35 i and k identify the
columns effected by the update M ← MG(i, k, θ), while j1 and j2 are the
indices of the rows involved in the computation.

Program 34 - garow : Product G(i, k, θ)T M

function [M]=garow(M,c,s,i,k,j1,j2)
%GAROW Product of the transpose of a Givens rotation matrix with M.
for j=j1:j2

t1=M(i,j);
t2=M(k,j);
M(i,j)=c*t1-s*t2;
M(k,j)=s*t1+c*t2;

end
return

Program 35 - gacol : Product MG(i, k, θ)

function [M]=gacol(M,c,s,j1,j2,i,k)
%GACOL Product of M with a Givens rotation matrix.
for j=j1:j2

t1=M(j,i);
t2=M(j,k);
M(j,i)=c*t1-s*t2;
M(j,k)=s*t1+c*t2;

end
return

5.7 The QR Iteration with Shifting Techniques

Example 5.9 reveals that the QR iteration does not always converge to the real
Schur form of a given matrix A. To make this happen, an effective approach
consists of incorporating in the QR iteration (5.32) a shifting technique similar
to that introduced for inverse iteration in Section 5.3.2.

5.7 The QR Iteration with Shifting Techniques 215

This leads to the QR method with single shift described in Section 5.7.1,
which is used to accelerate the convergence of the QR iteration when A has
eigenvalues with moduli very close to each other.

In Section 5.7.2, a more sophisticated shifting technique is considered,
which guarantees the convergence of the QR iteration to the (approximate)
Schur form of matrix A (see Property 5.8). The resulting method (known as
QR iteration with double shift) is the most popular version of the QR iteration
(5.32) for solving the matrix eigenvalue problem, and is implemented in the
MATLAB intrinsic function eig.

5.7.1 The QR Method with Single Shift

Given µ ∈ R, the shifted QR iteration is defined as follows. For k = 1, 2, . . .,
until convergence:

determine Q(k),R(k) such that

Q(k)R(k) = T(k−1) − µI (QR factorization);

then, let

T(k) = R(k)Q(k) + µI,

(5.52)

where T(0) =
(
Q(0)

)T
AQ(0) is in upper Hessenberg form. Since the QR fac-

torization in (5.52) is performed on the shifted matrix T(k−1) −µI, the scalar
µ is called shift. The sequence of matrices T(k) generated by (5.52) is still
similar to the initial matrix A, since for any k ≥ 1

R(k)Q(k) + µI =
(
Q(k)

)T (
Q(k)R(k)Q(k) + µQ(k)

)

=
(
Q(k)

)T (
Q(k)R(k) + µI

)
Q(k) =

(
Q(k)

)T
T(k−1)Q(k)

= (Q(0)Q(1) · · ·Q(k))T A(Q(0)Q(1) · · ·Q(k)), k ≥ 0.

Assume µ is fixed and that the eigenvalues of A are ordered in such a way
that

|λ1 − µ| ≥ |λ2 − µ| ≥ . . . ≥ |λn − µ|.

Then it can be shown that, for 1 < j ≤ n, the subdiagonal entry t
(k)
j,j−1 tends

to zero with a rate that is proportional to the ratio

|(λj − µ)/(λj−1 − µ)|k.

This extends the convergence result (5.37) to the shifted QR method (see
[GL89], Sections 7.5.2 and 7.3).

The result above suggests that if µ is chosen in such a way that

|λn − µ| < |λi − µ|, i = 1, . . . , n − 1,

216 5 Approximation of Eigenvalues and Eigenvectors

then the matrix entry t
(k)
n,n−1 in the iteration (5.52) tends rapidly to zero as k

increases. (In the limit, if µ were equal to an eigenvalue of T(k), that is of A,
then t

(k)
n,n−1 = 0 and t

(k)
n,n = µ). In practice one takes

µ = t(k)
n,n, (5.53)

yielding the so called QR iteration with single shift. Correspondingly, the
convergence to zero of the sequence

{
t
(k)
n,n−1

}
is quadratic in the sense that

if |t(k)
n,n−1|/‖T(0)‖2 = ηk < 1, for some k ≥ 0, then |t(k+1)

n,n−1|/‖T(0)‖2 = O(η2
k)

(see [Dem97], pp. 161-163 and [GL89], pp. 354-355).
This can be profitably taken into account when programming the QR

iteration with single shift by monitoring the size of the subdiagonal entry
|t(k)

n,n−1|. In practice, t
(k)
n,n−1 is set equal to zero if

|t(k)
n,n−1| ≤ ε(|t(k)

n−1,n−1| + |t(k)
n,n|), k ≥ 0, (5.54)

for a prescribed ε, in general of the order of the roundoff unit. (This conver-
gence test is adopted in the library EISPACK). If A is an Hessenberg matrix,
when for a certain k a

(k)
n,n−1 is set to zero, t

(k)
n,n provides the desired approx-

imation of λn. Then the QR iteration with shift can continue on the matrix
T(k)(1 : n− 1, 1 : n− 1), and so on. This is a deflation algorithm (for another
example see Remark 5.3).

Example 5.10 We consider again the matrix A as in Example 5.9. Program 36,
with tol equal to the roundoff unit, converges in 14 iterations to the following
approximate real Schur form of A, which displays the correct eigenvalues of matrix
A on its diagonal (to six significant figures)

T(40) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

65 0 0 0 0

0 −21.2768 2.5888 −0.0445 −4.2959

0 0 −13.1263 −4.0294 −13.079

0 0 0 21.2768 −2.6197

0 0 0 0 13.1263

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

We also report in Table 5.2 the convergence rate p(k) of the sequence
{

t
(k)
n,n−1

}

(n = 5) computed as

p(k) = 1 +
1

log(ηk)
log

|t(k)
n,n−1|

|t(k−1)
n,n−1|

, k ≥ 1.

The results show good agreement with the expected quadratic rate. •

The coding of the QR iteration with single shift (5.52) is given in Program
36. The code utilizes Program 29 to reduce the matrix A in upper Hessen-
berg form and Program 31 to perform the QR factorization step. The input

5.7 The QR Iteration with Shifting Techniques 217

Table 5.2. Convergence rate of the sequence
{

t
(k)
n,n−1

}
in the QR iteration with

single shift

k |t(k)
n,n−1|/‖T(0)‖2 p(k)

0 0.13865
1 1.5401 · 10−2 2.1122
2 1.2213 · 10−4 2.1591
3 1.8268 · 10−8 1.9775
4 8.9036 · 10−16 1.9449

parameters tol and itmax are the tolerance ε in (5.54) and the maximum
admissible number of iterations, respectively. In output, the program returns
the (approximate) real Schur form of A and the number of iterations needed
for its computation.

Program 36 - qrshift : QR iteration with single shift

function [T,iter]=qrshift(A,tol,nmax)
%QRSHIFT QR iteration with single shifting technique.
% [T,ITER]=QRSHIFT(A,TOL,NMAX) computes after ITER iterations the real
% Schur form T of the matrix A with a tolerance TOL. NMAX specifies the
% maximum number of iterations.
[n,m]=size(A);
if n˜=m, error(’Only square matrices’); end
iter=0; [T,Q]=houshess(A);
for k=n:-1:2

I=eye(k);
while abs(T(k,k-1))>tol*(abs(T(k,k))+abs(T(k-1,k-1)))

iter=iter+1;
if iter > nmax

return
end
mu=T(k,k); [Q,R,c,s]=qrgivens(T(1:k,1:k)-mu*I);
T(1:k,1:k)=R*Q+mu*I;

end
T(k,k-1)=0;

end
return

5.7.2 The QR Method with Double Shift

The single-shift QR iteration (5.52) with the choice (5.53) for µ is effective
if the eigenvalues of A are real, but not necessarily when complex conjugate
eigenvalues are present, as happens in the following example.

218 5 Approximation of Eigenvalues and Eigenvectors

Example 5.11 The matrix A ∈ R
4×4 (reported below to five significant figures)

A =

⎡

⎢
⎢
⎢
⎢
⎣

1.5726 −0.6392 3.7696 −1.3143

0.2166 −0.0420 0.4006 −1.2054

0.0226 0.3592 0.2045 −0.1411

−0.1814 1.1146 −3.2330 1.2648

⎤

⎥
⎥
⎥
⎥
⎦

has eigenvalues {±i, 1, 2}, i being the imaginary unit. Running Program 36 with
tol equal to the roundoff unit yields after 100 iterations

T(101) =

⎡

⎢
⎢
⎢
⎢
⎣

2 1.1999 0.5148 4.9004

0 −0.0001 −0.8575 0.7182

0 1.1662 0.0001 −0.8186

0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎦

.

The obtained matrix is the real Schur form of A, where the 2×2 block T(101)(2:3,
2:3) has complex conjugate eigenvalues ±i. These eigenvalues cannot be computed
by the algorithm (5.52)-(5.53) since µ is real. •

The problem with this example is that working with real matrices neces-
sarily yields a real shift, whereas a complex one would be needed. The QR
iteration with double shift is set up to account for complex eigenvalues and
allows for removing the 2×2 diagonal blocks of the real Schur form of A.

Precisely, suppose that the QR iteration with single shift (5.52) detects
at some step k a 2×2 diagonal block R(k)

kk that cannot be reduced into upper
triangular form. Since the iteration is converging to the real Schur form of
the matrix A the two eigenvalues of R(k)

kk are complex conjugate and will be
denoted by λ(k) and λ̄(k). The double shift strategy consists of the following
steps:

determine Q(k),R(k) such that

Q(k)R(k) = T(k−1) − λ(k)I (first QR factorization);

then, let

T(k) = R(k)Q(k) + λ(k)I;

determine Q(k+1),R(k+1) such that

Q(k+1)R(k+1) = T(k) − λ̄(k)I (second QR factorization);

then, let

T(k+1) = R(k+1)Q(k+1) + λ̄(k)I.

(5.55)

Once the double shift has been carried out the QR iteration with single shift
is continued until a situation analogous to the one above is encountered.

5.7 The QR Iteration with Shifting Techniques 219

The QR iteration incorporating the double shift strategy is the most effective
algorithm for computing eigenvalues and yields the approximate Schur form of
a given matrix A. Its actual implementation is far more sophisticated than the
outline above and is called QR iteration with Francis shift (see [Fra61], and,
also, [GL89], Section 7.5 and [Dem97], Section 4.4.5). As for the case of the QR
iteration with single shift, quadratic convergence can also be proven for the QR
method with Francis shift. However, special matrices have recently been found
for which the method fails to converge (see for an example Exercise 14 and
Remark 5.13). We refer for some analysis and remedies to [Bat90], [Day96],
although the finding of a shift strategy that guarantees convergence of the QR
iteration for all matrices is still an open problem.

Example 5.12 Let us apply the QR iteration with double shift to the matrix A
in Example 5.11. After 97 iterations of Program 37, with tol equal to the roundoff
unit, we get the following (approximate) Schur form of A, which displays on its
diagonal the four eigenvalues of A

T(97) =

⎡

⎢
⎢
⎢
⎢
⎣

2 1 + 2i −2.33 + 0.86i 4.90

0 5.02 · 10−14 + i −2.02 + 6.91 · 10−14i 0.72

t
(97)
31 0 −1.78 · 10−14 − i −0.82

t
(97)
41 t

(97)
42 0 1

⎤

⎥
⎥
⎥
⎥
⎦

,

where t
(97)
31 = 2.06·10−17+7.15·10−49i, t

(97)
41 = −5.59·10−17 and t

(97)
42 = −4.26·10−18,

respectively. •

Example 5.13 Consider the pseudo-spectral differentiation matrix (10.73) of order
5. This matrix is singular, with a unique eigenvalue λ = 0 of algebraic multiplic-
ity equal to 5 (see [CHQZ06], p. 44). In this case the QR method with double
shift provides an inaccurate approximation of the spectrum of the matrix. Indeed,
using Program 37, with tol=eps, the method converges after 59 iterations to an
upper triangular matrix with diagonal entries given by 0.0020, 0.0006± 0.0019i and
−0.0017 ± 0.0012i, respectively. Using the MATLAB intrinsic function eig yields
instead the eigenvalues −0.0024, −0.0007 ± 0.0023i and 0.0019 ± 0.0014i. •

A basic implementation of the QR iteration with double shift is provided in
Program 37. The input/output parameters are the same as those of Program
36. The output matrix T is the approximate Schur form of matrix A.

Program 37 - qr2shift : QR iteration with double shift

function [T,iter]=qr2shift(A,tol,nmax)
%QR2SHIFT QR iteration with double shifting technique.
% [T,ITER]=QR2SHIFT(A,TOL,NMAX) computes after ITER iterations the real
% Schur form T of the matrix A with a tolerance TOL. NMAX specifies the
% maximum number of iterations.
[n,m]=size(A);
if n˜=m, error(’Only square matrices’); end

220 5 Approximation of Eigenvalues and Eigenvectors

iter=0; [T,Q]=houshess(A);
for k=n:-1:2

I=eye(k);
while abs(T(k,k-1))>tol*(abs(T(k,k))+abs(T(k-1,k-1)))

iter=iter+1;
if iter > nmax, return, end
mu=T(k,k); [Q,R,c,s]=qrgivens(T(1:k,1:k)-mu*I);
T(1:k,1:k)=R*Q+mu*I;
if k > 2

Tdiag2=abs(T(k-1,k-1))+abs(T(k-2,k-2));
if abs(T(k-1,k-2))<=tol*Tdiag2;

[lambda]=eig(T(k-1:k,k-1:k));
[Q,R,c,s]=qrgivens(T(1:k,1:k)-lambda(1)*I);
T(1:k,1:k)=R*Q+lambda(1)*I;
[Q,R,c,s]=qrgivens(T(1:k,1:k)-lambda(2)*I);
T(1:k,1:k)=R*Q+lambda(2)*I;

end
end

end
T(k,k-1)=0;

end
I=eye(2);
while (abs(T(2,1))>tol*(abs(T(2,2))+abs(T(1,1)))) & (iter<=nmax)

iter=iter+1;
mu=T(2,2);
[Q,R,c,s]=qrgivens(T(1:2,1:2)-mu*I);
T(1:2,1:2)=R*Q+mu*I;

end
return

5.8 Computing the Eigenvectors and the SVD
of a Matrix

The power and inverse iterations described in Section 5.3.2 can be used to
compute a selected number of eigenvalue/eigenvector pairs. If all the eigen-
values and eigenvectors of a matrix are needed, the QR iteration can be prof-
itably employed to compute the eigenvectors as shown in Sections 5.8.1 and
5.8.2. In Section 5.8.3 we deal with the computation of the singular value
decomposition (SVD) of a given matrix.

5.8.1 The Hessenberg Inverse Iteration

For any approximate eigenvalue λ computed by the QR iteration as described
in Section 5.7.2, the inverse iteration (5.28) can be applied to the matrix
H = QT AQ in Hessenberg form, yielding an approximate eigenvector q. Then,

5.8 Computing the Eigenvectors and the SVD of a Matrix 221

the eigenvector x associated with λ is computed as x = Qq. Clearly, one
can take advantage of the structure of the Hessenberg matrix for an efficient
solution of the linear system at each step of (5.28). Typically, only one iteration
is required to produce an adequate approximation of the desired eigenvector
x (see [GL89], Section 7.6.1 and [PW79] for more details).

5.8.2 Computing the Eigenvectors from the Schur Form
of a Matrix

Suppose that the (approximate) Schur form QHAQ=T of a given matrix A∈
R

n×n has been computed by the QR iteration with double shift, Q being a
unitary matrix and T being upper triangular.

Then, if Ax=λx, we have QHAQQHx= QH λx, i.e., letting y=QHx, we
have that T y=λy holds. Therefore y is an eigenvector of T, so that to compute
the eigenvectors of A we can work directly on the Schur form T.

Assume for simplicity that λ = tkk ∈ C is a simple eigenvalue of A. Then
the upper triangular matrix T can be decomposed as

T =

⎡

⎢
⎢
⎣

T11 v T13

0 λ wT

0 0 T33

⎤

⎥
⎥
⎦ ,

where T11 ∈ C
(k−1)×(k−1) and T33 ∈ C

(n−k)×(n−k) are upper triangular ma-
trices, v∈ C

k−1, w∈ C
n−k and λ �∈ σ(T11) ∪ σ(T33).

Thus, letting y = [yT
k−1, y,yT

n−k]T , with yk−1 ∈ C
k−1, y ∈ C and yn−k ∈

C
n−k, the matrix eigenvector problem (T - λI) y=0 can be written as

⎧
⎪⎪⎨

⎪⎪⎩

(T11 − λIk−1)yk−1+ vy+ T13yn−k = 0,

wT yn−k = 0,

(T33 − λIn−k)yn−k = 0.

(5.56)

Since λ is simple, both matrices T11−λIk−1 and T33−λIn−k are nonsingular,
so that the third equation in (5.56) yields yn−k = 0 and the first equation
becomes

(T11 − λIk−1)yk−1 = −vy.

Setting arbitrarily y = 1 and solving the triangular system above for yk−1

yields (formally)

y =

⎛

⎜
⎜
⎝

−(T11 − λIk−1)−1v

1

0

⎞

⎟
⎟
⎠ .

The desired eigenvector x can then be computed as x=Qy.

222 5 Approximation of Eigenvalues and Eigenvectors

An efficient implementation of the above procedure is carried out in the
intrinsic MATLAB function eig. Invoking this function with the format [V,
D]= eig(A) yields the matrix V whose columns are the right eigenvectors
of A and the diagonal matrix D contains its eigenvalues. Further details can
be found in the strvec subroutine in the LAPACK library, while for the
computation of eigenvectors in the case where A is symmetric, we refer to
[GL89], Chapter 8 and [Dem97], Section 5.3.

5.8.3 Approximate Computation of the SVD of a Matrix

In this section we describe the Golub-Kahan-Reinsch algorithm for the com-
putation of the SVD of a matrix A ∈ R

m×n with m ≥ n (see [GL89], Section
5.4). The method consists of two phases, a direct one and an iterative one.

In the first phase A is transformed into an upper trapezoidal matrix of the
form

UT AV =
[

B
0

]

, (5.57)

where U and V are two orthogonal matrices and B ∈ R
n×n is upper bidiagonal.

The matrices U and V are generated using n + m − 3 Householder matrices
U1, . . . ,Un,V1, . . . ,Vn−2 as follows.

The algorithm initially generates U1 in such a way that the matrix A(1) =
U1A has a

(1)
i1 = 0 if i > 1. Then, V1 is determined so that A(2) = A(1)V1 has

a
(2)
1j = 0 for j > 2, preserving at the same time the null entries of the previous

step. The procedure is repeated starting from A(2), and taking U2 such that
A(3) = U2A(2) has a

(3)
i2 = 0 for i > 2 and V2 in such a way that A(4) = A(3)V2

has a
(4)
2j = 0 for j > 3, yet preserving the null entries already generated. For

example, in the case m = 5, n = 4 the first two steps of the reduction process
yield

A(1) = U1A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

• • • •
0 • • •
0 • • •
0 • • •
0 • • •

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−→ A(2) = A(1)V1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

• • 0 0

0 • • •
0 • • •
0 • • •
0 • • •

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

having denoted by • the entries of the matrices that in principle are different
than zero. After at most m − 1 steps, we find (5.57) with

U = U1U2 · · · Um−1, V = V1V2 · · · Vn−2.

In the second phase, the obtained matrix B is reduced into a diagonal
matrix Σ using the QR iteration. Precisely, a sequence of upper bidiagonal

5.9 The Generalized Eigenvalue Problem 223

matrices B(k) are constructed such that, as k → ∞, their off-diagonal entries
tend to zero quadratically and the diagonal entries tend to the singular values
σi of A. In the limit, the process generates two orthogonal matrices W and Z
such that

WT BZ = Σ = diag(σ1, . . . , σn).

The SVD of A is then given by

UT AV =
[

Σ
0

]

,

with U = Udiag(W, Im−n) and V = VZ.
The computational cost of this procedure is 2m2n + 4mn2 + 9

2n3 flops,
which reduces to 2mn2 − 2

3n3 flops if only the singular values are computed.
In this case, recalling what was stated in Section 3.13 about AT A, the method
described in the present section is preferable to computing directly the eigen-
values of AT A and then taking their square roots.

As for the stability of this procedure, it can be shown that the computed
σi turn out to be the singular values of the matrix A + δA with

‖δA‖2 ≤ Cmnu‖A‖2,

Cmn being a constant dependent on n, m and the roundoff unit u. For other ap-
proaches to the computation of the SVD of a matrix, see [Dat95] and [GL89].

5.9 The Generalized Eigenvalue Problem

Let A,B ∈ C
n×n be two given matrices; for any z ∈ C, we call A−zB a matrix

pencil and denote it by (A,B). The set σ(A,B) of the eigenvalues of (A,B) is
defined as

σ(A,B) = {µ ∈ C : det(A − µB) = 0} .

The generalized matrix eigenvalue problem can be formulated as: find λ ∈
σ(A,B) and a nonnull vector x ∈ C

n such that

Ax = λBx. (5.58)

The pair (λ,x) satisfying (5.58) is an eigenvalue/eigenvector pair of the pencil
(A,B). Note that by setting B=In in (5.58) we recover the standard matrix
eigenvalue problem considered thus far.

Problems like (5.58) arise frequently in engineering applications, e.g., in
the study of vibrations of structures (buildings, aircrafts and bridges) or in
the mode analysis for waveguides (see [Inm94] and [Bos93]). Another example
is the computation of the extremal eigenvalues of a preconditioned matrix
P−1A (in which case B = P in (5.58)) when solving a linear system with an
iterative method (see Remark 4.2).

224 5 Approximation of Eigenvalues and Eigenvectors

Let us introduce some definitions. We say that the pencil (A,B) is regular
if det(A−zB) is not identically zero, otherwise the pencil is singular. When
(A,B) is regular, p(z) = det(A − zB) is the characteristic polynomial of the
pencil; denoting by k the degree of p, the eigenvalues of (A,B) are defined as:

1. the roots of p(z) = 0, if k = n;
2. ∞ if k < n (with multiplicity equal to n − k).

Example 5.14 (Taken from [Par80], [Saa92] and [GL89])

A =

[
−1 0

0 1

]

, B =

[
0 1
1 0

]

p(z) = z2 + 1 =⇒ σ(A, B) = ±i;

A =

[
−1 0

0 0

]

, B =

[
0 0
0 1

]

p(z) = z =⇒ σ(A, B) = {0, ∞} ;

A =

[
1 2
0 0

]

, B =

[
1 0
0 0

]

p(z) = 0 =⇒ σ(A, B) = C.

The first pair of matrices shows that symmetric pencils, unlike symmetric matrices,
may exhibit complex conjugate eigenvalues. The second pair is a regular pencil dis-
playing an eigenvalue equal to infinity, while the third pair is an example of singular
pencil. •

5.9.1 Computing the Generalized Real Schur Form

The definitions and examples above imply that the pencil (A,B) has n finite
eigenvalues iff B is nonsingular.

In such a case, a possible approach to the solution of problem (5.58) is
to transform it into the equivalent eigenvalue problem Cx = λx, where the
matrix C is the solution of the system BC = A, then apply the QR iteration
to C. For actually computing the matrix C, one can use Gauss elimination
with pivoting or the techniques shown in Section 3.6. This procedure can
yield inaccurate results if B is ill-conditioned, since computing C is affected
by rounding errors of the order of u ‖A‖2‖B−1‖2 (see [GL89], p. 376).

A more attractive approach is based on the following result, which gener-
alizes the Schur decomposition theorem 1.5 to the case of regular pencils (for
a proof, see [Dat95], p. 497).

Property 5.10 (Generalized Schur decomposition) Let (A,B) be a reg-
ular pencil. Then, there exist two unitary matrices U and Z such that UHAZ =
T, UHBZ = S, where T and S are upper triangular. For i = 1, . . . , n the eigen-
values of (A,B) are given by

λi = tii/sii, if sii �= 0,

λi = ∞, if tii �= 0, sii = 0.

5.9 The Generalized Eigenvalue Problem 225

Exactly as in the matrix eigenvalue problem, the generalized Schur form can-
not be explicitly computed, so the counterpart of the real Schur form (5.34)
has to be computed. Assuming that the matrices A and B are real, it can be
shown that there exist two orthogonal matrices Ũ and Z̃ such that T̃ = ŨT AZ̃
is upper quasi-triangular and S̃ = ŨT BZ̃ is upper triangular. This decomposi-
tion is known as the generalized real Schur decomposition of a pair (A,B) and
can be computed by a suitably modified version of the QR algorithm, known
as QZ iteration, which consists of the following steps (for a more detailed
description, see [GL89], Section 7.7, [Dat95], Section 9.3):

1. reduce A and B into upper Hessenberg form and upper triangular form,
respectively, i.e., find two orthogonal matrices Q and Z such that A =
QT AZ is upper Hessenberg and B = QT BZ is upper triangular;

2. the QR iteration is applied to the matrix AB−1 to reduce it to real Schur
form.

To save computational resources, the QZ algorithm overwrites the matrices
A and B on their upper Hessenberg and triangular forms and requires 30n3

flops; an additional cost of 36n3 operations is required if Q and Z are also
needed. The method is implemented in the LAPACK library in the subroutine
sgges and can be invoked in the MATLAB environment with the command
eig(A,B).

5.9.2 Generalized Real Schur Form of Symmetric-Definite Pencils

A remarkable situation occurs when both A and B are symmetric, and one of
them, say B, is also positive definite. In such a case, the pair (A,B) forms a
symmetric-definite pencil for which the following result holds.

Theorem 5.7 The symmetric-definite pencil (A,B) has real eigenvalues and
linearly independent eigenvectors. Moreover, the matrices A and B can be
simultaneously diagonalized. Precisely, there exists a nonsingular matrix X ∈
R

n×n such that

XT AX = Λ = diag(λ1, λ2, . . . , λn), XT BX = In,

where for i = 1, . . . , n, λi are the eigenvalues of the pencil (A,B).

Proof. Since B is symmetric positive definite, it admits a unique Cholesky fac-
torization B = HT H, where H is upper triangular (see Section 3.4.2). From (5.58)
we deduce that Cz = λz with C = H−T AH−1, z = Hx, where (λ,x) is an eigen-
value/eigenvector pair of (A,B).

The matrix C is symmetric; therefore, its eigenvalues are real and a set of ortho-
normal eigenvectors [y1, . . . ,yn] = Y exists. As a consequence, letting X = H−1Y
allows for simultaneously diagonalizing both A and B since

XT AX = YT H−T AH−1Y = YT CY = Λ = diag(λ1, . . . , λn),

XT BX = YT H−T BH−1Y = YT Y = In.

�

226 5 Approximation of Eigenvalues and Eigenvectors

The following QR-Cholesky algorithm computes the eigenvalues λi and the
corresponding eigenvectors xi of a symmetric-definite pencil (A,B), for i =
1, . . . , n (see for more details [GL89], Section 8.7, [Dat95], Section 9.5):

1. compute the Cholesky factorization B = HT H;
2. compute C = H−T AH−1;
3. for i = 1, . . . , n, compute the eigenvalues λi and eigenvectors zi of the

symmetric matrix C using the QR iteration. Then construct from the
set {zi} an orthonormal set of eigenvectors {yi} (using, for instance, the
modified Gram-Schmidt procedure of Section 3.4.3);

4. for i = 1, . . . , n, compute the eigenvectors xi of the pencil (A,B) by solving
the systems Hxi = yi.

This algorithm requires an order of 14n3 flops and it can be shown (see
[GL89], p. 464) that, if λ̂ is a computed eigenvalue, then

λ̂ ∈ σ(H−T AH−1 + E), with ‖E‖2 � u‖A‖2‖B−1‖2.

Thus, the generalized eigenvalue problem in the symmetric-definite case may
become unstable with respect to rounding errors propagation if B is ill-
conditioned. For a stabilized version of the QR-Cholesky method, see [GL89],
p. 464 and the references cited therein.

5.10 Methods for Eigenvalues of Symmetric Matrices

In this section we deal with the computation of the eigenvalues of a symmet-
ric matrix A ∈ R

n×n. Besides the QR method previously examined, specific
algorithms which take advantage of the symmetry of A are available.

Among these, we first consider the Jacobi method, which generates a se-
quence of matrices orthogonally similar to A and converging to the diagonal
Schur form of A. Then, the Sturm sequence and Lanczos procedures are pre-
sented, for handling the case of tridiagonal matrices and large sparse matrices
respectively.

5.10.1 The Jacobi Method

The Jacobi method generates a sequence of matrices A(k) that are orthogo-
nally similar to matrix A and converge to a diagonal matrix whose entries are
the eigenvalues of A. This is done using the Givens similarity transformations
(5.43) as follows.

Given A(0) = A, for any k = 1, 2, . . ., a pair of indices p and q is fixed,
with 1 ≤ p < q ≤ n. Next, letting Gpq = G(p, q, θ), the matrix A(k) =
(Gpq)T A(k−1)Gpq, orthogonally similar to A, is constructed in such a way that

a
(k)
ij = 0 if (i, j) = (p, q). (5.59)

5.10 Methods for Eigenvalues of Symmetric Matrices 227

Letting c = cos θ and s = sin θ, the procedure for computing the entries of
A(k) that are changed with respect to those of A(k−1), can be written as

⎡

⎣
a
(k)
pp a

(k)
pq

a
(k)
pq a

(k)
qq

⎤

⎦ =

[
c s

−s c

]T
⎡

⎣
a
(k−1)
pp a

(k−1)
pq

a
(k−1)
pq a

(k−1)
qq

⎤

⎦

[
c s

−s c

]

. (5.60)

If a
(k−1)
pq = 0, we can satisfy (5.59) by taking c = 1 and s = 0. If a

(k−1)
pq �= 0,

letting t = s/c, (5.60) requires the solution of the following algebraic equation

t2 + 2ηt − 1 = 0, η =
a
(k−1)
qq − a

(k−1)
pp

2a
(k−1)
pq

. (5.61)

The root t = 1/(η +
√

1 + η2) is chosen in (5.61) if η ≥ 0, otherwise we take
t = −1/(−η +

√
1 + η2); next, we let

c =
1√

1 + t2
, s = ct. (5.62)

To examine the rate at which the off-diagonal entries of A(k) tend to zero,
it is convenient to introduce, for any matrix M ∈ R

n×n, the nonnegative
quantity

Ψ(M) =

⎛

⎜
⎝

n∑

i,j=1
i�=j

m2
ij

⎞

⎟
⎠

1/2

=

(

‖M‖2
F −

n∑

i=1

m2
ii

)1/2

. (5.63)

The Jacobi method ensures that Ψ(A(k)) ≤ Ψ(A(k−1)) for any k ≥ 1. Indeed,
the computation of (5.63) for matrix A(k) yields

(Ψ(A(k)))2 = (Ψ(A(k−1)))2 − 2
(
a(k−1)

pq

)2

≤ (Ψ(A(k−1)))2. (5.64)

The estimate (5.64) suggests that, at each step k, the optimal choice of the
indices p and q is that corresponding to the entry in A(k−1) such that

|a(k−1)
pq | = max

i�=j
|a(k−1)

ij |.

The computational cost of this strategy is of the order of n2 flops for
the search of the maximum module entry, while the updating step A(k) =
(Gpq)T A(k−1)Gpq requires only a cost of the order of n flops, as already no-
ticed in Section 5.6.5. It is thus convenient to resort to the so called row
cyclic Jacobi method, in which the choice of the indices p and q is done by a
row-sweeping of the matrix A(k) according to the following algorithm: for any
k = 1, 2, . . . and for any i-th row of A(k) (i = 1, . . . , n − 1), we set p = i and
q = i + 1, . . . , n. Each complete sweep requires N = n(n − 1)/2 Jacobi trans-
formations. Assuming that |λi − λj | ≥ δ for i �= j, it can be shown that the
cyclic Jacobi method converges quadratically, that is (see [Wil65], [Wil62])

228 5 Approximation of Eigenvalues and Eigenvectors

Table 5.3. Convergence of the cyclic Jacobi algorithm

Sweep Ψ(H
(k)
4) Sweep Ψ(H

(k)
4) Sweep Ψ(H

(k)
4)

1 5.262 · 10−2 2 3.824 · 10−5 3 5.313 · 10−16

Ψ(A(k+N)) ≤ 1
δ
√

2
(Ψ(A(k)))2, k = 1, 2, . . .

For further details of the algorithm, we refer to [GL89], Section 8.4.

Example 5.15 Let us apply the cyclic Jacobi method to the Hilbert matrix H4,
whose eigenvalues read (to five significant figures) λ1 = 1.5002, λ2 = 1.6914 · 10−1,
λ3 = 6.7383 · 10−3 and λ4 = 9.6702 · 10−5. Running Program 40 with tol = 10−15,
the method converges in 3 sweeps to a matrix whose diagonal entries coincide with
the eigenvalues of H4 unless 4.4409 ·10−16. As for the off-diagonal entries, the values
attained by Ψ(H

(k)
4) are reported in Table 5.3. •

Formulae (5.63) and (5.62) are implemented in Programs 38 and 39.

Program 38 - psinorm : Evaluation of Ψ(A)

function [psi]=psinorm(A)
%PSINORM Evaluation of Psi(A).
[n,m]=size(A);
if n˜=m, error(’Only square matrices’); end
psi=0;
for i=1:n-1

j=[i+1:n];
psi = psi + sum(A(i,j).ˆ2+A(j,i).ˆ2’);

end
psi=sqrt(psi);
return

Program 39 - symschur : Evaluation of c and s

function [c,s]=symschur(A,p,q)
%SYMSCHUR Evaluation of parameters c and s in (5.62).
if A(p,q)==0

c=1; s=0;
else

eta=(A(q,q)-A(p,p))/(2*A(p,q));
if eta>=0

t=1/(eta+sqrt(1+etaˆ2));
else

t=-1/(-eta+sqrt(1+etaˆ2));
end
c=1/sqrt(1+tˆ2); s=c*t;

end
return

5.10 Methods for Eigenvalues of Symmetric Matrices 229

A coding of the cyclic Jacobi method is implemented in Program 40. This
program gets as input parameters the symmetric matrix A ∈ R

n×n and a
tolerance tol. The program returns a matrix D = GT AG, G being orthogonal,
such that Ψ(D) ≤ tol‖A‖F , the value of Ψ(D) and the number of sweeps to
achieve convergence.

Program 40 - cycjacobi : Cyclic Jacobi method for symmetric matrices

function [D,sweep,psi]=cycjacobi(A,tol,nmax)
%CYCJACOBI Cyclic Jacobi method.
% [D,SWEEP,PSI]=CYCJACOBI(A,TOL) computes the eigenvalues D of the symmetric
% matrix A. TOL specifies the tolerance of the method. PSI=PSINORM(D) and
% SWEEP is the number of sweeps. NMAX specifies the maximum number of iterations.
[n,m]=size(A);
if n˜=m, error(’Only square matrices’); end
D=A;
psi=norm(A,’fro’);
epsi=tol*psi;
psi=psinorm(D);
sweep=0;
iter=0;
while psi>epsi&iter<=nmax

iter = iter + 1;
sweep=sweep+1;
for p=1:n-1

for q=p+1:n
[c,s]=symschur(D,p,q);
[D]=gacol(D,c,s,1,n,p,q);
[D]=garow(D,c,s,p,q,1,n);

end
end
psi=psinorm(D);

end
return

5.10.2 The Method of Sturm Sequences

In this section we deal with the calculation of the eigenvalues of a real, tridi-
agonal and symmetric matrix T. Typical instances of such a problem arise
when applying the Householder transformation to a given symmetric matrix
A (see Section 5.6.2) or when solving boundary value problems in one spatial
dimension (see for an example Section 5.12.1).

We analyze the method of Sturm sequences, or Givens method, introduced
in [Giv54]. For i = 1, . . . , n, we denote by di the diagonal entries of T and by
bi, i = 1, . . . , n − 1, the elements of the upper and lower subdiagonals of T.
We shall assume that bi �= 0 for any i. Otherwise, indeed, the computation
reduces to problems of less complexity.

230 5 Approximation of Eigenvalues and Eigenvectors

Letting Ti be the principal submatrix of order i of matrix T and p0(x) =
1, we define for i = 1, . . . , n the following sequence of polynomials pi(x) =
det(Ti − xIi)

p1(x) = d1 − x,

pi(x) = (di − x)pi−1(x) − b2
i−1pi−2(x), i = 2, . . . , n.

(5.65)

It can be checked that pn is the characteristic polynomial of T; the computa-
tional cost of its evaluation at point x is of the order of 2n flops. The sequence
(5.65) is called the Sturm sequence owing to the following result, for whose
proof we refer to [Wil65], Chapter 2, Section 47 and Chapter 5, Section 37.

Property 5.11 (of Sturm sequence) For i = 2, . . . , n the eigenvalues of
Ti−1 strictly separate those of Ti, that is

λi(Ti) < λi−1(Ti−1) < λi−1(Ti) < . . . < λ2(Ti) < λ1(Ti−1) < λ1(Ti).

Moreover, letting for any real number µ

Sµ = {p0(µ), p1(µ), . . . , pn(µ)},

the number s(µ) of sign changes in Sµ yields the number of eigenvalues of
T that are strictly less than µ, with the convention that pi(µ) has opposite
sign to pi−1(µ) if pi(µ) = 0 (two consecutive elements in the sequence cannot
vanish at the same value of µ).

Example 5.16 Let T be the tridiagonal part of the Hilbert matrix H4 ∈ R
4×4,

having entries hij = 1/(i + j − 1). The eigenvalues of T are (to five significant
figures) λ1 = 1.2813, λ2 = 0.4205, λ3 = −0.1417 and λ4 = 0.1161. Taking µ = 0,
Program 41 computes the following Sturm sequence

S0 = {p0(0), p1(0), p2(0), p3(0), p4(0)} = {1, 1, 0.0833,−0.0458,−0.0089},

from which, applying Property 5.11, one concludes that matrix T has one eigen-
value less than 0. In the case of matrix T = tridiag4(−1, 2,−1), with eigenvalues
{0.38, 1.38, 2.62, 3.62} (to three significant figures), we get, taking µ = 3

{p0(3), p1(3), p2(3), p3(3), p4(3)} = {1,−1, 0, 1,−1},

which shows that matrix T has three eigenvalues less than 3, since three sign
changes occur. •

The Givens method for the calculation of the eigenvalues of T proceeds as
follows. Letting b0 = bn = 0, Theorem 5.2 yields the interval J = [α, β] which
contains the spectrum of T, where

α = min
1≤i≤n

[di − (|bi−1| + |bi|)] , β = max
1≤i≤n

[di + (|bi−1| + |bi|)] .

5.10 Methods for Eigenvalues of Symmetric Matrices 231

Table 5.4. Convergence of the Givens method for the calculation of the eigenvalue
λ2 of the matrix T in Example 5.16

k a(k) b(k) c(k) s(k) k a(k) b(k) c(k) s(k)

0 0 4.000 2.0000 2 7 2.5938 2.625 2.6094 2
1 2.0000 4.000 3.0000 3 8 2.6094 2.625 2.6172 2
2 2.0000 3.000 2.5000 2 9 2.6094 2.625 2.6172 2
3 2.5000 3.000 2.7500 3 10 2.6172 2.625 2.6211 3
4 2.5000 2.750 2.6250 3 11 2.6172 2.621 2.6191 3
5 2.5000 2.625 2.5625 2 12 2.6172 2.619 2.6182 3
6 2.5625 2.625 2.5938 2 13 2.6172 2.618 2.6177 2

The set J is used as an initial guess in the search for generic eigenvalues λi

of matrix T, for i = 1, . . . , n, using the bisection method (see Chapter 6).
Precisely, given a(0) = α and b(0) = β, we let c(0) = (α+β)/2 and compute

s(c(0)); then, recalling Property 5.11, we let b(1) = c(0) if s(c(0)) > (n − i),
otherwise we set a(1) = c(0). After r iterations, the value c(r) = (a(r) + b(r))/2
provides an approximation of λi within (|α| + |β|) · 2−(r+1), as is shown in
(6.9).

A systematic procedure can be set up to store any information about
the position within the interval J of the eigenvalues of T that are being
computed by the Givens method. The resulting algorithm generates a sequence
of neighboring subintervals a

(r)
j , b

(r)
j , for j = 1, . . . , n, each one of arbitrarily

small length and containing one eigenvalue λj of T (for further details, see
[BMW67]).

Example 5.17 Let us employ the Givens method to compute the eigenvalue λ2 �
2.62 of matrix T considered in Example 5.16. Letting tol=10−4 in Program 42 we
obtain the results reported in Table 5.4, which demonstrate the convergence of the
sequence c(k) to the desired eigenvalue in 13 iterations. We have denoted for brevity,
s(k) = s(c(k)). Similar results are obtained by running Program 42 to compute the
remaining eigenvalues of T. •

An implementation of the polynomial evaluation (5.65) is given in Program
41. This program receives in input the vectors dd and bb containing the main
and the upper diagonals of T. The output values pi(x) are stored, for i =
0, . . . , n, in the vector p.

Program 41 - sturm : Sturm sequence evaluation

function [p]=sturm(dd,bb,x)
%STURM Sturm sequence
% P=STURM(D,B,X) evaluates the Sturm sequence (5.65) at X.
n=length(dd);
p(1)=1;
p(2)=dd(1)-x;
for i=2:n

232 5 Approximation of Eigenvalues and Eigenvectors

p(i+1)=(dd(i)-x)*p(i)-bb(i-1)ˆ2*p(i-1);
end
return

A basic implementation of the Givens method is provided in Program 42.
In input, ind is the pointer to the searched eigenvalue, while the other parame-
ters are similar to those in Program 41. In output the values of the elements of
sequences a(k), b(k) and c(k) are returned, together with the required number
of iterations niter and the sequence of sign changes s(c(k)).

Program 42 - givsturm : Givens method using the Sturm sequence

function [ak,bk,ck,nch,niter]=givsturm(dd,bb,ind,tol)
%GIVSTURM Givens method with Sturm sequence
[a, b]=bound(dd,bb); dist=abs(b-a); s=abs(b)+abs(a);
n=length(dd); niter=0; nch=[];
while dist>tol*s

niter=niter+1;
c=(b+a)/2;
ak(niter)=a;
bk(niter)=b;
ck(niter)=c;
nch(niter)=chcksign(dd,bb,c);
if nch(niter)>n-ind

b=c;
else

a=c;
end
dist=abs(b-a); s=abs(b)+abs(a);

end
return

Program 43 - chcksign : Sign changes in the Sturm sequence

function nch=chcksign(dd,bb,x)
%CHCKSIGN Determines the sign changes in the Sturm sequence.
[p]=sturm(dd,bb,x);
n=length(dd);
nch=0;
s=0;
for i=2:n+1

if p(i)*p(i-1)<=0
nch=nch+1;

end
if p(i)==0

s=s+1;
end

end
nch=nch-s;
return

5.11 The Lanczos Method 233

Program 44 - bound : Calculation of the interval J = [α, β]

function [alfa,beta]=bound(dd,bb)
%BOUND Calculation of the interval [ALPHA,BETA] for the Givens method.
n=length(dd);
alfa=dd(1)-abs(bb(1));
temp=dd(n)-abs(bb(n-1));
if temp<alfa

alfa=temp;
end
for i=2:n-1

temp=dd(i)-abs(bb(i-1))-abs(bb(i));
if temp<alfa

alfa=temp;
end

end
beta=dd(1)+abs(bb(1)); temp=dd(n)+abs(bb(n-1));
if temp>beta

beta=temp;
end
for i=2:n-1

temp=dd(i)+abs(bb(i-1))+abs(bb(i));
if temp>beta

beta=temp;
end

end
return

5.11 The Lanczos Method

Let A ∈ R
n×n be a symmetric sparse matrix, whose (real) eigenvalues are

ordered as
λ1 ≥ λ2 ≥ . . . ≥ λn−1 ≥ λn. (5.66)

When n is very large, the Lanczos method [Lan50] described in Section 4.4.3
can be applied to approximate the extremal eigenvalues λn and λ1. It generates
a sequence of tridiagonal matrices Hm whose extremal eigenvalues rapidly
converge to the extremal eigenvalues of A.

To estimate the convergence of the tridiagonalization process, we introduce
the Rayleigh quotient r(x) = (xT Ax)/(xT x) associated with a nonnull vector
x ∈ R

n. The following result, known as Courant-Fisher Theorem, holds (for
the proof see [GL89], p. 394)

λ1(A) = max
x∈Rn

x�=0

r(x), λn(A) = min
x∈Rn

x�=0

r(x).

234 5 Approximation of Eigenvalues and Eigenvectors

Its application to the matrix Hm = VT
mAVm, yields

λ1(Hm) = maxx∈Rn

x�=0

(Vmx)T A(Vmx)
xT x

= max
‖x‖2=1

r(Hmx) ≤ λ1(A),

λm(Hm) = minx∈Rn

x�=0

(Vmx)T A(Vmx)
xT x

= min
‖x‖2=1

r(Hmx) ≥ λn(A).
(5.67)

At each step of the Lanczos method, the estimates (5.67) provide a lower
and upper bound for the extremal eigenvalues of A. The convergence of the
sequences {λ1(Hm)} and {λm(Hm)} to λ1 and λn, respectively, is governed
by the following property, for whose proof we refer to [GL89], pp. 475-477.

Property 5.12 Let A ∈ R
n×n be a symmetric matrix with eigenvalues or-

dered as in (5.66) and let u1, . . . ,un be the corresponding orthonormal eigen-
vectors. If η1, . . . , ηm denote the eigenvalues of Hm, with η1 ≥ η2 ≥ . . . ≥ ηm,
then

λ1 ≥ η1 ≥ λ1 −
(λ1 − λn)(tan φ1)2

(Tm−1(1 + 2ρ1))2
,

where cos φ1 = |(q(1))T u1|, ρ1 = (λ1 − λ2)/(λ2 − λn) and Tm−1(x) is the
Chebyshev polynomial of degree m − 1 (see Section 10.1.1).

A similar result holds of course for the convergence estimate of the eigenvalues
ηm to λn

λn ≤ ηm ≤ λn +
(λ1 − λn)(tan φn)2

(Tm−1(1 + 2ρn))2
,

where ρn = (λn−1 − λn)/(λ1 − λn−1) and cos φn = |(q(n))T un|.
A naive implementation of the Lanczos algorithm can be affected by numerical
instability due to propagation of rounding errors. In particular, the Lanczos
vectors will not verify the mutual orthogonality relation, making the extremal
properties (5.67) false. This requires careful programming of the Lanczos it-
eration by incorporating suitable reorthogonalization procedures as described
in [GL89], Sections 9.2.3-9.2.4.

Despite this limitation, the Lanczos method has two relevant features: it
preserves the sparsity pattern of the matrix (unlike Householder tridiagonal-
ization), and such a property makes it quite attractive when dealing with large
size matrices; furthermore, it converges to the extremal eigenvalues of A much
more rapidly than the power method does (see [Kan66], [GL89], p. 477).

The Lanczos method can be generalized to compute the extremal eigenval-
ues of an unsymmetric matrix along the same lines as in Section 4.5 in the case
of the solution of a linear system. Details on the practical implementation of
the algorithm and a theoretical convergence analysis can be found in [LS96]
and [Jia95], while some documentation of the latest software can be found
in www.caam.rice.edu/software/ARPACK (see also the MATLAB command
eigs).

5.11 The Lanczos Method 235

An implementation of the Lanczos algorithm is provided in Program 45. The
input parameter m is the size of the Krylov subspace in the tridiagonalization
procedure, while tol is a tolerance monitoring the size of the increment of the
computed eigenvalues between two successive iterations. The output vectors
lmin, lmax and deltaeig contain the sequences of the approximate extremal
eigenvalues and of their increments between successive iterations. Program 42
is invoked for computing the eigenvalues of the tridiagonal matrix Hm.

Program 45 - eiglancz : Extremal eigenvalues of a symmetric matrix

function [lmin,lmax,deltaeig,k]=eiglancz(A,m,tol)
%EIGLANCZ Lanczos method.
% [LMIN,LMAX,DELTAEIG,ITER]=EIGLANCZ(A,M,TOL) computes the extremal
% eigenvalues LMIN and LMAX for the symmetric matrix A after ITER iterations.
% TOL specifies the tolerance of the method and M is the dimension of the Krylov
% subspace.
[n,dim]=size(A);
if n˜=dim, error(’Only square matrices’); end
V=[0*[1:n]’,[1,0*[1:n-1]]’];
beta(1)=0; normb=1; k=1; deltaeig(1)=1;
while k<=m & normb>=eps & deltaeig(k)>tol

vk = V(:,k+1); w = A*vk-beta(k)*V(:,k);
alpha(k)= w’*vk; w = w - alpha(k)*vk;
normb = norm(w,2); beta(k+1)=normb;
if normb ˜= 0

V=[V,w/normb];
if k==1

lmin(1)=alpha;
lmax(1)=alpha;
k=k+1;
deltaeig(k)=1;

else
d=alpha;
b=beta(2:length(beta)-1);
[ak,bk,ck,nch,niter]=givsturm(d,b,1,tol);
lmax(k)=(ak(niter)+bk(niter))/2;
[ak,bk,ck,nch,niter]=givsturm(d,b,k,tol);
lmin(k)=(ak(niter)+bk(niter))/2;
deltaeig(k+1)=max(abs(lmin(k)-lmin(k-1)),abs(lmax(k)-lmax(k-1)));
k=k+1;

end
else

fprintf(’Breakdown’);
d=alpha; b=beta(2:length(beta)-1);
[ak,bk,ck,nch,niter]=givsturm(d,b,1,tol);
lmax(k)=(ak(niter)+bk(niter))/2;
[ak,bk,ck,nch,niter]=givsturm(d,b,k,tol);
lmin(k)=(ak(niter)+bk(niter))/2;
deltaeig(k+1)=max(abs(lmin(k)-lmin(k-1)),abs(lmax(k)-lmax(k-1)));

236 5 Approximation of Eigenvalues and Eigenvectors

k=k+1;
end

end
k=k-1;
return

Example 5.18 Consider the eigenvalue problem for the matrix A∈ R
n×n with

n = 100, having diagonal entries equal to 2 and off-diagonal entries equal to −1 on
the upper and lower tenth diagonal. Program 45, with m=100 and tol=eps, takes
10 iterations to approximate the extremal eigenvalues of A with an absolute error
of the order of the machine precision. •

5.12 Applications

A classical problem in engineering is to determine the proper or natural fre-
quencies of a system (mechanical, structural or electric). Typically, this leads
to solving a matrix eigenvalue problem. Two examples coming from struc-
tural applications are presented in the forthcoming sections where the buck-
ling problem of a beam and the study of the free vibrations of a bridge are
considered.

5.12.1 Analysis of the Buckling of a Beam

Consider the homogeneous and thin beam of length L shown in Figure 5.4. The
beam is simply supported at the end and is subject to a normal compression
load P at x = L. Denote by y(x) the vertical displacement of the beam;
the structure constraints demand that y(0) = y(L) = 0. Let us consider the
problem of the buckling of the beam. This amounts to determining the critical
load Pcr, i.e. the smallest value of P such that an equilibrium configuration
of the beam exists which is different from being rectilinear. Reaching the
condition of critical load is a warning of structure instability, so that it is
quite important to determine its value accurately.

y

L
P

x

Fig. 5.4. A simply supported beam subject to a normal compression load

5.12 Applications 237

The explicit computation of the critical load can be worked out under the
assumption of small displacements, writing the equilibrium equation for the
structure in its deformed configuration (see Figure 5.4)

{
−E (J(x)y′(x))′ = Me(x), 0 < x < L,

y(0) = y(L) = 0,
(5.68)

where E is the constant Young’s modulus of the beam and Me(x) = Py(x) is
the momentum of the load P with respect to a generic point of the beam of
abscissa x. In (5.68) we are assuming that the momentum of inertia J can be
varying along the beam, which indeed happens if the beam has nonuniform
cross-section.

Equation (5.68) expresses the equilibrium between the external momen-
tum Me and the internal momentum Mi = −E(Jy′)′ which tends to restore
the rectilinear equilibrium configuration of the beam. If the stabilizing reac-
tion Mi prevails on the unstabilizing action Me, the equilibrium of the initial
rectilinear configuration is stable. The critical situation (buckling of the beam)
clearly arises when Mi = Me.
Assume that J is constant and let α2 = P/(EJ); solving the boundary value
problem (5.68), we get the equation C sin αL = 0, which admits nontrivial
solutions α = (kπ)/L, k = 1, 2, Taking k = 1 yields the value of the
critical load Pcr = π2EJ

L2 .
To solve numerically the boundary value problem (5.68) it is convenient

to introduce for n ≥ 1, the discretization nodes xj = jh, with h = L/(n + 1)
and j = 1, . . . , n, thus defining the vector of nodal approximate displacements
uj at the internal nodes xj (where u0 = y(0) = 0, un+1 = y(L) = 0). Then,
using the finite difference method (see Section 12.2), the calculation of the
critical load amounts to determining the smallest eigenvalue of the tridiagonal
symmetric and positive definite matrix A = tridiagn(−1, 2,−1) ∈ R

n×n.
It can indeed be checked that the finite difference discretization of problem
(5.68) by centered differences leads to the following matrix eigenvalue problem

Au = α2h2u,

where u ∈ R
n is the vector of nodal displacements uj . The discrete coun-

terpart of condition C sin(α) = 0 requires that Ph2/(EJ) coincides with the
eigenvalues of A as P varies.

Denoting by λmin and Ph
cr, the smallest eigenvalue of A and the (ap-

proximate) value of the critical load, respectively, then Ph
cr = (λminEJ)/h2.

Letting θ = π/(n + 1), it can be checked (see Exercise 3, Chapter 4) that the
eigenvalues of matrix A are

λj = 2(1 − cos(jθ)), j = 1, . . . , n. (5.69)

The numerical calculation of λmin has been carried out using the Givens
algorithm described in Section 5.10.2 and assuming n = 10. Running the

238 5 Approximation of Eigenvalues and Eigenvectors

Program 42 with an absolute tolerance equal to the roundoff unit, the solution
λmin � 0.081 has been obtained after 57 iterations.

It is also interesting to analyze the case where the beam has nonuniform
cross-section, since the value of the critical load, unlike the previous situation,
is not exactly known a priori. We assume that, for each x ∈ [0, L], the sec-
tion of the beam is rectangular, with depth a fixed and height σ that varies
according to the rule

σ(x) = s

[

1 +
(

S

s
− 1

)(x

L
− 1

)2
]

, 0 ≤ x ≤ L,

where S and s are the values at the ends, with S ≥ s > 0. The momentum
of inertia, as a function of x, is given by J(x) = (1/12)aσ3(x); proceeding
similarly as before, we end up with a system of linear algebraic equations of
the form

Ãu = (P/E)h2u,

where this time Ã = tridiagn(b,d,b) is a tridiagonal, symmetric and positive
definite matrix having diagonal entries di = J(xi−1/2) + J(xi+1/2), for i =
1, . . . , n, and off-diagonal entries bi = −J(xi+1/2), for i = 1, . . . , n − 1.

Assume the following values of the parameters: a = 0.4 [m], s = a, S =
0.5 [m] and L = 10 [m]. To ensure a correct dimensional comparison, we have
multiplied by J̄ = a4/12 the smallest eigenvalue of the matrix A in the uniform
case (corresponding to S = s = a), obtaining λmin = 1.7283 · 10−4. Running
Program 42, with n = 10, yields in the nonuniform case the value λmin =
2.243 · 10−4. This result confirms that the critical load increases for a beam
having a wider section at x = 0, that is, the structure enters the instability
regime for higher values of the load than in the uniform cross-section case.

5.12.2 Free Dynamic Vibration of a Bridge

We are concerned with the analysis of the free response of a bridge whose
schematic structure is shown in Figure 5.5. The number of the nodes of the
structure is equal to 2n while the number of the beams is 5n. Each horizontal
and vertical beam has a mass equal to m while the diagonal beams have mass
equal to m

√
2. The stiffness of each beam is represented by the spring constant

κ. The nodes labeled by “0” and “2n + 1” are constrained to ground.
Denoting by x and y the vectors of the 2n nodal horizontal and vertical
displacements the free response of the bridge can be studied by solving the
generalized eigenvalue problems

Mx = λKx, My = λKy, (5.70)

where M = mdiag2n(α,b, α, γ,b, γ), where α = 3 +
√

2, b = [β, . . . , β]T ∈
R

n−2 with β = 3/2 +
√

2 and γ = 1 +
√

2,

K = κ

[
K11 K12

K12 K11

]

5.12 Applications 239

2n + 1

n + 2 2n − 2 2n − 1n + 3n + 1 2n

0

1 2 3 n − 2 n − 1 n

Fig. 5.5. Schematic structure of a bridge

for a positive constant κ and where K12 = tridiagn(−1,−1,−1), K11 =
tridiagn(−1,d,−1) with d = [4, 5, . . . , 5, 4]T ∈ R

n. The diagonal matrix M
is the mass matrix while the symmetric and positive definite matrix K is the
stiffness matrix.
For k = 1, . . . , 2n we denote by (λk, zk) any eigenvalue/eigenvector pair of
(5.70) and call ωk =

√
λk the natural frequencies and zk the modes of vibration

of the bridge. The study of the free vibrations is of primary importance in
the design of a structure like a bridge or a multi-story building. Indeed, if
the excitation frequency of an external force (vehicles, wind or, even worse,
an earthquake) coincides with one of the natural frequencies of the structure
then a condition of resonance occurs and, as a result, large oscillations may
dangerously arise.

Let us now deal with the numerical solution of the matrix eigenvalue prob-
lem (5.70). For this purpose we introduce the change of variable z = M1/2x
(or z = M1/2y) so that each generalized eigenvalue problem in (5.70) can be
conveniently reformulated as

Cz = λ̃z,

where λ̃ = 1/λ and the matrix C = M−1/2KM−1/2 is symmetric positive
definite. This property allows us to use the Lanczos method described in
Section 5.11 and also ensures quadratic convergence of the power iterations
(see Section 5.11).

We approximate the first two subdominant eigenvalues λ̃2n and λ̃2n−1

of the matrix C (i.e., its smallest and second smallest eigenvalues) in the
case m = κ = 1 using the deflation procedure considered in Remark 5.3.
The inverse power iteration and the Lanczos method are compared in the
computation of λ̃2n and λ̃2n−1 in Figure 5.6.

The results show the superiority of the Lanczos method over the inverse
iterations only when the matrix C is of small size. This is to be ascribed to
the fact that, as n grows, the progressive influence of the rounding errors
causes a loss of mutual orthogonality of the Lanczos vectors and, in turn,
an increase in the number of iterations for the method to converge. Suitable
reorthogonalization procedures are thus needed to improve the performances
of the Lanczos iteration as pointed out in Section 5.11.

We conclude the free response analysis of the bridge showing in Figure 5.7
(in the case n = 5, m = 10 and κ = 1) the modes of vibration z8 and z10

240 5 Approximation of Eigenvalues and Eigenvectors

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Fig. 5.6. Iterations number of the Lanczos method and of the inverse power method
versus the size 2n of matrix C. The solid and the dash-dotted curves refer to the
inverse power method (for λ̃2n and λ̃2n−1 respectively), while the dashed and the
dotted curves refer to the Lanczos method (still for λ̃2n and λ̃2n−1, respectively)

−1 0 1 2 3 4 5 6 7
−0.5

0

0.5

1

1.5

−1 0 1 2 3 4 5 6 7
−0.5

0

0.5

1

1.5

Fig. 5.7. Modes of vibration corresponding to the natural frequencies ω8 (left)
and ω10 (right). The undeformed configuration of the bridge is drawn in dotted
line

corresponding to the natural frequencies ω8 = 990.42 and ω10 = 2904.59. The
MATLAB built-in function eig has been employed to solve the generalized
eigenvalue problems (5.70) as explained in Section 5.9.1.

5.13 Exercises

1. Using the Gershgorin theorems, localize the eigenvalues of the matrix A which
is obtained setting A = (P−1DP)T and then a13 = 0, a23 = 0, where
D=diag3(1, 50, 100) and

5.13 Exercises 241

P =

⎡

⎢
⎣

1 1 1

10 20 30

100 50 60

⎤

⎥
⎦ .

[Solution : σ(A) = {−151.84, 80.34, 222.5}.]
2. Localize the spectrum of the matrix

A =

⎡

⎢
⎣

1 2 −1

2 7 0

−1 0 5

⎤

⎥
⎦ .

[Solution : σ(A) ⊂ [−2, 9].]
3. Draw the oriented graph of the matrix

A =

⎡

⎢
⎣

1 3 0

0 2 −1

−1 0 2

⎤

⎥
⎦ .

4. Check if the following matrices are reducible.

A1 =

⎡

⎢
⎢
⎢
⎢
⎣

1 0 −1 0

2 3 −2 1

−1 0 −2 0

1 −1 1 4

⎤

⎥
⎥
⎥
⎥
⎦

, A2 =

⎡

⎢
⎢
⎢
⎢
⎣

0 0 1 0

0 0 0 1

0 1 0 0

1 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦

.

[Solution : A1, reducible; A2, irreducible.]
5. Provide an estimate of the number of complex eigenvalues of the matrix

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−4 0 0 0.5 0

2 2 4 −3 1

0.5 0 −1 0 0

0.5 0 0.2 3 0

2 0.5 −1 3 4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

[Hint : Check that A can be reduced to the form

A =

[
M1 M2

0 M3

]

,

where M1 ∈ R
2×2 and M2 ∈ R

3×3. Then, study the eigenvalues of blocks M1

and M2 using the Gershgorin theorems and check that A has no complex
eigenvalues.]

242 5 Approximation of Eigenvalues and Eigenvectors

6. Let A ∈ C
n×n be a diagonal matrix and let Ã = A + E be a perturbation of A

with eii = 0 for i = 1, . . . , n. Show that

|λi(Ã) − λi(A)| ≤
n∑

j=1

|eij |, i = 1, . . . , n. (5.71)

7. Apply estimate (5.71) to the case in which A and E are, for ε ≥ 0, the matrices

A =

[
1 0

0 2

]

, E =

[
0 ε

ε 0

]

.

[Solution : σ(A) = {1, 2} and σ(Ã) = {(3 ∓
√

1 + 4ε2)/2}.]
8. Check that finding the zeros of a polynomial of degree ≤ n with real coefficients

pn(x) =

n∑

k=0

akxk = a0 + a1x + . . . + anxn, an �= 0, ak ∈ R, k = 0, . . . , n

is equivalent to determining the spectrum of the Frobenius matrix C ∈ R
n×n

associated with pn (known as the companion matrix)

C =

⎡

⎢
⎢
⎢
⎢
⎣

−(an−1/an) −(an−2/an) . . . −(a1/an) −(a0/an)
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

⎤

⎥
⎥
⎥
⎥
⎦

.(5.72)

An important consequence of the result above is that, due to Abel’s theorem,
there exist in general no direct methods for computing the eigenvalues of a given
matrix, for n ≥ 5.

9. Show that if matrix A ∈ C
n×n admits eigenvalue/eigenvector pairs (λ,x),

then the matrix UHAU, with U unitary, admits eigenvalue/eigenvector pairs(
λ, UHx

)
. (Similarity transformation using an orthogonal matrix).

10. Suppose that all the assumptions needed to apply the power method are satisfied
except for the requirement α1 �= 0 (see Section 5.3.1). Show that in such a case
the sequence (5.17) converges to the eigenvalue/eigenvector pair (λ2,x2). Then,
study experimentally the behaviour of the method, computing the pair (λ1,x1)
for the matrix

A =

⎡

⎢
⎣

1 −1 2

−2 0 5

6 −3 6

⎤

⎥
⎦ .

For this, use Program 26, taking q(0) = 1/
√

3 and q(0) = w(0)/‖w(0)‖2, respec-
tively, where w(0) = (1/3)x2 − (2/3)x3.
[Solution : λ1 = 5, λ2 = 3, λ3 = −1 and x1 = [5, 16, 18]T , x2 = [1, 6, 4]T ,
x3 = [5, 16, 18]T .]

5.13 Exercises 243

11. Show that the companion matrix associated with the polynomial pn(x) = xn +
anxn−1 + . . . + a1, can be written in the alternative form (5.72)

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 a1 0
−1 0 a2

. . .
. . .

. . .

−1 0 an−1

0 −1 an

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

12. (From [FF63]) Suppose that a real matrix A ∈ R
n×n has two maximum module

complex eigenvalues given by λ1 = ρeiθ and λ2 = ρe−iθ, with θ �= 0. Assume,
moreover, that the remaining eigenvalues have modules less than ρ. The power
method can then be modified as follows:
let q(0) be a real vector and q(k) be the vector provided by the power method
without normalization. Then, set xk = q

(k)
n0 for some n0, with 1 ≤ n0 ≤ n. Prove

that

ρ2 =
xkxk+2 − x2

k+1

xk−1xk+1 − x2
k

+ O

(∣
∣
∣
∣
λ3

ρ

∣
∣
∣
∣

k
)

,

cos(θ) =
ρxk−1 + r−1xk+1

2xk
+ O

(∣
∣
∣
∣
λ3

ρ

∣
∣
∣
∣

k
)

.

[Hint : first, show that

xk = C(ρk cos(kθ + α)) + O

(∣
∣
∣
∣
λ3

ρ

∣
∣
∣
∣

k
)

,

where α depends on the components of the initial vector along the directions of
the eigenvectors associated with λ1 and λ2.]

13. Apply the modified power method of Exercise 12 to the matrix

A =

[
1 − 1

4
1
4

1 0 0
0 1 0

]

,

and compare the obtained results with those yielded by the standard power
method.

14. (Taken from [Dem97]). Apply the QR iteration with double shift to compute
the eigenvalues of the matrix

A =

[
0 0 1
1 0 0
0 1 0

]

.

Run Program 37 setting tol=eps, itmax=100 and comment about the form of
the obtained matrix T(iter) after iter iterations of the algorithm.
[Solution : the eigenvalues of A are the solution of λ3 − 1 = 0, i.e., σ(A) ={
1,−1/2 ±

√
3/2i

}
. After iter=100 iterations, Program 37 yields the matrix

244 5 Approximation of Eigenvalues and Eigenvectors

T(100) =

[
0 0 −1
1 0 0
0 −1 0

]

,

which means that the QR iteration leaves A unchanged (except for sign changes
that are nonrelevant for eigenvalues computation). This is a simple but glaring
example of matrix for which the QR method with double shift fails to converge.]

Part III

Around Functions and Functionals

6

Rootfinding for Nonlinear Equations

This chapter deals with the numerical approximation of the zeros of a real-
valued function of one variable, that is

given f : I = (a, b) ⊆ R → R, find α ∈ C such that f(α) = 0. (6.1)

The analysis of problem (6.1) in the case of systems of nonlinear equations
will be addressed in Chapter 7. It is important to notice that, although f is
assumed to be real-valued, its zeros can be complex. This is, e.g., the case
when f is an algebraic polynomial of degree ≤ n, which will be addressed in
Section 6.4.

Methods for the numerical approximation of a zero of f are usually itera-
tive. The aim is to generate a sequence of values x(k) such that

lim
k→∞

x(k) = α.

The convergence of the iteration is characterized by the following definition.

Definition 6.1 A sequence
{
x(k)

}
generated by a numerical method is said

to converge to α with order p ≥ 1 if

∃C > 0 :
|x(k+1) − α|
|x(k) − α|p ≤ C, ∀k ≥ k0, (6.2)

where k0 ≥ 0 is a suitable integer. In such a case, the method is said to be of
order p. Notice that if p is equal to 1, in order for x(k) to converge to α it is
necessary that C < 1 in (6.2). In such an event, the constant C is called the
convergence factor of the method. �

Unlike the case of linear systems, convergence of iterative methods for
rootfinding of nonlinear equations depends in general on the choice of the
initial datum x(0). This allows for establishing only local convergence results,
that is, holding for any x(0) which belongs to a suitable neighborhood of the
root α. Methods for which convergence to α holds for any choice of x(0) in
the interval I, are said to be globally convergent to α.

248 6 Rootfinding for Nonlinear Equations

6.1 Conditioning of a Nonlinear Equation

Consider the nonlinear equation f(x) = ϕ(x) − d = 0 and assume that f is a
continuously differentiable function. Let us analyze the sensitivity of finding
the roots of f with respect to changes in the datum d.

The problem is well posed only if the function ϕ is invertible. In such a
case, indeed, one gets α = ϕ−1(d) from which, using the notation of Chapter
2, the resolvent G is ϕ−1. On the other hand, (ϕ−1)′(d) = 1/ϕ′(α), so that
formula (2.7) for the approximate condition number (relative and absolute)
yields

K(d) � |d|
|α||f ′(α)| , Kabs(d) � 1

|f ′(α)| . (6.3)

The problem is thus ill-conditioned when f ′(α) is “small” and well-conditioned
if f ′(α) is “large”.

The analysis which leads to (6.3) can be generalized to the case in which
α is a root of f with multiplicity m > 1 as follows. Expanding ϕ in a Taylor
series around α up to the m-th order term, we get

d + δd = ϕ(α + δα) = ϕ(α) +
m∑

k=1

ϕ(k)(α)
k!

(δα)k + o((δα)m).

Since ϕ(k)(α) = 0 for k = 1, . . . ,m − 1, we obtain

δd = f (m)(α)(δα)m/m!,

so that an approximation to the absolute condition number is

Kabs(d) �
∣
∣
∣
∣

m!δd
f (m)(α)

∣
∣
∣
∣

1/m 1
|δd| . (6.4)

Notice that (6.3) is the special case of (6.4) where m = 1. From this it also
follows that, even if δd is sufficiently small to make |m!δd/f (m)(α)| < 1,
Kabs(d) could nevertheless be a large number. We therefore conclude that
the problem of rootfinding of a nonlinear equation is well-conditioned if α
is a simple root and |f ′(α)| is definitely different from zero, ill-conditioned
otherwise.

Let us now consider the following problem, which is closely connected with
the previous analysis. Assume d = 0 and let α be a simple root of f ; moreover,
for α̂ �= α, let f(α̂) = r̂ �= 0. We seek a bound for the difference α̂ − α as a
function of the residual r̂. Applying (6.3) yields

Kabs(0) � 1
|f ′(α)| .

Therefore, letting δx = α̂−α and δd = r̂ in the definition of Kabs (see (2.5)),
we get

6.1 Conditioning of a Nonlinear Equation 249

|α̂ − α|
|α| � |r̂|

|f ′(α)||α| , (6.5)

where the following convention has been adopted: if a ≤ b and a � c, then
we write a � c. If α has multiplicity m > 1, using (6.4) instead of (6.3) and
proceeding as above, we get

|α̂ − α|
|α| �

(
m!

|f (m)(α)||α|m

)1/m

|r̂|1/m. (6.6)

These estimates will be useful in the analysis of stopping criteria for iterative
methods (see Section 6.5).

A remarkable example of a nonlinear problem is when f is a polynomial
pn of degree n, in which case it admits exactly n roots αi, real or complex,
each one counted with its multiplicity. We want to investigate the sensitivity
of the roots of pn with respect to the changes of its coefficients.

To this end, let p̂n = pn + qn, where qn is a perturbation polynomial of
degree n, and let α̂i be the corresponding roots of p̂n. A direct use of (6.6)
yields for any root αi the following estimate

Ei
rel =

|α̂i − αi|
|αi|

�
(

m!

|p(m)
n (αi)||αi|m

)1/m

|qn(α̂i)|1/m = Si, (6.7)

where m is the multiplicity of the root at hand and qn(α̂i) = −pn(α̂i) is the
“residual” of the polynomial pn evaluated at the perturbed root.

Remark 6.1 A formal analogy exists between the a priori estimates so far
obtained for the nonlinear problem ϕ(α) = d and those developed in Section
3.1.2 for linear systems, provided that A corresponds to ϕ and b to d. More
precisely, (6.5) is the analogue of (3.9) if δA=0, and the same holds for (6.7)
(for m = 1) if δb = 0. �

Example 6.1 Let p4(x) = (x − 1)4, and let p̂4(x) = (x − 1)4 − ε, with 0 < ε � 1.
The roots of the perturbed polynomial are simple and equal to α̂i = αi + 4

√
ε, where

αi = 1 are the (coincident) zeros of p4. They lie with intervals of π/2 on the circle
of radius 4

√
ε and center z = (1, 0) in the complex plane.

The problem is stable (that is limε→0 α̂i = 1), but is ill-conditioned since

|α̂i − αi|
|αi|

= 4
√

ε, i = 1, . . . 4,

For example, if ε = 10−4 the relative change is 10−1. Notice that the right-side of
(6.7) is just 4

√
ε, so that, in this case, (6.7) becomes an equality. •

Example 6.2 (Wilkinson). Consider the following polynomial

p10(x) = Π10
k=1(x + k) = x10 + 55x9 + . . . + 10!.

250 6 Rootfinding for Nonlinear Equations

Table 6.1. Relative error and estimated error using (6.7) for the Wilkinson poly-
nomial of degree 10

i Ei
rel Si i Ei

rel Si

1 3.039 · 10−13 3.285 · 10−13 6 6.956 · 10−5 6.956 · 10−5

2 7.562 · 10−10 7.568 · 10−10 7 1.589 · 10−4 1.588 · 10−4

3 7.758 · 10−8 7.759 · 10−8 8 1.984 · 10−4 1.987 · 10−4

4 1.808 · 10−6 1.808 · 10−6 9 1.273 · 10−4 1.271 · 10−4

5 1.616 · 10−5 1.616 · 10−5 10 3.283 · 10−5 3.286 · 10−5

Let p̂10 = p10 + εx9, with ε = 2−23 � 1.2 · 10−7. Let us study the conditioning of
finding the roots of p10. Using (6.7) with m = 1, we report for i = 1, . . . , 10 in Table
6.1 the relative errors Ei

rel and the corresponding estimates Si.
These results show that the problem is ill-conditioned, since the maximum rel-

ative error for the root α8 = −8 is three orders of magnitude larger than the cor-
responding absolute perturbation. Moreover, excellent agreement can be observed
between the a priori estimate and the actual relative error. •

6.2 A Geometric Approach to Rootfinding

In this section we introduce the following methods for finding roots: the bi-
section method, the chord method, the secant method, the false position (or
Regula Falsi) method and Newton’s method. The order of the presentation
reflects the growing complexity of the algorithms. In the case of the bisection
method, indeed, the only information that is being used is the sign of the
function f at the end points of any bisection (sub)interval, whilst the remain-
ing algorithms also take into account the values of the function and/or its
derivative.

6.2.1 The Bisection Method

The bisection method is based on the following property.

Property 6.1 (theorem of zeros for continuous functions) Given
a continuous function f : [a, b] → R, such that f(a)f(b) < 0, then ∃ α ∈ (a, b)
such that f(α) = 0.

Starting from I0 = [a, b], the bisection method generates a sequence of
subintervals Ik = [a(k), b(k)], k ≥ 0, with Ik ⊂ Ik−1, k ≥ 1, and enjoys the
property that f(a(k))f(b(k)) < 0. Precisely, we set a(0) = a, b(0) = b and
x(0) = (a(0) + b(0))/2; then, for k ≥ 0:

set a(k+1) = a(k), b(k+1) = x(k) if f(x(k))f(a(k)) < 0;

set a(k+1) = x(k), b(k+1) = b(k) if f(x(k))f(b(k)) < 0;

finally, set x(k+1) = (a(k+1) + b(k+1))/2.

6.2 A Geometric Approach to Rootfinding 251

x(1)

x

y

f(x)

a b

α

I1

I0

x(0)

0
10−12

10−10

10−8

10−6

10−4

10−2

100

5 10 15 20 25 30

Fig. 6.1. The bisection method. The first two steps (left); convergence history
for the Example 6.3 (right). The number of iterations and the absolute error as a
function of k are reported on the x- and y-axis, respectively

The bisection iteration terminates at the m-th step for which |x(m) −α| ≤
|Im| ≤ ε, where ε is a fixed tolerance and |Im| is the length of Im. As for the
speed of convergence of the bisection method, notice that |I0| = b − a, while

|Ik| = |I0|/2k = (b − a)/2k, k ≥ 0. (6.8)

Denoting by e(k) = x(k) − α the absolute error at step k, from (6.8) it follows
that |e(k)| < |Ik|/2 = (b − a)/2k+1, k ≥ 0, which implies limk→∞ |e(k)| = 0.

The bisection method is therefore globally convergent. Moreover, to get
|x(m) − α| ≤ ε we must take

m ≥ log2

(
b − a

ε

)

− 1 =
log((b − a)/ε)

log(2)
− 1 � log((b − a)/ε)

0.6931
− 1. (6.9)

In particular, to gain a significant figure in the accuracy of the approximation
of the root (that is, to have |x(k) − α| = |x(j) − α|/10), one needs k − j =
log2(10) − 1 � 2.32 bisections. This singles out the bisection method as an
algorithm of certain, but slow, convergence. We must also point out that the
bisection method does not generally guarantee a monotone reduction of the
absolute error between two successive iterations, that is, we cannot ensure a
priori that

|e(k+1)| ≤ Mk|e(k)|, for any k ≥ 0, (6.10)

with Mk < 1. For this purpose, consider the situation depicted in Figure
6.1 (left), where clearly |e(1)| > |e(0)|. Failure to satisfy (6.10) does not allow
for qualifying the bisection method as a method of order 1, in the sense of
Definition 6.1.

Example 6.3 Let us check the convergence properties of the bisection method in
the approximation of the root α � 0.9062 of the Legendre polynomial of degree 5

252 6 Rootfinding for Nonlinear Equations

L5(x) =
x

8
(63x4 − 70x2 + 15),

whose roots lie within the interval (−1, 1) (see Section 10.1.2). Program 46 has been
run taking a = 0.6, b = 1 (whence, L5(a) ·L5(b) < 0), nmax = 100, tol = 10−10 and
has reached convergence in 31 iterations, this agrees with the theoretical estimate
(6.9) (indeed, m ≥ 30.8974). The convergence history is reported in Figure 6.1
(right) and shows an (average) reduction of the error by a factor of two, with an
oscillating behavior of the sequence {x(k)}. •

The slow reduction of the error suggests employing the bisection method as
an “approaching” technique to the root. Indeed, taking few bisection steps,
a reasonable approximation to α is obtained, starting from which a higher
order method can be successfully used for a rapid convergence to the solution
within the fixed tolerance. An example of such a procedure will be addressed
in Section 6.7.1.

The bisection algorithm is implemented in Program 46. The input para-
meters, here and in the remainder of this chapter, have the following meaning:
a and b denote the end points of the search interval, fun is the variable con-
taining the expression of the function f , tol is a fixed tolerance and nmax is
the maximum admissible number of steps for the iterative process.

In the output vectors xvect, xdif and fx the sequences {x(k)}, {|x(k+1)−
x(k)|} and {f(x(k))}, for k ≥ 0, are respectively stored, while nit denotes the
number of iterations needed to satisfy the stopping criteria. In the case of the
bisection method, the code returns as soon as the half-length of the search
interval is less than tol.

Program 46 - bisect : BISECT method

function [xvect,xdif,fx,nit]=bisect(a,b,tol,nmax,fun)
%BISECT Bisection method
% [XVECT,XDIF,FX,NIT]=BISECT(A,B,TOL,NMAX,FUN) tries to find a zero
% of the continuous function FUN in the interval [A,B] using the bisection
% method. FUN accepts real scalar input x and returns a real scalar value.
% XVECT is the vector of iterates, XDIF the vector of the differences between
% consecutive iterates, FX the residual. TOL specifies the tolerance of the
% method.
err=tol+1;
nit=0;
xvect=[]; fx=[]; xdif=[];
while nit<nmax & err>tol

nit=nit+1;
c=(a+b)/2; x=c; fc=eval(fun); xvect=[xvect;x];
fx=[fx;fc]; x=a;
if fc*eval(fun)>0

a=c;
else

b=c;
end

6.2 A Geometric Approach to Rootfinding 253

err=0.5*abs(b-a); xdif=[xdif;err];
end
return

6.2.2 The Methods of Chord, Secant and Regula Falsi and
Newton’s Method

In order to devise algorithms with better convergence properties than the
bisection method, it is necessary to include information from the values at-
tained by f and, possibly, also by its derivative f ′ (if f is differentiable) or by
a suitable approximation.

For this purpose, let us expand f in a Taylor series around α and truncate
the expansion at the first order. The following linearized version of problem
(6.1) is obtained

f(α) = 0 = f(x) + (α − x)f ′(ξ), (6.11)

for a suitable ξ between α and x. Equation (6.11) prompts the following iter-
ative method: for any k ≥ 0, given x(k), determine x(k+1) by solving equation
f(x(k))+(x(k+1)−x(k))qk = 0, where qk is a suitable approximation of f ′(x(k)).

The method described here amounts to finding the intersection be-
tween the x-axis and the straight line of slope qk passing through the point
(x(k), f(x(k))), and thus can be more conveniently set up in the form

x(k+1) = x(k) − q−1
k f(x(k)), ∀k ≥ 0.

We consider below four particular choices of qk.

The chord method. We let

qk = q =
f(b) − f(a)

b − a
, ∀k ≥ 0,

f(x)

x(1)

y

ba

f(x)

x(0) x

y

ba

x(1) xx(2)α

α x(3)

Fig. 6.2. The first step of the chord method (left) and the first three steps of the
secant method (right). For this method we set x(−1) = b and x(0) = a

254 6 Rootfinding for Nonlinear Equations

from which, given an initial value x(0), the following recursive relation is
obtained

x(k+1) = x(k) − b − a

f(b) − f(a)
f(x(k)), k ≥ 0. (6.12)

In Section 6.3.1, we shall see that the sequence {x(k)} generated by (6.12)
converges to the root α with order of convergence p = 1.

The secant method. We let

qk =
f(x(k)) − f(x(k−1))

x(k) − x(k−1)
, ∀k ≥ 0, (6.13)

from which, giving two initial values x(−1) and x(0), we obtain the following
relation

x(k+1) = x(k) − x(k) − x(k−1)

f(x(k)) − f(x(k−1))
f(x(k)), k ≥ 0. (6.14)

If compared with the chord method, the iterative process (6.14) requires
an extra initial point x(−1) and the corresponding function value f(x(−1)), as
well as, for any k, computing the incremental ratio (6.13). The benefit due to
the increase in the computational cost is the higher speed of convergence of
the secant method, as stated in the following property which can be regarded
as a first example of the local convergence theorem (for the proof see [IK66],
pp. 99-101).

Property 6.2 Let f ∈ C2(J), J being a suitable neighborhood of the root
α and assume that f ′(α) �= 0. Then, if the initial data x(−1) and x(0) are
chosen in J sufficiently close to α, the sequence (6.14) converges to α with
order p = (1 +

√
5)/2 � 1.63.

The Regula Falsi (or false position) method. This is a variant of the
secant method in which, instead of selecting the secant line through the values
(x(k), f(x(k)) and (x(k−1), f(x(k−1)), we take the one through (x(k), f(x(k))
and (x(k′), f(x(k′)), k′ being the maximum index less than k such that f(x(k′))·
f(x(k)) < 0. Precisely, once two values x(−1) and x(0) have been found such
that f(x(−1)) · f(x(0)) < 0, we let

x(k+1) = x(k) − x(k) − x(k′)

f(x(k)) − f(x(k′))
f(x(k)), k ≥ 0. (6.15)

Having fixed an absolute tolerance ε, the iteration (6.15) terminates at the
m-th step such that |f(x(m))| < ε. Notice that the sequence of indices k′ is
nondecreasing; therefore, in order to find at step k the new value of k′, it is not
necessary to sweep all the sequence back, but it suffices to stop at the value

6.2 A Geometric Approach to Rootfinding 255

f(x)y

f(x)

x(−1) x(0)

x

x(1)x(2)

y

x(0)

x

x(−1) x(1)

x(2)

x
(2)
Sec

Fig. 6.3. The first two steps of the Regula Falsi method for two different functions

of k′ that has been determined at the previous step. We show in Figure 6.3
(left) the first two steps of (6.15) in the special case in which x(k′) coincides
with x(−1) for any k ≥ 0.

The Regula Falsi method, though of the same complexity as the secant
method, has linear convergence order (see, for example, [RR78], pp. 339-340).
However, unlike the secant method, the iterates generated by (6.15) are all
contained within the starting interval [x(−1), x(0)].

In Figure 6.3 (right), the first two iterations of both the secant and Regula
Falsi methods are shown, starting from the same initial data x(−1) and x(0).
Notice that the iterate x(1) computed by the secant method coincides with
that computed by the Regula Falsi method, while the value x(2) computed
by the former method (and denoted in the figure by x

(2)
Sec) falls outside the

searching interval [x(−1), x(0)].
In this respect, the Regula Falsi method, as well as the bisection method,

can be regarded as a globally convergent method.

Newton’s method. Assuming that f ∈ C1(I) and that f ′(α) �= 0 (i.e., α is
a simple root of f), if we let

qk = f ′(x(k)), ∀k ≥ 0

and assign the initial value x(0), we obtain the so called Newton’s method

x(k+1) = x(k) − f(x(k))
f ′(x(k))

, k ≥ 0. (6.16)

At the k-th iteration, Newton’s method requires the two functional evalu-
ations f(x(k)) and f ′(x(k)). The increasing computational cost with respect to
the methods previously considered is more than compensated for by a higher
order of convergence, Newton’s method being of order 2 (see Section 6.3.1).

256 6 Rootfinding for Nonlinear Equations

x(2)

a b

x

f(x)

y

x(1)

x(0)

0

10−15

10−10

10−5

100

5 10 15 20 25 30 35

(1)

(2)

(3)

(4)

Fig. 6.4. The first two steps of Newton’s method (left); convergence histories in
Example 6.4 for the chord method (1), bisection method (2), secant method (3) and
Newton’s method (4) (right). The number of iterations and the absolute error as a
function of k are shown on the x-axis and y-axis, respectively

Example 6.4 Let us compare the methods introduced so far for the approximation
of the root α � 0.5149 of the function f(x) = cos2(2x) − x2 in the interval (0, 1.5).
The tolerance ε on the absolute error has been taken equal to 10−10 and the con-
vergence histories are drawn in Figure 6.4 (right). For all methods, the initial guess
x(0) has been set equal to 0.75. For the secant method we chose x(−1) = 0.

The analysis of the results singles out the slow convergence of the chord method.
The error curve for the Regula Falsi method is similar to that of secant method, thus
it was not reported in Figure 6.4.

It is interesting to compare the performances of Newton’s and secant methods
(both having order p > 1), in terms of their computational effort. It can indeed
be proven that it is more convenient to employ the secant method whenever the
number of floating point operations to evaluate f ′ are about twice those needed for
evaluating f (see [Atk89], pp. 71-73). In the example at hand, Newton’s method
converges to α in 6 iterations, instead of 7, but the secant method takes 94 flops
instead of 177 flops required by Newton’s method. •

The chord, secant, Regula Falsi and Newton’s methods are implemented in
Programs 47, 48, 49 and 50, respectively. Here and in the rest of the chapter, x0
and xm1 denote the initial data x(0) and x(−1). In the case of the Regula Falsi
method the stopping test checks is |f(x(k))| < tol, while for the other methods
the test is |x(k+1) − x(k)| < tol. The string dfun contains the expression of
f ′ to be used in the Newton method.

Program 47 - chord : The chord method

function [xvect,xdif,fx,nit]=chord(a,b,x0,tol,nmax,fun)
%CHORD Chord method
% [XVECT,XDIF,FX,NIT]=CHORD(A,B,X0,TOL,NMAX,FUN) tries to find a zero
% of the continuous function FUN in the interval [A,B] using the chord method.
% FUN accepts real scalar input x and returns a real scalar value. XVECT is the

6.2 A Geometric Approach to Rootfinding 257

% vector of iterates, XDIF the vector of the differences between consecutive
% iterates, FX the residual. TOL specifies the tolerance of the method.
x=a; fa=eval(fun);
x=b; fb=eval(fun);
r=(fb-fa)/(b-a);
err=tol+1; nit=0; xvect=x0; x=x0; fx=eval(fun); xdif=[];
while nit<nmax & err>tol

nit=nit+1;
x=xvect(nit);
xn=x-fx(nit)/r;
err=abs(xn-x);
xdif=[xdif; err];
x=xn;
xvect=[xvect;x]; fx=[fx;eval(fun)];

end
return

Program 48 - secant : The secant method

function [xvect,xdif,fx,nit]=secant(xm1,x0,tol,nmax,fun)
%SECANT Secant method
% [XVECT,XDIF,FX,NIT]=SECANT(XM1,X0,TOL,NMAX,FUN) tries to find a zero
% of the continuous function FUN using the secant method. FUN accepts real
% scalar input x and returns a real scalar value. XVECT is the vector of iterates,
% XDIF the vector of the differences between consecutive iterates, FX the residual.
% TOL specifies the tolerance of the method.
x=xm1; fxm1=eval(fun);
xvect=[x]; fx=[fxm1];
x=x0; fx0=eval(fun);
xvect=[xvect;x]; fx=[fx;fx0];
err=tol+1; nit=0; xdif=[];
while nit<nmax & err>tol

nit=nit+1;
x=x0-fx0*(x0-xm1)/(fx0-fxm1);
xvect=[xvect;x];
fnew=eval(fun); fx=[fx;fnew];
err=abs(x0-x);
xdif=[xdif;err];
xm1=x0; fxm1=fx0;
x0=x; fx0=fnew;

end
return

Program 49 - regfalsi : The Regula Falsi method

function [xvect,xdif,fx,nit]=regfalsi(xm1,x0,tol,nmax,fun)
%REGFALSI Regula Falsi method
% [XVECT,XDIF,FX,NIT]=REGFALSI(XM1,X0,TOL,NMAX,FUN) tries to find a zero
% of the continuous function FUN in the interval [XM1,X0] using the Regula Falsi

258 6 Rootfinding for Nonlinear Equations

% method. FUN accepts real scalar input x and returns a real scalar value. XVECT
% is the vector of iterates, XDIF the vector of the differences between consecutive
% iterates, FX the residual. TOL specifies the tolerance of the method.
nit=0;
x=xm1; f=eval(fun); fx=[f];
x=x0; f=eval(fun); fx=[fx, f];
xvect=[xm1,x0]; xdif=[]; f=tol+1; kprime=1;
while nit<nmax & abs(f)>tol

nit=nit+1;
dim=length(xvect);
x=xvect(dim);
fxk=eval(fun);
xk=x; i=dim;
while i>=kprime

i=i-1; x=xvect(i); fxkpr=eval(fun);
if fxkpr*fxk<0

xkpr=x; kprime=i; break;
end

end
x=xk-fxk*(xk-xkpr)/(fxk-fxkpr);
xvect=[xvect, x]; f=eval(fun);
fx=[fx, f]; err=abs(x-xkpr); xdif=[xdif, err];

end
return

Program 50 - newton : Newton’s method

function [xvect,xdif,fx,nit]=newton(x0,tol,nmax,fun,dfun)
%NEWTON Newton method
% [XVECT,XDIF,FX,NIT]=NEWTON(XM1,X0,TOL,NMAX,FUN,DFUN) tries
% to find a zero of the continuous function FUN using the Newton method
% starting from the initial guess X0. FUN and DFUN accept real scalar
% input x and return a real scalar value. XVECT is the vector of iterates,
% XDIF the vector of the differences between consecutive iterates, FX the
% residual. TOL specifies the tolerance of the method.
err=tol+1; nit=0; xvect=x0; x=x0; fx=eval(fun); xdif=[];
while nit<nmax & err>tol

nit=nit+1;
x=xvect(nit);
dfx=eval(dfun);
if dfx==0

err=tol*1.e-10;
fprintf(’Stop for vanishing dfun’);

else
xn=x-fx(nit)/dfx; err=abs(xn-x); xdif=[xdif; err];
x=xn; xvect=[xvect;x]; fx=[fx;eval(fun)];

end
end
return

6.2 A Geometric Approach to Rootfinding 259

6.2.3 The Dekker-Brent Method

The Dekker-Brent method combines the bisection and secant methods, pro-
viding a synthesis of the advantages of both. This algorithm carries out an
iteration in which three abscissas a, b and c are present at each stage. Nor-
mally, b is the latest iterate and closest approximation to the zero, a is the
previous iterate and c is the previous or an older iterate so that f(b) and f(c)
have opposite signs. At all times b and c bracket the zero and |f(b)| ≤ |f(c)|.

Once an interval [a, b] containing at least one root α of the function y =
f(x) is found with f(a)f(b) < 0, the algorithm generates a sequence of values
a, b and c such that α always lies between b and c and, at convergence,
the half-length |c − b|/2 is less than a fixed tolerance. If the function f is
sufficiently smooth around the desired root, then the order of convergence of
the algorithm is more than linear (see [Dek69], [Bre73] Chapter 4 and [Atk89],
pp. 91-93).

In the following we describe the main lines of the algorithm as imple-
mented in the MATLAB function fzero. Throughout the parameter d will be
a correction to the point b since it is best to arrange formulae so that they
express the desired quantity as a small correction to a good approximation.
For example, if the new value of b were computed as (b+ c)/2 (bisection step)
a numerical cancellation might occur, while computing b as b+(c− b)/2 gives
a more stable formula.
Denote by ε a suitable tolerance (usually the machine precision) and let c = b;
then, the Dekker-Brent method proceeds as follows:
First, check if f(b) = 0. Should this be the case, the algorithm terminates
and returns b as the approximate zero of f . Otherwise, the following steps are
executed:

1. if f(b)f(c) > 0, set c = a, d = b − a and e = d.
2. If |f(c)| < |f(b)|, perform the exchanges a ← b, b ← c and c ← a.
3. Set δ = 2ε max {|b|, 1} and m = (c− b)/2. If |m| ≤ δ or f(b) = 0 then the

algorithm terminates and returns b as the approximate zero of f .
4. Choose bisection or interpolation.

a) If |e| < δ or |f(a)| ≤ |f(b)| then a bisection step is taken, i.e., set
d = m and e = m; otherwise, the interpolation step is executed.

b) if a = c execute linear interpolation, i.e., compute the zero of the
straight line passing through the points (b, f(b)) and (c, f(c)) as a
correction δb to the point b. This amounts to taking a step of the
secant method on the interval having b and c as end points.
If a �= c execute inverse quadratic interpolation, i.e., construct the
second-degree polynomial with respect to y, that interpolates at the
points (f(a), a), (f(b), b) and (f(c), c) and its value at y = 0 is com-
puted as a correction δb to the point b. Notice that at this stage the
values f(a), f(b) and f(c) are different one from the others, being
|f(a)| > |f(b)|, f(b)f(c) < 0 and a �= c.
Then the algorithm checks whether the point b + δb can be accepted.

260 6 Rootfinding for Nonlinear Equations

Table 6.2. Solution of the equation cos2(2x) − x2 = 0 using the Dekker-Brent
algorithm. The integer k denotes the current iteration

k a b c f(b)

0 2.1 0.3 2.1 0·5912
1 0.3 0.5235 0.3 −2.39·10−2

2 0.5235 0.5148 0.5235 3.11·10−4

3 0.5148 0.5149 0.5148 −8.8·10−7

4 0.5149 0.5149 0.5148 −3.07·10−11

This is a rather technical issue but essentially it amounts to ascertain-
ing if the point is inside the current interval and not too close to the
end points. This guarantees that the length of the interval decreases
by a large factor when the function is well behaved. If the point is
accepted then e = d and d = δb, i.e., the interpolation is actually
carried out, else a bisection step is executed by setting d = m and
e = m.

5. The algorithm now updates the current iterate. Set a = b and if |d| > δ
then b = b + d, else b = b + δsign(m) and go back to step 1.

Example 6.5 Let us consider the finding of roots of the function f considered in
Example 6.4, taking ε equal to the roundoff unit. The MATLAB function fzero

has been employed. It automatically determines the values a and b, starting from
a given initial guess ξ provided by the user. Starting from ξ = 1.5, the algorithm
finds the values a = 0.3 and b = 2.1; convergence is achieved in 5 iterations and the
sequences of the values a, b, c and f(b) are reported in Table 6.2.

Notice that the tabulated values refer to the state of the algorithm before step
3., and thus, in particular, after possible exchanges between a and b. •

6.3 Fixed-point Iterations for Nonlinear Equations

In this section a completely general framework for finding the roots of a
nonlinear function is provided. The method is based on the fact that, for
a given f : [a, b] → R, it is always possible to transform the problem
f(x) = 0 into an equivalent problem x − φ(x) = 0, where the auxiliary func-
tion φ : [a, b] → R has to be chosen in such a way that φ(α) = α whenever
f(α) = 0. Approximating the zeros of a function has thus become the problem
of finding the fixed points of the mapping φ, which is done by the following
iterative algorithm:

given x(0), x(k+1) = φ(x(k)), k ≥ 0. (6.17)

We say that (6.17) is a fixed-point iteration and φ is its associated iteration
function. Sometimes, (6.17) is also referred to as Picard iteration or functional
iteration for the solution of f(x) = 0. Notice that by construction the methods

6.3 Fixed-point Iterations for Nonlinear Equations 261

of the form (6.17) are strongly consistent in the sense of the definition given
in Section 2.2.

The choice of φ is not unique. For instance, any function of the form
φ(x) = x + F (f(x)), where F is a continuous function such that F (0) = 0, is
an admissible iteration function.
The next two results provide sufficient conditions in order for the fixed-point
method (6.17) to converge to the root α of problem (6.1). These conditions
are stated precisely in the following theorem.

Theorem 6.1 (Convergence of fixed-point iterations) Consider the se-
quence x(k+1) = φ(x(k)), for k ≥ 0, being x(0) given. Assume that:

1. φ : [a, b] → [a, b];
2. φ ∈ C1([a, b]);
3. ∃K < 1 : |φ′(x)| ≤ K ∀x ∈ [a, b].

Then, φ has a unique fixed point α in [a, b] and the sequence {x(k)} converges
to α for any choice of x(0) ∈ [a, b]. Moreover, we have

lim
k→∞

x(k+1) − α

x(k) − α
= φ′(α). (6.18)

Proof. The assumption 1. and the continuity of φ ensure that the iteration function
φ has at least one fixed point in [a, b]. Assumption 3. states that φ is a contraction
mapping and ensures the uniqueness of the fixed point. Indeed, suppose that there
exist two distinct values α1, α2 ∈ [a, b] such that φ(α1) = α1 and φ(α2) = α2.
Expanding φ in a Taylor series around α1 and truncating it at first order, it follows
that

|α2 − α1| = |φ(α2) − φ(α1)| = |φ′(η)(α2 − α1)| ≤ K|α2 − α1| < |α2 − α1|,

for η ∈ (α1, α2), from which it must necessarily be that α2 = α1.
The convergence analysis for the sequence {x(k)} is again based on a Taylor

series expansion. Indeed, for any k ≥ 0 there exists a value η(k) between α and x(k)

such that
x(k+1) − α = φ(x(k)) − φ(α) = φ′(η(k))(x(k) − α) (6.19)

from which |x(k+1) −α| ≤ K|x(k) −α| ≤ Kk+1|x(0) −α| → 0 for k → ∞. Thus, x(k)

converges to α and (6.19) implies that

lim
k→∞

x(k+1) − α

x(k) − α
= lim

k→∞
φ′(η(k)) = φ′(α),

that is (6.18). �

The quantity |φ′(α)| is called the asymptotic convergence factor and, in
analogy with the case of iterative methods for linear systems, the asymptotic
convergence rate can be defined as

R = − log(|φ′(α)|). (6.20)

262 6 Rootfinding for Nonlinear Equations

Theorem 6.1 ensures linear convergence of the sequence {x(k)} to the root
α for any choice of the initial value x(0) ∈ [a, b]. As such, it represents an
example of a global convergence result.

In practice, however, it is often quite difficult to determine a priori the
width of the interval [a, b]; in such a case the following convergence result can
be useful (see for the proof, [OR70]).

Property 6.3 (Ostrowski theorem) Let α be a fixed point of a function φ,
which is continuous and differentiable in a neighborhood J of α. If |φ′(α)| < 1
then there exists δ > 0 such that the sequence {x(k)} converges to α, for any
x(0) such that |x(0) − α| < δ.

Remark 6.2 If |φ′(α)| > 1 it follows from (6.19) that if x(n) is sufficiently
close to α, so that |φ′(x(n))| > 1, then |α − x(n+1)| > |α − x(n)|, thus no
convergence is possible. In the case |φ′(α)| = 1 no general conclusion can be
stated since both convergence and nonconvergence may be possible, depending
on the problem at hand. �

Example 6.6 Let φ(x) = x − x3, which admits α = 0 as fixed point. Although
φ′(α) = 1, if x(0) ∈ [−1, 1] then x(k) ∈ (−1, 1) for k ≥ 1 and it converges (very
slowly) to α (if x(0) = ±1, we even have x(k) = α for any k ≥ 1). Starting from
x(0) = 1/2 the absolute error after 2000 iterations is 0.0158. Let now φ(x) = x + x3

having also α = 0 as fixed point. Again, φ′(α) = 1 but in this case the sequence x(k)

diverges for any choice x(0) �= 0. •

We say that a fixed-point method has order p (p non necessarily being an
integer) if the sequence that is generated by the method converges to the
fixed point α with order p according to Definition 6.1.

Property 6.4 If φ ∈ Cp+1(J) for a suitable neighborhood J of α and an
integer p ≥ 1, and if φ(i)(α) = 0 for 1 ≤ i ≤ p and φ(p+1)(α) �= 0, then the
fixed-point method with iteration function φ has order p + 1 and

lim
k→∞

x(k+1) − α

(x(k) − α)p+1
=

φ(p+1)(α)
(p + 1)!

. (6.21)

Proof. Let us expand φ in a Taylor series around x = α obtaining

x(k+1) − α =

p∑

i=0

φ(i)(α)

i!
(x(k) − α)i +

φ(p+1)(η)

(p + 1)!
(x(k) − α)p+1 − φ(α),

for a certain η between x(k) and α. Thus, we have

lim
k→∞

x(k+1) − α

(x(k) − α)p+1
= lim

k→∞

φ(p+1)(η)

(p + 1)!
=

φ(p+1)(α)

(p + 1)!
.

�

6.3 Fixed-point Iterations for Nonlinear Equations 263

The convergence of the sequence to the root α will be faster, for a fixed order
p, when the quantity at right-side in (6.21) is smaller.
The fixed-point method (6.17) is implemented in Program 51. The variable
phi contains the expression of the iteration function φ.

Program 51 - fixpoint : Fixed-point method

function [xvect,xdif,fx,nit]=fixpoint(x0,tol,nmax,fun,phi)
%FIXPOINT Fixed-point iteration
% [XVECT,XDIF,FX,NIT]=FIXPOINT(X0,TOL,NMAX,FUN,PHI) tries to find a zero
% of the continuous function FUN using the fixed-point iteration X=PHI(X), starting
% from the initial guess X0. XVECT is the vector of iterates, XDIF the vector of the
% differences between consecutive iterates, FX the residual. TOL specifies the
% tolerance of the method.
err=tol+1; nit=0;
xvect=x0; x=x0; fx=eval(fun); xdif=[];
while nit<nmax & err>tol

nit=nit+1;
x=xvect(nit);
xn=eval(phi);
err=abs(xn-x);
xdif=[xdif; err];
x=xn; xvect=[xvect;x]; fx=[fx;eval(fun)];

end
return

6.3.1 Convergence Results for Some Fixed-point Methods

Theorem 6.1 provides a theoretical tool for analyzing some of the iterative
methods introduced in Section 6.2.2.
The chord method. Equation (6.12) is a special instance of (6.17), in which
we let φ(x) = φchord(x) = x − q−1f(x) = x − (b − a)/(f(b) − f(a))f(x).
If f ′(α) = 0, φ′

chord(α) = 1 and the method is not guaranteed to converge.
Otherwise, the condition |φ′

chord(α)| < 1 is equivalent to requiring that 0 <
q−1f ′(α) < 2.

Therefore, the slope q of the chord must have the same sign as f ′(α), and
the search interval [a, b] has to satisfy the constraint

b − a < 2
f(b) − f(a)

f ′(α)
.

The chord method converges in one iteration if f is a straight line, otherwise it
converges linearly, apart the (lucky) case when f ′(α) = (f(b)− f(a))/(b− a),
for which φ′

chord(α) = 0.

Newton’s method. Equation (6.16) can be cast in the general framework
(6.17) letting

264 6 Rootfinding for Nonlinear Equations

φNewt(x) = x − f(x)
f ′(x)

.

Assuming f ′(α) �= 0 (that is, α is a simple root)

φ′
Newt(α) = 0, φ′′

Newt(α) =
f ′′(α)
f ′(α)

.

If the root α has multiplicity m > 1, then the method (6.16) is no longer
second-order convergent. Indeed we have (see Exercise 2)

φ′
Newt(α) = 1 − 1

m
. (6.22)

If the value of m is known a priori, then the quadratic convergence of Newton’s
method can be recovered by resorting to the so-called modified Newton’s
method

x(k+1) = x(k) − m
f(x(k))
f ′(x(k))

, k ≥ 0. (6.23)

To check the convergence order of the iteration (6.23), see Exercise 2.

6.4 Zeros of Algebraic Equations

In this section we address the special case in which f is a polynomial of degree
n ≥ 0, i.e., a function of the form

pn(x) =
n∑

k=0

akxk, (6.24)

where ak ∈ R are given coefficients.
The above representation of pn is not the only one possible. Actually, one

can also write

pn(x) = an(x − α1)m1 · · · (x − αk)mk ,
k∑

l=1

ml = n,

where αi and mi denote the i-th root of pn and its multiplicity, respectively.
Other representations are available as well, see Section 6.4.1.

Notice that, since the coefficients ak are real, if α is a zero of pn, then its
complex conjugate ᾱ is a zero of pn too.

Abel’s theorem states that for n ≥ 5 there does not exist an explicit
formula for the zeros of pn (see, for instance, [MM71], Theorem 10.1). This,
in turn, motivates numerical solutions of the nonlinear equation pn(x) = 0.
Since the methods introduced so far must be provided by a suitable search
interval [a, b] or an initial guess x(0), we recall two results that can be useful
to localize the zeros of a polynomial.

6.4 Zeros of Algebraic Equations 265

Property 6.5 (Descartes’ rule of signs) Let pn ∈ Pn. Denote by ν the
number of sign changes in the set of coefficients {aj} and by k the number of
real positive roots of pn (each counted with its multiplicity). Then, k ≤ ν and
ν − k is an even number.

Property 6.6 (Cauchy’s Theorem) All zeros of pn are contained in the
circle Γ in the complex plane

Γ = {z ∈ C : |z| ≤ 1 + ηk} , where ηk = max
0≤k≤n−1

|ak/an|.

This second property is of little use if ηk � 1. In such an event, it is convenient
to perform a translation through a suitable change of coordinates.

6.4.1 The Horner Method and Deflation

In this section we describe the Horner method for efficiently evaluating a
polynomial (and its derivative) at a given point z. The algorithm allows for
generating automatically a procedure, called deflation, for the sequential ap-
proximation of all the roots of a polynomial.

Horner’s method is based on the observation that any polynomial pn ∈ Pn

can be written as

pn(x) = a0 + x(a1 + x(a2 + . . . + x(an−1 + anx) . . .)). (6.25)

Formulae (6.24) and (6.25) are completely equivalent from an algebraic stand-
point; nevertheless, (6.24) requires n sums and 2n− 1 multiplications to eval-
uate pn(x), while (6.25) requires n sums and n multiplications. The second
expression, known as nested multiplications algorithm, is the basic ingredient
of Horner’s method. This method efficiently evaluates the polynomial pn at a
point z through the following synthetic division algorithm

bn = an, bk = ak + bk+1z, k = n − 1, n − 2, ..., 0, (6.26)

which is implemented in Program 52. The coefficients aj of the polynomial
are stored in vector a ordered from an back to a0.

Program 52 - horner : Synthetic division algorithm

function [pnz,b] = horner(a,n,z)
%HORNER Polynomial synthetic division algorithm.
% [PNZ,B]=HORNER(A,N,Z) evaluates with the Horner method a polynomial
% of degree N having coefficients A(1),...,A(N) at a point Z.
b(1)=a(1);
for j=2:n+1

b(j)=a(j)+b(j-1)*z;
end
pnz=b(n+1);
return

266 6 Rootfinding for Nonlinear Equations

All the coefficients bk in (6.26) depend on z and b0 = pn(z). The polynomial

qn−1(x; z) = b1 + b2x + ... + bnxn−1 =
n∑

k=1

bkxk−1 (6.27)

has degree n − 1 in the variable x and depends on the parameter z through
the coefficients bk; it is called the associated polynomial of pn.
Let us now recall the following property of polynomial division:

given two polynomials hn ∈ Pn and gm ∈ Pm with m ≤ n, there exists a
unique polynomial δ ∈ Pn−m and an unique polynomial ρ ∈ Pm−1 such that

hn(x) = gm(x)δ(x) + ρ(x). (6.28)

Then, dividing pn by x − z, from (6.28) it follows that

pn(x) = b0 + (x − z)qn−1(x; z),

having denoted by qn−1 the quotient and by b0 the remainder of the division.
If z is a zero of pn, then b0 = pn(z) = 0 and thus pn(x) = (x − z)qn−1(x; z).
In such a case, the algebraic equation qn−1(x; z) = 0 yields the n− 1 remain-
ing roots of pn(x). This observation suggests adopting the following deflation
procedure for finding the roots of pn. For m = n, n − 1, . . . , 1:

1. find a root r of pm using a suitable approximation method;
2. evaluate qm−1(x; r) by (6.26);
3. let pm−1 = qm−1.

In the two forthcoming sections some deflation methods will be addressed,
making a precise choice for the scheme at point 1.

6.4.2 The Newton-Horner Method

A first example of deflation employs Newton’s method for computing the root
r at step 1. of the procedure in the previous section. Implementing Newton’s
method fully benefits from Horner’s algorithm (6.26). Indeed, if qn−1 is the
associated polynomial of pn defined in (6.27), since p′n(x) = qn−1(x; z) + (x−
z)q′n−1(x; z) then p′n(z) = qn−1(z; z). Thanks to this identity, the Newton-
Horner method for the approximation of a root (real or complex) rj of pn

(j = 1, . . . , n) takes the following form:
given an initial estimate r

(0)
j of the root, solve for any k ≥ 0

r
(k+1)
j = r

(k)
j −

pn(r(k)
j)

p′n(r(k)
j)

= r
(k)
j −

pn(r(k)
j)

qn−1(r
(k)
j ; r(k)

j)
. (6.29)

Once convergence has been achieved for the iteration (6.29), polynomial de-
flation is performed, this deflation being helped by the fact that pn(x) =

6.4 Zeros of Algebraic Equations 267

(x − rj)pn−1(x). Then, the approximation of a root of pn−1(x) is carried out
until all the roots of pn have been computed.

Denoting by nk = n − k the degree of the polynomial that is obtained
at each step of the deflation process, for k = 0, . . . , n − 1, the computational
cost of each Newton-Horner iteration (6.29) is equal to 4nk. If rj ∈ C, it
is necessary to work in complex arithmetic and take r

(0)
j ∈ C; otherwise,

indeed, the Newton-Horner method (6.29) would yield a sequence {r(k)
j } of

real numbers.
The deflation procedure might be affected by rounding error propagation

and, as a consequence, can lead to inaccurate results. For the sake of stability,
it is therefore convenient to approximate first the root r1 of minimum module,
which is the most sensitive to ill-conditioning of the problem (see Example
2.7, Chapter 2) and then to continue with the successive roots r2, . . ., until the
root of maximum module is computed. To localize r1, the techniques described
in Section 5.1 or the method of Sturm sequences can be used (see [IK66],
p. 126).
A further increase in accuracy can be obtained, once an approximation r̃j

of the root rj is available, by going back to the original polynomial pn and
generating through the Newton-Horner method (6.29) a new approximation
to rj , taking as initial guess r

(0)
j = r̃j . This combination of deflation and

successive correction of the root is called the Newton-Horner method with
refinement.

Example 6.7 Let us examine the performance of the Newton-Horner method in
two cases: in the first one, the polynomial admits real roots, while in the second
one there are two pairs of complex conjugate roots. To single out the importance
of refinement, we have implemented (6.29) both switching it on and off (methods
NwtRef and Nwt, respectively). The approximate roots obtained using method Nwt

are denoted by rj , while sj are those computed by method NwtRef. As for the
numerical experiments, the computations have been done in complex arithmetic,
with x(0) = 0 + i 0, i being the imaginary unit, nmax = 100 and tol = 10−5. The
tolerance for the stopping test in the refinement cycle has been set to 10−3tol.

1) p5(x) = x5 + x4 − 9x3 − x2 + 20x − 12 = (x − 1)2(x − 2)(x + 2)(x + 3).

We report in Tables 6.3(a) and 6.3(b) the approximate roots rj (j = 1, . . . , 5) and
the number of Newton iterations (Nit) needed to get each of them; in the case
of method NwtRef we also show the number of extra Newton iterations for the
refinement (Extra).
Notice a neat increase in the accuracy of rootfinding due to refinement, even with
few extra iterations.

2) p6(x) = x6 − 2x5 + 5x4 − 6x3 + 2x2 + 8x − 8.

The zeros of p6 are the complex numbers {1,−1, 1±i,±2i}. We report below, denot-
ing them by rj , (j = 1, . . . , 6), the approximations to the roots of p6 obtained using
method Nwt, with a number of iterations equal to 2, 1, 1, 7, 7 and 1, respectively.

268 6 Rootfinding for Nonlinear Equations

Table 6.3. Roots of the polynomial p5. Roots computed by the Newton-Horner
method without refinement (left), and with refinement (right)

(a)

rj Nit

0.99999348047830 17
1 − i3.56 · 10−25 6
2 − i2.24 · 10−13 9
−2 − i1.70 · 10−10 7
−3 + i5.62 · 10−6 1

(b)

sj Nit Extra

0.9999999899210124 17 10
1 − i2.40 · 10−28 6 10
2 + i1.12 · 10−22 9 1
−2 + i8.18 · 10−22 7 1
−3 − i7.06 · 10−21 1 2

Table 6.4. Roots of the polynomial p6 obtained using the Newton-Horner method
without (left) and with (right) refinement

rj Nwt sj NwtRef

r1 1 s1 1
r2 −0.99 − i9.54 · 10−17 s2 −1 + i1.23 · 10−32

r3 1+i s3 1+i
r4 1−i s4 1−i
r5 -1.31 · 10−8 + i2 s5 −5.66 · 10−17 + i2
r6 −i 2 s6 −i 2

Beside, we also show the corresponding approximations sj computed by method
NwtRef and obtained with a maximum number of 2 extra iterations. •

A coding of the Newton-Horner algorithm is provided in Program 53. The
input parameters are A (a vector containing the polynomial coefficients), n (the
degree of the polynomial), tol (tolerance on the maximum variation between
successive iterates in Newton’s method), x0 (initial value, with x(0) ∈ R),
nmax (maximum number of admissible iterations for Newton’s method) and
iref (if iref = 1, then the refinement procedure is activated). For dealing
with the general case of complex roots, the initial datum is automatically
converted into the complex number z = x(0) + ix(0), where i =

√
−1.

The program returns as output the variables xn (a vector containing the
sequence of iterates for each zero of pn(x)), iter (a vector containing the
number of iterations needed to approximate each root), itrefin (a vector
containing the Newton iterations required to refine each estimate of the com-
puted root) and root (vector containing the computed roots).

Program 53 - newthorn : Newton-Horner method with refinement

function [xn,iter,root,itrefin]=newthorn(A,n,tol,x0,nmax,iref)
%NEWTHORN Newton-Horner method with refinement.
% [XN,ITER,ROOT,ITREFIN]=NEWTHORN(A,N,X0,TOL,NMAX,IREF) tries
% to compute all the roots of a polynomial of degree N having coefficients
% A(1),...,A(N). TOL specifies the tolerance of the method. X0 is an initial

6.4 Zeros of Algebraic Equations 269

% guess. NMAX specifies the maximum number of iterations. If the flag IREF
% is equal 1, then the refinement procedure is activated.
apoly=A;
for i=1:n, it=1; xn(it,i)=x0+sqrt(-1)*x0; err=tol+1; Ndeg=n-i+1;

if Ndeg == 1
it=it+1; xn(it,i)=-A(2)/A(1);

else
while it<nmax & err>tol

[px,B]=horner(A,Ndeg,xn(it,i)); [pdx,C]=horner(B,Ndeg-1,xn(it,i));
it=it+1;
if pdx ˜=0

xn(it,i)=xn(it-1,i)-px/pdx;
err=max(abs(xn(it,i)-xn(it-1,i)),abs(px));

else
fprintf(’ Stop due to a vanishing p’’ ’);
err=0; xn(it,i)=xn(it-1,i);

end
end

end
A=B;
if iref==1

alfa=xn(it,i); itr=1; err=tol+1;
while err>tol*1e-3 & itr<nmax

[px,B]=horner(apoly,n,alfa); [pdx,C]=horner(B,n-1,alfa);
itr=itr+1;
if pdx˜=0

alfa2=alfa-px/pdx;
err=max(abs(alfa2-alfa),abs(px));
alfa=alfa2;

else
fprintf(’ Stop due to a vanishing p’’ ’);
err=0;

end
end
itrefin(i)=itr-1; xn(it,i)=alfa;

end
iter(i)=it-1; root(i)=xn(it,i); x0=root(i);

end
return

6.4.3 The Muller Method

A second example of deflation employs Muller’s method for finding an approx-
imation to the root r at step 1. of the procedure described in Section 6.4.1
(see [Mul56]). Unlike Newton’s or secant methods, Muller’s method is able to
compute complex zeros of a given function f , even starting from a real initial
datum; moreover, its order of convergence is almost quadratic.

270 6 Rootfinding for Nonlinear Equations

x(3)

f

p2

x(0) x(1) x(2)

Fig. 6.5. The first step of Muller’s method

The action of Muller’s method is drawn in Figure 6.5. The scheme extends
the secant method, substituting the linear polynomial introduced in (6.13)
with a second-degree polynomial as follows. Given three distinct values x(0),
x(1) and x(2), the new point x(3) is determined by setting p2(x(3)) = 0, where
p2 ∈ P2 is the unique polynomial that interpolates f at the points x(i), i =
0, 1, 2, that is, p2(x(i)) = f(x(i)) for i = 0, 1, 2. Therefore,

p2(x) = f(x(2)) + (x − x(2))f [x(2), x(1)] + (x − x(2))(x − x(1))f [x(2), x(1), x(0)],

where

f [ξ, η] =
f(η) − f(ξ)

η − ξ
, f [ξ, η, τ] =

f [η, τ] − f [ξ, η]
τ − ξ

are the divided differences of order 1 and 2 associated with the points ξ, η and
τ (see Section 8.2.1). Noticing that x−x(1) = (x−x(2))+(x(2) −x(1)), we get

p2(x) = f(x(2)) + w(x − x(2)) + f [x(2), x(1), x(0)](x − x(2))2,

having defined

w = f [x(2), x(1)] + (x(2) − x(1))f [x(2), x(1), x(0)]

= f [x(2), x(1)] + f [x(2), x(0)] − f [x(0), x(1)].

Requiring that p2(x(3)) = 0 it follows that

x(3) = x(2) +
−w ±

{
w2 − 4f(x(2))f [x(2), x(1), x(0)]

}1/2

2f [x(2), x(1), x(0)]
.

Similar computations must be done for getting x(4) starting from x(1), x(2) and
x(3) and, more generally, to find x(k+1) starting from x(k−2), x(k−1) and x(k),

6.4 Zeros of Algebraic Equations 271

Table 6.5. Roots of polynomial p6 with Muller’s method without (rj) and with (sj)
refinement

rj sj

r1 1 + i2.2 · 10−15 s1 1 + i9.9 · 10−18

r2 −1 − i8.4 · 10−16 s2 −1
r3 0.99 + i s3 1 + i
r4 0.99 − i s4 1 − i
r5 −1.1 · 10−15 + i1.99 s5 i2
r6 −1.0 · 10−15 − i2 s6 -i2

with k ≥ 2, according with the following formula (notice that the numerator
has been rationalized)

x(k+1) = x(k) − 2f(x(k))

w ∓
{
w2 − 4f(x(k))f [x(k), x(k−1), x(k−2)]

}1/2
. (6.30)

The sign in (6.30) is chosen in such a way that the module of the denominator
is maximized. Assuming that f ∈ C3(J) in a suitable neighborhood J of the
root α, with f ′(α) �= 0, the order of convergence is almost quadratic. Precisely,
the error e(k) = α−x(k) obeys the following relation (see for the proof [Hil87])

lim
k→∞

|e(k+1)|
|e(k)|p =

1
6

∣
∣
∣
∣
f ′′′(α)
f ′(α)

∣
∣
∣
∣ , p � 1.84.

Example 6.8 Let us employ Muller’s method to approximate the roots of the
polynomial p6 examined in Example 6.7. The tolerance on the stopping test is
tol = 10−6, while x(0) = −5, x(1) = 0 and x(2) = 5 are the inputs to (6.30). We
report in Table 6.5 the approximate roots of p6, denoted by sj and rj (j = 1, . . . , 6),
where, as in Example 6.7, sj and rj have been obtained by switching the refinement
procedure on and off, respectively. To compute the roots rj , 12, 11, 9, 9, 2 and 1
iterations are needed, respectively, while only one extra iteration is taken to refine
all the roots.
Even in this example, one can notice the effectiveness of the refinement procedure,
based on Newton’s method, on the accuracy of the solution yielded by (6.30). •

The Muller method is implemented in Program 54, in the special case
where f is a polynomial of degree n. The deflation process also includes a
refinement phase; the evaluation of f(x(k−2)), f(x(k−1)) and f(x(k)), with
k ≥ 2, is carried out using Program 52. The input/output parameters are
analogous to those described in Program 53.

Program 54 - mulldefl : Muller’s method with refinement

function [xn,iter,root,itrefin]=mulldefl(A,n,tol,x0,x1,x2,nmax,iref)
%MULLDEFL Muller method with refinement.
% [XN,ITER,ROOT,ITREFIN]=MULLDEFL(A,N,TOL,X0,X1,X2,NMAX,IREF) tries

272 6 Rootfinding for Nonlinear Equations

% to compute all the roots of a polynomial of degree N having coefficients
% A(1),...,A(N). TOL specifies the tolerance of the method. X0 is an initial
% guess. NMAX specifies the maximum number of iterations. If the flag IREF
% is equal 1, then the refinement procedure is activated.
apoly=A;
for i=1:n

xn(1,i)=x0; xn(2,i)=x1; xn(3,i)=x2;
it=0; err=tol+1; k=2; Ndeg=n-i+1;
if Ndeg==1

it=it+1; k=0; xn(it,i)=-A(2)/A(1);
else

while err>tol & it<nmax
k=k+1; it=it+1;
[f0,B]=horner(A,Ndeg,xn(k-2,i)); [f1,B]=horner(A,Ndeg,xn(k-1,i));
[f2,B]=horner(A,Ndeg,xn(k,i));
f01=(f1-f0)/(xn(k-1,i)-xn(k-2,i)); f12=(f2-f1)/(xn(k,i)-xn(k-1,i));
f012=(f12-f01)/(xn(k,i)-xn(k-2,i));
w=f12+(xn(k,i)-xn(k-1,i))*f012;
arg=wˆ2-4*f2*f012; d1=w-sqrt(arg);
d2=w+sqrt(arg); den=max(d1,d2);
if den˜=0

xn(k+1,i)=xn(k,i)-(2*f2)/den;
err=abs(xn(k+1,i)-xn(k,i));

else
fprintf(’ Vanishing denominator ’);
return

end
end

end
radix=xn(k+1,i);
if iref==1

alfa=radix; itr=1; err=tol+1;
while err>tol*1e-3 & itr<nmax

[px,B]=horner(apoly,n,alfa); [pdx,C]=horner(B,n-1,alfa);
if pdx == 0

fprintf(’ Vanishing derivative ’); err=0;
end
itr=itr+1;
if pdx˜=0

alfa2=alfa-px/pdx; err=abs(alfa2-alfa); alfa=alfa2;
end

end
itrefin(i)=itr-1; xn(k+1,i)=alfa; radix=alfa;

end
iter(i)=it; root(i)=radix; [px,B]=horner(A,Ndeg-1,xn(k+1,i)); A=B;

end
return

6.5 Stopping Criteria 273

6.5 Stopping Criteria

Suppose that {x(k)} is a sequence converging to a zero α of the function f .
In this section we provide some stopping criteria for terminating the iterative
process that approximates α. Analogous to Section 4.6, where the case of
iterative methods for linear systems has been examined, there are two possible
criteria: a stopping test based on the residual and on the increment. Below, ε
is a fixed tolerance on the approximate calculation of α and e(k) = α − x(k)

denotes the absolute error. We shall moreover assume that f is continuously
differentiable in a suitable neighborhood of the root.

1. Control of the residual: the iterative process terminates at the first step
k such that |f(x(k))| < ε.
Situations can arise where the test turns out to be either too restrictive or
excessively optimistic (see Figure 6.6). Applying the estimate (6.6) to the case
at hand yields

|e(k)|
|α| �

(
m!

|f (m)(α)||α|m

)1/m

|f(x(k))|1/m.

In particular, in the case of simple roots, the error is bound to the residual
by the factor 1/|f ′(α)| so that the following conclusions can be drawn:

1. if |f ′(α)| � 1, then |e(k)| � ε; therefore, the test provides a satisfactory
indication of the error;

2. if |f ′(α)| � 1, the test is not reliable since |e(k)| could be quite large with
respect to ε;

3. if, finally, |f ′(α)| � 1, we get |e(k)| � ε and the test is too restrictive.

We refer to Figure 6.6 for an illustration of the last two cases.
The conclusions that we have drawn agree with those in Example 2.4. Indeed,
when f ′(α) � 0, the condition number of the problem f(x) = 0 is very high

f(x)

x(k)α α

f(x)

x(k)

Fig. 6.6. Two situations where the stopping test based on the residual is either too
restrictive (when |e(k)| � |f(x(k))|, left) or too optimistic (when |e(k)| � |f(x(k))|,
right)

274 6 Rootfinding for Nonlinear Equations

-1 1 φ′(α)0

11
2

γ

Fig. 6.7. Behavior of γ = 1/(1 − φ′(α)) as a function of φ′(α)

and, as a consequence, the residual does not provide a significant indication
of the error.

2. Control of the increment: the iterative process terminates as soon as
|x(k+1) − x(k)| < ε.
Let

{
x(k)

}
be generated by the fixed-point method x(k+1) = φ(x(k)). Using

the mean value theorem, we get

e(k+1) = φ(α) − φ(x(k)) = φ′(ξ(k))e(k),

where ξ(k) lies between x(k) and α. Then,

x(k+1) − x(k) = e(k) − e(k+1) =
(
1 − φ′(ξ(k))

)
e(k)

so that, assuming that we can replace φ′(ξ(k)) with φ′(α), it follows that

e(k) � 1
1 − φ′(α)

(x(k+1) − x(k)). (6.31)

As shown in Figure 6.7, we can conclude that the test:
- is unsatisfactory if φ′(α) is close to 1;
- provides an optimal balancing between increment and error in the case

of methods of order 2 for which φ′(α) = 0 as is the case for Newton’s method;
- is still satisfactory if −1 < φ′(α) < 0.

Example 6.9 The zero of the function f(x) = e−x − η is given by α = − log(η).
For η = 10−9, α � 20.723 and f ′(α) = −e−α � −10−9. We are thus in the case
where |f ′(α)| � 1 and we wish to examine the behaviour of Newton’s method in
the approximation of α when the two stopping criteria above are adopted in the
computations.
We show in Tables 6.6 and 6.7 the results obtained using the test based on the
control of the residual (1) and of the increment (2), respectively. We have taken
x(0) = 0 and used two different values of the tolerance. The number of iterations
required by the method is denoted by nit.

According to (6.31), since φ′(α) = 0, the stopping test based on the increment
reveals to be reliable for both the values (which are quite differing) of the stop

6.6 Post-processing Techniques for Iterative Methods 275

Table 6.6. Newton’s method for the approximation of the root of f(x) = e−x −η =
0. The stopping test is based on the control of the residual

ε nit |f(x(nit))| |α − x(nit)| |α − x(nit)|/α

10−10 22 5.9 · 10−11 5.7 · 10−2 0.27
10−3 7 9.1 · 10−4 13.7 66.2

Table 6.7. Newton’s method for the approximation of the root of f(x) = e−x −
η = 0. The stopping test is based on the control of the increment

ε nit |x(nit) − x(nit−1)| |α − x(nit)| |α − x(nit)|/α

10−10 26 8.4 · 10−13 � 0 � 0
10−3 25 1.3 · 10−6 8.4 · 10−13 4 · 10−12

tolerance ε. The test based on the residual, instead, yields an acceptable estimate
of the root only for very small tolerances, while it is completely wrong for large
values of ε.

•

6.6 Post-processing Techniques for Iterative Methods

We conclude this chapter by introducing two algorithms that aim at acceler-
ating the convergence of iterative methods for finding the roots of a function.

6.6.1 Aitken’s Acceleration

We describe this technique in the case of linearly convergent fixed-point meth-
ods, referring to [IK66], pp. 104–108, for the case of methods of higher order.

Consider a fixed-point iteration that is linearly converging to a zero α of
a given function f . Denoting by λ an approximation of φ′(α) to be suitably
determined and recalling (6.18) we have, for k ≥ 1

α � x(k) − λx(k−1)

1 − λ
=

x(k) − λx(k) + λx(k) − λx(k−1)

1 − λ

= x(k) +
λ

1 − λ
(x(k) − x(k−1)).

(6.32)

Aitken’s method provides a simple way of computing λ that is able to accel-
erate the convergence of the sequence {x(k)} to the root α. With this aim, let
us consider for k ≥ 2 the following ratio

λ(k) =
x(k) − x(k−1)

x(k−1) − x(k−2)
, (6.33)

276 6 Rootfinding for Nonlinear Equations

and check that

lim
k→∞

λ(k) = φ′(α). (6.34)

Indeed, for k sufficiently large

x(k+2) − α � φ′(α)(x(k+1) − α)

and thus, elaborating (6.33), we get

lim
k→∞

λ(k) = lim
k→∞

x(k) − x(k−1)

x(k−1) − x(k−2)
= lim

k→∞

(x(k) − α) − (x(k−1) − α)
(x(k−1) − α) − (x(k−2) − α)

= lim
k→∞

x(k) − α

x(k−1) − α
− 1

1 − x(k−2) − α

x(k−1) − α

=
φ′(α) − 1

1 − 1
φ′(α)

= φ′(α)

which is (6.34). Substituting in (6.32) λ with its approximation λ(k) given by
(6.33), yields the updated estimate of α

α � x(k) +
λ(k)

1 − λ(k)
(x(k) − x(k−1)) (6.35)

which, rigorously speaking, is significant only for a sufficiently large k. How-
ever, assuming that (6.35) holds for any k ≥ 2, we denote by x̂(k) the new
approximation of α that is obtained by plugging (6.33) back into (6.35)

x̂(k) = x(k) − (x(k) − x(k−1))2

(x(k) − x(k−1)) − (x(k−1) − x(k−2))
, k ≥ 2. (6.36)

This relation is known as Aitken’s extrapolation formula.
Letting, for k ≥ 2,

�x(k) = x(k) − x(k−1), �2x(k) = �(�x(k)) = �x(k) −�x(k−1),

formula (6.36) can be written as

x̂(k) = x(k) − (�x(k))2

�2x(k)
, k ≥ 2. (6.37)

Form (6.37) explains the reason why method (6.36) is more commonly known
as Aitken’s �2 method.
For the convergence analysis of Aitken’s method, it is useful to write (6.36) as
a fixed-point method in the form (6.17), by introducing the iteration function

φ�(x) =
xφ(φ(x)) − φ2(x)

φ(φ(x)) − 2φ(x) + x
. (6.38)

6.6 Post-processing Techniques for Iterative Methods 277

This function is indeterminate at x = α since φ(α) = α; however, by apply-
ing L’Hospital’s rule one can easily check that limx→α φ�(x) = α under the
assumption that φ is differentiable at α and φ′(α) �= 1. Thus, φ� is consistent
and has a continuos extension at α, the same being also true if α is a multiple
root of f . Moreover, it can be shown that the fixed points of (6.38) coincide
with those of φ even in the case where α is a multiple root of f (see [IK66],
pp. 104–106).

From (6.38) we conclude that Aitken’s method can be applied to a fixed-
point method x = φ(x) of arbitrary order. Actually, the following convergence
result holds.

Property 6.7 (Convergence of Aitken’s method) Let x(k+1) = φ(x(k))
be a fixed-point iteration of order p ≥ 1 for the approximation of a simple
zero α of a function f . If p = 1, Aitken’s method converges to α with order
2, while if p ≥ 2 the convergence order is 2p − 1. In particular, if p = 1,
Aitken’s method is convergent even if the fixed-point method is not. If α has
multiplicity m ≥ 2 and the method x(k+1) = φ(x(k)) is first-order convergent,
then Aitken’s method converges linearly, with convergence factor C = 1−1/m.

Example 6.10 Consider the computation of the simple zero α = 1 for the function
f(x) = (x−1)ex. For this, we use three fixed-point methods whose iteration functions
are, respectively, φ0(x) = log(xex), φ1(x) = (ex + x)/(ex + 1) and φ2(x) = (x2 −
x + 1)/x (for x �= 0). Notice that, since |φ′

0(1)| = 2, the corresponding fixed-point
method is not convergent, while in the other two cases the methods have order 1
and 2, respectively.

Let us check the performance of Aitken’s method, running Program 55 with
x(0) = 2, tol = 10−10 and working in complex arithmetic. Notice that in the case
of φ0 this produces complex numbers if x(k) happens to be negative. According to
Property 6.7, Aitken’s method applied to the iteration function φ0 converges in 8
steps to the value x(8) = 1.000002+i 0.000002. In the other two cases, the method of
order 1 converges to α in 18 iterations, to be compared with the 4 iterations required
by Aitken’s method, while in the case of the iteration function φ2 convergence holds
in 7 iterations against 5 iterations required by Aitken’s method. •

Aitken’s method is implemented in Program 55. The input/output para-
meters are the same as those of previous programs in this chapter.

Program 55 - aitken : Aitken’s extrapolation

function [xvect,xdif,fx,nit]=aitken(x0,nmax,tol,phi,fun)
%AITKEN Aitken’s extrapolation
% [XVECT,XDIF,FX,NIT]=AITKEN(X0,TOL,NMAX,FUN,PHI) tries to find a
% zero of the continuous function FUN using the Aitken’s extrapolation on the
% fixed-point iteration X=PHI(X), starting from the initial guess X0. XVECT is
% the vector of iterates, XDIF the vector of the differences between consecutive
% iterates, FX the residual. TOL specifies the tolerance of the method.
nit=0; xvect=[x0]; x=x0; fxn=eval(fun);

278 6 Rootfinding for Nonlinear Equations

fx=[fxn]; xdif=[]; err=tol+1;
while err>=tol & nit<=nmax

nit=nit+1; xv=xvect(nit); x=xv; phix=eval(phi);
x=phix; phixx=eval(phi); den=phixx-2*phix+xv;
if den == 0

err=tol*1.e-01;
else

xn=(xv*phixx-phixˆ2)/den;
xvect=[xvect; xn];
xdif=[xdif; abs(xn-xv)];
x=xn; fxn=abs(eval(fun));
fx=[fx; fxn]; err=fxn;

end
end
return

6.6.2 Techniques for Multiple Roots

As previously noticed in deriving Aitken’s acceleration, taking the incremental
ratios of successive iterates λ(k) in (6.33) provides a way to estimate the
asymptotic convergence factor φ′(α).

This information can be employed also to estimate the multiplicity of the
root of a nonlinear equation and, as a consequence, it provides a tool for
modifying Newton’s method in order to recover its quadratic convergence
(see (6.23)). Indeed, define the sequence m(k) through the relation λ(k) =
1 − 1/m(k), and recalling (6.22), it follows that m(k) tends to m as k → ∞.
If the multiplicity m is known a priori, it is clearly convenient to use the
modified Newton method (6.23). In other cases, the following adaptive Newton
algorithm can be used

x(k+1) = x(k) − m(k) f(x(k))
f ′(x(k))

, k ≥ 2, (6.39)

where we have set

m(k) =
1

1 − λ(k)
=

x(k−1) − x(k−2)

2x(k−1) − x(k) − x(k−2)
. (6.40)

Example 6.11 Let us check the performances of Newton’s method in its three
versions proposed so far (standard (6.16), modified (6.23) and adaptive (6.39)), to
approximate the multiple zero α = 1 of the function f(x) = (x2−1)p log x (for p ≥ 1
and x > 0). The desired root has multiplicity m = p + 1. The values p = 2, 4, 6 have
been considered and x(0) = 0.8, tol=10−10 have always been taken in numerical
computations.

The obtained results are summarized in Table 6.8, where for each method the
number of iterations nit required to converge are reported. In the case of the adaptive
method, beside the value of nit we have also shown in braces the estimate m(nit) of
the multiplicity m that is yielded by Program 56. •

6.6 Post-processing Techniques for Iterative Methods 279

Table 6.8. Solution of problem (x2 − 1)p log x = 0 in the interval [0.5, 1.5], with
p = 2, 4, 6

m standard adaptive modified

3 51 13 (2.9860) 4
5 90 16 (4.9143) 5
7 127 18 (6.7792) 5

In Example 6.11, the adaptive Newton method converges more rapidly
than the standard method, but less rapidly than the modified Newton method.
It must be noticed, however, that the adaptive method yields as a useful by-
product a good estimate of the multiplicity of the root, which can be profitably
employed in a deflation procedure for the approximation of the roots of a
polynomial.
The algorithm 6.39, with the adaptive estimate (6.40) of the multiplicity of the
root, is implemented in Program 56. To avoid the onset of numerical instabil-
ities, the updating of m(k) is performed only when the variation between two
consecutive iterates is sufficiently diminished. The input/output parameters
are the same as those of previous programs in this chapter.

Program 56 - adptnewt : Adaptive Newton’s method

function [xvect,xdif,fx,nit]=adptnewt(x0,tol,nmax,fun,dfun)
%ADPTNEWT Adaptive Newton’s method
% [XVECT,XDIF,FX,NIT]=ADPTNEWT(X0,TOL,NMAX,FUN,DFUN) tries to find a
% zero of the continuous function FUN using the adaptive Newton method starting
% from the initial guess X0. FUN and DFUN accept real scalar input x and
% return a real scalar value. XVECT is the vector of iterates, XDIF the vector
% of the differences between consecutive iterates, FX the residual. TOL specifies
% the tolerance of the method.
xvect=x0;
nit=0; r=[1]; err=tol+1; m=[1]; xdif=[];
while nit<nmax & err>tol

nit=nit+1;
x=xvect(nit); fx(nit)=eval(fun); f1x=eval(dfun);
if f1x == 0

fprintf(’ Stop due to vanishing derivative ’);
return

end;
x=x-m(nit)*fx(nit)/f1x;
xvect=[xvect;x]; fx=[fx;eval(fun)];
rd=err; err=abs(xvect(nit+1)-xvect(nit)); xdif=[xdif;err];
ra=err/rd; r=[r;ra]; diff=abs(r(nit+1)-r(nit));
if diff<1.e-3 & r(nit+1)>1.e-2

m(nit+1)=max(m(nit),1/abs(1-r(nit+1)));

280 6 Rootfinding for Nonlinear Equations

Table 6.9. Convergence of Newton’s method to the root of equation (6.41)

v(0) Nit v(0) Nit v(0) Nit v(0) Nit

10−4 47 10−2 7 10−3 21 10−1 5

else
m(nit+1)=m(nit);

end
end
return

6.7 Applications

We apply iterative methods for nonlinear equations considered so far in the
solution of two problems arising in the study of the thermal properties of gases
and electronics, respectively.

6.7.1 Analysis of the State Equation for a Real Gas

For a mole of a perfect gas, the state equation Pv = RT establishes a relation
between the pressure P of the gas (in Pascals [Pa]), the specific volume v
(in cubic meters per kilogram [m3Kg−1]) and its temperature T (in Kelvin
[K]), R being the universal gas constant, expressed in [JKg−1K−1] (joules
per kilogram per Kelvin).

For a real gas, the deviation from the state equation of perfect gases is due
to van der Waals and takes into account the intermolecular interaction and
the space occupied by molecules of finite size (see [Sla63]).

Denoting by α and β the gas constants according to the van der Waals
model, in order to determine the specific volume v of the gas, once P and T
are known, we must solve the nonlinear equation

f(v) = (P + α/v2)(v − β) − RT = 0. (6.41)

With this aim, let us consider Newton’s method (6.16) in the case of carbon
dioxide (CO2), at the pressure of P = 10[atm] (equal to 1013250[Pa]) and
at the temperature of T = 300[K]. In such a case, α = 188.33[Pa m6Kg−2]
and β = 9.77 · 10−4[m3Kg−1]; as a comparison, the solution computed by
assuming that the gas is perfect is ṽ � 0.056[m3Kg−1].

We report in Table 6.9 the results obtained by running Program 50 for
different choices of the initial guess v(0). We have denoted by Nit the number
of iterations needed by Newton’s method to converge to the root v∗ of f(v) = 0
using an absolute tolerance equal to the roundoff unit.

6.7 Applications 281

0 0.02 0.04 0.06 0.08 0.1
−6

−4

−2

0

2

4

6 x 10
4

0
10−18

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

10 20 30 40 50

Fig. 6.8. Graph of the function f in (6.41) (left); increments |v(k+1)−v(k)| computed
by the Newton’s method (circled curve) and bisection-Newton’s method (starred
curve)

The computed approximation of v∗ is v(Nit) � 0.0535. To analyze the causes of
the strong dependence of Nit on the value of v(0), let us examine the derivative
f ′(v) = P−αv−2+2αβv−3. For v > 0, f ′(v) = 0 at vM � 1.99·10−3[m3Kg−1]
(relative maximum) and at vm � 1.25 ·10−2[m3Kg−1] (relative minimum), as
can be seen in the graph of Figure 6.8 (left).
A choice of v(0) in the interval (0, vm) (with v(0) �= vM) thus necessarily leads
to a slow convergence of Newton’s method, as demonstrated in Figure 6.8
(right), where, in solid circled line, the sequence {|v(k+1)−v(k)|} is shown, for
k ≥ 0.

A possible remedy consists of resorting to a polyalgorithmic approach,
based on the sequential use of the bisection method and Newton’s method (see
Section 6.2.1). Running the bisection-Newton’s method with the endpoints of
the search interval equal to a = 10−4[m3Kg−1] and b = 0.1[m3Kg−1] and
an absolute tolerance of 10−3[m3Kg−1], yields an overall convergence of the
algorithm to the root v∗ in 11 iterations, with an accuracy of the order of the
roundoff unit. The plot of the sequence {|v(k+1) − v(k)|}, for k ≥ 0, is shown
in solid and starred lines in Figure 6.8 (right).

6.7.2 Analysis of a Nonlinear Electrical Circuit

Let us consider the electrical circuit in Figure 6.9 (left), where v and j denote
respectively the voltage drop across the device D (called a tunneling diode)
and the current flowing through D, while R and E are a resistor and a voltage
generator of given values.

The circuit is commonly employed as a biasing circuit for electronic de-
vices working at high frequency (see [Col66]). In such applications the para-
meters R and E are designed in such a way that v attains a value internal
to the interval for which g′(v) < 0, where g is the function which describes

282 6 Rootfinding for Nonlinear Equations

_+

j

E

R

D v

0 0.1 0.2 0.3 0.4 0.5
−4

−2

0

2

4

6

8

10

12
x 10−5

g(v)

Fig. 6.9. Tunneling diode circuit (left) and working point computation (right)

the bound between current and voltage for D and is drawn in Figure 6.9
(right). Explicitly, g = α(ev/β − 1)− µv(v − γ), for suitable constants α, β, γ
and µ.

Our aim is to determine the working point of the circuit at hand, that is,
the values attained by v and j for given parameters R and E. For that, we
write Kirchhoff’s law for the voltages across the loop, obtaining the following
nonlinear equation

f(v) = v

(
1
R

+ µγ

)

− µv2 + α(ev/β − 1) − E

R
= 0. (6.42)

From a graphical standpoint, finding out the working point of the circuit
amounts to determining the intersection between the function g and the
straight line of equation j = (E − v)/R, as shown in Figure 6.9 (right).
Assume the following (real-life) values for the parameters of the problem:
E/R = 1.2 · 10−4 [A], α = 10−12 [A], β−1 = 40 [V −1], µ = 10−3 [AV −2] and
γ = 0.4 [V]. The solution of (6.42), which is also unique for the considered
values of the parameters, is v∗ � 0.3 [V].

To approximate v∗, we compare the main iterative methods introduced
in this chapter. We have taken v(0) = 0 [V] for Newton’s method, ξ = 0 for
the Dekker-Brent algorithm (for the meaning of ξ, see Example 6.5), while
for all the other schemes the search interval has been taken equal to [0, 0.5].
The stopping tolerance tol has been set to 10−10. The obtained results are
reported in Table 6.10 where nit and f (nit) denote respectively the number
of iterations needed by the method to converge and the value of f at the
computed solution.

Notice the extremely slow convergence of the Regula Falsi method, due to
the fact that the value v(k′) always coincides with the right end-point v = 0.5

6.8 Exercises 283

Table 6.10. Convergence of the methods for the approximation of the root of
equation (6.42)

Method nit f (nit) Method nit f (nit)

bisection 32 −1.12 · 10−15 Dekker-Brent 11 1.09 · 10−14

Regula Falsi 225 −9.77 · 10−11 secant 11 2.7 · 10−20

chord 186 −9.80 · 10−14 Newton’s 8 −1.35 · 10−20

and the function f around v∗ has derivative very close to zero. An analogous
interpretation holds for the chord method.

6.8 Exercises

1. Derive geometrically the sequence of the first iterates computed by bisection,
Regula Falsi, secant and Newton’s methods in the approximation of the zero of
the function f(x) = x2 − 2 in the interval [1, 3].

2. Let f be a continuous function that is m-times differentiable (m ≥ 1), such that
f(α) = . . . = f (m−1)(α) = 0 and f (m)(α) �= 0. Prove (6.22) and check that the
modified Newton method (6.23) has order of convergence equal to 2.
[Hint: let f(x) = (x − α)mh(x), h being a function such that h(α) �= 0].

3. Let f(x) = cos2(2x) − x2 be the function in the interval 0 ≤ x ≤ 1.5 examined
in Example 6.4. Having fixed a tolerance ε = 10−10 on the absolute error, deter-
mine experimentally the subintervals for which Newton’s method is convergent
to the zero α � 0.5149.
[Solution: for 0 < x(0) ≤ 0.02, 0.94 ≤ x(0) ≤ 1.13 and 1.476 ≤ x(0) ≤ 1.5, the
method converges to the solution −α. For any other value of x(0) in [0, 1.5], the
method converges to α].

4. Check the following properties:
a) 0 < φ′(α) < 1: monotone convergence, that is, the error x(k) − α maintains

a constant sign as k varies;
b) −1 < φ′(α) < 0: oscillatory convergence that is, x(k) − α changes sign as k

varies;
c) |φ′(α)| > 1: divergence. More precisely, if φ′(α) > 1, the sequence is

monotonically diverging, while for φ′(α) < −1 it diverges with oscillatory
sign.

5. Consider for k ≥ 0 the fixed-point method, known as Steffensen’s method

x(k+1) = x(k) − f(x(k))

ϕ(x(k))
, ϕ(x(k)) =

f(x(k) + f(x(k))) − f(x(k))

f(x(k))
,

and prove that it is a second-order method. Implement the Steffensen method
in a MATLAB code and employ it to approximate the root of the nonlinear
equation e−x − sin(x) = 0.

6. Analyze the convergence of the fixed-point method x(k+1) = φj(x
(k)) for com-

puting the zeros α1 = −1 and α2 = 2 of the function f(x) = x2 − x − 2, when
the following iteration functions are used: φ1(x) = x2 − 2, φ2(x) =

√
2 + x

φ3(x) = −
√

2 + x and φ4(x) = 1 + 2/x, x �= 0.

284 6 Rootfinding for Nonlinear Equations

[Solution: the method is non convergent with φ1, it converges only to α2, with
φ2 and φ4, while it converges only to α1 with φ3].

7. For the approximation of the zeros of the function f(x) = (2x2−3x−2)/(x−1),
consider the following fixed-point methods:
(1) x(k+1) = g(x(k)), where g(x) = (3x2 − 4x − 2)/(x − 1);
(2) x(k+1) = h(x(k)), where h(x) = x − 2 + x/(x − 1).
Analyze the convergence properties of the two methods and determine in par-
ticular their order. Check the behavior of the two schemes using Program 51
and provide, for the second method, an experimental estimate of the interval
such that if x(0) is chosen in the interval then the method converges to α = 2.
[Solution: zeros: α1 = −1/2 and α2 = 2. Method (1) is not convergent, while
(2) can approximate only α2 and is second-order. Convergence holds for any
x(0) > 1].

8. Propose at least two fixed-point methods for approximating the root α � 0.5885
of equation e−x − sin(x) = 0 and analyze their convergence.

9. Using Descartes’s rule of signs, determine the number of real roots of the poly-
nomials p6(x) = x6 − x − 1 and p4(x) = x4 − x3 − x2 + x − 1.
[Solution: both p6 and p4 have one negative and one positive real root].

10. Let g : R → R be defined as g(x) =
√

1 + x2. Show that the iterates of Newton’s
method for the equation g′(x) = 0 satisfy the following properties:

(a) |x(0)| < 1 ⇒ g(x(k+1)) < g(x(k)), k ≥ 0, lim
k→∞

x(k) = 0,

(b) |x(0)| > 1 ⇒ g(x(k+1)) > g(x(k)), k ≥ 0, lim
k→∞

|x(k)| = +∞.

7

Nonlinear Systems and Numerical
Optimization

In this chapter we address the numerical solution of systems of nonlinear
equations and the minimization of a function of several variables.

The first problem generalizes to the n-dimensional case the search for the
zeros of a function, which was considered in Chapter 6, and can be formulated
as follows: given F : R

n → R
n,

find x∗ ∈ R
n such that F(x∗) = 0. (7.1)

Problem (7.1) will be solved by extending to several dimensions some of the
schemes that have been proposed in Chapter 6.
The basic formulation of the second problem reads: given f : R

n → R, called
an objective function,

minimize f(x) in R
n, (7.2)

and is called an unconstrained optimization problem.
A typical example consists of determining the optimal allocation of n

resources, x1, x2, . . . , xn, in competition with each other and ruled by a spe-
cific law. Generally, such resources are not unlimited; this circumstance, from
a mathematical standpoint, amounts to requiring that the minimizer of the
objective function lies within a subset Ω ⊂ R

n, and, possibly, that some equal-
ity or inequality constraints must be satisfied.

When these constraints exist the optimization problem is called con-
strained and can be formulated as follows: given the objective function f ,

minimize f(x) in Ω ⊂ R
n. (7.3)

Remarkable instances of (7.3) are those in which Ω is characterized by condi-
tions like h(x) = 0 (equality constraints) or h(x) ≤ 0 (inequality constraints),
where h : R

n → R
m, with m ≤ n, is a given function, called cost function,

and the condition h(x) ≤ 0 means hi(x) ≤ 0, for i = 1, . . . ,m.
If the function h is continuous and Ω is connected, problem (7.3) is usually

referred to as a nonlinear programming problem. Notable examples in this
area are:

286 7 Nonlinear Systems and Numerical Optimization

1. convex programming if f is a convex function and h has convex compo-
nents (see (7.21));

2. linear programming if f and h are linear;
3. quadratic programming if f is quadratic and h is linear.

Problems (7.1) and (7.2) are strictly related to one another. Indeed, if we
denote by Fi the components of F, then a point x∗, a solution of (7.1), is a
minimizer of the function f(x) =

∑n
i=1 F 2

i (x). Conversely, assuming that f is
differentiable and setting the partial derivatives of f equal to zero at a point
x∗ at which f is minimum leads to a system of nonlinear equations. Thus, any
system of nonlinear equations can be associated with a suitable minimization
problem, and vice versa. We shall take advantage of this observation when
devising efficient numerical methods.

7.1 Solution of Systems of Nonlinear Equations

Before considering problem (7.1), let us set some notation which will be used
throughout the chapter.

For k ≥ 0, we denote by Ck(D) the set of k-continuously differentiable
functions from D to R

n, where D ⊆ R
n is a set that will be made precise from

time to time. We shall always assume that F ∈ C1(D), i.e., F : R
n → R

n is a
continuously differentiable function on D.

We denote also by JF(x) the Jacobian matrix associated with F and eval-
uated at the point x = [x1, . . . , xn]T of R

n, defined as

(JF(x))ij =
(

∂Fi

∂xj

)

(x), i, j = 1, . . . , n.

Given any vector norm ‖ · ‖, we shall henceforth denote the sphere of radius
R with center x∗ by

B(x∗;R) = {y ∈ R
n : ‖y − x∗‖ < R} .

7.1.1 Newton’s Method and Its Variants

An immediate extension to the vector case of Newton’s method (6.16) for
scalar equations can be formulated as follows: given x(0) ∈ R

n, for k = 0, 1, . . .,
until convergence

solve JF(x(k))δx(k) = −F(x(k));

set x(k+1) = x(k) + δx(k).
(7.4)

Thus, at each step k the solution of a linear system with matrix JF(x(k)) is
required.

7.1 Solution of Systems of Nonlinear Equations 287

Example 7.1 Consider the nonlinear system

{
ex2

1+x2
2 − 1 = 0,

ex2
1−x2

2 − 1 = 0,

which admits the unique solution x∗ = 0. In this case, F(x) = [ex2
1+x2

2

− 1, ex2
1−x2

2 − 1]T . Running Program 57, leads to convergence in 15 iterations to
the pair [0.61 · 10−5, 0.61 · 10−5]T , starting from the initial datum x(0) = [0.1, 0.1]T ,
thus demonstrating a fairly rapid convergence rate. The results, however, dra-
matically change as the choice of the initial guess is varied. For instance, picking
up x(0) = [10, 10]T , 220 iterations are needed to obtain a solution comparable to
the previous one, while, starting from x(0) = [20, 20]T , Newton’s method fails to
converge. •

The previous example points out the high sensitivity of Newton’s method
on the choice of the initial datum x(0), as confirmed by the following local
convergence result.

Theorem 7.1 Let F : R
n → R

n be a C1 function in a convex open set D of
R

n that contains x∗. Suppose that J−1
F (x∗) exists and that there exist positive

constants R, C and L, such that ‖J−1
F (x∗)‖ ≤ C and

‖JF(x) − JF(y)‖ ≤ L‖x − y‖ ∀x,y ∈ B(x∗;R),

having denoted by the same symbol ‖ · ‖ two consistent vector and matrix
norms. Then, there exists r > 0 such that, for any x(0) ∈ B(x∗; r), the
sequence (7.4) is uniquely defined and converges to x∗ with

‖x(k+1) − x∗‖ ≤ CL‖x(k) − x∗‖2. (7.5)

Proof. Proceeding by induction on k, let us check (7.5) and, moreover, that x(k+1) ∈
B(x∗; r), where r = min(R, 1/(2CL)). First, we prove that for any x(0) ∈ B(x∗; r),
the inverse matrix J−1

F (x(0)) exists. Indeed

‖J−1
F (x∗)[JF(x(0)) − JF(x∗)]‖ ≤ ‖J−1

F (x∗)‖ ‖JF(x(0)) − JF(x∗)‖ ≤ CLr ≤ 1

2
,

and thus, thanks to Theorem 1.5, we can conclude that J−1
F (x(0)) exists, since

‖J−1
F (x(0))‖ ≤ ‖J−1

F (x∗)‖
1 − ‖J−1

F (x∗)[JF(x(0)) − JF(x∗)]‖
≤ 2‖J−1

F (x∗)‖ ≤ 2C.

As a consequence, x(1) is well defined and

x(1) − x∗ = x(0) − x∗ − J−1
F (x(0))[F(x(0)) − F(x∗)].

Factoring out J−1
F (x(0)) on the right-hand side and passing to the norms, we get

‖x(1) − x∗‖ ≤ ‖J−1
F (x(0))‖ ‖F(x∗) − F(x(0)) − JF(x(0))[x∗ − x(0)]‖

≤ 2C
L

2
‖x∗ − x(0)‖2,

288 7 Nonlinear Systems and Numerical Optimization

where the remainder of Taylor’s series of F has been used. The previous relation
proves (7.5) in the case k = 0; moreover, since x(0) ∈ B(x∗; r), we have ‖x∗ − x(0)‖
≤ 1/(2CL), from which ‖x(1) − x∗‖ ≤ 1

2
‖x∗ − x(0)‖.

This ensures that x(1) ∈ B(x∗; r).

By a similar proof, one can check that, should (7.5) be true for a certain k,

then the same inequality would follow also for k + 1 in place of k. This proves the

theorem. �

Theorem 7.1 thus confirms that Newton’s method is quadratically convergent
only if x(0) is sufficiently close to the solution x∗ and if the Jacobian matrix
is nonsingular. Moreover, it is worth noting that the computational effort
needed to solve the linear system (7.4) can be excessively high as n gets
large. Also, JF(x(k)) could be ill-conditioned, which makes it quite difficult
to obtain an accurate solution. For these reasons, several modifications to
Newton’s method have been proposed, which will be briefly considered in the
later sections, referring to the specialized literature for further details (see
[OR70], [DS83], [Erh97], [BS90], [SM03], [Deu04] and the references therein).

Remark 7.1 Let G(x) = x − F(x) and denote by r(k) = F(x(k)) the resid-
ual at step k. Then, from (7.4) it turns out that Newton’s method can be
alternatively formulated as

(
I − JG(x(k))

)(
x(k+1) − x(k)

)
= −r(k),

where JG denotes the Jacobian matrix associated with G. This equation
allows us to interpret Newton’s method as a preconditioned stationary
Richardson method. This prompts introducing a parameter αk in order to
accelerate the convergence of the iteration

(
I − JG(x(k))

)(
x(k+1) − x(k)

)
= −αkr(k).

The problem of how to select αk will be addressed in Section 7.2.6. �

7.1.2 Modified Newton’s Methods

Several modifications of Newton’s method have been proposed in order to
reduce its cost when the computed solution is sufficiently close to x∗. Further
variants, that are globally convergent, will be introduced for the solution of
the minimization problem (7.2).
1. Cyclic updating of the Jacobian matrix

An efficient alternative to method (7.4) consists of keeping the Jacobian
matrix (more precisely, its factorization) unchanged for a certain number, say
p ≥ 2, of steps. Generally, a deterioration of convergence rate is accompanied
by a gain in computational efficiency.

7.1 Solution of Systems of Nonlinear Equations 289

Program 57 implements Newton’s method in the case in which the LU fac-
torization of the Jacobian matrix is updated once every p steps. The programs
used to solve the triangular systems have been described in Chapter 3.

Here and in later codings in this chapter, we denote by x0 the initial
vector, by F and J the variables containing the functional expressions of F
and of its Jacobian matrix JF, respectively. The parameters tol and nmax
represent the stopping tolerance in the convergence of the iterative process
and the maximum admissible number of iterations, respectively. In output,
the vector x contains the approximation to the searched zero of F, while nit
denotes the number of iterations necessary to converge.

Program 57 - newtonsys : Newton’s method for nonlinear systems

function [x,iter]=newtonsys(F,J,x0,tol,nmax,p)
%NEWTONSYS Newton method for nonlinear systems
% [X, ITER] = NEWTONSYS(F, J, X0, TOL, NMAX, P) attempts to solve the
% nonlinear system F(X)=0 with the Newton method. F and J are strings
% containing the functional expressions of the nonlinear equations and of
% the Jacobian matrix. X0 specifies the initial guess. TOL specifies the
% tolerance of the method. NMAX specifies the maximum number of iterations.
% P specifies the number of consecutive steps during which the Jacobian is
% mantained fixed. ITER is the iteration number at which X is computed.
[n,m]=size(F);
if n ˜= m, error(’Only square systems’); end
iter=0; Fxn=zeros(n,1); x=x0; err=tol+1;
for i=1:n

for j=1:n
Jxn(i,j)=eval(J((i-1)*n+j,:));

end
end
[L,U,P]=lu(Jxn);
step=0;
while err>tol

if step == p
step = 0;
for i=1:n

Fxn(i)=eval(F(i,:));
for j=1:n; Jxn(i,j)=eval(J((i-1)*n+j,:)); end

end
[L,U,P]=lu(Jxn);

else
for i=1:n, Fxn(i)=eval(F(i,:)); end

end
iter=iter+1; step=step+1; Fxn=-P*Fxn;
y=forwardcol(L,Fxn);
deltax=backwardcol(U,y);
x = x + deltax;

290 7 Nonlinear Systems and Numerical Optimization

err=norm(deltax);
if iter > nmax

error(’ Fails to converge within maximum number of iterations ’);
end

end
return

2. Inexact solution of the linear systems
Another possibility consists of solving the linear system (7.4) by an iter-

ative method, where the maximum number of admissible iterations is fixed a
priori. The resulting schemes are identified as Newton-Jacobi, Newton-SOR
or Newton-Krylov methods, according to the iterative process that is used for
the linear system (see [BS90], [Kel99]). Here, we limit ourselves to describing
the Newton-SOR method.

In analogy with what was done in Section 4.2.1, let us decompose the
Jacobian matrix at step k as

JF(x(k)) = Dk − Ek − Fk, (7.6)

where Dk = D(x(k)), −Ek = −E(x(k)) and −Fk = −F(x(k)), the diagonal
part and the lower and upper triangular portions of the matrix JF(x(k)),
respectively. We suppose also that Dk is nonsingular. The SOR method for
solving the linear system in (7.4) is organized as follows: setting δx(k)

0 = 0,
solve

δx(k)
r = Mkδx(k)

r−1 − ωk(Dk − ωkEk)−1F(x(k)), r = 1, 2, . . . , (7.7)

where Mk is the iteration matrix of SOR method

Mk = [Dk − ωkEk]−1 [(1 − ωk)Dk + ωkFk] ,

and ωk is a positive relaxation parameter whose optimal value can rarely
be determined a priori. Assume that only r = m steps of the method are
carried out. Recalling that δx(k)

r = x(k)
r − x(k) and still denoting by x(k+1)

the approximate solution computed after m steps, we find that this latter can
be written as (see Exercise 1)

x(k+1) = x(k) − ωk

(
Mm−1

k + . . . + I
)
(Dk − ωkEk)−1 F(x(k)). (7.8)

This method is thus a composite iteration, in which at each step k, starting
from x(k), m steps of the SOR method are carried out to solve approximately
system (7.4).

The integer m, as well as ωk, can depend on the iteration index k; the
simplest choice amounts to performing, at each Newton’s step, only one iter-
ation of the SOR method, thus obtaining for r = 1 from (7.7) the one-step
Newton-SOR method

7.1 Solution of Systems of Nonlinear Equations 291

x(k+1) = x(k) − ωk (Dk − ωkEk)−1 F(x(k)).

In a similar way, the preconditioned Newton-Richardson method with matrix
Pk, if truncated at the m-th iteration, is

x(k+1) = x(k) −
[
I + Mk + . . . + Mm−1

k

]
P−1

k F(x(k)),

where Pk is the preconditioner of JF and

Mk = P−1
k Nk, Nk = Pk − JF(x(k)).

For an efficient implementation of these techniques we refer to the
MATLAB software package developed in [Kel99].
3. Difference approximations of the Jacobian matrix

Another possibility consists of replacing JF(x(k)) (whose explicit compu-
tation is often very expensive) with an approximation through n-dimensional
differences of the form

(J(k)
h)j =

F(x(k) + h
(k)
j ej) − F(x(k))

h
(k)
j

, ∀k ≥ 0, (7.9)

where ej is the j-th vector of the canonical basis of R
n and h

(k)
j > 0 are

increments to be suitably chosen at each step k of the iteration (7.4). The
following result can be shown.

Property 7.1 Let F and x∗ be such that the hypotheses of Theorem 7.1 are
fulfilled, where ‖ · ‖ denotes the ‖ · ‖1 vector norm and the corresponding
induced matrix norm. If there exist two positive constants ε and h such that
x(0) ∈ B(x∗, ε) and 0 < |h(k)

j | ≤ h for j = 1, . . . , n then the sequence defined by

x(k+1) = x(k) −
[
J(k)

h

]−1

F(x(k)), (7.10)

is well defined and converges linearly to x∗. Moreover, if there exists a positive
constant C such that maxj |h(k)

j | ≤ C‖x(k) − x∗‖ or, equivalently, there exists

a positive constant c such that maxj |h(k)
j | ≤ c‖F(x(k))‖, then the sequence

(7.10) is convergent quadratically.

This result does not provide any constructive indication as to how to compute
the increments h

(k)
j . In this regard, the following remarks can be made. The

first-order truncation error with respect to h
(k)
j , which arises from the divided

difference (7.9), can be reduced by reducing the sizes of h
(k)
j . On the other

hand, a too small value for h
(k)
j can lead to large rounding errors. A trade-off

292 7 Nonlinear Systems and Numerical Optimization

must therefore be made between the need of limiting the truncation errors
and ensuring a certain accuracy in the computations.

A possible choice is to take

h
(k)
j =

√
εM max

{
|x(k)

j |,Mj

}
sign(xj),

where Mj is a parameter that characterizes the typical size of the component
xj of the solution. Further improvements can be achieved using higher-order
divided differences to approximate derivatives, like

(J(k)
h)j =

F(x(k) + h
(k)
j ej) − F(x(k) − h

(k)
j ej)

2h
(k)
j

, ∀k ≥ 0.

For further details on this subject, see, for instance, [BS90].

7.1.3 Quasi-Newton Methods

By this term, we denote all those schemes in which globally convergent meth-
ods are coupled with Newton-like methods that are only locally convergent,
but with an order greater than one.
In a quasi-Newton method, given a continuously differentiable function F :
R

n → R
n, and an initial value x(0) ∈ R

n, at each step k one has to accomplish
the following operations:

1. compute F(x(k));
2. choose J̃F(x(k)) as being either the exact JF(x(k)) or an approximation

of it;
3. solve the linear system J̃F(x(k))δx(k) = −F(x(k));
4. set x(k+1) = x(k) + αkδx(k), where αk are suitable damping parameters.

Step 4. is thus the characterizing element of this family of methods. It will
be addressed in Section 7.2.6, where a criterion for selecting the “direction”
δx(k) will be provided.

7.1.4 Secant-like Methods

These methods are constructed starting from the secant method introduced
in Section 6.2 for scalar functions. Precisely, given two vectors x(0) and x(1),
at the generic step k ≥ 1 we solve the linear system

Qkδx(k+1) = −F(x(k)) (7.11)

and we set x(k+1) = x(k) + δx(k+1). Qk is an n × n matrix such that

Qkδx(k) = F(x(k)) − F(x(k−1)) = b(k), k ≥ 1,

7.1 Solution of Systems of Nonlinear Equations 293

and is obtained by a formal generalization of (6.13). However, the algebraic
relation above does not suffice to uniquely determine Qk. For this purpose we
require Qk for k ≥ n to be a solution to the following set of n systems

Qk

(
x(k) − x(k−j)

)
= F(x(k)) − F(x(k−j)), j = 1, . . . , n. (7.12)

If the vectors x(k−j), . . ., x(k) are linearly independent, system (7.12) allows
for calculating all the unknown coefficients {(Qk)lm, l,m = 1, . . . , n} of Qk.
Unfortunately, in practice the above vectors tend to become linearly depen-
dent and the resulting scheme is unstable, not to mention the need for storing
all the previous n iterates.

For these reasons, an alternative approach is pursued which aims at pre-
serving the information already provided by the method at step k. Precisely,
Qk is looked for in such a way that the difference between the following linear
approximants to F(x(k−1)) and F(x(k)), respectively

F(x(k)) + Qk(x − x(k)), F(x(k−1)) + Qk−1(x − x(k−1)),

is minimized jointly with the constraint that Qk satisfies system (7.12). Using
(7.12) with j = 1, the difference between the two approximants is found to be

dk = (Qk − Qk−1)
(
x − x(k−1)

)
. (7.13)

Let us decompose the vector x − x(k−1) as

x − x(k−1) = αδx(k) + s,

where α ∈ R and sT δx(k) = 0. Therefore, (7.13) becomes

dk = α (Qk − Qk−1) δx(k) + (Qk − Qk−1) s.

Only the second term in the relation above can be minimized since the first
one is independent of Qk, being

(Qk − Qk−1)δx(k) = b(k) − Qk−1δx(k).

The problem has thus become: find the matrix Qk such that (Qk − Qk−1) s
is minimized ∀s orthogonal to δx(k) with the constraint that (7.12) holds. It
can be shown that such a matrix exists and can be recursively computed as
follows

Qk = Qk−1 +
(b(k) − Qk−1δx(k))δx(k)T

δx(k)T
δx(k)

. (7.14)

The method (7.11), with the choice (7.14) of matrix Qk is known as the
Broyden method. To initialize (7.14), we set Q0 equal to the matrix JF(x(0))
or to any approximation of it, for instance, the one yielded by (7.9). As for
the convergence of Broyden’s method, the following result holds.

294 7 Nonlinear Systems and Numerical Optimization

Property 7.2 If the assumptions of Theorem 7.1 are satisfied and there exist
two positive constants ε and γ such that

‖x(0) − x∗‖ ≤ ε, ‖Q0 − JF(x∗)‖ ≤ γ,

then the sequence of vectors x(k) generated by Broyden’s method is well defined
and converges superlinearly to x∗, that is

‖x(k) − x∗‖ ≤ ck‖x(k−1) − x∗‖ (7.15)

where the constants ck are such that lim
k→∞

ck = 0.

Under further assumptions, it is also possible to prove that the sequence Qk

converges to JF(x∗), a property that does not necessarily hold for the above
method as demonstrated in Example 7.3.

There exist several variants to Broyden’s method which aim at reducing
its computational cost, but are usually less stable (see [DS83], Chapter 8).
Program 58 implements Broyden’s method (7.11)-(7.14). We have denoted by
Q the initial approximation Q0 in (7.14).

Program 58 - broyden : Broyden’s method for nonlinear systems

function [x,iter]=broyden(F,Q,x0,tol,nmax)
%BROYDEN Broyden method for nonlinear systems
% [X, ITER] = BROYDEN(F, Q, X0, TOL, NMAX) attempts to solve the
% nonlinear system F(X)=0 with the Broyden method. F is a string variable
% containing the functional expressions of the nonlinear equations. Q is a
% starting approximation of the Jacobian. X0 specifies the initial guess.
% TOL specifies the tolerance of the method. NMAX specifies the maximum
% number of iterations. ITER is the iteration number at which X is computed.
[n,m]=size(F);
if n ˜= m, error(’Only square systems’); end
iter=0; err=1+tol; fk=zeros(n,1); fk1=fk; x=x0;
for i=1:n

fk(i)=eval(F(i,:)); end
while iter < nmax & err > tol

s=-Q \ fk;
x=s+x;
err=norm(s,inf);
if err > tol

for i=1:n, fk1(i)=eval(F(i,:)); end
Q=Q+1/(s’*s)*fk1*s’;

end
iter=iter+1;
fk=fk1;

end
end
return

7.1 Solution of Systems of Nonlinear Equations 295

0 5 10 15 20 25 30 35 40
10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

Fig. 7.1. Euclidean norm of the error for the Newton method (solid line) and the
Broyden method (dashed line) in the case of the nonlinear system of Example 7.1

Example 7.2 Let us solve using Broyden’s method the nonlinear system of Exam-
ple 7.1. The method converges in 35 iterations to the value (0.7 · 10−8, 0.7 · 10−8)T

compared with the 26 iterations required by Newton’s method starting from the
same initial guess (x(0) = [0.1, 0.1]T). The matrix Q0 has been set equal to the
Jacobian matrix evaluated at x(0). Figure 7.1 shows the behavior of the Euclidean
norm of the error for both methods. •

Example 7.3 Suppose we wish to solve using the Broyden method the nonlinear
system F(x) = [x1 +x2 −3, x2

1 +x2
2 −9]T = 0. This system admits the two solutions

[0, 3]T and [3, 0]T . Broyden’s method converges in 8 iterations to the solution [0, 3]T

starting from x(0) = [2, 4]T . However, the sequence of Qk, stored in the variable Q

of Program 58, does not converge to the Jacobian matrix, since

lim
k→∞

Q(k) =

[
1 1
1.5 1.75

]

�= JF([0, 3]T) =

[
1 1
0 6

]

.

•

7.1.5 Fixed-point Methods

We conclude the analysis of methods for solving systems of nonlinear equations
by extending to n-dimensions the fixed-point techniques introduced in the
scalar case. For this, we reformulate problem (7.1) as

given G : R
n → R

n, find x∗ ∈ R
n such that G(x∗) = x∗ (7.16)

where G is related to F through the following property: if x∗ is a fixed point
of G, then F(x∗) = 0.

296 7 Nonlinear Systems and Numerical Optimization

Analogously to what was done in Section 6.3, we introduce iterative methods
for the solution of (7.16) of the form: given x(0) ∈ R

n, for k = 0, 1, . . . until
convergence, find

x(k+1) = G(x(k)). (7.17)

In order to analyze the convergence of the fixed-point iteration (7.17) the
following definition will be useful.

Definition 7.1 A mapping G : D ⊂ R
n → R

n is contractive on a set D0 ⊂ D
if there exists a constant α < 1 such that ‖G(x) − G(y)‖ ≤ α‖x − y‖ for all
x, y in D0, where ‖ · ‖ is a suitable vector norm. �

The existence and uniqueness of a fixed point for G is ensured by the following
theorem.

Theorem 7.2 (Contraction-mapping theorem) Suppose that G : D ⊂
R

n → R
n is contractive on a closed set D0 ⊂ D and that G(x) ⊂ D0 for all

x ∈ D0. Then G has a unique fixed point in D0.

Proof. Let us first prove the uniqueness of the fixed point. For this, assume that
there exist two distinct fixed points, x∗, y∗. Then

‖x∗ − y∗‖ = ‖G(x∗) − G(y∗)‖ ≤ α‖x∗ − y∗‖

from which (1 − α)‖x∗ − y∗‖ ≤ 0. Since (1 − α) > 0, it must necessarily be that
‖x∗ − y∗‖ = 0, i.e., x∗ = y∗.

To prove the existence we show that x(k) given by (7.17) is a Cauchy sequence.
This in turn implies that x(k) is convergent to a point x(∗) ∈ D0. Take x(0) arbitrarily
in D0. Then, since the image of G is included in D0, the sequence x(k) is well
defined and

‖x(k+1) − x(k)‖ = ‖G(x(k)) − G(x(k−1))‖ ≤ α‖x(k) − x(k−1)‖.

After p steps, p ≥ 1, we obtain

‖x(k+p) − x(k)‖ ≤
p∑

i=1

‖x(k+i) − x(k+i−1)‖ ≤
(
αp−1 + . . . + 1

)
‖x(k+1) − x(k)‖

≤ αk

1 − α
‖x(1) − x(0)‖.

Owing to the continuity of G it follows that lim
k→∞

G(x(k)) = G(x(∗)) which proves

that x(∗) is a fixed point for G. �

The following result provides a sufficient condition for the iteration (7.17) to
converge (for the proof see [OR70], pp. 299-301), and extends the analogous
Theorem 6.3 in the scalar case.

7.1 Solution of Systems of Nonlinear Equations 297

Property 7.3 Suppose that G : D ⊂ R
n → R

n has a fixed point x∗ in the
interior of D and that G is continuously differentiable in a neighborhood of x∗.
Denote by JG the Jacobian matrix of G and assume that ρ(JG(x(∗))) < 1.
Then there exists a neighborhood S of x∗ such that S ⊂ D and, for any
x(0) ∈ S, the iterates defined by (7.17) all lie in D and converge to x∗.

As usual, since the spectral radius is the infimum of the induced matrix norms,
in order for convergence to hold it suffices to check that ‖JG(x)‖ < 1 for some
matrix norm.

Example 7.4 Consider the nonlinear system

F(x) = [x2
1 + x2

2 − 1, 2x1 + x2 − 1]T = 0,

whose solutions are x∗
1 = [0, 1]T and x∗

2 = [4/5,−3/5]T . To solve it, let us use two
fixed-point schemes, respectively defined by the following iteration functions

G1(x) =

[1 − x2

2√
1 − x2

1

]

, G2(x) =

[1 − x2

2

−
√

1 − x2
1

]

. (7.18)

It can be checked that Gi(x
∗
i) = x∗

i for i = 1, 2 and that the Jacobian matrices of
G1 and G2, evaluated at x∗

1 and x∗
2 respectively, are

JG1(x
∗
1) =

[
0 − 1

2

0 0

]

, JG2(x
∗
2) =

[
0 − 1

2

4
3

0

]

.

The spectral radii are ρ(JG1(x
∗
1)) = 0 and ρ(JG2(x

∗
2)) =

√
2/3 � 0.817 < 1 so

that both methods are convergent in a suitable neighborhood of their respective
fixed points.

Running Program 59, with a tolerance of 10−10 on the maximum absolute dif-
ference between two successive iterates, the first scheme converges to x∗

1 in 9 itera-
tions, starting from x(0) = [−0.9, 0.9]T , while the second one converges to x∗

2 in 115
iterations, starting from x(0) = [0.9, 0.9]T . The dramatic change in the convergence
behavior of the two methods can be explained in view of the difference between the
spectral radii of the corresponding iteration matrices. •

Remark 7.2 Newton’s method can be regarded as a fixed-point method with
iteration function

GN (x) = x − J−1
F (x)F(x). (7.19)

�

An implementation of the fixed-point method (7.17) is provided in
Program 59. We have denoted by dim the size of the nonlinear system
and by Phi the variables containing the functional expressions of the iteration

298 7 Nonlinear Systems and Numerical Optimization

function G. In output, the vector alpha contains the approximation of the
sought zero of F and the vector res contains the sequence of the maximum
norms of the residuals of F(x(k)).

Program 59 - fixposys : Fixed-point method for nonlinear systems

function [alpha,res,iter]=fixposys(F,Phi,x0,tol,nmax,dim)
%FIXPOSYS Fixed-point method for nonlinear systems
% [ALPHA, RES, ITER] = FIXPOSYS(F, PHI, X0, TOL, NMAX, DIM) attempts
% to solve the nonlinear system F(X)=0 with the Fixed Point method. F and PHI are
% string variables containing the functional expressions of the nonlinear equations
% and of the iteration function. X0 specifies the initial guess. TOL specifies the
% tolerance of the method. NMAX specifies the maximum number of iterations. DIM is
% the size of the nonlinear system. ITER is the iteration number at which ALPHA is
% computed. RES is the system residual computed at ALPHA.
x = x0; alpha=[x’]; res = 0;
for k=1:dim

r=abs(eval(F(k,:))); if (r > res), res = r; end
end;
iter = 0;
residual(1)=res;
while ((iter <= nmax) & (res >= tol)),

iter = iter + 1;
for k = 1:dim

xnew(k) = eval(Phi(k,:));
end
x = xnew; res = 0; alpha=[alpha;x]; x=x’;
for k = 1:dim

r = abs(eval(F(k,:)));
if (r > res), res=r; end,

end
residual(iter+1)=res;

end
res=residual’;
return

7.2 Unconstrained Optimization

We turn now to minimization problems. The point x∗, the solution of (7.2),
is called a global minimizer of f , while x∗ is a local minimizer of f if ∃R > 0
such that

f(x∗) ≤ f(x), ∀x ∈ B(x∗;R).

Throughout this section we shall always assume that f ∈ C1(Rn), and we refer
to [Lem89] for the case in which f is nondifferentiable. We shall denote by

7.2 Unconstrained Optimization 299

∇f(x) =
(

∂f

∂x1
(x), . . . ,

∂f

∂xn
(x)

)T

,

the gradient of f at a point x. If d is a nonnull vector in R
n, then the directional

derivative of f with respect to d is

∂f

∂d
(x) = lim

α→0

f(x + αd) − f(x)
α

and satisfies ∂f(x)/∂d = ∇f(x)T d. Moreover, denoting by (x,x + αd) the
segment in R

n joining the points x and x+αd, with α ∈ R, Taylor’s expansion
ensures that ∃ξ ∈ (x,x + αd) such that

f(x + αd) − f(x) = α∇f(ξ)T d. (7.20)

If f ∈ C2(Rn), we shall denote by H(x) (or ∇2f(x)) the Hessian matrix of f
evaluated at a point x, whose entries are

hij(x) =
∂2f(x)
∂xi∂xj

, i, j = 1, . . . , n.

In such a case it can be shown that, if d �= 0, the second-order directional
derivative exists and we have

∂2f

∂d2
(x) = dT H(x)d.

For a suitable ξ ∈ (x,x + d) we also have

f(x + d) − f(x) = ∇f(x)T d +
1
2
dT H(ξ)d.

Existence and uniqueness of solutions for (7.2) are not guaranteed in R
n.

Nevertheless, the following optimality conditions can be proved.

Property 7.4 Let x∗ ∈ R
n be a local minimizer of f and assume that f

∈ C1(B(x∗;R)) for a suitable R > 0. Then ∇f(x∗) = 0. Moreover, if f ∈
C2(B(x∗;R)) then H(x∗) is positive semidefinite. Conversely, if ∇f(x∗) = 0
and H(x∗) is positive definite, then x∗ is a local minimizer of f in B(x∗;R).

A point x∗ such that ∇f(x∗) = 0, is said to be a critical point for f . This
condition is necessary for optimality to hold. However, this condition also
becomes sufficient if f is a convex function on R

n, i.e., such that ∀x,y ∈ R
n

and for any α ∈ [0, 1]

f [αx + (1 − α)y] ≤ αf(x) + (1 − α)f(y). (7.21)

For further and more general existence results, see [Ber82].

300 7 Nonlinear Systems and Numerical Optimization

7.2.1 Direct Search Methods

In this section we deal with direct methods for solving problem (7.2), which
only require f to be continuous. In later sections, we shall introduce the
so-called descent methods, which also involve values of the derivatives of f
and have, in general, better convergence properties.

Direct methods are employed when f is not differentiable or if the compu-
tation of its derivatives is a nontrivial task. They can also be used to provide
an approximate solution to employ as an initial guess for a descent method.
For further details, we refer to [Wal75] and [Wol78].

The Hooke and Jeeves Method

Assume we are searching for the minimizer of f starting from a given initial
point x(0) and requiring that the error on the residual is less than a certain
fixed tolerance ε. The Hooke and Jeeves method computes a new point x(1)

using the values of f at suitable points along the orthogonal coordinate direc-
tions around x(0). The method consists of two steps: an exploration step and
an advancing step.

The exploration step starts by evaluating f(x(0) + h1e1), where e1 is the
first vector of the canonical basis of R

n and h1 is a positive real number to
be suitably chosen.

If f(x(0) + h1e1) < f(x(0)), then a success is recorded and the starting
point is moved in x(0) + h1e1, from which an analogous check is carried out
at point x(0) + h1e1 + h2e2 with h2 ∈ R

+.
If, instead, f(x(0) + h1e1) ≥ f(x(0)), then a failure is recorded and a

similar check is performed at x(0)−h1e1. If a success is registered, the method
explores, as previously, the behavior of f in the direction e2 starting from this
new point, while, in case of a failure, the method passes directly to examining
direction e2, keeping x(0) as starting point for the exploration step.

To achieve a certain accuracy, the step lengths hi must be selected in such
a way that the quantities

|f(x(0) ± hjej) − f(x(0)|, j = 1, . . . , n (7.22)

have comparable sizes.
The exploration step terminates as soon as all the n Cartesian directions

have been examined. Therefore, the method generates a new point, y(0), after
at most 2n + 1 functional evaluations. Only two possibilities may arise:

1. y(0) = x(0). In such a case, if max
i=1,...,n

hi ≤ ε the method terminates

and yields the approximate solution x(0). Otherwise, the step lengths hi

are halved and another exploration step is performed starting from x(0);
2. y(0) �= x(0). If max

i=1,...,n
|hi| < ε, then the method terminates yielding y(0) as

an approximate solution, otherwise the advancing step starts. The advanc-
ing step consists of moving further from y(0) along the direction y(0)−x(0)

7.2 Unconstrained Optimization 301

(which is the direction that recorded the maximum decrease of f during
the exploration step), rather then simply setting y(0) as a new starting
point x(1).
This new starting point is instead set equal to 2y(0)−x(0). From this point
a new series of exploration moves is started. If this exploration leads to a
point y(1) such that f(y(1)) < f(y(0) − x(0)), then a new starting point
for the next exploration step has been found, otherwise the initial guess
for further explorations is set equal to y(1) = y(0) − x(0).
The method is now ready to restart from the point x(1) just computed.

Program 60 provides an implementation of the Hooke and Jeeves method. The
input parameters are the size n of the problem, the vector h of the initial steps
along the Cartesian directions, the variable f containing the functional expres-
sion of f in terms of the components x(1), . . . , x(n), the initial point x0 and the
stopping tolerance tol equal to ε. In output, the code returns the approximate
minimizer of f , x, the value minf attained by f at x and the number of iter-
ations needed to compute x up to the desired accuracy. The exploration step
is performed by Program 61.

Program 60 - hookejeeves : The method of Hooke and Jeeves (HJ)

function [x,minf,iter]=hookejeeves(f,n,h,x0,tol)
%HOOKEJEEVES HOOKE and JEEVES method for function minimization.
% [X, MINF, ITER] = HOOKEJEEVES(F, N, H, X0, TOL) attempts to compute the
% minimizer of a function of N variables with the Hooke and Jeeves method. F is
% a string variable containing the functional expression of f. H is an initial
% step. X0 specifies the initial guess. TOL specifies the tolerance of the method.
% ITER is the iteration number at which X is computed. MINF is the value of F at
% the mimimizer X.
x = x0; minf = eval(f); iter = 0;
while h > tol

[y] = explore(f,n,h,x);
if y == x

h = h/2;
else

x = 2*y-x;
[z] = explore(f,n,h,x);
if z == x

x = y;
else

x = z;
end

end
iter = iter +1;

end
minf = eval(f);
return

302 7 Nonlinear Systems and Numerical Optimization

Program 61 - explore : Exploration step in the HJ method

function [x]=explore(f,n,h,x0)
%EXPLORE Exploration step for function minimization.
% [X] = EXPLORE(F, N, H, X0) executes one exploration step of size H in the Hooke
% and Jeeves method for function minimization.
x = x0; f0 = eval(f);
for i=1:n

x(i) = x(i) + h(i); ff = eval(f);
if ff < f0

f0 = ff;
else

x(i) = x0(i) - h(i);
ff = eval(f);
if ff < f0

f0 = ff;
else

x(i) = x0(i);
end

end
end
return

The Method of Nelder and Mead

This method, proposed in [NM65], employs local linear approximants of f to
generate a sequence of points x(k), approximations of x∗, starting from simple
geometrical considerations. To explain the details of the algorithm, we begin
by noticing that a plane in R

n is uniquely determined by fixing n + 1 points
that must not be lying on a hyperplane.
Denote such points by x(k), for k = 0, . . . , n. They could be generated as

x(k) = x(0) + hkek, k = 1, . . . , n, (7.23)

having selected the steplengths hk ∈ R
+ in such a way that the variations

(7.22) are of comparable size.
Let us now denote by x(M), x(m) and x(µ) those points of the set

{
x(k)

}
at

which f respectively attains its maximum and minimum value and the value
immediately preceding the maximum. Moreover, denote by x(k)

c the centroid
of point x(k) defined as

x(k)
c =

1
n

n∑

j=0,j �=k

x(j).

The method generates a sequence of approximations of x∗, starting from x(k),
by employing only three possible transformations: reflections with respect

7.2 Unconstrained Optimization 303

to centroids, dilations and contractions. Let us examine the details of the
algorithm assuming that n + 1 initial points are available.

1. Determine the points x(M), x(m) and x(µ).
2. Compute as an approximation of x∗ the point

x̄ =
1

n + 1

n∑

i=0

x(i)

and check if x̄ is sufficiently close (in a sense to be made precise) to
x∗. Typically, one requires that the standard deviation of the values
f(x(0)), . . . , f(x(n)) from

f̄ =
1

n + 1

n∑

i=0

f(x(i))

are less than a fixed tolerance ε, that is

1
n

n∑

i=0

(
f(x(i)) − f̄

)2

< ε.

Otherwise, x(M) is reflected with respect to x(M)
c , that is, the following

new point x(r) is computed

x(r) = (1 + α)x(M)
c − αx(M),

where α ≥ 0 is a suitable reflection factor. Notice that the method has
moved along the “opposite” direction to x(M). This statement has a geo-
metrical interpretation in the case n = 2, since the points x(k) coincide
with x(M), x(m) and x(µ). They thus define a plane whose slope points
from x(M) towards x(m) and the method provides a step along this direc-
tion.

3. If f(x(m)) ≤ f(x(r)) ≤ f(x(µ)), the point x(M) is replaced by x(r) and the
algorithm returns to step 2.

4. If f(x(r)) < f(x(m)) then the reflection step has produced a new mini-
mizer. This means that the minimizer could lie outside the set defined
by the convex hull of the considered points. Therefore, this set must be
expanded by computing the new vertex

x(e) = βx(r) + (1 − β)x(M)
c ,

where β > 1 is an expansion factor. Then, before coming back to step 2.,
two possibilities arise:
4a. if f(x(e)) < f(x(m)) then x(M) is replaced by x(e);
4b. f(x(e)) ≥ f(x(m)) then x(M) is replaced by x(r) since f(x(r))

< f(x(m)).

304 7 Nonlinear Systems and Numerical Optimization

5. If f(x(r)) > f(x(µ)) then the minimizer probably lies within a subset of
the convex hull of points

{
x(k)

}
and, therefore, two different approaches

can be pursued to contract this set. If f(x(r)) < f(x(M)), the contraction
generates a new point of the form

x(co) = γx(r) + (1 − γ)x(M)
c , γ ∈ (0, 1),

otherwise,

x(co) = γx(M) + (1 − γ)x(M)
c , γ ∈ (0, 1),

Finally, before returning to step 2., if f(x(co)) < f(x(M)) and f(x(co))
< f(x(r)), the point x(M) is replaced by x(co), while if f(x(co)) ≥ f(x(M))
or if f(x(co)) > f(x(r)), then n new points x(k) are generated, with k
= 1, . . . , n, by halving the distances between the original points and x(0).

As far as the choice of the parameters α, β and γ is concerned, the following
values are empirically suggested in [NM65]: α = 1, β = 2 and γ = 1/2. The
resulting scheme is known as the Simplex method (that must not be confused
with a method sharing the same name used in linear programming), since the
set of the points x(k), together with their convex combinations, form a simplex
in R

n.
The convergence rate of the method is strongly affected by the orientation

of the starting simplex. To address this concern, in absence of information
about the behavior of f , the initial choice (7.23) turns out to be satisfactory
in most cases.

We finally mention that the Simplex method is the basic ingredient of the
MATLAB function fmins for function minimization in n dimensions.

Example 7.5 Let us compare the performances of the Simplex method with the
Hooke and Jeeves method, in the minimization of the Rosembrock function

f(x) = 100(x2 − x2
1)

2 + (1 − x1)
2. (7.24)

This function has a minimizer at [1, 1]T and represents a severe benchmark for
testing numerical methods in minimization problems. The starting point for both
methods is set equal to x(0) = [−1.2, 1]T , while the step sizes are taken equal to
h1 = 0.6 and h2 = 0.5, in such a way that (7.23) is satisfied. The stopping tolerance
on the residual is set equal to 10−4. For the implementation of Simplex method, we
have used the MATLAB function fmins.

Figure 7.2 shows the iterates computed by the Hooke and Jeeves method (of
which one in every ten iterates have been reported, for the sake of clarity) and by
the Simplex method, superposed to the level curves of the Rosembrock function. The
graph demonstrates the difficulty of this benchmark: actually, the function is like
a curved, narrow valley, which attains its minimum along the parabola of equation
x2

1 − x2 = 0.
The Simplex method converges in only 165 iterations, while 935 are needed for

the Hooke and Jeeves method to converge. The former scheme yields a solution
equal to [0.999987, 0.999978]T , while the latter gives the vector [0.9655, 0.9322]T . •

7.2 Unconstrained Optimization 305

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Fig. 7.2. Convergence histories of the Hooke and Jeeves method (crossed-line) and
the Simplex method (circled-line). The level curves of the minimized function (7.24)
are reported in dashed line

7.2.2 Descent Methods

In this section we introduce iterative methods that are more sophisticated
than those examined in Section 7.2.1. They can be formulated as follows:

given an initial vector x(0) ∈ R
n, compute for k ≥ 0 until convergence

x(k+1) = x(k) + αkd(k), (7.25)

where d(k) is a suitably chosen direction and αk is a positive parameter (called
stepsize) that measures the step along the direction d(k). This direction d(k)

is a descent direction if

d(k)T∇f(x(k)) < 0 if ∇f(x(k)) �= 0,

d(k) = 0 if ∇f(x(k)) = 0.
(7.26)

A descent method is a method like (7.25), in which the vectors d(k) are descent
directions.

Property (7.20) ensures that there exists αk > 0, sufficiently small, such
that

f(x(k) + αkd(k)) < f(x(k)), (7.27)

provided that f is continuously differentiable. Actually, taking in (7.20) ξ
= x(k) + ϑαkd(k) with ϑ ∈ (0, 1), and employing the continuity of ∇f , we get

f(x(k) + αkd(k)) − f(x(k)) = αk∇f(x(k))T d(k) + ε, (7.28)

where ε tends to zero as αk tends to zero. As a consequence, if αk > 0 is
sufficiently small, the sign of the left-side of (7.28) coincides with the sign of
∇f(x(k))T d(k), so that (7.27) is satisfied if d(k) is a descent direction.

306 7 Nonlinear Systems and Numerical Optimization

Different choices of d(k) correspond to different methods. In particular, we
recall the following ones:

– Newton’s method, in which

d(k) = −H−1(x(k))∇f(x(k)),

provided that H is positive definite within a sufficiently large neighborhood
of point x∗;

– inexact Newton’s methods, in which

d(k) = −B−1
k ∇f(x(k)),

where Bk is a suitable approximation of H(x(k));
– the gradient method or steepest descent method, corresponding to setting

d(k) = −∇f(x(k)). This method is thus an inexact Newton’s method, in
which Bk = I. It can also be regarded as a gradient-like method, since
d(k)T∇f(x(k)) = −‖∇f(x(k))‖2

2;
– the conjugate gradient method, for which

d(k) = −∇f(x(k)) + βkd(k−1),

where βk is a scalar to be suitably selected in such a way that the directions{
d(k)

}
turn out to be mutually orthogonal with respect to a suitable scalar

product.

Selecting d(k) is not enough to completely identify a descent method, since
it remains an open problem how to determine αk in such a way that (7.27) is
fulfilled without resorting to excessively small stepsizes αk (and, thus, to meth-
ods with a slow convergence).

A method for computing αk consists of solving the following minimization
problem in one dimension:

find α such that φ(α) = f(x(k) + αd(k)) is minimized. (7.29)

In such a case we have the following result.

Theorem 7.3 Consider the descent method (7.25). If at the generic step k,
the parameter αk is set equal to the exact solution of (7.29), then the following
orthogonality property holds

∇f(x(k+1))T d(k) = 0.

Proof. Let αk be a solution to (7.29). Then, the first derivative of φ, given by

φ′(α) =

n∑

i=1

∂f

∂xi
(x(k) + αkd

(k))
∂

∂α
(x

(k)
i + αd

(k)
i) = ∇f(x(k) + αkd

(k))T d(k),

vanishes at α = αk. The thesis then follows, recalling the definition of x(k+1). �

Unfortunately, except for in special cases (which are nevetherless quite rel-
evant, see Section 7.2.4), providing an exact solution of (7.29) is not feasible,

7.2 Unconstrained Optimization 307

since this is a nonlinear problem. One possible strategy consists of approximat-
ing f along the straight line x(k) +αd(k) through an interpolating polynomial
and then minimizing this polynomial (see the quadratic interpolation Powell
methods and cubic interpolation Davidon methods in [Wal75]).

Generally speaking, a process that leads to an approximate solution to
(7.29) is said to be a line search technique and is addressed in the next section.

7.2.3 Line Search Techniques

The methods that we are going to deal with in this section, are iterative
techniques that terminate as soon as some accuracy stopping criterion on αk

is satisfied. We shall assume that (7.26) holds.
Practical experience reveals that it is not necessary to solve accurately

for (7.29) in order to devise efficient methods, rather, it is crucial to enforce
some limitation on the step lengths (and, thus, on the admissible values for
αk). Actually, without introducing any limitation, a reasonable request on αk

would seem be that the new iterate x(k+1) satisfies the inequality

f(x(k+1)) < f(x(k)), (7.30)

where x(k) and d(k) have been fixed. For this purpose, the procedure based on
starting from a (sufficiently large) value of the step length αk and halve this
value until (7.30) is fulfilled, can yield completely wrong results (see, [DS83]).

More stringent criteria than (7.30) should be adopted in the choice of
possible values for αk. To this end, we notice that two kinds of difficulties
arise with the above examples: a slow descent rate of the sequence and the
use of small stepsizes.

The first difficulty can be overcome by requiring that

0 ≥ vM (x(k+1)) =
1
αk

[
f(x(k)) − f(x(k) + αkd(k))

]

≥ −σ∇f(x(k))T d(k),

(7.31)

with σ ∈ (0, 1/2). This amounts to requiring that the average descent rate vM

of f along d(k), evaluated at x(k+1), be at least equal to a given fraction of
the initial descent rate at x(k). To avoid the generation of too small stepsizes,
we require that the descent rate in the direction d(k) at x(k+1) is not less than
a given fraction of the descent rate at x(k)

|∇f(x(k) + αkd(k))T d(k)| ≤ β|∇f(x(k))T d(k)|, (7.32)

with β ∈ (σ, 1) in such a way as to also satisfy (7.31). In computational
practice, σ ∈ [10−5, 10−1] and β ∈ [10−1, 1

2] are usual choices. Sometimes,
(7.32) is replaced by the milder condition

∇f(x(k) + αkd(k))T d(k) ≥ β∇f(x(k))T d(k) (7.33)

(recall that ∇f(x(k))T d(k) is negative, since d(k) is a descent direction).

308 7 Nonlinear Systems and Numerical Optimization

The following property ensures that, under suitable assumptions, it is possible
to find out values of αk which satisfy (7.31)-(7.32) or (7.31)-(7.33).

Property 7.5 Assume that f(x) ≥ M for any x ∈ R
n. Then there exists an

interval I = [c, C] for the descent method, with 0 < c < C, such that ∀αk ∈ I,
(7.31), (7.32) (or (7.31)-(7.33)) are satisfied, with σ ∈ (0, 1/2) and β ∈ (σ, 1).

Under the constraint of fulfilling conditions (7.31) and (7.32), several
choices for αk are available. Among the most up-to-date strategies, we recall
here the backtracking techniques: having fixed σ ∈ (0, 1/2), then start with
αk = 1 and then keep on reducing its value by a suitable scale factor ρ ∈ (0, 1)
(backtrack step) until (7.31) is satisfied. This procedure is implemented in Pro-
gram 62, which requires as input parameters the vector x containing x(k), the
macros f and J of the functional expressions of f and its Jacobian, the vector
d of the direction d(k), and a value for σ (usually of the order of 10−4) and
the scale factor ρ. In output, the code returns the vector x(k+1), computed
using a suitable value of αk.

Program 62 - backtrackr : Backtraking for line search

function [xnew]= backtrackr(f,J,x,d,sigma,rho)
%BACKTRACKR Backtraking method for line search.
% [XNEW] = BACKTRACKR(F, J, X, D, SIGMA, RHO) attempts to compute the new
% minimizer XNEW with the line search method. F and J are string variables
% containing the functional expressions of f and of its Jacobian. X is the present
% minimizer. D is a given direction. SIGMA and RHO are given parameters.
alphak = 1; fk = eval(f); Jfk = eval (J);
xx = x; x = x + alphak * d; fk1 = eval (f);
while fk1 > fk + sigma * alphak * Jfk’*d

alphak = alphak*rho;
x = xx + alphak*d;
fk1 = eval(f);

end
xnew = x;
return

Other commonly used strategies are those developed by Armijo and Goldstein
(see [Arm66], [GP67]). Both use σ ∈ (0, 1/2). In the Armijo formula, one takes
αk = βmk ᾱ, where β ∈ (0, 1), ᾱ > 0 and mk is the first nonnegative integer
such that (7.31) is satisfied. In the Goldstein formula, the parameter αk is
determined in such a way that

σ ≤ f(x(k) + αkd(k)) − f(x(k))
αk∇f(x(k))T d(k)

≤ 1 − σ. (7.34)

A procedure for computing αk that satisfies (7.34) is provided in [Ber82],
Chapter 1. Of course, one can even choose αk = ᾱ for any k, which is clearly
convenient when evaluating f is a costly task.

7.2 Unconstrained Optimization 309

In any case, a good choice of the value ᾱ is mandatory. In this respect, one
can proceed as follows. For a given value ᾱ, the second degree polynomial Π2

along the direction d(k) is constructed, subject to the following interpolation
constraints

Π2(x(k)) = f(x(k)),

Π2(x(k) + ᾱd(k)) = (x(k) + ᾱd(k)),

Π′
2(x

(k)) =∇f(x(k))T d(k).

Next, the value α̃ is computed such that Π2 is minimized, then, we let ᾱ = α̃.

7.2.4 Descent Methods for Quadratic Functions

A case of remarkable interest, where the parameter αk can be exactly com-
puted, is the problem of minimizing the quadratic function

f(x) =
1
2
xT Ax − bT x, (7.35)

where A∈ R
n×n is a symmetric and positive definite matrix and b ∈ R

n. In
such a case, as already seen in Section 4.3.3, a necessary condition for x∗ to be
a minimizer for f is that x∗ is the solution of the linear system (3.2). Actually,
it can be checked that if f is a quadratic function

∇f(x) = Ax − b = −r, H(x) = A.

As a consequence, all gradient-like iterative methods developed in Section
4.3.3 for linear systems, can be extended tout-court to solve minimization
problems.

In particular, having fixed a descent direction d(k), we can determine the
optimal value of the acceleration parameter αk that appears in (7.25), in such
a way as to find the point where the function f , restricted to the direction
d(k), is minimized. Setting to zero the directional derivative, we get

d
dαk

f(x(k) + αkd(k)) = −d(k)T
r(k) + αkd(k)T

Ad(k) = 0

from which the following expression for αk is obtained

αk =
d(k)T

r(k)

d(k)T Ad(k)
. (7.36)

The error introduced by the iterative process (7.25) at the k-th step is

‖x(k+1) − x∗‖2
A =

(
x(k+1) − x∗)T

A
(
x(k+1) − x∗)

= ‖x(k) − x∗‖2
A + 2αkd(k)T

A
(
x(k) − x∗)

+α2
kd

(k)T
Ad(k). (7.37)

310 7 Nonlinear Systems and Numerical Optimization

On the other hand ‖x(k) − x∗‖2
A = r(k)T

A−1r(k), so that from (7.37) it fol-
lows that

‖x(k+1) − x∗‖2
A = ρk‖x(k) − x∗‖2

A, (7.38)

having denoted by ρk = 1 − σk, with

σk = (d(k)T
r(k))2/

((
d(k)

)T

Ad(k)
(
r(k)

)T

A−1r(k)

)

.

Since A is symmetric and positive definite, σk is always positive. Moreover,
it can be directly checked that ρk is strictly less than 1, except when d(k) is
orthogonal to r(k), in which case ρk = 1.

The choice d(k) = r(k), which leads to the steepest descent method, prevents
this last circumstance from arising. In such a case, from (7.38) we get

‖x(k+1) − x∗‖A ≤ λmax − λmin

λmax + λmin
‖x(k) − x∗‖A (7.39)

having employed the following result.

Lemma 7.1 (Kantorovich inequality) Let A ∈ R
n×n be a symmetric posi-

tive definite matrix whose eigenvalues with largest and smallest module are
given by λmax and λmin, respectively. Then, ∀y ∈ R

n, y �= 0,

(yT y)2

(yT Ay)(yT A−1y)
≥ 4λmaxλmin

(λmax + λmin)2
.

It follows from (7.39) that, if A is ill-conditioned, the error reducing factor
for the steepest descent method is close to 1, yielding a slow convergence to
the minimizer x∗. As done in Chapter 4, this drawback can be overcome by
introducing directions d(k) that are mutually A-conjugate, i.e.

d(k)T
Ad(m) = 0 if k �= m.

The corresponding methods enjoy the following finite termination property.

Property 7.6 A method for computing the minimizer x∗ of the quadratic
function (7.35) which employs A-conjugate directions terminates after at most
n steps if the acceleration parameter αk is selected as in (7.36). Moreover, for
any k, x(k+1) is the minimizer of f over the subspace generated by the vectors
x(0),d(0), . . . ,d(k) and

r(k+1)T
d(m) = 0 ∀m ≤ k.

The A-conjugate directions can be determined by following the procedure
described in Section 4.3.4. Given x(0) ∈ R

n and letting d(0) = r(0), the con-
jugate gradient method for function minimization is

7.2 Unconstrained Optimization 311

d(k+1) = r(k) + βkd(k),

βk =−r(k+1)T
Ad(k)

d(k)T Ad(k)
=

r(k+1)T
r(k+1)

r(k)T r(k)
,

x(k+1) =x(k) + αkd(k).

It satisfies the following error estimate

‖x(k) − x∗‖A ≤ 2

(√
K2(A) − 1

√
K2(A) + 1

)k

‖x(0) − x∗‖A,

which can be improved by lowering the condition number of A, i.e., resorting
to the preconditioning techniques that have been dealt with in Section 4.3.2.

Remark 7.3 (The nonquadratic case) The conjugate gradient method
can be extended to the case in which f is a nonquadratic function. However,
in such an event, the acceleration parameter αk cannot be exactly determined
a priori, but requires the solution of a local minimization problem. Moreover,
the parameters βk can no longer be uniquely found. Among the most reliable
formulae, we recall the one due to Fletcher-Reeves,

β1 = 0, βk =
‖∇f(x(k))‖2

2

‖∇f(x(k−1))‖2
2

, for k > 1

and the one due to Polak-Ribiére

β1 = 0, βk =
∇f(x(k))

T
(∇f(x(k)) −∇f(x(k−1)))
‖∇f(x(k−1))‖2

2

, for k > 1.

�

7.2.5 Newton-like Methods for Function Minimization

Another example of descent method is provided by Newton’s method, which
differs from its version for nonlinear systems in that now it is no longer applied
to f , but to its gradient.

Using the notation of Section 7.2.2, Newton’s method for function min-
imization amounts to computing, given x(0) ∈ R

n, for k = 0, 1, . . . , until
convergence

d(k) = −H−1
k ∇f(x(k)),

x(k+1) = x(k) + d(k),

(7.40)

having set Hk = H(x(k)). The method can be derived by truncating Taylor’s
expansion of f(x(k)) at the second-order,

312 7 Nonlinear Systems and Numerical Optimization

f(x(k) + p) � f(x(k)) + ∇f(x(k))T p +
1
2
pT Hkp. (7.41)

Selecting p in (7.41) in such a way that the new vector x(k+1) = x(k) + p
satisfies ∇f(xk+1) = 0, we end up with method (7.40), which thus converges
in one step if f is quadratic.

In the general case, a result analogous to Theorem 7.1 also holds for func-
tion minimization. Method (7.40) is therefore locally quadratically convergent
to the minimizer x∗. However, it is not convenient to use Newton’s method
from the beginning of the computation, unless x(0) is sufficiently close to x∗.
Otherwise, indeed, Hk could not be invertible and the directions d(k) could
fail to be descent directions. Moreover, if Hk is not positive definite, nothing
prevents the scheme (7.40) from converging to a saddle point or a maximizer,
which are points where ∇f is equal to zero. All these drawbacks, together
with the high computational cost (recall that a linear system with matrix Hk

must be solved at each iteration), prompt suitably modifying method (7.40),
which leads to the so-called quasi-Newton methods.

A first modification, which applies to the case where Hk is not positive
definite, yields the so-called Newton’s method with shift. The idea is to prevent
Newton’s method from converging to non-minimizers of f , by applying the
scheme to a new Hessian matrix H̃k = Hk + µkIn, where, as usual, In denotes
the identity matrix of order n and µk is selected in such a way that H̃k is
positive definite. The problem is to determine the shift µk with a reduced
effort. This can be done, for instance, by applying the Gershgorin theorem to
the matrix H̃k (see Section 5.1). For further details on the subject, see [DS83]
and [GMW81].

7.2.6 Quasi-Newton Methods

At the generic k-th iteration, a quasi-Newton method for function minimization
performs the following steps:

1. compute the Hessian matrix Hk, or a suitable approximation Bk;
2. find a descent direction d(k) (not necessarily coinciding with the direction

provided by Newton’s method), using Hk or Bk;
3. compute the acceleration parameter αk;
4. update the solution, setting x(k+1) = x(k) + αkd(k), according to a global

convergence criterion.

In the particular case where d(k) = −H−1
k ∇f(x(k)), the resulting scheme is

called the damped Newton’s method. To compute Hk or Bk, one can resort to
either Newton’s method or secant-like methods, which will be considered in
Section 7.2.7.

The criteria for selecting the parameter αk, that have been discussed in
Section 7.2.3, can now be usefully employed to devise globally convergent
methods. Property 7.5 ensures that there exist values of αk satisfying (7.31),
(7.33) or (7.31), (7.32).

7.2 Unconstrained Optimization 313

Let us then assume that a sequence of iterates x(k), generated by a descent
method for a given x(0), converge to a vector x∗. This vector will not be, in
general, a critical point for f . The following result gives some conditions on
the directions d(k) which ensure that the limit x∗ of the sequence is also a
critical point of f .

Property 7.7 (Convergence) Let f : R
n → R be a continuously differen-

tiable function, and assume that there exists L > 0 such that

‖∇f(x) −∇f(y)‖2 ≤ L‖x − y‖2.

Then, if
{
x(k)

}
is a sequence generated by a gradient-like method which fulfills

(7.31) and (7.33), then, one (and only one) of the following events can occur:

1. ∇f(x(k)) = 0 for some k;
2. lim

k→∞
f(x(k)) = −∞;

3. lim
k→∞

∇f(x(k))T d(k)

‖d(k)‖2
= 0.

Thus, unless the pathological cases where the directions d(k) become too large
or too small with respect to ∇f(x(k)) or, even, are orthogonal to ∇f(x(k)),
any limit of the sequence

{
x(k)

}
is a critical point of f .

The convergence result for the sequence x(k) can also be extended to the
sequence f(x(k)). Indeed, the following result holds.

Property 7.8 Let
{
x(k)

}
be a convergent sequence generated by a gradient-

like method, i.e., such that any limit of the sequence is also a critical point of
f . If the sequence

{
x(k)

}
is bounded, then ∇f(x(k)) tends to zero as k → ∞.

For the proofs of the above results, see [Wol69] and [Wol71].

7.2.7 Secant-like methods

In quasi-Newton methods the Hessian matrix H is replaced by a suitable
approximation. Precisely, the generic iterate is

x(k+1) = x(k) − B−1
k ∇f(x(k)) = x(k) + s(k).

Assume that f : R
n → R is of class C2 on an open convex set D ⊂ R

n. In such
a case, H is symmetric and, as a consequence, approximants Bk of H ought to
be symmetric. Moreover, if Bk were symmetric at a point x(k), we would also
like the next approximant Bk+1 to be symmetric at x(k+1) = x(k) + s(k).
To generate Bk+1 starting from Bk, consider the Taylor expansion

∇f(x(k)) = ∇f(x(k+1)) + Bk+1(x(k) − x(k+1)),

314 7 Nonlinear Systems and Numerical Optimization

from which we get

Bk+1s(k) = y(k), with y(k) = ∇f(x(k+1)) −∇f(x(k)).

Using again a series expansion of B, we end up with the following first-order
approximation of H

Bk+1 = Bk +
(y(k) − Bks(k))cT

cT s(k)
, (7.42)

where c ∈ R
n and having assumed that cT s(k) �= 0. We notice that taking

c = s(k) yields Broyden’s method, already discussed in Section 7.1.4 in the
case of systems of nonlinear equations.

Since (7.42) does not guarantee that Bk+1 is symmetric, it must be suitably
modified. A way for constructing a symmetric approximant Bk+1 consists of
choosing c = y(k) − Bks(k) in (7.42), assuming that (y(k) − Bks(k))T s(k) �= 0.
By so doing, the following symmetric first-order approximation is obtained

Bk+1 = Bk +
(y(k) − Bks(k))(y(k) − Bks(k))T

(y(k) − Bks(k))T s(k)
. (7.43)

From a computational standpoint, disposing of an approximation for H is not
completely satisfactory, since the inverse of the approximation of H appears in
the iterative methods that we are dealing with. Using the Sherman-Morrison
formula (3.57), with Ck = B−1

k , yields the following recursive formula for the
computation of the inverse

Ck+1 = Ck +
(s(k) − Cky(k))(s(k) − Cky(k))T

(s(k) − Cky(k))T y(k)
, k = 0, 1, . . . , (7.44)

having assumed that y(k) = Bs(k), where B is a symmetric nonsingular matrix,
and that (s(k) − Cky(k))T y(k) �= 0.

An algorithm that employs the approximations (7.43) or (7.44), is poten-
tially unstable when (s(k)−Cky(k))T y(k) � 0, due to rounding errors. For this
reason, it is convenient to set up the previous scheme in a more stable form.
To this end, instead of (7.42), we introduce the approximation

B(1)
k+1 = Bk +

(y(k) − Bks(k))cT

cT s(k)
,

then, we define B(2)
k+1 as being the symmetric part

B(2)
k+1 =

B(1)
k+1 + (B(1)

k+1)
T

2
.

7.3 Constrained Optimization 315

The procedure can be iterated as follows

B(2j+1)
k+1 = B(2j)

k+1 +
(y(k) − B(2j)

k+1s
(k))cT

cT s(k)
,

B(2j+2)
k+1 =

B(2j+1)
k+1 + (B(2j+1)

k+1)T

2
,

(7.45)

with k = 0, 1, . . . and having set B(0)
k+1 = Bk. It can be shown that the limit

as j tends to infinity of (7.45) is

lim
j→∞

B(j)
k+1 = Bk+1 = Bk +

(y(k) − Bks(k))cT + c(y(k) − Bks(k))T

cT s(k)

− (y(k) − Bks(k))T s(k)

(cT s(k))2
ccT ,

(7.46)

having assumed that cT s(k) �= 0. If c = s(k), the method employing (7.46)
is known as the symmetric Powell-Broyden method. Denoting by BSPB the
corresponding matrix Bk+1, it can be shown that BSPB is the unique solution
to the problem:

find B̄ such that ‖B̄ − B‖F is minimized,

where B̄s(k) = y(k) and ‖ · ‖F is the Frobenius norm.
As for the error made approximating H(x(k+1)) with BSPB, it can be
proved that

‖BSPB − H(x(k+1))‖F ≤ ‖Bk − H(x(k))‖F + 3L‖s(k)‖,

where it is assumed that H is Lipschitz continuous, with Lipschitz constant
L, and that the iterates x(k+1) and x(k) belong to D.
To deal with the particular case in which the Hessian matrix is not only
symmetric but also positive definite, we refer to [DS83], Section 9.2.

7.3 Constrained Optimization

The simplest case of constrained optimization can be formulated as follows.
Given f : R

n → R,

minimize f(x), with x ∈ Ω ⊂ R
n. (7.47)

More precisely, the point x∗ is said to be a global minimizer in Ω if it satisfies
(7.47), while it is a local minimizer if ∃R > 0 such that

316 7 Nonlinear Systems and Numerical Optimization

f(x∗) ≤ f(x), ∀x ∈ B(x∗;R) ⊂ Ω.

Existence of solutions to problem (7.47) is, for instance, ensured by the Weier-
strass theorem, in the case in which f is continuous and Ω is a closed and
bounded set. Under the assumption that Ω is a convex set, the following op-
timality conditions hold.

Property 7.9 Let Ω ⊂ R
n be a convex set, x∗ ∈ Ω and f ∈ C1(B(x∗;R)),

for a suitable R > 0. Then:

1. if x∗ is a local minimizer of f then

∇f(x∗)T (x − x∗) ≥ 0, ∀x ∈ Ω; (7.48)

2. moreover, if f is convex on Ω (see (7.21)) and (7.48) is satisfied, then x∗

is a global minimizer of f .

We recall that f : Ω → R is a strongly convex function if ∃ρ > 0 such that

f [αx + (1 − α)y] ≤ αf(x) + (1 − α)f(y) − α(1 − α)ρ‖x − y‖2
2, (7.49)

∀x,y ∈ Ω and ∀α ∈ [0, 1]. The following result holds.

Property 7.10 Let Ω ⊂ R
n be a closed and convex set and f be a strongly

convex function in Ω. Then there exists a unique local minimizer x∗ ∈ Ω.

Throughout this section, we refer to [Avr76], [Ber82], [CCP70], [Lue73] and
[Man69], for the proofs of the quoted results and further details.

A remarkable instance of (7.47) is the following problem: given f : R
n → R,

minimize f(x), under the constraint that h(x) = 0, (7.50)

where h : R
n → R

m, with m ≤ n, is a given function of components
h1, . . . , hm. The analogues of critical points in problem (7.50) are called the
regular points.

Definition 7.2 A point x∗ ∈ R
n, such that h(x∗) = 0, is said to be regular

if the column vectors of the Jacobian matrix Jh(x∗) are linearly indepen-
dent, having assumed that hi ∈ C1(B(x∗;R)), for a suitable R > 0 and
i = 1, . . . , m. �

Our aim now is to convert problem (7.50) into an unconstrained minimization
problem of the form (7.2), to which the methods introduced in Section 7.2 can
be applied.

For this purpose, we introduce the Lagrangian function L : R
n ×R

m → R

L(x,λ) = f(x) + λT h(x),

7.3 Constrained Optimization 317

where the vector λ is called the Lagrange multiplier. Moreover, let us denote
by JL the Jacobian matrix associated with L, but where the partial derivatives
are only taken with respect to the variables x1, . . . , xn. The link between (7.2)
and (7.50) is then expressed by the following result.

Property 7.11 Let x∗ be a local minimizer for (7.50) and suppose that, for
a suitable R > 0, f, hi ∈ C1(B(x∗;R)), for i = 1, . . . ,m. Then there exists a
unique vector λ∗ ∈ R

m such that JL(x∗,λ∗) = 0.
Conversely, assume that x∗ ∈ R

n satisfies h(x∗) = 0 and that, for a
suitable R > 0 and i = 1, . . . , m, f, hi ∈ C2(B(x∗;R)). Let HL be the matrix
of entries ∂2L/∂xi∂xj for i, j = 1, . . . , n. If there exists a vector λ∗ ∈ R

m

such that JL(x∗,λ∗) = 0 and

zT HL(x∗,λ∗)z > 0 ∀z �= 0, with ∇h(x∗)T z = 0,

then x∗ is a strict local minimizer of (7.50).

The last class of problems that we are going to deal with includes the case
where inequality constraints are also present, i.e.: given f : R

n → R,

minimize f(x), under the constraint that h(x) = 0 and g(x) ≤ 0, (7.51)

where h : R
n → R

m, with m ≤ n, and g : R
n → R

r are two given functions.
It is understood that g(x) ≤ 0 means gi(x) ≤ 0 for i = 1, . . . , r. Inequality
constraints give rise to some extra formal complication with respect to the case
previously examined, but do not prevent converting the solution of (7.51) into
the minimization of a suitable Lagrangian function.

In particular, Definition 7.2 becomes

Definition 7.3 Assume that hi, gj ∈ C1(B(x∗;R)) for a suitable R > 0
with i = 1, . . . , m and j = 1, . . . , r, and denote by J (x∗) the set of indices
j such that gj(x∗) = 0. A point x∗ ∈ R

n such that h(x∗) = 0 and
g(x∗) ≤ 0 is said to be regular if the column vectors of the Jacobian matrix
Jh(x∗) together with the vectors ∇gj(x∗), j ∈ J (x∗) form a set of linearly
independent vectors. �

Finally, an analogue of Property 7.11 holds, provided that the following
Lagrangian function is used

M(x,λ,µ) = f(x) + λT h(x) + µT g(x)

instead of L and that further assumptions on the constraints are made.
For the sake of simplicity, we report in this case only the following neces-

sary condition for optimality of problem (7.51) to hold.

Property 7.12 Let x∗ be a regular local minimizer for (7.51) and suppose
that, for a suitable R > 0, f, hi, gj ∈ C1(B(x∗;R)) with i = 1, . . . , m,
j = 1, . . . , r. Then, there exist only two vectors λ∗ ∈ R

m and µ∗ ∈ R
r,

such that JM(x∗,λ∗,µ∗) = 0 with µ∗
j ≥ 0 and µ∗

jgj(x∗) = 0 ∀j = 1, . . . , r.

318 7 Nonlinear Systems and Numerical Optimization

7.3.1 Kuhn-Tucker Necessary Conditions for Nonlinear
Programming

In this section we recall some results, known as Kuhn-Tucker conditions
[KT51], that ensure in general the existence of a local solution for the nonlin-
ear programming problem. Under suitable assumptions they also guarantee
the existence of a global solution. Throughout this section we suppose that a
minimization problem can always be reformulated as a maximization one.

Let us consider the general nonlinear programming problem:

given f : R
n → R,

maximize f(x), subject to

gi(x) ≤ bi, i = 1, . . . , l,

gi(x) ≥ bi, i = l + 1, . . . , k,

gi(x) = bi, i = k + 1, . . . ,m,

x ≥ 0.

(7.52)

A vector x that satisfies the constraints above is called a feasible solution of
(7.52) and the set of the feasible solutions is called the feasible region. We
assume henceforth that f, gi ∈ C1(Rn), i = 1, . . . ,m, and define the sets
I= = {i : gi(x∗) = bi}, I�= = {i : gi(x∗) �= bi}, J= = {i : x∗

i = 0}, J> =
{i : x∗

i > 0}, having denoted by x∗ a local maximizer of f . We associate with
(7.52) the following Lagrangian

L(x,λ) = f(x) +
m∑

i=1

λi [bi − gi(x)] −
m+n∑

i=m+1

λixi−m.

The following result can be proved.

Property 7.13 (Kuhn-Tucker conditions I and II) If f has a constrai-
ned local maximum at the point x = x∗, it is necessary that a vector λ∗ ∈
R

m+n exists such that (first Kuhn-Tucker condition)

∇xL(x∗,λ∗) ≤ 0,

where strict equality holds for every component i ∈ J>. Moreover (second
Kuhn-Tucker condition)

∇xL(x∗,λ∗)T x∗ = 0.

The other two necessary Kuhn-Tucker conditions are as follows.

Property 7.14 Under the same hypothesis as in Property 7.13, the third
Kuhn-Tucker condition requires that:

7.3 Constrained Optimization 319

∇λL(x∗,λ∗) ≥ 0 i = 1, . . . , l,

∇λL(x∗,λ∗) ≤ 0 i = l + 1, . . . , k,

∇λL(x∗,λ∗) = 0 i = k + 1, . . . ,m.

Moreover (fourth Kuhn-Tucker condition)

∇λL(x∗,λ∗)T x∗ = 0.

It is worth noticing that the Kuhn-Tucker conditions hold provided that the
vector λ∗ exists. To ensure this, it is necessary to introduce a further geometric
condition that is known as constraint qualification (see [Wal75], p. 48).

We conclude this section by the following fundamental theorem which
establishes when the Kuhn-Tucker conditions become also sufficient for the
existence of a global maximizer for f .

Property 7.15 Assume that the function f in (7.52) is a concave function
(i.e., −f is convex) in the feasible region. Suppose also that the point (x∗,λ∗)
satisfies all the Kuhn-Tucker necessary conditions and that the functions gi

for which λ∗
i > 0 are convex while those for which λ∗

i < 0 are concave. Then
f(x∗) is the constrained global maximizer of f for problem (7.52).

7.3.2 The Penalty Method

The basic idea of this method is to eliminate, partly or completely, the con-
straints in order to transform the constrained problem into an unconstrained
one. This new problem is characterized by the presence of a parameter that
yields a measure of the accuracy at which the constraint is actually imposed.

Let us consider the constrained problem (7.50), assuming we are searching
for the solution x∗ only in Ω ⊂ R

n. Suppose that such a problem admits at
least one solution in Ω and write it in the following penalized form

minimize Lα(x) for x ∈ Ω, (7.53)

where
Lα(x) = f(x) +

1
2
α‖h(x)‖2

2.

The function Lα : R
n → R is called the penalized Lagrangian, and α is called

the penalty parameter. It is clear that if the constraint was exactly satisfied
then minimizing f would be equivalent to minimizing Lα.
The penalty method is an iterative technique for solving (7.53).

For k = 0, 1, . . . , until convergence, one must solve the sequence of
problems:

minimize Lαk
(x) with x ∈ Ω, (7.54)

where {αk} is an increasing monotonically sequence of positive penalty para-
meters, such that αk → ∞ as k → ∞. As a consequence, after choosing αk,

320 7 Nonlinear Systems and Numerical Optimization

at each step of the penalty process we have to solve a minimization problem
with respect to the variable x, leading to a sequence of values x∗

k, solutions to
(7.54). By doing so, the objective function Lαk

(x) tends to infinity, unless
h(x) is equal to zero.

The minimization problems can then be solved by one of the methods
introduced in Section 7.2. The following property ensures the convergence of
the penalty method in the form (7.53).

Property 7.16 Assume that f : R
n → R and h : R

n → R
m, with m ≤ n,

are continuous functions on a closed set Ω ⊂ R
n and suppose that the sequence

of penalty parameters αk > 0 is monotonically divergent. Finally, let x∗
k be the

global minimizer of problem (7.54) at step k. Then, taking the limit as k → ∞,
the sequence x∗

k converges to x∗, which is a global minimizer of f in Ω and
satisfies the constraint h(x∗) = 0.

Regarding the selection of the parameters αk, it can be shown that large values
of αk make the minimization problem in (7.54) ill-conditioned, thus making
its solution quite prohibitive unless the initial guess is particularly close to
x∗. On the other hand, the sequence αk must not grow too slowly, since this
would negatively affect the overall convergence of the method.

A choice that is commonly made in practice is to pick up a not too large
value of α0 and then set αk = βαk−1 for k > 0, where β is an integer number
between 4 and 10 (see [Ber82]). Finally, the starting point for the numerical
method used to solve the minimization problem (7.54) can be set equal to the
last computed iterate.

The penalty method is implemented in Program 63. This requires as input
parameters the functions f, h, an initial value alpha0 for the penalty para-
meter and the number beta.

Program 63 - lagrpen : Penalty method

function [x,vinc,iter]=lagrpen(f,h,x0,h,tol,alpha0,beta)
%LAGRPEN Penalty method for constrained function optimization
% [X,VINC,ITER]=LAGRPEN(F,H,X0,TOL,ALPHA0,BETA) attempts to compute
% the minimizer X of a function F with the Penalty method. F is a string containing
% the functional expressions of the function. X0 specifies the initial guess. H is a
% string variable containing the constraint. TOL specifies the tolerance of the method.
% ALPHA0 and BETA are given parameters. ITER is the iteration number at which X is
% computed. VINC is the accuracy at which the constraint is satisfied.
x = x0; [r,c]=size(h); vinc = 0;
for i=1:r

vinc = max(vinc,eval(h(i,1:c)));
end
norm2h=[’(’,h(1,1:c),’)ˆ2’];
for i=2:r

norm2h=[norm2h,’+(’,h(i,1:c),’)ˆ2’];
end

7.3 Constrained Optimization 321

alpha = alpha0;
options(1)=0; options(2)=tol*0.1;
iter = 0;
while vinc > tol

g=[f,’+0.5*’,num2str(alpha,16),’*’,norm2h];
[x]=fmins(g,x,options);
vinc=0;
iter = iter + 1;
for i=1:r

vinc = max(vinc,eval(h(i,1:c)));
end
alpha=alpha*beta;

end
return

Example 7.6 Let us employ the penalty method to compute the minimizer of
f(x) = 100(x2 − x2

1)
2 + (1 − x1)

2 under the constraint h(x) = (x1 + 0.5)2 + (x2

+0.5)2−0.25 = 0. The crosses in Figure 7.3 denote the sequence of iterates computed
by Program 63 starting from x(0) = [1, 1]T and choosing α0 = 0.1, β = 6. The
method converges in 12 iterations to the value x = [−0.2463,−0.0691]T , satisfying
the constraint up to a tolerance of 10−4. •

7.3.3 The Method of Lagrange Multipliers

A variant of the penalty method makes use of (instead of Lα(x) in (7.53)) the
augmented Lagrangian function Gα : R

n × R
m → R given by

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Fig. 7.3. Convergence history of the penalty method in Example 7.6

322 7 Nonlinear Systems and Numerical Optimization

Gα(x,λ) = f(x) + λT h(x) +
1
2
α‖h(x)‖2

2, (7.55)

where λ ∈ R
m is a Lagrange multiplier. Clearly, if x∗ is a solution to problem

(7.50), then it will also be a solution to (7.55), but with the advantage, with
respect to (7.53), of disposing of the further degree of freedom λ. The penalty
method applied to (7.55) reads: for k = 0, 1, . . ., until convergence, solve the
sequence of problems

minimize Gαk
(x,λk) for x ∈ Ω, (7.56)

where {λk} is a bounded sequence of unknown vectors in R
m, and the para-

meters αk are defined as above (notice that if λk were zero, then we would
recover method (7.54)).

Property 7.16 also holds for method (7.56), provided that the multipli-
ers are assumed to be bounded. Notice that the existence of the minimizer
of (7.56) is not guaranteed, even in the case where f has a unique global
minimizer (see Example 7.7). This circumstance can be overcome by adding
further non quadratic terms to the augmented Lagrangian function (e.g., of
the form ‖h‖p

2, with p large).

Example 7.7 Let us find the minimizer of f(x) = −x4 under the constraint x = 0.
Such problem clearly admits the solution x∗ = 0. If, instead, one considers the
augmented Lagrangian function

Lαk (x, λk) = −x4 + λkx +
1

2
αkx2,

one finds that it no longer admits a minimum at x = 0, though vanishing there, for
any αk different from zero. •

As far as the choice of the multipliers is concerned, the sequence of vectors
λk is typically assigned by the following formula

λk+1 = λk + αkh(x(k)),

where λ0 is a given value while the sequence of αk can be set a priori or
modified during run-time.
As for the convergence properties of the method of Lagrange multipliers, the
following local result holds.

Property 7.17 Assume that x∗ is a regular strict local minimizer of (7.50)
and that:

1. f, hi ∈ C2(B(x∗;R)) with i = 1, . . . , m and for a suitable R > 0;
2. the pair (x∗,λ∗) satisfies zT HG0(x

∗,λ∗)z > 0, ∀z �= 0 such that
Jh(x∗)T z = 0;

3. ∃ᾱ > 0 such that HGᾱ
(x∗,λ∗) > 0.

7.3 Constrained Optimization 323

Then, there exist three positive scalars δ, γ and M such that, for any pair
(λ, α) ∈ V =

{
(λ, α) ∈ R

m+1 : ‖λ − λ∗‖2 < δα, α ≥ ᾱ
}
, the problem

minimize Gα(x,λ), with x ∈ B(x∗; γ),

admits a unique solution x(λ, α), differentiable with respect to its arguments.
Moreover, ∀(λ, α) ∈ V

‖x(λ, α) − x∗‖2 ≤ M‖λ − λ∗‖2.

Under further assumptions (see [Ber82], Proposition 2.7), it can be proved
that the Lagrange multipliers method converges. Moreover, if αk → ∞, as
k → ∞, then

lim
k→∞

‖λk+1 − λ∗‖2

‖λk − λ∗‖2
= 0

and the convergence of the method is more than linear.
In the case where the sequence αk has an upper bound, the method con-

verges linearly.
Finally, we notice that, unlike the penalty method, it is no longer nec-

essary that the sequence of αk tends to infinity. This, in turn, limits the
ill-conditioning of problem (7.56) as αk is growing. Another advantage con-
cerns the convergence rate of the method, which turns out to be independent
of the growth rate of the penalty parameter, in the case of the Lagrange
multipliers technique. This of course implies a considerable reduction of the
computational cost.

The method of Lagrange multipliers is implemented in Program 64. Com-
pared with Program 63, this further requires in input the initial value lambda0
of the multiplier.

Program 64 - lagrmult : Method of Lagrange multipliers

function [x,vinc,iter]=lagrmult(f,h,x0,lambda0,tol,alpha0,beta)
%LAGRMULT Method of Lagrange multipliers for constrained function optimization
% [X,VINC,ITER]=LAGRMULT(F,H,X0,LAMBDA0,TOL,ALPHA0,BETA) attempts
% to compute the minimizer X of a function F with the method of Lagrange
% multipliers. F ia a string containing the functional expressions of the function.
% X0 and LAMBDA0 specify the initial guesses. H is a string variable containing the
% constraint. TOL specifies the tolerance of the method. ALPHA0 and BETA are given
% parameters. ITER is the iteration number at which X is computed. VINC is the
% accuracy at which the constraint is satisfied.
x = x0; [r,c]=size(h); vinc = 0; lambda = lambda0;
for i=1:r

vinc = max(vinc,eval(h(i,1:c)));
end
norm2h=[’(’,h(1,1:c),’)ˆ2’];

324 7 Nonlinear Systems and Numerical Optimization

for i=2:r
norm2h=[norm2h,’+(’,h(i,1:c),’)ˆ2’];

end
alpha = alpha0;
options(1)=0; options(2)=tol*0.1;
iter = 0;
while vinc > tol

lh=[’(’,h(1,1:c),’)*’,num2str(lambda(1))];
for i=2:r

lh=[lh,’+(’,h(i,1:c),’)*’,num2str(lambda(i))];
end
g=[f,’+0.5*’,num2str(alpha,16),’*’,norm2h,’+’,lh];
[x]=fmins(g,x,options);
vinc=0;
iter = iter + 1;
for i=1:r

vinc = max(vinc,eval(h(i,1:c)));
end
alpha=alpha*beta;
for i=1:r

lambda(i)=lambda(i)+alpha*eval(h(i,1:c));
end

end
return

Example 7.8 We use the method of Lagrange multipliers to solve the prob-
lem presented in Example 7.6. Set λ = 10 and leave the remaining parameters
unchanged. The method converges in 6 iterations and the crosses in Figure 7.4
show the iterates computed by Program 64. The constraint is here satisfied up to
machine precision. •

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Fig. 7.4. Convergence history for the method of Lagrange multipliers in Example 7.8

7.4 Applications 325

7.4 Applications

The two applications of this section are concerned with nonlinear systems
arising in the simulation of the electric potential in a semiconductor device
and in the triangulation of a two-dimensional polygon.

7.4.1 Solution of a Nonlinear System Arising from Semiconductor
Device Simulation

Let us consider the nonlinear system in the unknown u ∈ R
n

F(u) = Au + φ(u) − b = 0, (7.57)

where A = (λ/h)2tridiagn(−1, 2 − 1), for h = 1/(n + 1), φi(u) = 2K sinh(ui)
for i = 1, . . . , n, where λ and K are two positive constants and b ∈ R

n is a
given vector. Problem (7.57) arises in the numerical simulation of semicon-
ductor devices in microelectronics, where u and b represent electric potential
and doping profile, respectively.

In Figure 7.5 (left) we show schematically the particular device considered
in the numerical example, a p − n junction diode of unit normalized length,
subject to an external bias �V = Vb − Va, together with the doping profile
of the device, normalized to 1 (right). Notice that bi = b(xi), for i = 1, . . . , n,
where xi = ih. The mathematical model of the problem at hand comprises
a nonlinear Poisson equation for the electric potential and two continuity
equations of advection-diffusion type, as those addressed in Chapter 12, for
the current densities. For the complete derivation of the model and its analysis
see, for instance, [Mar86] and [Jer96].
Solving system (7.57) corresponds to finding the minimizer in R

n of the func-
tion f : R

n → R defined as

+

p n

∆V

−

0 L
x

b(x)

−1

1

Fig. 7.5. Scheme of a semiconductor device (left); doping profile (right)

326 7 Nonlinear Systems and Numerical Optimization

f(u) =
1
2
uT Au + 2

n∑

i=1

cosh(ui) − bT u. (7.58)

It can be checked (see Exercise 5) that for any u,v ∈ R
n, with u �= v, and

for any λ ∈ (0, 1)

λf(u) + (1 − λ)f(v) − f(λu + (1 − λ)v) > (1/2)λ(1 − λ)‖u − v‖2
A,

where ‖ · ‖A denotes the energy norm introduced in (1.28). This implies that
f(u) is an uniformly convex function in R

n, that is, it strictly satisfies (7.49)
with ρ = 1/2.

Property 7.10 ensures, in turn, that the function in (7.58) admits a unique
minimizer u∗ ∈ R

n and it can be shown (see Theorem 14.4.3, p. 503 [OR70])
that there exists a sequence {αk} such that the iterates of the damped New-
ton method introduced in Section 7.2.6 converge to u∗ ∈ R

n (at least)
superlinearly.
Thus, using the damped Newton method for solving system (7.57) leads to
the following sequence of linearized problems: given u(0) ∈ R

n, for k = 0, 1, . . .
until convergence solve

[
A + 2K diagn(cosh(u(k)

i))
]
δu(k) = b −

(
Au(k) + φ(u(k))

)
, (7.59)

then set u(k+1) = u(k) + αkδu(k).
Let us now address two possible choices of the acceleration parameters αk.

The first one has been proposed in [BR81] and is

αk =
1

1 + ρk ‖F(u(k))‖∞
, k = 0, 1, . . . , (7.60)

where the coefficients ρk ≥ 0 are suitable acceleration parameters picked in
such a way that the descent condition ‖F(u(k) + αkδu(k))‖∞ < ‖F(u(k))‖∞
is satisfied (see [BR81] for the implementation details of the algorithm).

We notice that, as ‖F(u(k))‖∞ → 0, (7.60) yields αk → 1, thus recovering
the full (quadratic) convergence of Newton’s method. Otherwise, as typically
happens in the first iterations, ‖F(u(k))‖∞ � 1 and αk is quite close to zero,
with a strong reduction of the Newton variation (damping).
As an alternative to (7.60), the sequence {αk} can be generated using the
simpler formula, suggested in [Sel84], Chapter 7

αk = 2−i(i−1)/2, k = 0, 1, . . . , (7.61)

where i is the first integer in the interval [1, Itmax] such that the descent
condition above is satisfied, Itmax being the maximum admissible number of
damping cycles for any Newton’s iteration (fixed equal to 10 in the numerical
experiments).

7.4 Applications 327

As a comparison, both damped and standard Newton’s methods have been
implemented, the former one with both choices (7.60) and (7.61) for the coef-
ficients αk. In the case of Newton’s method, we have set in (7.59) αk = 1 for
any k ≥ 0.

The numerical examples have been performed with n = 49, bi = −1 for
i ≤ n/2 and the remaining values bi equal to 1. Moreover, we have taken
λ2 = 1.67 · 10−4, K = 6.77 · 10−6 and fixed the first n/2 components of the
initial vector u(0) equal to Va and the remaining ones equal to Vb, where
Va = 0 and Vb = 10.

The tolerance on the maximum change between two successive iterates,
which monitors the convergence of damped Newton’s method (7.59), has been
set equal to 10−4.
Figure 7.6 (left) shows the log-scale absolute error for the three algorithms
as functions of the iteration number. Notice the rapid convergence of the
damped Newton’s method (8 and 10 iterations in the case of (7.60) and (7.61),
respectively), compared with the extremely slow convergence of the standard
Newton’s method (192 iterations). Moreover, it is interesting to analyze in
Figure 7.6 (right) the plot of the sequences of parameters αk as functions of
the iteration number.

The starred and the circled curves refer to the choices (7.60) and (7.61) for
the coefficients αk, respectively. As previously observed, the αk’s start from
very small values, to converge quickly to 1 as the damped Newton method
(7.59) enters the attraction region of the minimizer x∗.

100 101 102
10−6

10−4

10−2

100

102

104

(1)

(2)

(3)

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 7.6. Absolute error (left) and damping parameters αk (right). The error curve
for standard Newton’s method is denoted by (1), while (2) and (3) refer to damped
Newton’s method with the choices (7.61) and (7.60) for the coefficients αk, respec-
tively

328 7 Nonlinear Systems and Numerical Optimization

7.4.2 Nonlinear Regularization of a Discretization Grid

In this section we go back to the problem of regularizing a discretization grid
that has been introduced in Section 3.14.2. There, we considered the technique
of barycentric regularization, which leads to solving a linear system, typically
of large size and featuring a sparse coefficient matrix.

In this section we address two alternative techniques, denoted as regular-
ization by edges and by areas. The main difference with respect to the method
described in Section 3.14.2 lies in the fact that these new approaches lead to
systems of nonlinear equations.

Using the notation of Section 3.14.2, for each pair of nodes xj , xk ∈ Zi,
denote by ljk the edge on the boundary ∂Pi of Pi which connects them and
by xjk the midpoint of ljk, while for each triangle T ∈ Pi we denote by xb,T

the centroid of T . Moreover, let ni = dim(Zi) and denote for any geometric
entity (side or triangle) by | · | its measure in R

1 or R
2.

In the case of regularization by edges, we let

xi =

⎛

⎝
∑

ljk∈∂Pi

xjk|ljk|

⎞

⎠ /|∂Pi|, ∀xi ∈ Nh, (7.62)

while in the case of regularization by areas, we let

xi =

(
∑

T∈Pi

xb,T |T |
)

/|Pi|, ∀xi ∈ Nh. (7.63)

In both the regularization procedures we assume that xi = x(∂D)
i if xi ∈ ∂D,

that is, the nodes lying on the boundary of the domain D are fixed. Letting
n = N − Nb be the number of internal nodes, relation (7.62) amounts to
solving the following two systems of nonlinear equations for the coordinates
{xi} and {yi} of the internal nodes, with i = 1, . . . , n

xi −
1
2

⎛

⎝
∑

ljk∈∂Pi

(xj + xk)|ljk|

⎞

⎠ /
∑

ljk∈∂Pi

|ljk| = 0,

yi −
1
2

⎛

⎝
∑

ljk∈∂Pi

(yj + yk)|ljk|

⎞

⎠ /
∑

ljk∈∂Pi

|ljk| = 0.

(7.64)

Similarly, (7.63) leads to the following nonlinear systems, for i = 1, . . . , n

xi −
1
3

(
∑

T∈Pi

(x1,T + x2,T + x3,T)|T |
)

/
∑

T∈Pi

|T | = 0,

yi −
1
3

(
∑

T∈Pi

(y1,T + y2,T + y3,T)|T |
)

/
∑

T∈Pi

|T | = 0,

(7.65)

7.4 Applications 329

where xs,T = [xs,T , ys,T]T , for s = 1, 2, 3, are the coordinates of the vertices
of each triangle T ∈ Pi. Notice that the nonlinearity of systems (7.64) and
(7.65) is due to the presence of terms |ljk| and |T |.

Both systems (7.64) and (7.65) can be cast in the form (7.1), denoting, as
usual, by fi the i-th nonlinear equation of the system, for i = 1, . . . , n. The
complex functional dependence of fi on the unknowns makes it prohibitive to
use Newton’s method (7.4), which would require the explicit computation of
the Jacobian matrix JF.

A convenient alternative is provided by the nonlinear Gauss-Seidel method
(see [OR70], Chapter 7), which generalizes the corresponding method pro-
posed in Chapter 4 for linear systems and can be formulated as follows.

Denote by zi, for i = 1, . . . , n, either of the unknown xi or yi. Given the
initial vector z(0) = [z(0)

1 , . . . , z
(0)
n]T , for k = 0, 1, . . . until convergence, solve

fi(z
(k+1)
1 , . . . , z

(k+1)
i−1 , ξ, z

(k)
i+1, . . . , z

(k)
n) = 0, i = 1, . . . , n, (7.66)

then, set z
(k+1)
i = ξ. Thus, the nonlinear Gauss-Seidel method converts prob-

lem (7.1) into the successive solution of n scalar nonlinear equations. In the
case of system (7.64), each of these equations is linear in the unknown z

(k+1)
i

(since ξ does not explicitly appear in the bracketed term at the right side of
(7.64)). This allows for its exact solution in one step.

In the case of system (7.65), the equation (7.66) is genuinely nonlinear
with respect to ξ, and is solved taking one step of a fixed-point iteration.

The nonlinear Gauss-Seidel (7.66) has been implemented in MATLAB to
solve systems (7.64) and (7.65) in the case of the initial triangulation shown
in Figure 7.7 (left). Such a triangulation covers the external region of a two
dimensional wing section of type NACA 2316. The grid contains NT = 534
triangles and n = 198 internal nodes.

The algorithm reached convergence in 42 iterations for both kinds of regu-
larization, having used as stopping criterion the test ‖z(k+1)−z(k)‖∞ ≤ 10−4.
In Figure 7.7 (right) the discretization grid obtained after the regularization

Fig. 7.7. Triangulation before (left) and after (right) the regularization

330 7 Nonlinear Systems and Numerical Optimization

by areas is shown (a similar result has been provided by the regularization by
edges). Notice the higher uniformity of the triangles with respect to those of
the starting grid.

7.5 Exercises

1. Prove (7.8) for the m-step Newton-SOR method.
[Hint: use the SOR method for solving a linear system Ax=b with A=D-E-F
and express the k-th iterate as a function of the initial datum x(0), obtaining

x(k+1) = x(0) + (Mk+1 − I)x(0) + (Mk + . . . + I)B−1b,

where B= ω−1(D−ωE) and M = B−1ω−1 [(1 − ω)D + ωF]. Since B−1A = I−M
and

(I + . . . + Mk)(I − M) = I − Mk+1

then (7.8) follows by suitably identifying the matrix and the right-side of the
system.]

2. Prove that using the gradient method for minimizing f(x) = x2 with the direc-
tions p(k) = −1 and the parameters αk = 2−k+1, does not yield the minimizer
of f .

3. Show that for the steepest descent method applied to minimizing a quadratic
functional f of the form (7.35) the following inequality holds

f(x(k+1)) ≤
(

λmax − λmin

λmax + λmin

)2

f(x(k)),

where λmax, λmin are the eigenvalues of maximum and minimum module, re-
spectively, of the matrix A that appears in (7.35).
[Hint: proceed as done for (7.38).]

4. Check that the parameters αk of Exercise 2 do not fulfill the conditions (7.31)
and (7.32).

5. Consider the function f : R
n → R introduced in (7.58) and check that it is

uniformly convex on R
n, that is

λf(u) + (1 − λ)f(v) − f(λu + (1 − λ)v) > (1/2)λ(1 − λ)‖u − v‖2
A

for any u, v ∈ R
n with u �= v and 0 < λ < 1.

[Hint: notice that cosh(·) is a convex function.]
6. To solve the nonlinear system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− 1

81
cos x1 +

1

9
x2

2 +
1

3
sin x3 = x1,

1

3
sin x1 +

1

3
cos x3 = x2,

−1

9
cos x1 +

1

3
x2 +

1

6
sin x3 = x3,

use the fixed-point iteration x(n+1) = Ψ(x(n)), where x = [x1, x2, x3]
T and Ψ(x)

is the left-hand side of the system. Analyze the convergence of the iteration to
compute the fixed point α = [0, 1/3, 0]T .
[Solution: the fixed-point method is convergent since ‖Ψ(α)‖∞ = 1/2.]

7.5 Exercises 331

7. Using Program 50 implementing Newton’s method, determine the global maxi-
mizer of the function

f(x) = e−
x2
2 − 1

4
cos(2x)

and analyze the performance of the method (input data: xv=1; tol=1e-6;

nmax=500). Solve the same problem using the following fixed-point iteration

x(k+1) = g(xk) with g(x) = sin(2x)

[
e

x2
2 (x sin(2x) + 2 cos(2x)) − 2

2 (x sin(2x) + 2 cos(2x))

]

.

Analyze the performance of this second scheme, both theoretically and experi-
mentally, and compare the results obtained using the two methods.
[Solution: the function f has a global maximum at x = 0. This point is a double
zero for f ′. Thus, Newton’s method is only linearly convergent. Conversely, the
proposed fixed-point method is third-order convergent.]

8

Polynomial Interpolation

This chapter is addressed to the approximation of a function which is known
through its values at a given number of points.

Precisely, given m + 1 pairs (xi, yi), the problem consists of finding a
function Φ = Φ(x) such that Φ(xi) = yi for i = 0, . . . , m, yi being some
given values, and say that Φ interpolates {yi} at the nodes {xi}. We speak
about polynomial interpolation if Φ is an algebraic polynomial, trigonomet-
ric approximation if Φ is a trigonometric polynomial or piecewise polynomial
interpolation (or spline interpolation) if Φ is only locally a polynomial.

The numbers yi may represent the values attained at the nodes xi by a
function f that is known in closed form, as well as experimental data. In the
former case, the approximation process aims at replacing f with a simpler
function to deal with, in particular in view of its numerical integration or
derivation. In the latter case, the primary goal of approximation is to provide
a compact representation of the available data, whose number is often quite
large.

Polynomial interpolation is addressed in Sections 8.1 and 8.2, while piece-
wise polynomial interpolation is introduced in Sections 8.4, 8.5 and 8.6.
Finally, univariate and parametric splines are addressed in Sections 8.7 and
8.8. Interpolation processes based on trigonometric or algebraic orthogonal
polynomials will be considered in Chapter 10.

8.1 Polynomial Interpolation

Let us consider n + 1 pairs (xi, yi). The problem is to find a polynomial
Πm ∈ Pm, called interpolating polynomial, such that

Πm(xi) = amxm
i + . . . + a1xi + a0 = yi, i = 0, . . . , n. (8.1)

The points xi are called interpolation nodes. If n �= m the problem is over
or under-determined and will be addressed in Section 10.7.1. If n = m, the
following result holds.

334 8 Polynomial Interpolation

Theorem 8.1 Given n + 1 distinct nodes x0, . . . , xn and n + 1 corresponding
values y0, . . . , yn, there exists a unique polynomial Πn ∈ Pn such that Πn(xi) =
yi for i = 0, . . . , n.

Proof. To prove existence, let us use a constructive approach, providing an expres-
sion for Πn. Denoting by {li}n

i=0 a basis for Pn, then Πn admits a representation on
such a basis of the form Πn(x) =

∑n

i=0
bili(x) with the property that

Πn(xi) =

n∑

j=0

bj lj(xi) = yi, i = 0, . . . , n. (8.2)

If we define

li ∈ Pn : li(x) =

n∏

j=0
j �=i

x − xj

xi − xj
, i = 0, . . . , n, (8.3)

then li(xj) = δij and we immediately get from (8.2) that bi = yi.
The polynomials {li, i = 0, . . . , n} form a basis for Pn (see Exercise 1). As a con-
sequence, the interpolating polynomial exists and has the following form (called
Lagrange form)

Πn(x) =

n∑

i=0

yili(x). (8.4)

To prove uniqueness, suppose that another interpolating polynomial Ψm of degree
m ≤ n exists, such that Ψm(xi) = yi for i = 0, ..., n. Then, the difference polynomial
Πn − Ψm vanishes at n + 1 distinct points xi and thus coincides with the null
polynomial. Therefore, Ψm = Πn.

An alternative approach to prove existence and uniqueness of Πn is provided in

Exercise 2. �

It can be checked that (see Exercise 3)

Πn(x) =
n∑

i=0

ωn+1(x)
(x − xi)ω′

n+1(xi)
yi, (8.5)

where ωn+1 is the nodal polynomial of degree n + 1 defined as

ωn+1(x) =
n∏

i=0

(x − xi). (8.6)

Formula (8.4) is called the Lagrange form of the interpolating polynomial,
while the polynomials li(x) are the characteristic polynomials. In Figure 8.1
we show the characteristic polynomials l2(x), l3(x) and l4(x), in the case of
degree n = 6, on the interval [−1, 1] where equally spaced nodes are taken,
including the end points.
Notice that |li(x)| can be greater than 1 within the interpolation interval.

If yi = f(xi) for i = 0, . . . , n, f being a given function, the interpolating
polynomial Πn(x) will be denoted by Πnf(x).

8.1 Polynomial Interpolation 335

−1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5

l3 l4l2

Fig. 8.1. Lagrange characteristic polynomials

8.1.1 The Interpolation Error

In this section we estimate the interpolation error that is made when replac-
ing a given function f with its interpolating polynomial Πnf at the nodes
x0, x1, . . . , xn (for further results, we refer the reader to [Wen66], [Dav63]).

Theorem 8.2 Let x0, x1, . . . , xn be n + 1 distinct nodes and let x be a point
belonging to the domain of a given function f . Assume that f ∈ Cn+1(Ix),
where Ix is the smallest interval containing the nodes x0, x1, . . . , xn and x.
Then the interpolation error at the point x is given by

En(x) = f(x) − Πnf(x) =
f (n+1)(ξ)
(n + 1)!

ωn+1(x), (8.7)

where ξ ∈ Ix and ωn+1 is the nodal polynomial of degree n + 1.

Proof. The result is obviously true if x coincides with any of the interpolation nodes.
Otherwise, define, for any t ∈ Ix, the function G(t) = En(t)−ωn+1(t)En(x)/ωn+1(x).
Since f ∈ C(n+1)(Ix) and ωn+1 is a polynomial, then G ∈ C(n+1)(Ix) and it has at
least n + 2 distinct zeros in Ix, since

G(xi) = En(xi) − ωn+1(xi)En(x)/ωn+1(x) = 0, i = 0, . . . , n,

G(x) = En(x) − ωn+1(x)En(x)/ωn+1(x) = 0.

Then, thanks to the mean value theorem, G′ has at least n+1 distinct zeros and, by
recursion, G(j) admits at least n+2−j distinct zeros. As a consequence, G(n+1) has at
least one zero, which we denote by ξ. On the other hand, since E

(n+1)
n (t) = f (n+1)(t)

and ω
(n+1)
n+1 (x) = (n + 1)! we get

336 8 Polynomial Interpolation

G(n+1)(t) = f (n+1)(t) − (n + 1)!

ωn+1(x)
En(x),

which, evaluated at t = ξ, gives the desired expression for En(x). �

8.1.2 Drawbacks of Polynomial Interpolation on Equally Spaced
Nodes and Runge’s Counterexample

In this section we analyze the behavior of the interpolation error (8.7) as n
tends to infinity. For this purpose, for any function f ∈ C0([a, b]), define its
maximum norm

‖f‖∞ = max
x∈[a,b]

|f(x)|. (8.8)

Then, let us introduce a lower triangular matrix X of infinite size, called the
interpolation matrix on [a, b], whose entries xij , for i, j = 0, 1, . . ., represent
points of [a, b], with the assumption that on each row the entries are all dis-
tinct.

Thus, for any n ≥ 0, the n+1-th row of X contains n+1 distinct values that
we can identify as nodes, so that, for a given function f , we can uniquely define
an interpolating polynomial Πnf of degree n at those nodes (any polynomial
Πnf depends on X, as well as on f).

Having fixed f and an interpolation matrix X, let us define the interpola-
tion error

En,∞(X) = ‖f − Πnf‖∞, n = 0, 1, (8.9)

Next, denote by p∗n ∈ Pn the best approximation polynomial, for which

E∗
n = ‖f − p∗n‖∞ ≤ ‖f − qn‖∞ ∀qn ∈ Pn.

The following comparison result holds (for the proof, see [Riv74]).

Property 8.1 Let f ∈ C0([a, b]) and X be an interpolation matrix on [a, b].
Then

En,∞(X) ≤ E∗
n (1 + Λn(X)) , n = 0, 1, . . . , (8.10)

where Λn(X) denotes the Lebesgue constant of X, defined as

Λn(X) =

∥
∥
∥
∥
∥
∥

n∑

j=0

|l(n)
j |

∥
∥
∥
∥
∥
∥
∞

, (8.11)

and where l
(n)
j ∈ Pn is the j-th characteristic polynomial associated with the

n + 1-th row of X, that is, satisfying l
(n)
j (xnk) = δjk, j, k = 0, 1,

8.1 Polynomial Interpolation 337

Since E∗
n does not depend on X, all the information concerning the effects

of X on En,∞(X) must be looked for in Λn(X). Although there exists an
interpolation matrix X∗ such that Λn(X) is minimized, it is not in general
a simple task to determine its entries explicitly. We shall see in Section
10.3, that the zeros of the Chebyshev polynomials provide on the inter-
val [−1, 1] an interpolation matrix with a very small value of the Lebesgue
constant.

On the other hand, for any possible choice of X, there exists a constant
C > 0 such that (see [Erd61])

Λn(X) >
2
π

log(n + 1) − C, n = 0, 1,

This property shows that Λn(X) → ∞ as n → ∞. This fact has important
consequences: in particular, it can be proved (see [Fab14]) that, given an
interpolation matrix X on an interval [a, b], there always exists a continuous
function f in [a, b], such that Πnf does not converge uniformly (that is, in
the maximum norm) to f . Thus, polynomial interpolation does not allow
for approximating any continuous function, as demonstrated by the following
example.

Example 8.1 (Runge’s counterexample) Suppose we approximate the follow-
ing function

f(x) =
1

1 + x2
, −5 ≤ x ≤ 5, (8.12)

using Lagrange interpolation on equally spaced nodes. It can be checked that some
points x exist within the interpolation interval such that

lim
n→∞

|f(x) − Πnf(x)| �= 0.

In particular, Lagrange interpolation diverges for |x| > 3.63 This phenomenon
is particularly evident in the neighborhood of the end points of the interpolation
interval, as shown in Figure 8.2, and is due to the choice of equally spaced nodes.
We shall see in Chapter 10 that resorting to suitably chosen nodes will allow for
uniform convergence of the interpolating polynomial to the function f to hold. •

8.1.3 Stability of Polynomial Interpolation

Let us consider a set of function values
{

f̃(xi)
}

which is a perturbation of
the data f(xi) relative to the nodes xi, with i = 0, . . . , n, in an interval
[a, b]. The perturbation may be due, for instance, to the effect of round-
ing errors, or may be caused by an error in the experimental measure of
the data.

Denoting by Πnf̃ the interpolating polynomial on the set of values f̃(xi),
we have

338 8 Polynomial Interpolation

−5 −4 −3 −2 −1 0 1 2 3 4 5
−0.5

0

0.5

1

1.5

2

Fig. 8.2. Lagrange interpolation on equally spaced nodes for the function f(x) =
1/(1 + x2): the interpolating polynomials Π5f and Π10f are shown in dotted and
dashed line, respectively

‖Πnf − Πnf̃‖∞ = max
a≤x≤b

∣
∣
∣
∣
∣
∣

n∑

j=0

(f(xj) − f̃(xj))lj(x)

∣
∣
∣
∣
∣
∣

≤ Λn(X) max
i=0,...,n

|f(xi) − f̃(xi)|.

As a consequence, small changes on the data give rise to small changes on the
interpolating polynomial only if the Lebesgue constant is small. This constant
plays the role of the condition number for the interpolation problem.

As previously noticed, Λn grows as n → ∞ and in particular, in the case
of Lagrange interpolation on equally spaced nodes, it can be proved that (see
[Nat65])

Λn(X) � 2n+1

en log n
,

where e � 2.7183 is the naeperian number. This shows that, for n large,
this form of interpolation can become unstable. Notice also that so far we
have completely neglected the errors generated by the interpolation process
in constructing Πnf . However, it can be shown that the effect of such errors
is generally negligible (see [Atk89]).

Example 8.2 On the interval [−1, 1] let us interpolate the function f(x) = sin(2πx)

at 22 equally spaced nodes xi. Next, we generate a perturbed set of values f̃(xi) of

the function evaluations f(xi) = sin(2πxi) with maxi=0,...,21 |f(xi) − f̃(xi)| � 9.5 ·
10−4. In Figure 8.3 we compare the polynomials Π21f and Π21f̃ : notice how the
difference between the two interpolating polynomials, around the end points of the

8.2 Newton Form of the Interpolating Polynomial 339

interpolation interval, is much larger than the impressed perturbation (actually,

‖Π21f − Π21f̃‖∞ � 1.5926 and Λ21 � 24000). •

8.2 Newton Form of the Interpolating Polynomial

The Lagrange form (8.4) of the interpolating polynomial is not the most con-
venient from a practical standpoint. In this section we introduce an alternative
form characterized by a cheaper computational cost. Our goal is the following:

given n + 1 pairs {xi, yi}, i = 0, . . . , n, we want to represent Πn (with
Πn(xi) = yi for i = 0, . . . , n) as the sum of Πn−1 (with Πn−1(xi) = yi for
i = 0, . . . , n − 1) and a polynomial of degree n which depends on the nodes
xi and on only one unknown coefficient. We thus set

Πn(x) = Πn−1(x) + qn(x), (8.13)

where qn ∈ Pn. Since qn(xi) = Πn(xi) − Πn−1(xi) = 0 for i = 0, . . . , n − 1, it
must necessarily be that

qn(x) = an(x − x0) · · · (x − xn−1) = anωn(x).

To determine the unknown coefficient an, suppose that yi = f(xi), i =
0, . . . , n, where f is a suitable function, not necessarily known in explicit
form. Since Πnf(xn) = f(xn), from (8.13) it follows that

an =
f(xn) − Πn−1f(xn)

ωn(xn)
. (8.14)

−1 − 0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5

Fig. 8.3. Instability of Lagrange interpolation. In solid line Π21f , on unperturbed
data, in dashed line Π21f̃ , on perturbed data, for Example 8.2

340 8 Polynomial Interpolation

The coefficient an is called the n-th Newton divided difference and is generally
denoted by

an = f [x0, x1, . . . , xn] (8.15)

for n ≥ 1. As a consequence, (8.13) becomes

Πnf(x) = Πn−1f(x) + ωn(x)f [x0, x1, . . . , xn]. (8.16)

If we let y0 = f(x0) = f [x0] and ω0 = 1, by recursion on n we can obtain
from (8.16) the following formula

Πnf(x) =
n∑

k=0

ωk(x)f [x0, . . . , xk]. (8.17)

Uniqueness of the interpolating polynomial ensures that the above expression
yields the same interpolating polynomial generated by the Lagrange form.
Form (8.17) is commonly known as the Newton divided difference formula for
the interpolating polynomial.
Program 65 provides an implementation of Newton’s formula. The input vec-
tors x and y contain the interpolation nodes and the corresponding functional
evaluations of f , respectively, while vector z contains the abscissae where the
polynomial Πnf is to be evaluated. This polynomial is stored in the output
vector f.

Program 65 - interpol : Lagrange polynomial using Newton’s formula

function [f]=interpol(x,y,z)
%INTERPOL Lagrange polynomial interpolation
% [F] = INTERPOL(X, Y, Z) computes the Lagrange interpolating polynomial of
% a function. X contains the interpolation nodes. Y contains the function values
% at X. Z contains the points at which the interpolating polynomial F must be
% evaluated.
[m n] = size(y);
for j = 1:m

a (:,1) = y (j,:)’;
for i = 2:n

a (i:n,i) = (a(i:n,i-1)-a(i-1,i-1))./(x(i:n)-x(i-1))’;
end
f(j,:) = a(n,n).*(z-x(n-1)) + a(n-1,n-1);
for i = 2:n-1

f(j,:) = f(j,:).*(z-x(n-i))+a(n-i,n-i);
end

end
return

8.2 Newton Form of the Interpolating Polynomial 341

8.2.1 Some Properties of Newton Divided Differences

The n-th divided difference f [x0, . . . , xn] = an can be further characterized
by noticing that it is the coefficient of xn in Πnf . Isolating such a coefficient
from (8.5) and equating it with the corresponding coefficient in the Newton
formula (8.17), we end up with the following explicit representation

f [x0, . . . , xn] =
n∑

i=0

f(xi)
ω′

n+1(xi)
. (8.18)

This formula has remarkable consequences:

1. the value attained by the divided difference is invariant with respect to
permutations of the indexes of the nodes. This instance can be profitably
employed when stability problems suggest exchanging the indexes (for
example, if x is the point where the polynomial must be computed, it is
convenient to introduce a permutation of the indexes such that |x−xk| ≤
|x − xk−1| with k = 1, . . . , n);

2. if f = αg + βh for some α, β ∈ R, then

f [x0, . . . , xn] = αg[x0, . . . , xn] + βh[x0, . . . , xn];

3. if f = gh, the following formula (called the Leibniz formula) holds (see
[Die93])

f [x0, . . . , xn] =
n∑

j=0

g[x0, . . . , xj]h[xj , . . . , xn];

4. an algebraic manipulation of (8.18) (see Exercise 7) yields the following
recursive formula for computing divided differences

f [x0, . . . , xn] =
f [x1, . . . , xn] − f [x0, . . . , xn−1]

xn − x0
, n ≥ 1. (8.19)

Program 66 implements the recursive formula (8.19). The evaluations of f
at the interpolation nodes x are stored in vector y, while the output matrix
d (lower triangular) contains the divided differences, which are stored in the
following form

x0 f [x0]
x1 f [x1] f [x0, x1]
x2 f [x2] f [x1, x2] f [x0, x1, x2]
...

...
...

. . .
xn f [xn] f [xn−1, xn] f [xn−2, xn−1, xn] . . . f [x0, . . . , xn]

The coefficients involved in the Newton formula are the diagonal entries of
the matrix.

342 8 Polynomial Interpolation

Program 66 - dividif : Newton divided differences

function [d]=dividif(x,y)
%DIVIDIF Newton divided differences
% [D] = DIVIDIF(X, Y) computes the divided difference of order n. X contains the
% interpolation nodes. Y contains the function values at X. D contains the divided
% difference of order n.
[n,m]=size(y);
if n == 1, n = m; end
n = n-1;
d = zeros (n+1,n+1);
d(:,1) = y’;
for j = 2:n+1

for i = j:n+1
d (i,j) = (d (i-1,j-1)-d (i,j-1))/(x (i-j+1)-x (i));

end
end
return

Using (8.19), n(n+1) sums and n(n+1)/2 divisions are needed to generate the
whole matrix. If a new evaluation of f were available at a new node xn+1, only
the calculation of a new row of the matrix would be required (f [xn, xn+1], . . .,
f [x0, x1, . . . , xn+1]). Thus, in order to construct Πn+1f from Πnf , it suffices
to add to Πnf the term an+1ωn+1(x), with a computational cost of (n + 1)
divisions and 2(n + 1) sums. For the sake of notational simplicity, we write
below Drfi = f [xi, xi+1, . . . , xi+r].

Example 8.3 In Table 8.1 we show the divided differences on the interval (0,2)
for the function f(x) = 1 + sin(3x). The values of f and the corresponding divided
differences have been computed using 16 significant figures, although only at most
5 figures are reported. If the value of f were available at node x = 0.2, updating
the divided difference table would require only to computing the entries denoted by
italics in Table 8.1. •

Notice that f [x0, . . . , xn] = 0 for any f ∈ Pn−1. This property, however, is
not always verified numerically, since the computation of divided differences
might be highly affected by rounding errors.

Example 8.4 Consider again the divided differences for the function f(x) =
1+sin(3x) on the interval (0, 0.0002). The function behaves like 1+3x in a sufficiently
small neighbourhood of 0, so that we expect to find smaller numbers as the order
of divided differences increases. However, the results obtained running Program 66,
and shown in Table 8.2 in exponential notation up to at most 4 significant figures
(although 16 digits have been employed in the calculations), exhibit a substantially
different pattern. The small rounding errors introduced in the computation of di-
vided differences of low order have dramatically propagated on the higher order
divided differences. •

8.2 Newton Form of the Interpolating Polynomial 343

Table 8.1. Divided differences for the function f(x) = 1 + sin(3x) in the case in
which the evaluation of f at x = 0.2 is also available. The newly computed values
are denoted by italics

xi f(xi) f [xi, xi−1] D2fi D3fi D4fi D5fi D6fi

0 1.0000
0.2 1.5646 2.82
0.4 1.9320 1.83 −2.46
0.8 1.6755 −0.64 −4.13 −2.08
1.2 0.5575 −2.79 −2.69 1.43 2.93
1.6 0.0038 −1.38 1.76 3.71 1.62 −0.81
2.0 0.7206 1.79 3.97 1.83 −1.17 −1.55 −0.36

Table 8.2. Divided differences for the function f(x) = 1 + sin(3x) on the interval
(0,0.0002). Notice the completely wrong value in the last column (it should be ap-
proximately equal to 0), due to the propagation of rounding errors throughout the
algorithm

xi f(xi) f [xi, xi−1] D2fi D3fi D4fi D5fi

0 1.0000
4.0e-5 1.0001 3.000
8.0e-5 1.0002 3.000 −5.39e-4
1.2e-4 1.0004 3.000 −1.08e-3 −4.50
1.6e-4 1.0005 3.000 −1.62e-3 −4.49 1.80e+1

2.0e-4 1.0006 3.000 −2.15e-3 −4.49 −7.23 −1.2e + 5

8.2.2 The Interpolation Error Using Divided Differences

Consider the nodes x0, . . . , xn and let Πnf be the interpolating polynomial of
f on such nodes. Now let x be a node distinct from the previous ones; letting
xn+1 = x, we denote by Πn+1f the interpolating polynomial of f at the nodes
xk, k = 0, . . . , n + 1. Using the Newton divided differences formula, we get

Πn+1f(t) = Πnf(t) + (t − x0) · · · (t − xn)f [x0, . . . , xn, t].

Since Πn+1f(x) = f(x), we obtain the following formula for the interpolation
error at t = x

En(x) = f(x) − Πnf(x) = Πn+1f(x) − Πnf(x)

= (x − x0) · · · (x − xn)f [x0, . . . , xn, x]

= ωn+1(x)f [x0, . . . , xn, x].

(8.20)

Assuming f ∈ C(n+1)(Ix) and comparing (8.20) with (8.7), yields

f [x0, . . . , xn, x] =
f (n+1)(ξ)
(n + 1)!

(8.21)

344 8 Polynomial Interpolation

for a suitable ξ ∈ Ix. Since (8.21) resembles the remainder of the Taylor series
expansion of f , the Newton formula (8.17) for the interpolating polynomial
is often regarded as being a truncated expansion around x0 provided that
|xn − x0| is not too big.

8.3 Barycentric Lagrange Interpolation

The main drawbacks of the Lagrange form (8.4) of the interpolation can be
summarized as follows:

1. each evaluation of Πn requires O(n2) additions and multiplications;
2. adding a new data pair (xn+1, yn+1) requires a new computation from

scratch (a drawback that is overcome by the Newton form);
3. the computations can be numerically unstable.

A representation of Πn alternative to (8.4) has been advocated in ([Rut90])
and, more recently, investigated in ([BT04]) and can be obtained as follows.

The first point of this approach is to rewrite the Lagrange formula in such
a way that it can be evaluated and updated in O(n) operations, just like its
Newton counterpart. To this end, it suffices to note that the generic lj in (8.4)
can be written as

lj(x) = ωn+1(x)
wj

x − xj
,

where ωn+1 is the nodal polynomial (8.6). The coefficients

wj =
1

∏

k �=j

(xj − xk)
(8.22)

are called barycentric weights. Then (8.4) can be rewritten as

Πn(x) = ωn+1(x)
n∑

j=0

wj

x − xj
yj . (8.23)

This is called first form of the barycentric interpolation formula. The compu-
tation of the n + 1 coefficients requires O(n2) operations (off-line); then for
every x only O(n) operations are necessary for evaluating Πn.

If a new pair (xn+1, yn+1) is added, the following O(n) operations are
required:

1. for j = 0, . . . , n divide each wj by xj −xn+1 for a cost of n+1 operations;
2. computing wn+1 with formula (8.22) requires n + 1 further operations.

8.3 Barycentric Lagrange Interpolation 345

Formula (8.23) can be modified in a way that is often used in practice.
Suppose we interpolate the constant values yi = 1 for i = 0, . . . , n. From
(8.23), we get for all x, the following expression

1 =
n∑

j=0

lj(x) = ωn+1(x)
n∑

j=0

wj

x − xj
.

Dividing the right-hand side of (8.23) by this expression and cancelling the
common factor ωn+1(x), we obtain the second form of the barycentric inter-
polation formulabarycentric!interpolation formula for Πn:

Πn(x) =

n∑

j=0

wj

x − xj
yj

n∑

j=0

wj

x − xj

. (8.24)

Formula (8.24) is a Lagrange formula with a special symmetry: the weights
wj appear in the denominator exactly as in the numerator, except without
the data factors yi. Then any possible common factor in all the weights wj

may be cancelled without affecting the value of Πn(x). Like (8.23), (8.24) can
also take advantage of the updating of the weights wj in O(n) operations
to incorporate a new data pair (xn+1, yn+1). Another advantage is that the
barycentric interpolation formula is more stable than the Newton formula if
special care is introduced in the computation of weigths in order to avoid
division by zero in the expression of weights wj . Note that only the case when
x = xk for some k will require a special treatment. In fact, when x � xj

the quantity wj/(x − xj) will be very large and we would expect a risk of
inaccuracy in this number associated with the substraction of two nearby
quantities in the denominator. However, as pointed out in [Hen79], this is not
a problem since the same inaccurate number appears in both numerator and
denominator of (8.24) and these inaccuracies cancel out (see Section 10.3).

For special sets of nodes {xj}, one can give explicit formulas for the
barycentric weights wj . In particular, for equidistant nodes with spacing
h = 2/n on the interval [−1, 1],

wj = (−1)n−j

(
n

j

)

/(hnn!) = (−1)j

(
n

j

)

. (8.25)

Note that for a generic interval [a, b], the expression in (8.25) should be mul-
tiplied by 2n(b − a)−n.

An application of the barycentric formula is connected with the estimation
of the Lebesgue’s constant Λn(X) (see, Section 8.1.2). It is possible to prove

346 8 Polynomial Interpolation

that, for any interpolation matrix X, using the computed weights (8.22), the
following lower-bound holds (see, [BM97])

Λn(X) ≥ 1
2n2

max
j=0,...,n

|wj |

min
j=0,...,n

|wj |
.

Then we conclude that if the barycentric weights vary widely (as in (8.25)
the interpolation problem must be ill-conditioned. Other applications are for
rational interpolation and differentiation of polynomial interpolants (see, for
details, [BT04]).

8.4 Piecewise Lagrange Interpolation

In Section 8.1.2 we have outlined the fact that, for equally spaced interpolating
nodes, uniform convergence of Πnf to f is not guaranteed as n → ∞. On the
other hand, using equally spaced nodes is clearly computationally convenient
and, moreover, Lagrange interpolation of low degree is sufficiently accurate,
provided sufficiently small interpolation intervals are considered.

Therefore, it is natural to introduce a partition Th of [a, b] into K subin-
tervals Ij = [xj , xj+1] of length hj , with h = max0≤j≤K−1 hj , such that [a, b]
= ∪K−1

j=0 Ij and then to employ Lagrange interpolation on each Ij using k + 1

equally spaced nodes
{

x
(i)
j , 0 ≤ i ≤ k

}
with a small k.

For k ≥ 1, we introduce on Th the piecewise polynomial space

Xk
h =

{
v ∈ C0([a, b]) : v|Ij

∈ Pk(Ij)∀Ij ∈ Th

}
(8.26)

which is the space of the continuous functions over [a, b] whose restrictions on
each Ij are polynomials of degree ≤ k. Then, for any continuous function f
in [a, b], the piecewise interpolation polynomial Πk

hf coincides on each Ij with

the interpolating polynomial of f|Ij
at the k + 1 nodes

{
x

(i)
j , 0 ≤ i ≤ k

}
. As

a consequence, if f ∈ Ck+1([a, b]), using (8.7) within each interval we obtain
the following error estimate

‖f − Πk
hf‖∞ ≤ Chk+1 ‖f (k+1)‖∞. (8.27)

Note that a small interpolation error can be obtained even for low k provided
that h is sufficiently “small”.

Example 8.5 Let us go back to the function of Runge’s counterexample. Now,
piecewise polynomials of degree k = 1 and k = 2 are employed. We check exper-
imentally for the behavior of the error as h decreases. In Table 8.3 we show the
absolute errors measured in the maximum norm over the interval [−5, 5] and the
corresponding estimates of the convergence order p with respect to h. Except when
using an excessively small number of subintervals, the results confirm the theoretical
estimate (8.27), that is p = k + 1. •

8.4 Piecewise Lagrange Interpolation 347

Table 8.3. Interpolation error for Lagrange piecewise interpolation of degree k = 1
and k = 2, in the case of Runge’s function (8.12); p denotes the trend of the exponent
of h. Notice that, as h → 0, p → k + 1, as predicted by (8.27)

h ‖f − Π1
h‖∞ p ‖f − Π2

h‖∞ p

5 0.4153 0.0835
2.5 0.1787 1.216 0.0971 −0.217
1.25 0.0631 1.501 0.0477 1.024
0.625 0.0535 0.237 0.0082 2.537
0.3125 0.0206 1.374 0.0010 3.038
0.15625 0.0058 1.819 1.3828e-04 2.856
0.078125 0.0015 1.954 1.7715e-05 2.964

Besides estimate (8.27), convergence results in integral norms exist (see
[QV94], [EEHJ96]). For this purpose, we introduce the following space

L2(a, b) = {f : (a, b) → R,

∫ b

a

|f(x)|2dx < +∞}, (8.28)

with

‖f‖L2(a,b) =

(∫ b

a

|f(x)|2dx

)1/2

. (8.29)

Formula (8.29) defines a norm for L2(a, b). (We recall that norms and semi-
norms of functions can be defined in a manner similar to what was done in
Definition 1.17 in the case of vectors). We warn the reader that the integral
of the function |f |2 in (8.28) has to be intended in the Lebesgue sense (see,
e.g., [Rud83]). In particular, f needs not be continuous everywhere.

Theorem 8.3 Let 0 ≤ m ≤ k+1, with k ≥ 1 and assume that f (m) ∈ L2(a, b)
for 0 ≤ m ≤ k + 1; then there exists a positive constant C, independent of h,
such that

‖(f − Πk
hf)(m)‖L2(a,b) ≤ Chk+1−m‖f (k+1)‖L2(a,b). (8.30)

In particular, for k = 1, and m = 0 or m = 1, we obtain

‖f − Π1
hf‖L2(a,b) ≤ C1h

2‖f ′′‖L2(a,b),

‖(f − Π1
hf)′‖L2(a,b) ≤ C2h‖f ′′‖L2(a,b),

(8.31)

for two suitable positive constants C1 and C2.

Proof. We only prove (8.31) and refer to [QV94], Chapter 3 for the proof of (8.30)
in the general case.

Define e = f − Π1
hf . Since e(xj) = 0 for all j = 0, . . . , K, Rolle’s theorem infers

the existence of ξj ∈ (xj , xj+1), for j = 0, . . . , K − 1 such that e′(ξj) = 0.

348 8 Polynomial Interpolation

Since Π1
hf is a linear function on each Ij , for x ∈ Ij we obtain

e′(x) =

∫ x

ξj

e′′(s)ds =

∫ x

ξj

f ′′(s)ds,

whence

|e′(x)| ≤
∫ xj+1

xj

|f ′′(s)|ds, for x ∈ [xj , xj+1]. (8.32)

We recall the Cauchy-Schwarz inequality

∣
∣
∣
∣

∫ β

α

u(x)v(x)dx

∣
∣
∣
∣ ≤

(∫ β

α

u2(x)dx

)1/2(∫ β

α

v2(x)dx

)1/2

, (8.33)

which holds if u, v ∈ L2(α, β). If we apply this inequality to (8.32) we obtain

|e′(x)| ≤

⎛

⎜
⎝

xj+1∫

xj

12dx

⎞

⎟
⎠

1/2⎛

⎜
⎝

xj+1∫

xj

|f ′′(s)|2ds

⎞

⎟
⎠

1/2

≤ h1/2

⎛

⎜
⎝

xj+1∫

xj

|f ′′(s)|2ds

⎞

⎟
⎠

1/2

.

(8.34)

To find a bound for |e(x)|, we notice that

e(x) =

∫ x

xj

e′(s)ds,

so that, applying (8.34), we get

|e(x)| ≤
∫ xj+1

xj

|e′(s)|ds ≤ h3/2

(∫ xj+1

xj

|f ′′(s)|2ds

)1/2

. (8.35)

Then

xj+1∫

xj

|e′(x)|2dx ≤ h2

xj+1∫

xj

|f ′′(s)|2ds and

xj+1∫

xj

|e(x)|2dx ≤ h4

xj+1∫

xj

|f ′′(s)|2ds,

from which, summing over the index j from 0 to K − 1 and taking the square root
of both sides, we obtain

(∫ b

a

|e′(x)|2dx

)1/2

≤ h

(∫ b

a

|f ′′(x)|2dx

)1/2

,

and (∫ b

a

|e(x)|2dx

)1/2

≤ h2

(∫ b

a

|f ′′(x)|2dx

)1/2

,

which is the desired estimate (8.31), with C1 = C2 = 1. �

8.5 Hermite-Birkoff Interpolation 349

8.5 Hermite-Birkoff Interpolation

Lagrange polynomial interpolation can be generalized to the case in which
also the values of the derivatives of a function f are available at some (or all)
of the nodes xi.

Let us then suppose that (xi, f
(k)(xi)) are given data, with i = 0, . . . , n,

k = 0, . . . ,mi and mi ∈ N. Letting N =
∑n

i=0(mi + 1), it can be proved (see
[Dav63]) that, if the nodes {xi} are distinct, there exists a unique polynomial
HN−1 ∈ PN−1, called the Hermite interpolation polynomial, such that

H
(k)
N−1(xi) = y

(k)
i , i = 0, . . . , n k = 0, . . . ,mi,

of the form

HN−1(x) =
n∑

i=0

mi∑

k=0

y
(k)
i Lik(x), (8.36)

where y
(k)
i = f (k)(xi), i = 0, . . . , n, k = 0, . . . ,mi.

The functions Lik ∈ PN−1 are called the Hermite characteristic polynomials
and are defined through the relations

dp

dxp
(Lik)(xj) =

{
1 if i = j and k = p,

0 otherwise.

Defining the polynomials

lij(x) =
(x − xi)j

j!

n∏

k=0
k �=i

(
x − xk

xi − xk

)mk+1

, i = 0, . . . , n, j = 0, . . . ,mi,

and letting Limi
(x) = limi

(x) for i = 0, . . . , n, we have the following recursive
formula for the polynomials Lij

Lij(x) = lij(x) −
mi∑

k=j+1

l
(k)
ij (xi)Lik(x), j = mi − 1,mi − 2, . . . , 0.

As for the interpolation error, the following estimate holds

f(x) − HN−1(x) =
f (N)(ξ)

N !
ΩN (x) ∀x ∈ R,

where ξ ∈ I(x;x0, . . . , xn) and ΩN is the polynomial of degree N defined by

ΩN (x) = (x − x0)m0+1(x − x1)m1+1 · · · (x − xn)mn+1. (8.37)

350 8 Polynomial Interpolation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5

Fig. 8.4. Lagrange (dotted line) and Hermite interpolation (solid line) for the func-
tion f(x) = sin(4πx) (dashed line) on the interval [0, 1]

Example 8.6 (Osculatory interpolation) Let us set mi = 1 for i = 0, . . . , n.
In this case N = 2n + 2 and the interpolating Hermite polynomial is called the
osculating polynomial, and it is given by

HN−1(x) =

n∑

i=0

(
yiAi(x) + y

(1)
i Bi(x)

)
,

where Ai(x) = (1−2(x−xi)l
′
i(xi))li(x)2 and Bi(x) = (x−xi)li(x)2, for i = 0, . . . , n,

with

l′i(xi) =

n∑

k=0,k �=i

1

xi − xk
, i = 0, . . . , n.

As a comparison, we use Programs 65 and 67 to compute the Lagrange and Hermite
interpolating polynomials of the function f(x) = sin(4πx) on the interval [0, 1] taking
four equally spaced nodes (n = 3). Figure 8.4 shows the superposed graphs of the
function f and of the two polynomials Πnf and HN−1. •

Program 67 computes the values of the osculating polynomial at the abscis-
sae contained in the vector z. The input vectors x, y and dy contain the
interpolation nodes and the corresponding function evaluations of f and f ′,
respectively.

Program 67 - hermpol : Osculating polynomial

function [herm] = hermpol(x,y,dy,z)
%HERMPOL Hermite polynomial interpolation
% [HERM] = HERMPOL(X, Y, DY, Z) computes the Hermite interpolating polynomial
% of a function. X contains the interpolation nodes. Y and DY contain the values
% of the function and of its derivative at X. Z contains the points at which the
% interpolating polynomial HERM must be evaluated.

8.6 Extension to the Two-Dimensional Case 351

n = max(size(x));
m = max(size(z));
herm = [];
for j = 1:m

xx = z(j); hxv = 0;
for i = 1:n

den = 1; num = 1; xn = x(i); derLi = 0;
for k = 1:n

if k ˜= i
num = num*(xx-x(k)); arg = xn-x(k);
den = den*arg; derLi = derLi+1/arg;

end
end
Lix2 = (num/den)ˆ2; p = (1-2*(xx-xn)*derLi)*Lix2;
q = (xx-xn)*Lix2; hxv = hxv+(y(i)*p+dy(i)*q);

end
herm = [herm, hxv];

end
return

8.6 Extension to the Two-Dimensional Case

In this section we briefly address the extension of the previous concepts to the
two-dimensional case, referring to [SL89], [CHQZ06], [QV94] for more details.
We denote by Ω a bounded domain in R

2 and by x = (x, y) the coordinate
vector of a point in Ω.

8.6.1 Polynomial Interpolation

A particularly simple situation occurs when Ω = [a, b] × [c, d], i.e., the inter-
polation domain Ω is the tensor product of two intervals. In such a case,
introducing the nodes a = x0 < x1 < . . . < xn = b and c = y0 <
y1 < . . . < ym = d, the interpolating polynomial Πn,mf can be written
as Πn,mf(x, y) =

∑n
i=0

∑m
j=0 αij li(x)lj(y), where li ∈ Pn, i = 0, . . . , n,

and lj ∈ Pm, j = 0, . . . , m, are the characteristic one-dimensional Lagrange
polynomials with respect to the x and y variables respectively, and where
αij = f(xi, yj).

The drawbacks of one-dimensional Lagrange interpolation are inherited by
the two-dimensional case, as confirmed by the example in Figure 8.5.

Remark 8.1 (The general case) If Ω is not a rectangular domain or if
the interpolation nodes are not uniformly distributed over a Cartesian grid,
the interpolation problem is difficult to solve, and, generally speaking, it is
preferable to resort to a least-squares solution (see Section 10.7). We also point
out that in d dimensions (with d ≥ 2) the problem of finding an interpolating

352 8 Polynomial Interpolation

-5

0

5

-5

0

5
-0.1

0

0.1
0.2

0.3

0.4

0.5

-5

0

5

-5

0

5
-2

0

2

4

6

8

Fig. 8.5. Runge’s counterexample extended to the two-dimensional case: interpo-
lating polynomial on a 6 × 6 nodes grid (left) and on a 11 × 11 nodes grid (right).
Notice the change in the vertical scale between the two plots

polynomial of degree n with respect to each space variable on n + 1 distinct
nodes might be ill-posed.

Consider, for example, a polynomial of degree 1 with respect to x and y
of the form p(x, y) = a3xy + a2x + a1y + a0 to interpolate a function f at
the nodes (−1, 0), (0,−1), (1, 0) and (0, 1). Although the nodes are distinct,
the problem (which is nonlinear) does not in general admit a unique solution;
actually, imposing the interpolation constraints, we end up with a system that
is satisfied by any value of the coefficient a3. �

8.6.2 Piecewise Polynomial Interpolation

In the multidimensional case, the higher flexibility of piecewise interpolation
allows for easy handling of domains of complex shape. Let us suppose that Ω is
a polygon in R

2. Then, Ω can be partitioned into K nonoverlapping triangles
(or elements) T , which define the so called triangulation of the domain which
will be denoted by Th. Clearly, Ω =

⋃

T∈Th

T . Suppose that the maximum length

of the edges of the triangles is less than a positive number h. As shown in
Figure 8.6 (left), not any arbitrary triangulation is allowed. Precisely, the
admissible ones are those for which any pair of nondisjoint triangles may have
a vertex or an edge in common.
Any element T ∈ Th, of area equal to |T |, is the image through the affine map
x = FT (x̂) = BT x̂ + bT of the reference triangle T̂ , of vertices (0,0), (1,0)
and (0,1) in the x̂ = (x̂, ŷ) plane (see Figure 8.6, right), where the invertible
matrix BT and the right-hand side bT are given respectively by

BT =

[
x2 − x1 x3 − x1

y2 − y1 y3 − y1

]

, bT = (x1, y1)T , (8.38)

while the coordinates of the vertices of T are denoted by aT
l = (xl, yl)T for

l = 1, 2, 3.

8.6 Extension to the Two-Dimensional Case 353

T1

T2 T2

T2

T1
T1

T2

T1

1

0 1

FT

T̂
x̂

ŷ y

x

aT
1 T

aT
3

aT
2

Fig. 8.6. The left side picture shows admissible (above) and nonadmissible (below)
triangulations while the right side picture shows the affine map from the reference
triangle T̂ to the generic element T ∈ Th

The affine map (8.38) is of remarkable importance in practical computations,
since, once a basis has been generated for representing the piecewise polyno-
mial interpolant on T̂ , it is possible, by applying the change of coordinates
x = FT (x̂), to reconstruct the polynomial on each element T of Th. We are
thus interested in devising local basis functions, which can be fully described
over each triangle without needing any information from adjacent triangles.
For this purpose, let us introduce on Th the set Z of the piecewise interpolation
nodes zi = (xi, yi)T , for i = 1, . . . , N , and denote by Pk(Ω), k ≥ 0, the space
of algebraic polynomials of degree ≤ k in the space variables x, y

Pk(Ω) =

⎧
⎪⎨

⎪⎩
p(x, y) =

k∑

i,j=0
i+j≤k

aijx
iyj , x, y ∈ Ω

⎫
⎪⎬

⎪⎭
. (8.39)

Finally, for k ≥ 0, let P
c
k(Ω) be the space of piecewise polynomials of degree

≤ k, such that, for any p ∈ P
c
k(Ω), p|T ∈ Pk(T) for any T ∈ Th. An elementary

basis for P
c
k(Ω) consists of the Lagrange characteristic polynomials li = li(x, y),

such that li ∈ P
c
k(Ω) and

li(zj) = δij , i, j = 1, . . . , N, (8.40)

where δij is the Kronecker symbol. We show in Figure 8.7 the functions li
for k = 0, 1, together with their corresponding one-dimensional counterparts.
In the case k = 0, the interpolation nodes are collocated at the centers of
gravity of the triangles, while in the case k = 1 the nodes coincide with the
vertices of the triangles. This choice, that we are going to maintain hence-
forth, is not the only one possible. The midpoints of the edges of the triangles
could be used as well, giving rise to a discontinuous piecewise polynomial
over Ω.

354 8 Polynomial Interpolation

li (x,y)

zi

1

li(x)

1

zi

zi

zi

1

li(x,y)

1

li(x)

Fig. 8.7. Characteristic piecewise Lagrange polynomial, in two and one space
dimensions. Left, k = 0; right, k = 1

For k ≥ 0, the Lagrange piecewise interpolating polynomial of f , Πk
hf ∈ P

c
k(Ω),

is defined as

Πk
hf(x, y) =

N∑

i=1

f(zi)li(x, y). (8.41)

Notice that Π0
hf is a piecewise constant function, while Π1

hf is a linear function
over each triangle, continuous at the vertices, and thus globally continuous.

For any T ∈ Th, we shall denote by Πk
T f the restriction of the piecewise

interpolating polynomial of f over the element T . By definition, Πk
T f ∈ Pk(T);

noticing that dk = dimPk(T) = (k + 1)(k + 2)/2, we can therefore write

Πk
T f(x, y) =

dk−1∑

m=0

f(z̃(m)
T)lm,T (x, y), ∀T ∈ Th. (8.42)

In (8.42), we have denoted by z̃(m)
T , for m = 0, . . . , dk − 1, the piecewise

interpolation nodes on T and by lm,T (x, y) the restriction to T of the Lagrange
characteristic polynomial having index i in (8.41) which corresponds in the
list of the “global” nodes zi to that of the “local” node z̃(m)

T .
Keeping on with this notation, we have lj,T (x) = l̂j ◦ F−1

T (x), where l̂j =
l̂j(x̂) is, for j = 0, . . . , dk − 1, the j-th Lagrange basis function for Pk(T̂)
generated on the reference element T̂ . We notice that if k = 0 then d0 = 1,
that is, only one local interpolation node exists (and it is the center of gravity
of the triangle T), while if k = 1 then d1 = 3, that is, three local interpolation
nodes exist, coinciding with the vertices of T . In Figure 8.8 we draw the local
interpolation nodes on T̂ for k = 0, 1 and 2.
As for the interpolation error estimate, denoting for any T ∈ Th by hT the
maximum length of the edges of T , the following result holds (see for the proof,
[CL91], Theorem 16.1, pp. 125-126 and [QV94], Remark 3.4.2, pp. 89-90)

8.7 Approximation by Splines 355

Fig. 8.8. Local interpolation nodes on T̂ for k = 0 (left), k = 1 (center), k = 2
(right)

‖f − Πk
T f‖∞,T ≤ Chk+1

T ‖f (k+1)‖∞,T , k ≥ 0, (8.43)

where for every g ∈ C0(T), ‖g‖∞,T = maxx∈T |g(x)|. In (8.43), C is a positive
constant independent of hT and f .

Let us assume that the triangulation Th is regular, i.e., there exists a
positive constant σ such that

max
T∈Th

hT

ρT
≤ σ,

where ∀T ∈ Th, ρT is the diameter of the inscribed circle to T . Then, it is
possible to derive from (8.43) the following interpolation error estimate over
the whole domain Ω

‖f − Πk
hf‖∞,Ω ≤ Chk+1‖f (k+1)‖∞,Ω, k ≥ 0, ∀f ∈ Ck+1(Ω). (8.44)

The theory of piecewise interpolation is a basic tool of the finite ele-
ment method, a computational technique that is widely used in the numerical
approximation of partial differential equations (see Chapter 12 for the one-
dimensional case and [QV94] for a complete presentation of the method).

Example 8.7 We compare the convergence of the piecewise polynomial interpola-

tion of degree 0, 1 and 2, on the function f(x, y) = e−(x2+y2) on Ω = (−1, 1)2. We
show in Table 8.4 the error Ek = ‖f − Πk

hf‖∞,Ω, for k = 0, 1, 2, and the order of
convergence pk as a function of the mesh size h = 2/N for N = 2, . . . , 32. Clearly,
linear convergence is observed for interpolation of degree 0 while the order of con-
vergence is quadratic with respect to h for interpolation of degree 1 and cubic for
interpolation of degree 2. •

8.7 Approximation by Splines

In this section we address the matter of approximating a given function using
splines, which allow for a piecewise interpolation with a global smoothness.

356 8 Polynomial Interpolation

Table 8.4. Convergence rates and orders for piecewise interpolations of degree 0, 1
and 2

h E0 p0 E1 p1 E2 p2

1 0.4384 0.2387 0.016

1
2

0.2931 0.5809 0.1037 1.2028 1.6678 · 10−3 3.2639

1
4

0.1579 0.8924 0.0298 1.7990 2.8151 · 10−4 2.5667

1
8

0.0795 0.9900 0.0077 1.9524 3.5165 · 10−5 3.001

1
16

0.0399 0.9946 0.0019 2.0189 4.555 · 10−6 2.9486

Definition 8.1 Let x0, . . . , xn, be n + 1 distinct nodes of [a, b], with a =
x0 < x1 < . . . < xn = b. The function sk(x) on the interval [a, b] is a spline of
degree k relative to the nodes xj if

sk|[xj ,xj+1] ∈ Pk, j = 0, 1, . . . , n − 1, (8.45)

sk ∈ Ck−1[a, b]. (8.46)

�

Denoting by Sk the space of splines sk on [a, b] relative to n+1 distinct nodes,
then dimSk = n+k. Obviously, any polynomial of degree k on [a, b] is a spline;
however, in the practice a spline is represented by a different polynomial on
each subinterval and for this reason there could be a discontinuity in its k-
th derivative at the internal nodes x1, . . . , xn−1. The nodes for which this
actually happens are called active nodes.

It is simple to check that conditions (8.45) and (8.46) do not suffice to
characterize a spline of degree k. Indeed, the restriction sk,j = sk|[xj ,xj+1] can
be represented as

sk,j(x) =
k∑

i=0

sij(x − xj)i, if x ∈ [xj , xj+1], (8.47)

so that (k +1)n coefficients sij must be determined. On the other hand, from
(8.46) it follows that

s
(m)
k,j−1(xj) = s

(m)
k,j (xj), j = 1, . . . , n − 1, m = 1, . . . , k − 1

which amounts to setting k(n−1) conditions. As a consequence, the remaining
degrees of freedom are (k + 1)n − k(n − 1) = k + n.
Even if the spline were interpolatory, that is, such that sk(xj) = fj for
j = 0, . . . , n, where f0, . . . , fn are given values, there would still be k − 1
unsaturated degrees of freedom. For this reason further constraints are usu-
ally imposed, which lead to:

8.7 Approximation by Splines 357

1. periodic splines, if

s
(m)
k (a) = s

(m)
k (b), m = 0, 1, . . . , k − 1; (8.48)

2. natural splines, if for k = 2l − 1, with l ≥ 2

s
(l+j)
k (a) = s

(l+j)
k (b) = 0, j = 0, 1, . . . , l − 2. (8.49)

From (8.47) it turns out that a spline can be conveniently represented using
k + n spline basis functions, such that (8.46) is automatically satisfied. The
simplest choice, which consists of employing a suitably enriched monomial
basis (see Exercise 10), is not satisfactory from the numerical standpoint,
since it is ill-conditioned. In Sections 8.7.1 and 8.7.2 possible examples of
spline basis functions will be provided: cardinal splines for the specific case
k = 3 and B-splines for a generic k.

8.7.1 Interpolatory Cubic Splines

Interpolatory cubic splines are particularly significant since: i. they are the
splines of minimum degree that yield C2 approximations; ii. they are suffi-
ciently smooth in the presence of small curvatures.

Let us thus consider, in [a, b], n + 1 ordered nodes a = x0 < x1 < . . . <
xn = b and the corresponding evaluations fi, i = 0, . . . , n. Our aim is to
provide an efficient procedure for constructing the cubic spline interpolating
those values. Since the spline is of degree 3, its second-order derivative must
be continuous. Let us introduce the following notation

fi = s3(xi), mi = s′3(xi), Mi = s′′3(xi), i = 0, . . . , n.

Since s3,i−1 ∈ P3, s′′3,i−1 is linear and

s′′3,i−1(x) = Mi−1
xi − x

hi
+ Mi

x − xi−1

hi
for x ∈ [xi−1, xi] (8.50)

where hi = xi − xi−1, i = 1, . . . , n. Integrating (8.50) twice we get

s3,i−1(x) = Mi−1
(xi − x)3

6hi
+ Mi

(x − xi−1)3

6hi
+ Ci−1(x − xi−1) + C̃i−1,

and the constants Ci−1 and C̃i−1 are determined by imposing the end point
values s3(xi−1) = fi−1 and s3(xi) = fi. This yields, for i = 1, . . . , n − 1

C̃i−1 = fi−1 − Mi−1
h2

i

6
, Ci−1 =

fi − fi−1

hi
− hi

6
(Mi − Mi−1).

358 8 Polynomial Interpolation

Let us now enforce the continuity of the first derivatives at xi; we get

s′3(x
−
i) =

hi

6
Mi−1 +

hi

3
Mi +

fi − fi−1

hi

= −hi+1

3
Mi −

hi+1

6
Mi+1 +

fi+1 − fi

hi+1
= s′3(x

+
i),

where s′3(x
±
i) = lim

t→0
s′3(xi±t). This leads to the following linear system (called

M-continuity system)

µiMi−1 + 2Mi + λiMi+1 = di i = 1, . . . , n − 1, (8.51)

where we have set

µi =
hi

hi + hi+1
, λi =

hi+1

hi + hi+1
,

di =
6

hi + hi+1

(
fi+1 − fi

hi+1
− fi − fi−1

hi

)

, i = 1, . . . , n − 1.

System (8.51) has n + 1 unknowns and n − 1 equations; thus, 2(= k − 1)
conditions are still lacking. In general, these conditions can be of the form

2M0 + λ0M1 = d0, µnMn−1 + 2Mn = dn,

with 0 ≤ λ0, µn ≤ 1 and d0, dn given values. For instance, in order to obtain
the natural splines (satisfying s′′3(a) = s′′3(b) = 0), we must set the above
coefficients equal to zero. A popular choice sets λ0 = µn = 1 and d0 = d1,
dn = dn−1, which corresponds to prolongating the spline outside the end
points of the interval [a, b] and treating a and b as internal points. This strategy
produces a spline with a “smooth” behavior. In general, the resulting linear
system is tridiagonal of the form

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2 λ0 0 . . . 0

µ1 2 λ1

...

0
. 0

... µn−1 2 λn−1

0 . . . 0 µn 2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎣

M0

M1

...
Mn−1

Mn

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

d0

d1

...
dn−1

dn

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(8.52)

and it can be efficiently solved using the Thomas algorithm (3.53).
A closure condition for system (8.52), which can be useful when the deriv-

atives f ′(a) and f ′(b) are not available, consists of enforcing the continu-
ity of s′′′3 (x) at x1 and xn−1. Since the nodes x1 and xn−1 do not actually
contribute in constructing the cubic spline, it is called a not-a-knot spline,
with “active” knots {x0, x2, . . . , xn−2, xn} and interpolating f at all the nodes
{x0, x1, x2, . . . , xn−2, xn−1, xn}.

8.7 Approximation by Splines 359

Remark 8.2 (Specific software) Several packages exist for dealing with
interpolating splines. In the case of cubic splines, we mention the command
spline, which uses the not-a-knot condition introduced above, or, in general,
the spline toolbox of MATLAB [dB90] and the library FITPACK [Die87a],
[Die87b]. �

A different approach for generating s3 consists of providing a basis {ϕi} for
the space S3 of cubic splines, whose dimension is equal to n + 3. We consider
here the case in which the n + 3 basis functions ϕi have global support in
the interval [a, b], referring to Section 8.7.2 for the case of a basis with local
support.

Functions ϕi, for i, j = 0, . . . , n, are defined through the following inter-
polation constraints

ϕi(xj) = δij , ϕ′
i(x0) = ϕ′

i(xn) = 0,

and two suitable splines must be added, ϕn+1 and ϕn+2. For instance, if the
spline must satisfy some assigned conditions on the derivative at the end
points, we ask that

ϕn+1(xj) = 0, j = 0, . . . , n, ϕ′
n+1(x0) = 1, ϕ′

n+1(xn) = 0,
ϕn+2(xj) = 0, j = 0, . . . , n, ϕ′

n+2(x0) = 0, ϕ′
n+2(xn) = 1.

By doing so, the spline takes the form

s3(x) =
n∑

i=0

fiϕi(x) + f ′
0ϕn+1(x) + f ′

nϕn+2(x),

where f ′
0 and f ′

n are two given values. The resulting basis {ϕi, i = 0, ..., n + 2}
is called a cardinal spline basis and is frequently employed in the numeri-
cal solution of differential or integral equations. Figure 8.9 shows a generic
cardinal spline, which is computed over a virtually unbounded interval
where the interpolation nodes xj are the integers. The spline changes sign
in any adjacent intervals [xj−1, xj] and [xj , xj+1] and rapidly decays to
zero.

Restricting ourselves to the positive axis, it can be shown (see [SL89])
that the extremant of the function on the interval [xj , xj+1] is equal to the
extremant on the interval [xj+1, xj+2] multiplied by a decaying factor λ ∈
(0, 1). In such a way, possible errors arising over an interval are rapidly damped
on the next one, thus ensuring the stability of the algorithm.

Let us summarize the main properties of interpolating cubic splines, refer-
ring to [Sch81] and [dB83] for the proofs and more general results.

Property 8.2 Let f ∈ C2([a, b]), and let s3 be the natural cubic spline inter-
polating f . Then

360 8 Polynomial Interpolation

−4 −3 −2 −1 0 1 2 3 4 5
−0.2

0

0.2

0.4

0.6

0.8

Fig. 8.9. Cardinal spline

b∫

a

[s′′3(x)]2dx ≤
b∫

a

[f ′′(x)]2dx, (8.53)

where equality holds if and only if f = s3.

The above result is known as the minimum norm property and has the meaning
of the minimum energy principle in mechanics. Property (8.53) still holds if
conditions on the first derivative of the spline at the end points are assigned
instead of natural conditions (in such a case, the spline is called constrained,
see Exercise 11).

The cubic interpolating spline sf of a function f ∈ C2([a, b]), with s′f (a) =
f ′(a) and s′f (b) = f ′(b), also satisfies the following property

b∫

a

[f ′′(x) − s′′f (x)]2dx ≤
b∫

a

[f ′′(x) − s′′(x)]2dx, ∀s ∈ S3.

As far as the error estimate is concerned, the following result holds.

Property 8.3 Let f ∈ C4([a, b]) and fix a partition of [a, b] into subintervals
of width hi such that h = maxi hi and β = h/mini hi. Let s3 be the cubic
spline interpolating f . Then

‖f (r) − s
(r)
3 ‖∞ ≤ Crh

4−r‖f (4)‖∞, r = 0, 1, 2, 3, (8.54)

with C0 = 5/384, C1 = 1/24, C2 = 3/8 and C3 = (β + β−1)/2.

8.7 Approximation by Splines 361

As a consequence, spline s3 and its first and second order derivatives uni-
formly converge to f and to its derivatives, as h tends to zero. The third order
derivative converges as well, provided that β is uniformly bounded.

Example 8.8 Figure 8.10 shows the cubic spline approximating the function in
the Runge’s example, and its first, second and third order derivatives, on a grid of
11 equally spaced nodes, while in Table 8.5 the error ‖s3 − f‖∞ is reported as a
function of h together with the computed order of convergence p. The results clearly
demonstrate that p tends to 4 (the theoretical order) as h tends to zero. •

8.7.2 B-splines

Let us go back to splines of a generic degree k, and consider the B-spline (or
bell-spline) basis, referring to divided differences introduced in Section 8.2.1.

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

−5 −4 −3 −2 −1 0 1 2 3 4 5
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

(b)

−5 −4 −3 −2 −1 0 1 2 3 4 5
−2

−1.5

−1

−0.5

0

0.5

1

(c)

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

(d)

Fig. 8.10. Interpolating spline (a) and its first (b), second (c) and third (d) order
derivatives (solid line) for the function of Runge’s example (dashed line)

Table 8.5. Experimental interpolation error for Runge’s function using cubic
splines

h 1 0.5 0.25 0.125 0.0625

‖s3 − f‖∞ 0.022 0.0032 2.7741e-4 1.5983e-5 9.6343e-7
p – 2.7881 3.5197 4.1175 4.0522

362 8 Polynomial Interpolation

Definition 8.2 The normalized B-spline Bi,k+1 of degree k relative to the
distinct nodes xi, . . . , xi+k+1 is defined as

Bi,k+1(x) = (xi+k+1 − xi)g[xi, . . . , xi+k+1], (8.55)

where

g(t) = (t − x)k
+ =

{
(t − x)k if x ≤ t,

0 otherwise.
(8.56)

�

Substituting (8.18) into (8.55) yields the following explicit representation

Bi,k+1(x) = (xi+k+1 − xi)
k+1∑

j=0

(xj+i − x)k
+

k+1∏

l=0
l �=j

(xi+j − xi+l)

. (8.57)

From (8.57) it turns out that the active nodes of Bi,k+1(x) are xi, . . . , xi+k+1

and that Bi,k+1(x) is nonnull only within the interval [xi, xi+k+1].
Actually, it can be proved that it is the unique nonnull spline of minimum

support relative to nodes xi, . . . , xi+k+1 [Sch67]. It can also be shown that
Bi,k+1(x) ≥ 0 [dB83] and |B(l)

i,k+1(xi)| = |B(l)
i,k+1(xi+k+1)| for l = 0, . . . , k − 1

[Sch81]. B-splines admit the following recursive formulation ([dB72], [Cox72])

Bi,1(x) =

{
1 if x ∈ [xi, xi+1],

0 otherwise,

Bi,k+1(x) =
x − xi

xi+k − xi
Bi,k(x) +

xi+k+1 − x

xi+k+1 − xi+1
Bi+1,k(x), k ≥ 1,

(8.58)

which is usually preferred to (8.57) when evaluating a B-spline at a given
point.

Remark 8.3 It is possible to define B-splines even in the case of partially
coincident nodes, by suitably extending the definition of divided differences.
This leads to a new recursive form of Newton divided differences given by (see
for further details [Die93])

f [x0, . . . , xn] =

⎧
⎪⎪⎨

⎪⎪⎩

f [x1, . . . , xn] − f [x0, . . . , xn−1]
xn − x0

if x0 < x1 < . . . < xn,

f (n+1)(x0)
(n + 1)!

if x0 = x1 = . . . = xn.

Assuming that m (with 1 < m < k + 2) of the k + 2 nodes xi, . . . , xi+k+1

are coincident and equal to λ, then (8.47) will contain a linear combination

8.7 Approximation by Splines 363

of the functions (λ − x)k+1−j
+ , for j = 1, . . . ,m. As a consequence, the B-

spline can have continuous derivatives at λ only up to order k − m and,
therefore, it is discontinuous if m = k + 1. It can be checked [Die93] that, if
xi−1 < xi = . . . = xi+k < xi+k+1, then

Bi,k+1(x) =

⎧
⎪⎨

⎪⎩

(
xi+k+1 − x

xi+k+1 − xi

)k

if x ∈ [xi, xi+k+1],

0 otherwise,

while for xi < xi+1 = . . . = xi+k+1 < xi+k+2

Bi,k+1(x) =

⎧
⎪⎨

⎪⎩

(
x − xi

xi+k+1 − xi

)k

if x ∈ [xi, xi+k+1],

0 otherwise.

Combining these formulae with the recursive relation (8.58) allows for con-
structing B-splines with coincident nodes. �

Example 8.9 Let us examine the special case of cubic B-splines on equally spaced
nodes xi+1 = xi + h for i = 0, ..., n − 1. Equation (8.57) becomes

6h3Bi,4(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(x − xi)
3, if x ∈ [xi, xi+1],

h3 + 3h2(x − xi+1) + 3h(x − xi+1)
2 − 3(x − xi+1)

3, if x ∈ [xi+1, xi+2],
h3 + 3h2(xi+3 − x) + 3h(xi+3 − x)2 − 3(xi+3 − x)3, if x ∈ [xi+2, xi+3],
(xi+4 − x)3, if x ∈ [xi+3, xi+4],
0 otherwise.

In Figure 8.11 the graph of Bi,4 is shown in the case of distinct nodes and of partially
coincident nodes. •

Given n + 1 distinct nodes xj , j = 0, . . . , n, n − k linearly independent
B-splines of degree k can be constructed, though 2k degrees of freedom are
still available to generate a basis for Sk. One way of proceeding consists of
introducing 2k fictitious nodes

x−k ≤ x−k+1 ≤ . . . ≤ x−1 ≤ x0 = a,

b = xn ≤ xn+1 ≤ . . . ≤ xn+k,
(8.59)

which the B-splines Bi,k+1, with i = −k, . . . ,−1 and i = n − k, . . . , n − 1,
are associated with. By doing so, any spline sk ∈ Sk can be uniquely written
as

sk(x) =
n−1∑

i=−k

ciBi,k+1(x). (8.60)

364 8 Polynomial Interpolation

−2 −1 0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 8.11. B-spline with distinct nodes (solid line) and with three coincident nodes
at the origin (dashed line). Notice the discontinuity of the first derivative

The real numbers ci are the B-spline coefficients of sk. Nodes (8.59) are usually
chosen as coincident or periodic:

1. coincident: this choice is suitable for enforcing the values attained by a
spline at the end points of its definition interval. In such a case, indeed,
thanks to Remark 8.3 about B-splines with coincident nodes, we get

sk(a) = c−k, sk(b) = cn−1; (8.61)

2. periodic, that is

x−i = xn−i − b + a, xi+n = xi + b − a, i = 1, . . . , k.

This choice is useful if the periodicity conditions (8.48) have to be imposed.

Using B-splines instead of cardinal splines is advantageous when handling,
with a reduced computational effort, a given configuration of nodes for which
a spline sk is known. In particular, assume that the coefficients ci of sk (in
form (8.60)) are available over the nodes x−k, x−k+1, . . . , xn+k, and that we
wish to add to these a new node x̃.

The spline s̃k ∈ Sk, defined over the new set of nodes, admits the following
representation with respect to a new B-spline basis

{
B̃i,k+1

}

s̃k(x) =
n−1∑

i=−k

diB̃i,k+1(x).

8.8 Splines in Parametric Form 365

The new coefficients di can be computed starting from the known coefficients
ci using the following algorithm [Boe80]:

let x̃ ∈ [xj , xj+1); then, construct a new set of nodes {yi} such that

yi = xi for i = −k, . . . , j, yj+1 = x̃,

yi = xi−1 for i = j + 2, . . . , n + k + 1;

define

ωi =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 for i = −k, . . . , j − k,

yj+1 − yi

yi+k+1 − yi
for i = j − k + 1, . . . , j,

0 for i = j + 1, . . . , n;

compute

di = ωici + (1 − ωi)ci for i = −k, ..., n − 1.

This algorithm has good stability properties and can be generalized to the
case where more than one node is inserted at the same time (see [Die93]).

8.8 Splines in Parametric Form

Using interpolating splines presents the following two drawbacks:

1. the resulting approximation is of good quality only if the function f does
not exhibit large derivatives (in particular, we require that |f ′(x)| < 1
for every x). Otherwise, oscillating behaviors may arise in the spline, as
demonstrated by the example considered in Figure 8.12 which shows, in
solid line, the cubic interpolating spline over the following set of data
(from [SL89])

xi 8.125 8.4 9 9.845 9.6 9.959 10.166 10.2
fi 0.0774 0.099 0.28 0.6 0.708 1.3 1.8 2.177

2. sk depends on the choice of the coordinate system. In fact, performing
a clockwise rotation of 36 degrees of the coordinate system in the above
example, would lead to the spline without spurious oscillations reported
in the boxed frame in Figure 8.12.

All the interpolation procedures considered so far depend on the chosen
Cartesian reference system, which is a negative feature if the spline is used
for a graphical representation of a given figure (for instance, an ellipse).
Indeed, we would like such a representation to be independent of the
reference system, that is, to have a geometric invariance property.

366 8 Polynomial Interpolation

8 8.5 9 9.5 10 10.5
0

0.5

1

1.5

2

2.5

6 7 8 9 10
−5.2

−5

−4.8

−4.6

−4.4

−4.2

Fig. 8.12. Geometric noninvariance for an interpolating cubic spline s3: the set of
data for s3 in the boxed frame is the same as in the main figure, rotated by 36
degrees. The rotation diminishes the slope of the interpolated curve and eliminates
any oscillation from s3. Notice that resorting to a parametric spline (dashed line)
removes the oscillations in s3 without any rotation of the reference system

A solution is provided by parametric splines, in which any component of
the curve, written in parametric form, is approximated by a spline function.
Consider a plane curve in parametric form P(t) = (x(t), y(t)), with t ∈ [0, T],
then take the set of the points in the plane of coordinates Pi = (xi, yi), for
i = 0, . . . , n, and introduce a partition onto [0, T]: 0 = t0 < t1 < . . . < tn = T .

Using the two sets of values {ti, xi} and {ti, yi} as interpolation data,
we obtain the two splines sk,x and sk,y, with respect to the independent
variable t, that interpolate x(t) and y(t), respectively. The parametric curve
Sk(t) = (sk,x(t), sk,y(t)) is called the parametric spline. Obviously, different
parameterizations of the interval [0, T] yield different splines (see Figure 8.13).

A reasonable choice of the parameterization makes use of the length of
each segment Pi−1Pi,

li =
√

(xi − xi−1)2 + (yi − yi−1)2, i = 1, . . . , n.

Setting t0 = 0 and ti =
∑i

k=1 lk for i = 1, . . . , n, every ti represents the cu-
mulative length of the piecewise line that joins the points from P0 to Pi. This
function is called the cumulative length spline and approximates satisfactorily
even those curves with large curvature. Moreover, it can also be proved (see
[SL89]) that it is geometrically invariant.

Program 68 implements the construction of cumulative parametric cubic
splines in two dimensions (it can be easily generalized to the three-dimensional
case). Composite parametric splines can be generated as well by enforcing
suitable continuity conditions (see [SL89]).

8.8 Splines in Parametric Form 367

−2 0 2 4 6

−4

−2

0

2

4

Fig. 8.13. Parametric splines for a spiral-like node distribution. The spline of
cumulative length is drawn in solid line

Program 68 - parspline : Parametric splines

function [xi,yi] = parspline (x,y)
%PARSPLINE Parametric cubic spline interpolation
% [XI, YI] = PARSPLINE(X, Y) constructs a two-dimensional cumulative cubic
% spline. X and Y contain the interpolation data. XI and YI contain the
% parametric components of the cubic spline with respect to x and y axes.
t (1) = 0;
for i = 1:length (x)-1

t (i+1) = t (i) + sqrt ((x(i+1)-x(i))ˆ2 + (y(i+1)-y(i))ˆ2);
end
z = [t(1):(t(length(t))-t(1))/100:t(length(t))];
xi = spline (t,x,z);
yi = spline (t,y,z);

8.8.1 Bézier Curves and Parametric B-splines

The Bézier curves and parametric B-splines are widely employed in graphical
applications, where the nodes’ locations might be affected by some uncer-
tainty.

Let P0,P1, . . . ,Pn be n + 1 points ordered in the plane. The oriented
polygon formed by them is called the characteristic polygon or Bézier polygon.
Let us introduce the Bernstein polynomials over the interval [0, 1] defined as

bn,k(t) =
(

n
k

)

tk(1 − t)n−k =
n!

k!(n − k)!
tk(1 − t)n−k,

368 8 Polynomial Interpolation

2 4 6 8 10 12 14 16
−4

−2

0

2

4

6

8

Fig. 8.14. Computation of the value of B3 relative to the points (0,0), (3,7), (14,7),
(17,0) for t = 0.5, using the graphical method described in the text

for n = 0, 1, . . . and k = 0, . . . , n. They can be obtained by the following
recursive formula

{
bn,0(t) = (1 − t)n,

bn,k(t) = (1 − t)bn−1,k(t) + tbn−1,k−1(t), k = 1, . . . , n, t ∈ [0, 1].

It is easily seen that bn,k ∈ Pn, for k = 0, . . . , n. Also, {bn,k, k = 0, . . . , n}
provides a basis for Pn. The Bézier curve is defined as follows

Bn(P0,P1, . . . ,Pn, t) =
n∑

k=0

Pkbn,k(t), 0 ≤ t ≤ 1. (8.62)

This expression can be regarded as a weighted average of the points Pk, with
weights bn,k(t).

The Bézier curves can also be obtained by a pure geometric approach
starting from the characteristic polygon. Indeed, for any fixed t ∈ [0, 1], we
define Pi,1(t) = (1 − t)Pi + tPi+1 for i = 0, . . . , n − 1 and, for t fixed, the
piecewise line that joins the new nodes Pi,1(t) forms a polygon of n − 1
edges. We can now repeat the procedure by generating the new vertices Pi,2(t)
(i = 0, . . . , n− 2), and terminating as soon as the polygon comprises only the
vertices P0,n−1(t) and P1,n−1(t). It can be shown that

P0,n(t) = (1 − t)P0,n−1(t) + tP1,n−1(t) = Bn(P0,P1, . . . ,Pn, t),

that is, P0,n(t) is equal to the value of the Bézier curve Bn at the points
corresponding to the fixed value of t. Repeating the process for several values
of the parameter t yields the construction of the curve in the considered region
of the plane.

Notice that, for a given node configuration, several curves can be con-
structed according to the ordering of points Pi. Moreover, the Bézier curve

8.8 Splines in Parametric Form 369

Bn(P0,P1, . . . ,Pn, t) coincides with Bn(Pn,Pn−1, . . . ,P0, t), apart from the
orientation.

Program 69 computes bn,k at the point x for x ∈ [0, 1].

Program 69 - bernstein : Bernstein polynomials

function [bnk]=bernstein (n,k,x)
%BERNSTEIN Bernstein polynomial of degree n
% [BNK] = BERNSTEIN(N, K, X) constructs the Bernstein polynomial b˙n,k at X.
if k == 0,

C = 1;
else,

C = prod ([1:n])/(prod([1:k])*prod([1:n-k]));
end
bnk = C * xˆk * (1-x)ˆ(n-k);

Program 70 plots the Bézier curve relative to the set of points (x, y).

Program 70 - bezier : Bézier curves

function [bezx,bezy] = bezier (n, x, y)
%BEZIER Bezier curves
% [BEZX, BEZY] = BEZIER(N, X, Y) constructs the Bezier curve (BEZX, BEZY)
% associated with a given set of points (X,Y) in the plane.
i = 0; k = 0; for t = 0:0.01:1,

i = i + 1; bnk = bernstein (n,k,t); ber(i) = bnk;
end
bezx = ber * x (1); bezy = ber * y (1);
for k = 1:n

i = 0;
for t = 0:0.01:1

i = i + 1; bnk = bernstein (n,k,t); ber(i) = bnk;
end
bezx = bezx + ber * x (k+1); bezy = bezy + ber * y (k+1);

end
plot(bezx,bezy)

In practice, the Bézier curves are rarely used since they do not provide a suffi-
ciently accurate approximation to the characteristic polygon. For this reason,
in the 70’s the parametric B-splines were introduced, and they are used in
(8.62) instead of the Bernstein polynomials. Parametric B-splines are widely
employed in packages for computer graphics since they enjoy the following
properties:

1. perturbing a single vertex of the characteristic polygon yields a local per-
turbation of the curve only around the vertex itself;

2. the parametric B-spline better approximates the control polygon than the
corresponding Bézier curve does, and it is always contained within the
convex hull of the polygon.

370 8 Polynomial Interpolation

Fig. 8.15. Comparison of a Bézier curve (left) and a parametric B-spline (right).
The vertices of the characteristic polygon are denoted by ◦

Fig. 8.16. Some parametric B-splines as functions of the number and positions
of the vertices of the characteristic polygon. Notice in the third figure (right) the
localization effects due to moving a single vertex

In Figure 8.15 a comparison is made between Bézier curves and parametric
B-splines for the approximation of a given characteristic polygon.

We conclude this section by noticing that parametric cubic B-splines allow
for obtaining locally straight lines by aligning four consecutive vertices (see
Figure 8.16) and that a parametric B-spline can be constrained at a specific
point of the characteristic polygon by simply making three consecutive points
of the polygon coincide with the desired point.

8.9 Applications

In this section we consider two problems arising from the solution of fourth-
order differential equations and from the reconstruction of images in axial
tomographies.

8.9.1 Finite Element Analysis of a Clamped Beam

Let us employ piecewise Hermite polynomials (see Section 8.5) for the numeri-
cal approximation of the transversal bending of a clamped beam. This problem
was already considered in Section 4.7.2 where centered finite differences were
used.

8.9 Applications 371

The mathematical model is the fourth-order boundary value problem
(4.76), here presented in the following general formulation

{
(α(x)u′′(x))′′ = f(x), 0 < x < L,

u(0) = u(L) = 0, u′(0) = u′(L) = 0.
(8.63)

In the particular case of (4.76) we have α = EJ and f = P ; we assume
henceforth that α is a positive and bounded function over (0,L) and that
f ∈ L2(0,L).

We multiply (8.63) by a sufficiently smooth arbitrary function v, then, we
integrate by parts twice, to obtain

L∫

0

αu′′v′′dx − [αu′′′v]L0 + [αu′′v′]L0 =

L∫

0

fvdx.

Problem (8.63) is then replaced by the following problem in integral form

findu ∈ V such that

L∫

0

αu′′v′′dx =

L∫

0

fvdx, ∀v ∈ V, (8.64)

where

V =
{

v : v(r) ∈ L2(0,L), r = 0, 1, 2, v(r)(0) = v(r)(L) = 0, r = 0, 1
}

.

Problem (8.64) admits a unique solution, which represents the deformed con-
figuration that minimizes the total potential energy of the beam over the space
V (see, for instance, [Red86], p. 156)

J(u) =

L∫

0

(
1
2
α(u′′)2 − fu

)

dx.

In view of the numerical solution of problem (8.64), we introduce a partition
Th of [0,L] into K subintervals Tk = [xk−1, xk], (k = 1, . . . , K) of uniform
length h = L/K, with xk = kh, and the finite dimensional space

Vh =
{
vh ∈ C1([0,L]), vh|T ∈ P3(T)

∀T ∈ Th, v
(r)
h (0) = v

(r)
h (L) = 0, r = 0, 1

}
.

(8.65)

Let us equip Vh with a basis. With this purpose, we associate with each
internal node xi (i = 1, . . . , K−1) a support σi = Ti ∪Ti+1 and two functions
ϕi, ψi defined as follows: for any k, ϕi|Tk

∈ P3(Tk), ψi|Tk
∈ P3(Tk) and for

any j = 0, . . . , K,

372 8 Polynomial Interpolation

⎧
⎨

⎩

ϕi(xj) = δij , ϕ′
i(xj) = 0,

ψi(xj) = 0, ψ′
i(xj) = δij .

(8.66)

Notice that the above functions belong to Vh and define a basis

Bh = {ϕi, ψi, i = 1, . . . ,K − 1}. (8.67)

These basis functions can be brought back to the reference interval T̂ = [0, 1]
for 0 ≤ x̂ ≤ 1, by the affine maps x = hx̂ + xk−1 between T̂ and Tk, for
k = 1, . . . , K.

Therefore, let us introduce on the interval T̂ the basis functions ϕ̂
(0)
0 and

ϕ̂
(1)
0 , associated with the node x̂ = 0, and ϕ̂

(0)
1 and ϕ̂

(1)
1 , associated with node

x̂ = 1. Each of these is of the form ϕ̂ = a0+a1x̂+a2x̂
2+a3x̂

3; in particular, the
functions with superscript “0” must satisfy the first two conditions in (8.66),
while those with superscript “1” must fulfill the remaining two conditions.
Solving the (4×4) associated system, we get

ϕ̂
(0)
0 (x̂) = 1 − 3x̂2 + 2x̂3, ϕ̂

(1)
0 (x̂) = x̂ − 2x̂2 + x̂3,

ϕ̂
(0)
1 (x̂) = 3x̂2 − 2x̂3, ϕ̂

(1)
1 (x̂) = −x̂2 + x̂3.

(8.68)

The graphs of the functions (8.68) are drawn in Figure 8.17 (left), where (0),
(1), (2) and (3) denote ϕ̂

(0)
0 , ϕ̂

(0)
1 , ϕ̂

(1)
0 and ϕ̂

(1)
1 , respectively.

The function uh ∈ Vh can be written as

uh(x) =
K−1∑

i=1

uiϕi(x) +
K−1∑

i=1

u
(1)
i ψi(x). (8.69)

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

(0) (1)

(2)

(3)

0 20 40 60 80 100 120 140 160
10−20

10−15

10−10

10−5

100

105

No Prec.Prec.

Fig. 8.17. Canonical Hermite basis on the reference interval 0 ≤ x̂ ≤ 1 (left);
convergence histories for the conjugate gradient method in the solution of system
(8.73) (right). On the x-axis the number of iterations k is shown, while the y-axis
represents the quantity ‖r(k)‖2/‖b1‖2, where r(k) is the residual of system (8.73) at
the k-th iteration

8.9 Applications 373

The coefficients and the degrees of freedom of uh have the following meaning:
ui = uh(xi), u

(1)
i (xi) = u′

h(xi) for i = 1, . . . , K − 1. Notice that (8.69) is a
special instance of (8.36), having set mi = 1.

The discretization of problem (8.64) reads

finduh ∈ Vh such that

L∫

0

αu′′
hv′′

hdx =

L∫

0

fvhdx, ∀vh ∈ Bh. (8.70)

This is called the Galerkin finite element approximation of the differential
problem (8.63). We refer to Chapter 12, Sections 12.4 and 12.4.5, for a more
comprehensive discussion and analysis of the method.

Using the representation (8.69) we end up with the following system in
the 2K − 2 unknowns u1, u2, . . . , uK−1, u

(1)
1 , u

(1)
2 , . . . u

(1)
K−1

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

K−1∑

j=1

⎧
⎨

⎩
uj

L∫

0

αϕ′′
j ϕ′′

i dx + u
(1)
j

L∫

0

αψ′′
j ϕ′′

i dx

⎫
⎬

⎭
=

L∫

0

fϕidx,

K−1∑

j=1

⎧
⎨

⎩
uj

L∫

0

αϕ′′
j ψ′′

i dx + u
(1)
j

L∫

0

αψ′′
j ψ′′

i dx

⎫
⎬

⎭
=

L∫

0

fψidx,

(8.71)

for i = 1, . . . ,K − 1. Assuming, for the sake of simplicity, that the beam has
unit length L, that α and f are two constants and computing the integrals in
(8.71), the final system reads in matrix form

{
Au + Bp = b1,

BT u + Cp = 0,
(8.72)

where the vectors u,p ∈ R
K−1 contain the nodal unknowns ui and u

(1)
i ,

b1 ∈ R
K−1 is the vector of components equal to h4f/α, while

A = tridiagK−1(−12, 24,−12),

B = tridiagK−1(−6, 0, 6),

C = tridiagK−1(2, 8, 2).

System (8.72) has size equal to 2(K−1); eliminating the unknown p from the
second equation, we get the reduced system (of size K − 1)

(
A − BC−1BT

)
u = b1. (8.73)

Since B is skew-symmetric and A is symmetric and positive definite (s.p.d.),
the matrix M = A − BC−1BT is s.p.d. too. Using Cholesky factorization for
solving system (8.73) is impractical as C−1 is full. An alternative is thus the

374 8 Polynomial Interpolation

conjugate gradient method (CG) supplied with a suitable preconditioner as
the spectral condition number of M is of the order of h−4 = K4.

We notice that computing the residual at each step k ≥ 0 requires solving
a linear system whose right side is the vector BT u(k), u(k) being the current
iterate of CG method, and whose coefficient matrix is matrix C. This system
can be solved using the Thomas algorithm (3.53) with a cost of the order of
K flops.

The CG algorithm terminates in correspondence to the lowest value of k
for which ‖r(k)‖2 ≤ u‖b1‖2, where r(k) is the residual of system (8.73) and u
is the roundoff unit.

The results obtained running the CG method in the case of a uniform
partition of [0, 1] with K = 50 elements and setting α = f = 1 are sum-
marized in Figure 8.17 (right), which shows the convergence histories of the
method in both nonpreconditioned form (denoted by “Non Prec.”) and with
SSOR preconditioner (denoted by “Prec.”), having set the relaxation para-
meter ω = 1.95.

We notice that the CG method does not converge within K − 1 steps
due to the effect of the rounding errors. Notice also the effectiveness of the
SSOR preconditioner in terms of the reduction of the number of iterations.
However, the high computational cost of this preconditioner prompts us to
devise another choice. Looking at the structure of the matrix M a natural
preconditioner is M = A − BC̃−1BT , where C̃ is the diagonal matrix whose
entries are c̃ii =

∑K−1
j=1 |cij |. The matrix M is banded so that its inversion

requires a strongly reduced cost than for the SSOR preconditioner. Moreover,
as shown in Table 8.6, using M provides a dramatic decrease of the number
of iterations to converge.

8.9.2 Geometric Reconstruction Based on Computer
Tomographies

A typical application of the algorithms presented in Section 8.8 deals with the
reconstruction of the three-dimensional structure of internal organs of human
body based on computer tomographies (CT).
The CT usually provides a sequence of images which represent the sections
of an organ at several horizontal planes; as a convention, we say that the CT
produces sections of the x, y plane in correspondance of several values of z. The

Table 8.6. Number of iterations as a function of K

K Without Precond. SSOR M
25 51 27 12
50 178 61 25

100 685 118 33
200 2849 237 34

8.10 Exercises 375

Fig. 8.18. Cross-section of a blood vessel (left) and an associated characteristic
polygon using 16 points Pi (right)

result is analogous to what we would get by sectioning the organ at different
values of z and taking the picture of the corresponding sections. Obviously,
the great advantage in using the CT is that the organ under investigation can
be visualized without being hidden by the neighboring ones, as happens in
other kinds of medical images, e.g., angiographies.

The image that is obtained for each section is coded into a matrix of
pixels (abbreviation of pictures elements) in the x, y plane; a certain value is
associated with each pixel expressing the level of grey of the image at that
point. This level is determined by the density of X rays which are collected by
a detector after passing through the human body. In practice, the information
contained in a CT at a given value of z is expressed by a set of points (xi, yi)
which identify the boundary of the organ at z.

To improve the diagnostics it is often useful to reconstruct the three-
dimensional structure of the organ under examination starting from the sec-
tions provided by the CT. With this aim, it is necessary to convert the informa-
tion coded by pixels into a parametric representation which can be expressed
by suitable functions interpolating the image at some significant points on
its boundary. This reconstruction can be carried out by using the methods
described in Section 8.8 as shown in Figure 8.19.
A set of curves like those shown in Figure 8.19 can be suitably stacked to
provide an overall three-dimensional view of the organ under examination.

8.10 Exercises

1. Prove that the characteristic polynomials li ∈ Pn defined in (8.3) form a basis
for Pn.

2. An alternative approach to the method in Theorem 8.1, for constructing the
interpolating polynomial, consists of directly enforcing the n + 1 interpolation

376 8 Polynomial Interpolation

(a)
(b)

(c)

Fig. 8.19. Reconstruction of the internal arterial vessel of Figure 8.18 using dif-
ferent interpolating splines with the same characteristic polygon: (a) Bézier curves,
(b) parametric splines and (c) parametric B-splines

constraints on Πn and then computing the coefficients ai. By doing so, we end
up with a linear system Xa= y, with a = (a0, . . . , an)T , y = (y0, . . . , yn)T and
X = [xj−1

i]. X is called Vandermonde matrix. Prove that X is nonsingular if the
nodes xi are distinct.

[Hint: show that det(X)=
∏

0≤j<i≤n

(xi − xj) by recursion on n.]

3. Prove that ω′
n+1(xi) =

n∏

j=0
j �=i

(xi − xj) where ωn+1 is the nodal polynomial (8.6).

Then, check (8.5).
4. Provide an estimate of ‖ωn+1‖∞, in the cases n = 1 and n = 2, for a distribution

of equally spaced nodes.
5. Prove that

(n − 1)!hn−1|(x − xn−1)(x − xn)| ≤ |ωn+1(x)| ≤ n!hn−1|(x − xn−1)(x − xn)|,

where n is even, −1 = x0 < x1 < . . . < xn−1 < xn = 1, x ∈ (xn−1, xn) and
h = 2/n.
[Hint : let N = n/2 and show first that

ωn+1(x) = (x + Nh)(x + (N − 1)h) . . . (x + h)x

(x − h) . . . (x − (N − 1)h)(x − Nh).
(8.74)

Then, take x = rh with N − 1 < r < N .]
6. Under the assumptions of Exercise 5, show that |ωn+1| is maximum if x ∈

(xn−1, xn) (notice that |ωn+1| is an even function).
[Hint : use (8.74) to prove that |ωn+1(x+h)/ωn+1(x)| > 1 for any x ∈ (0, xn−1)
with x not coinciding with any interpolation node.]

7. Prove the recursive relation (8.19) for Newton divided differences.
8. Determine an interpolating polynomial Hf ∈ Pn such that

(Hf)(k)(x0) = f (k)(x0), k = 0, . . . , n,

8.10 Exercises 377

and check that

Hf(x) =

n∑

j=0

f (j)(x0)

j!
(x − x0)

j ,

that is, the Hermite interpolating polynomial on one node coincides with the
Taylor polynomial.

9. Given the following set of data

{
f0 = f(−1) = 1, f1 = f ′(−1) = 1, f2 = f ′(1) = 2, f3 = f(2) = 1

}
,

prove that the Hermite-Birkoff interpolating polynomial H3 does not exist for
them.
[Solution : letting H3(x) = a3x

3 + a2x
2 + a1x + a0, one must check that the

matrix of the linear system H3(xi) = fi for i = 0, . . . , 3 is singular.]
10. Check that any sk ∈ Sk[a, b] admits a representation of the form

sk(x) =

k∑

i=0

bix
i +

g∑

i=1

ci(x − xi)
k
+,

that is, 1, x, x2, . . . , xk, (x − x1)
k
+, . . . , (x − xg)k

+ form a basis for Sk[a, b].
11. Prove Property 8.2 and check its validity even in the case where the spline s

satisfies conditions of the form s′(a) = f ′(a), s′(b) = f ′(b).
[Hint: start from

b∫

a

[
f ′′(x) − s′′(x)

]
s′′(x)dx =

n∑

i=1

xi∫

xi−1

[
f ′′(x) − s′′(x)

]
s′′dx

and integrate by parts twice.]

12. Let f(x) = cos(x) = 1− x2

2!
+ x4

4!
− x6

6!
+ . . .; then, consider the following rational

approximation

r(x) =
a0 + a2x

2 + a4x
4

1 + b2x2
, (8.75)

called the Padé approximation. Determine the coefficients of r in such a way
that

f(x) − r(x) = γ8x
8 + γ10x

10 +

[Solution: a0 = 1, a2 = −7/15, a4 = 1/40, b2 = 1/30.]
13. Assume that the function f of the previous exercise is known at a set of n

equally spaced points xi ∈ (−π/2, π/2) with i = 0, . . . , n. Repeat Exercise 12,
determining, by using MATLAB, the coefficients of r in such a way that the
quantity

∑n

i=0
|f(xi) − r(xi)|2 is minimized. Consider the cases n = 5 and

n = 10.

9

Numerical Integration

In this chapter we present the most commonly used methods for numerical
integration. We will mainly consider one-dimensional integrals over bounded
intervals, although in Sections 9.8 and 9.9 an extension of the techniques to
integration over unbounded intervals (or integration of functions with singu-
larities) and to the multidimensional case will be considered.

9.1 Quadrature Formulae

Let f be a real integrable function over the interval [a, b]. Computing explicitly
the definite integral I(f) =

∫ b

a
f(x)dx may be difficult or even impossible. Any

explicit formula that is suitable for providing an approximation of I(f) is said
to be a quadrature formula or numerical integration formula.

An example can be obtained by replacing f with an approximation fn,
depending on the integer n ≥ 0, then computing I(fn) instead of I(f). Letting
In(f) = I(fn), we have

In(f) =

b∫

a

fn(x)dx, n ≥ 0. (9.1)

The dependence on the end points a, b is always understood, so we write In(f)
instead of In(f ; a, b).

If f ∈ C0([a, b]), the quadrature error En(f) = I(f) − In(f) satisfies

|En(f)| ≤
b∫

a

|f(x) − fn(x)|dx ≤ (b − a)‖f − fn‖∞.

Therefore, if for some n, ‖f − fn‖∞ < ε, then |En(f)| ≤ ε(b − a).
The approximant fn must be easily integrable, which is the case if, for

example, fn ∈ Pn. In this respect, a natural approach consists of using

380 9 Numerical Integration

fn = Πnf , the interpolating Lagrange polynomial of f over a set of
n + 1 distinct nodes {xi}, with i = 0, . . . , n. By doing so, from (9.1) it
follows that

In(f) =
n∑

i=0

f(xi)

b∫

a

li(x)dx, (9.2)

where li is the characteristic Lagrange polynomial of degree n associated with
node xi (see Section 8.1). We notice that (9.2) is a special instance of the
following quadrature formula

In(f) =
n∑

i=0

αif(xi), (9.3)

where the coefficients αi of the linear combination are given by
∫ b

a
li(x)dx.

Formula (9.3) is a weighted sum of the values of f at the points xi, for
i = 0, . . . , n. These points are said to be the nodes of the quadrature formula,
while the numbers αi ∈ R are its coefficients or weights. Both weights and
nodes depend in general on n; again, for notational simplicity, this dependence
is always understood.

Formula (9.2), called the Lagrange quadrature formula, can be generalized
to the case where also the values of the derivative of f are available. This
leads to the Hermite quadrature formula (see Section 9.5)

In(f) =
1∑

k=0

n∑

i=0

αikf (k)(xi), (9.4)

where the weights are now denoted by αik.
Both (9.2) and (9.4) are interpolatory quadrature formulae, since the

function f has been replaced by its interpolating polynomial (Lagrange and
Hermite polynomials, respectively). We define the degree of exactness of a
quadrature formula as the maximum integer r ≥ 0 for which

In(f) = I(f), ∀f ∈ Pr.

Any interpolatory quadrature formula that makes use of n + 1 distinct nodes
has degree of exactness equal to at least n. Indeed, if f ∈ Pn, then Πnf = f
and thus In(Πnf) = I(Πnf). The converse statement is also true, that is, a
quadrature formula using n+1 distinct nodes and having degree of exactness
equal at least to n is necessarily of interpolatory type (for the proof see [IK66],
p. 316).

As we will see in Section 10.2, the degree of exactness of a Lagrange quadra-
ture formula can be as large as 2n + 1 in the case of the so-called Gaussian
quadrature formulae.

9.2 Interpolatory Quadratures 381

9.2 Interpolatory Quadratures

We consider three remarkable instances of formula (9.2), corresponding to
n = 0, 1 and 2.

9.2.1 The Midpoint or Rectangle Formula

This formula is obtained by replacing f over [a, b] with the constant function
equal to the value attained by f at the midpoint of [a, b] (see Figure 9.1, left).
This yields

I0(f) = (b − a)f
(

a + b

2

)

, (9.5)

with weight α0 = b − a and node x0 = (a + b)/2. If f ∈ C2([a, b]), the
quadrature error is

E0(f) =
h3

3
f ′′(ξ), h =

b − a

2
, (9.6)

where ξ lies within the interval (a, b).
Indeed, expanding f in a Taylor’s series around c = (a + b)/2 and trun-

cating at the second-order, we get

f(x) = f(c) + f ′(c)(x − c) + f ′′(η(x))(x − c)2/2,

from which, integrating on (a, b) and using the mean-value theorem, (9.6)
follows. From this, it turns out that (9.5) is exact for constant and affine
functions (since in both cases f ′′(ξ) = 0 for any ξ ∈ (a, b)), so that the
midpoint rule has degree of exactness equal to 1.
It is worth noting that if the width of the integration interval [a, b] is not
sufficiently small, the quadrature error (9.6) can be quite large. This drawback
is common to all the numerical integration formulae that will be described in
the three forthcoming sections and can be overcome by resorting to their
composite counterparts as discussed in Section 9.4.

ba

f(x)

x0

x

f(x)

xm−1xk

x
x0

Fig. 9.1. The midpoint formula (left); the composite midpoint formula (right)

382 9 Numerical Integration

Suppose now that we approximate the integral I(f) by replacing f over
[a, b] with its composite interpolating polynomial of degree zero, constructed
on m subintervals of width H = (b − a)/m, for m ≥ 1 (see Figure 9.1, right).
Introducing the quadrature nodes xk = a+(2k +1)H/2, for k = 0, . . . , m−1,
we get the composite midpoint formula

I0,m(f) = H

m−1∑

k=0

f(xk), m ≥ 1. (9.7)

The quadrature error E0,m(f) = I(f) − I0,m(f) is given by

E0,m(f) =
b − a

24
H2f ′′(ξ), H =

b − a

m
(9.8)

provided that f ∈ C2([a, b]) and where ξ ∈ (a, b). From (9.8) we conclude
that (9.7) has degree of exactness equal to 1; (9.8) can be proved by recalling
(9.6) and using the additivity of integrals. Indeed, for k = 0, . . . ,m − 1 and
ξk ∈ (a + kH, a + (k + 1)H),

E0,m(f) =
m−1∑

k=0

f ′′(ξk)(H/2)3/3 =
m−1∑

k=0

f ′′(ξk)
H2

24
b − a

m
=

b − a

24
H2f ′′(ξ).

The last equality is a consequence of the following theorem, that is applied
letting u = f ′′ and δj = 1 for j = 0, . . . ,m − 1.

Theorem 9.1 (Discrete mean-value theorem) Let u ∈ C0([a, b]) and let
xj be s + 1 points in [a, b] and δj be s + 1 constants, all having the same sign.
Then there exists η ∈ [a, b] such that

s∑

j=0

δju(xj) = u(η)
s∑

j=0

δj . (9.9)

Proof. Let um = minx∈[a,b] u(x) = u(x̄) and uM = maxx∈[a,b] u(x) = u(¯̄x), where
x̄ and ¯̄x are two points in (a, b). Then

um

s∑

j=0

δj ≤
s∑

j=0

δju(xj) ≤ uM

s∑

j=0

δj . (9.10)

Let σs =
∑s

j=0
δju(xj) and consider the continuous function U(x) = u(x)

∑s

j=0
δj .

Thanks to (9.10), U(x̄) ≤ σs ≤ U(¯̄x). Applying the mean-value theorem, there exists

a point η between a and b such that U(η) = σs, which is (9.9). A similar proof can

be carried out if the coefficients δj are negative. �

The composite midpoint formula is implemented in Program 71. Through-
out this chapter, we shall denote by a and b the end points of the integration
interval and by m the number of quadrature subintervals. The variable fun
contains the expression of the function f , while the output variable int con-
tains the value of the approximate integral.

9.2 Interpolatory Quadratures 383

Program 71 - midpntc : Composite midpoint formula

function int = midpntc(a,b,m,fun)
%MIDPNTC Composite midpoint formula
% INT=MIDPNTC(A,B,M,FUN) computes an approximation of the integral of the
% function FUN over (A,B) via the midpoint method (with M equispaced intervals).
% FUN accepts a real vector input x and returns a real vector value.
h=(b-a)/m;
x=[a+h/2:h:b];
dim=length(x);
y=eval(fun);
if size(y)==1

y=diag(ones(dim))*y;
end
int=h*sum(y);
return

9.2.2 The Trapezoidal Formula

This formula is obtained by replacing f with Π1f , its Lagrange interpolating
polynomial of degree 1, relative to the nodes x0 = a and x1 = b (see Figure
9.2, left). The resulting quadrature, having nodes x0 = a, x1 = b and weights
α0 = α1 = (b − a)/2, is

I1(f) =
b − a

2
[f(a) + f(b)] . (9.11)

If f ∈ C2([a, b]), the quadrature error is given by

E1(f) = −h3

12
f ′′(ξ), h = b − a, (9.12)

where ξ is a point within the integration interval.

f(x)

a = x0 b = x1

x

b = x2
a+b
2 = x1

x

f(x)

a = x0

Fig. 9.2. Trapezoidal formula (left) and Cavalieri-Simpson formula (right)

384 9 Numerical Integration

Indeed, from the expression of the interpolation error (8.7) one gets

E1(f) =

b∫

a

(f(x) − Π1f(x))dx = −1
2

b∫

a

f ′′(ξ(x))(x − a)(b − x)dx.

Since ω2(x) = (x − a)(x − b) < 0 in (a, b), the mean-value theorem yields

E1(f) = (1/2)f ′′(ξ)

b∫

a

ω2(x)dx = −f ′′(ξ)(b − a)3/12,

for some ξ ∈ (a, b), which is (9.12). The trapezoidal quadrature therefore has
degree of exactness equal to 1, as is the case with the midpoint rule.

To obtain the composite trapezoidal formula, we proceed as in the case
where n = 0, by replacing f over [a, b] with its composite Lagrange polynomial
of degree 1 on m subintervals, with m ≥ 1. Introduce the quadrature nodes
xk = a + kH, for k = 0, . . . , m and H = (b − a)/m, getting

I1,m(f) =
H

2

m−1∑

k=0

(f(xk) + f(xk+1)) , m ≥ 1. (9.13)

Each term in (9.13) is counted twice, except the first and the last one, so that
the formula can be written as

I1,m(f) = H

[
1
2
f(x0) + f(x1) + . . . + f(xm−1) +

1
2
f(xm)

]

. (9.14)

As was done for (9.8), it can be shown that the quadrature error associated
with (9.14) is

E1,m(f) = −b − a

12
H2f ′′(ξ),

provided that f ∈ C2([a, b]), where ξ ∈ (a, b). The degree of exactness is again
equal to 1.
The composite trapezoidal rule is implemented in Program 72.

Program 72 - trapezc : Composite trapezoidal formula

function int = trapezc(a,b,m,fun)
%TRAPEZC Composite trapezoidal formula
% INT=TRAPEZC(A,B,M,FUN) computes an approximation of the integral of the
% function FUN over (A,B) via the trapezoidal method (with M equispaced intervals).
% FUN accepts a real vector input x and returns a real vector value.
h=(b-a)/m;
x=[a:h:b];
dim=length(x);

9.2 Interpolatory Quadratures 385

y=eval(fun);
if size(y)==1

y=diag(ones(dim))*y;
end
int=h*(0.5*y(1)+sum(y(2:m))+0.5*y(m+1));
return

9.2.3 The Cavalieri-Simpson Formula

The Cavalieri-Simpson formula can be obtained by replacing f over [a, b] with
its interpolating polynomial of degree 2 at the nodes x0 = a, x1 = (a+b)/2 and
x2 = b (see Figure 9.2, right). The weights are given by α0 = α2 = (b − a)/6
and α1 = 4(b − a)/6, and the resulting formula reads

I2(f) =
b − a

6

[

f(a) + 4f
(

a + b

2

)

+ f(b)
]

. (9.15)

It can be shown that the quadrature error is

E2(f) = −h5

90
f (4)(ξ), h =

b − a

2
, (9.16)

provided that f ∈ C4([a, b]), and where ξ lies within (a, b). From (9.16) it
turns out that (9.15) has degree of exactness equal to 3.

Replacing f with its composite polynomial of degree 2 over [a, b] yields the
composite formula corresponding to (9.15). Introducing the quadrature nodes
xk = a + kH/2, for k = 0, . . . , 2m and letting H = (b − a)/m, with m ≥ 1
gives

I2,m =
H

6

[

f(x0) + 2
m−1∑

r=1

f(x2r) + 4
m−1∑

s=0

f(x2s+1) + f(x2m)

]

. (9.17)

The quadrature error associated with (9.17) is

E2,m(f) = −b − a

180
(H/2)4f (4)(ξ),

provided that f ∈ C4([a, b]) and where ξ ∈ (a, b); the degree of exactness of
the formula is 3.

The composite Cavalieri-Simpson quadrature is implemented in Pro-
gram 73.

Program 73 - simpsonc : Composite Cavalieri-Simpson formula

function int = simpsonc(a,b,m,fun)
%SIMPSONC Composite Simpson formula
% INT=SIMPSONC(A,B,M,FUN) computes an approximation of the integral of the

386 9 Numerical Integration

Table 9.1. Absolute error for midpoint, trapezoidal and Cavalieri-Simpson com-
posite formulae in the approximate evaluation of integral (9.18)

m |E0,m| Rm |E1,m| Rm |E2,m| Rm

1 0.9751 1.589e-01 7.030e-01
2 1.037 0.9406 0.5670 0.2804 0.5021 1.400
4 0.1221 8.489 0.2348 2.415 3.139 · 10−3 159.96
8 2.980 · 10−2 4.097 5.635 · 10−2 4.167 1.085 · 10−3 2.892

16 6.748 · 10−3 4.417 1.327 · 10−2 4.245 7.381 · 10−5 14.704
32 1.639 · 10−3 4.118 3.263 · 10−3 4.068 4.682 · 10−6 15.765
64 4.066 · 10−4 4.030 8.123 · 10−4 4.017 2.936 · 10−7 15.946

128 1.014 · 10−4 4.008 2.028 · 10−4 4.004 1.836 · 10−8 15.987
256 2.535 · 10−5 4.002 5.070 · 10−5 4.001 1.148 · 10−9 15.997

% function FUN over (A,B) via the Simpson method (with M equispaced intervals). FUN
% accepts a real vector input x and returns a real vector value.
h=(b-a)/m;
x=[a:h/2:b];
dim= length(x);
y=eval(fun);
if size(y)==1

y=diag(ones(dim))*y;
end
int=(h/6)*(y(1)+2*sum(y(3:2:2*m-1))+4*sum(y(2:2:2*m))+y(2*m+1));
return

Example 9.1 Let us employ the midpoint, trapezoidal and Cavalieri-Simpson
composite formulae to compute the integral

2π∫

0

xe−x cos(2x)dx =

[
3(e−2π − 1) − 10πe−2π

]

25
� −0.122122. (9.18)

Table 9.1 shows in even columns the behavior of the absolute value of the error when
halving H (thus, doubling m), while in odd columns the ratio Rm = |Em|/|E2m|
between two consecutive errors is given. As predicted by the previous theoretical
analysis, Rm tends to 4 for the midpoint and trapezoidal rules and to 16 for the
Cavalieri-Simpson formula. •

9.3 Newton-Cotes Formulae

These formulae are based on Lagrange interpolation with equally spaced nodes
in [a, b]. For a fixed n ≥ 0, let us denote the quadrature nodes by xk = x0+kh,
k = 0, . . . , n. The midpoint, trapezoidal and Simpson formulae are special

9.3 Newton-Cotes Formulae 387

instances of the Newton-Cotes formulae, taking n = 0, n = 1 and n = 2
respectively. In the general case, we define:

- closed formulae, those where x0 = a, xn = b and h =
b − a

n
(n ≥ 1);

- open formulae, those where x0 = a + h, xn = b − h and h =
b − a

n + 2
(n ≥ 0).

A significant property of the Newton-Cotes formulae is that the quadrature
weights αi depend explicitly only on n and h, but not on the integration
interval [a, b]. To check this property in the case of closed formulae, let us
introduce the change of variable x = Ψ(t) = x0 + th. Noting that Ψ(0) = a,
Ψ(n) = b and xk = a + kh, we get

x − xk

xi − xk
=

a + th − (a + kh)
a + ih − (a + kh)

=
t − k

i − k
.

Therefore, if n ≥ 1

li(x) =
n∏

k=0,k �=i

t − k

i − k
= ϕi(t), 0 ≤ i ≤ n.

The following expression for the quadrature weights is obtained

αi =

b∫

a

li(x)dx =

n∫

0

ϕi(t)hdt = h

n∫

0

ϕi(t)dt,

from which we get the formula

In(f) = h

n∑

i=0

wif(xi), wi =

n∫

0

ϕi(t)dt.

Open formulae can be interpreted in a similar manner. Actually, using again
the mapping x = Ψ(t), we get x0 = a + h, xn = b − h and xk = a + h(k + 1)
for k = 1, . . . , n − 1. Letting, for sake of coherence, x−1 = a, xn+1 = b and
proceeding as in the case of closed formulae, we get αi = h

∫ n+1

−1
ϕi(t)dt,

and thus

In(f) = h

n∑

i=0

wif(xi), wi =

n+1∫

−1

ϕi(t)dt.

In the special case where n = 0, since l0(x) = ϕ0(t) = 1, we get w0 = 2.
The coefficients wi do not depend on a, b, h and f , but only depend on

n, and can therefore be tabulated a priori. In the case of closed formulae, the
polynomials ϕi and ϕn−i, for i = 0, . . . , n − 1, have by symmetry the same

388 9 Numerical Integration

Table 9.2. Weights of closed (left) and open Newton-Cotes formulae (right)

n 1 2 3 4 5 6

w0
1
2

1
3

3
8

14
45

95
288

41
140

w1 0 4
3

9
8

64
45

375
288

216
140

w2 0 0 0 24
45

250
288

27
140

w3 0 0 0 0 0 272
140

n 0 1 2 3 4 5

w0 2 3
2

8
3

55
24

66
20

4277
1440

w1 0 0 − 4
3

5
24

− 84
20

− 3171
1440

w2 0 0 0 0 156
20

3934
1440

integral, so that also the corresponding weights wi and wn−i are equal for
i = 0, . . . , n − 1. In the case of open formulae, the weights wi and wn−i are
equal for i = 0, . . . , n. For this reason, we show in Table 9.2 only the first half
of the weights.
Notice the presence of negative weights in open formulae for n ≥ 2. This can
be a source of numerical instability, in particular due to rounding errors.

Besides its degree of exactness, a quadrature formula can also be qualified
by its order of infinitesimal with respect to the integration stepsize h, which is
defined as the maximum integer p such that |I(f)−In(f)| = O(hp). Regarding
this, the following result holds

Theorem 9.2 For any Newton-Cotes formula corresponding to an even value
of n, the following error characterization holds

En(f) =
Mn

(n + 2)!
hn+3f (n+2)(ξ), (9.19)

provided f ∈ Cn+2([a, b]), where ξ ∈ (a, b) and

Mn =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

n∫

0

t πn+1(t)dt < 0 for closed formulae,

n+1∫

−1

t πn+1(t)dt > 0 for open formulae,

having defined πn+1(t) =
∏n

i=0(t− i). From (9.19), it turns out that the degree
of exactness is equal to n + 1 and the order of infinitesimal is n + 3.

Similarly, for odd values of n, the following error characterization holds

En(f) =
Kn

(n + 1)!
hn+2f (n+1)(η), (9.20)

provided f ∈ Cn+1([a, b]), where η ∈ (a, b) and

9.3 Newton-Cotes Formulae 389

Kn =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

n∫

0

πn+1(t)dt < 0 for closed formulae,

n+1∫

−1

πn+1(t)dt > 0 for open formulae.

The degree of exactness is thus equal to n and the order of infinitesimal is n+2.
Proof. We give a proof in the particular case of closed formulae with n even,
referring to [IK66], pp. 308-314, for a complete demonstration of the theorem.

Thanks to (8.20), we have

En(f) = I(f) − In(f) =

b∫

a

f [x0, . . . , xn, x]ωn+1(x)dx. (9.21)

Set W (x) =
∫ x

a
ωn+1(t)dt. Clearly, W (a) = 0; moreover, ωn+1(t) is an odd function

with respect to the midpoint (a+ b)/2 so that W (b) = 0. Integrating by parts (9.21)
we get

En(f) =

b∫

a

f [x0, . . . , xn, x]W ′(x)dx = −
b∫

a

d

dx
f [x0, . . . , xn, x]W (x)dx

= −
b∫

a

f (n+2)(ξ(x))

(n + 2)!
W (x)dx.

In deriving the formula above we have used the following identity (see Exercise 4)

d

dx
f [x0, . . . , xn, x] = f [x0, . . . , xn, x, x]. (9.22)

Since W (x) > 0 for a < x < b (see [IK66], p. 309), using the mean-value theorem
we obtain

En(f) = −f (n+2)(ξ)

(n + 2)!

b∫

a

W (x)dx = −f (n+2)(ξ)

(n + 2)!

b∫

a

x∫

a

ωn+1(t) dt dx, (9.23)

where ξ lies within (a, b). Exchanging the order of integration, letting s = x0 + τh,
for 0 ≤ τ ≤ n, and recalling that a = x0, b = xn, yields

b∫

a

W (x)dx =

b∫

a

b∫

s

(s − x0) · · · (s − xn)dxds

=

xn∫

x0

(s − x0) · · · (s − xn−1)(s − xn)(xn − s)ds

= −hn+3

n∫

0

τ(τ − 1) · · · (τ − n + 1)(τ − n)2dτ.

Finally, letting t = n − τ and combining this result with (9.23), we get (9.19). �

390 9 Numerical Integration

Table 9.3. Degree of exactness and error constants for closed Newton-Cotes
formulae

n rn Mn Kn n rn Mn Kn n rn Mn Kn

1 1 1
12

3 3 3
80

5 5 275
12096

2 3 1
90

4 5 8
945

6 7 9
1400

Relations (9.19) and (9.20) are a priori estimates for the quadrature error
(see Chapter 2, Section 2.3). Their use in generating a posteriori estimates of
the error in the frame of adaptive algorithms will be examined in Section 9.7.

In the case of closed Newton-Cotes formulae, we show in Table 9.3, for
1 ≤ n ≤ 6, the degree of exactness (that we denote henceforth by rn) and
the absolute value of the constant Mn = Mn/(n + 2)! (if n is even) or
Kn = Kn/(n + 1)! (if n is odd).

Example 9.2 The purpose of this example is to assess the importance of the
regularity assumption on f for the error estimates (9.19) and (9.20). Consider
the closed Newton-Cotes formulae, for 1 ≤ n ≤ 6, to approximate the integral∫ 1

0
x5/2dx = 2/7 � 0.2857. Since f is only C2([0, 1]), we do not expect a substantial

increase of the accuracy as n gets larger. Actually, this is confirmed by Table 9.4,
where the results obtained by running Program 74 are reported.

For n = 1, . . . , 6, we have denoted by Ec
n(f) the module of the absolute error,

by qc
n the computed order of infinitesimal and by qs

n the corresponding theoretical
value predicted by (9.19) and (9.20) under optimal regularity assumptions for f . As
is clearly seen, qc

n is definitely less than the potential theoretical value qs
n. •

Example 9.3 From a brief analysis of error estimates (9.19) and (9.20), we could
be led to believe that only non-smooth functions can be a source of trouble when
dealing with Newton-Cotes formulae. Thus, it is a little surprising to see results like
those in Table 9.5, concerning the approximation of the integral

I(f) =

5∫

−5

1

1 + x2
dx = 2 arctan 5 � 2.747, (9.24)

where f(x) = 1/(1 + x2) is Runge’s function (see Section 8.1.2), which belongs to
C∞(R). The results clearly demonstrate that the error remains almost unchanged

Table 9.4. Error in the approximation of
∫ 1

0
x5/2dx

n Ec
n(f) qc

n qs
n n Ec

n(f) qc
n qs

n

1 0.2143 3 3 4 5.009 · 10−5 4.7 7
2 1.196 · 10−3 3.2 5 5 3.189 · 10−5 2.6 7
3 5.753 · 10−4 3.8 5 6 7.857 · 10−6 3.7 9

9.3 Newton-Cotes Formulae 391

Table 9.5. Relative error En(f) = [I(f)−In(f)]/I(f) in the approximate evaluation
of (9.24) using closed Newton-Cotes formulae

n En(f) n En(f) n En(f)

1 0.8601 3 0.2422 5 0.1599
2 −1.474 4 0.1357 6 −0.4091

Table 9.6. Weights of the closed Newton-Cotes formula with 9 nodes

n w0 w1 w2 w3 w4 rn Mn

8 3956
14175

23552
14175

− 3712

14175
41984
14175

−18160

14175
9 2368

467775

as n grows. This is due to the fact that singularities on the imaginary axis may also
affect the convergence properties of a quadrature formula. This is indeed the case
with the function at hand, which exhibits two singularities at ±

√
−1 (see [DR75],

pp. 64-66). •

To increase the accuracy of an interpolatory quadrature rule, it is by no
means convenient to increase the value of n. By doing so, the same drawbacks
of Lagrange interpolation on equally spaced nodes would arise. For example,
the weights of the closed Newton-Cotes formula with n = 8 do not have the
same sign (see Table 9.6 and recall that wi = wn−i for i = 0, . . . , n − 1).

This can give rise to numerical instabilities, due to rounding errors (see
Chapter 2), and makes this formula useless in the practice, as happens for
all the Newton-Cotes formulae using more than 8 nodes. As an alternative,
one can resort to composite formulae, whose error analysis is addressed in
Section 9.4, or to Gaussian formulae, which will be dealt with in Chapter 10
and which yield maximum degree of exactness with a nonequally spaced nodes
distribution.
The closed Newton-Cotes formulae, for 1 ≤ n ≤ 6, are implemented in
Program 74.

Program 74 - newtcot : Closed Newton-Cotes formulae

function int = newtcot(a,b,n,fun)
%NEWTCOT Newton-Cotes formulae.
% INT=NEWTCOT(A,B,N,FUN) computes an approximation of the integral of the
% function FUN over (A,B) via a closed Newton-Cotes formula with N nodes.
% FUN accepts a real vector input x and returns a real vector value.
h=(b-a)/n;
n2=fix(n/2);
if n > 6, error(’Maximum value of n equal to 6’); end
a03=1/3; a08=1/8; a45=1/45; a288=1/288; a140=1/140;
alpha=[0.5 0 0 0; ...

a03 4*a03 0 0; ...
3*a08 9*a08 0 0; ...

392 9 Numerical Integration

14*a45 64*a45 24*a45 0; ...
95*a288 375*a288 250*a288 0; ...
41*a140 216*a140 27*a140 272*a140];

x=a; y(1)=eval(fun);
for j=2:n+1

x=x+h; y(j)=eval(fun);
end
int=0;
j=[1:n2+1]; int=sum(y(j).*alpha(n,j));
j=[n2+2:n+1]; int=int+sum(y(j).*alpha(n,n-j+2));
int=int*h;
return

9.4 Composite Newton-Cotes Formulae

The examples of Section 9.2 have already pointed out that composite Newton-
Cotes formulae can be constructed by replacing f with its composite Lagrange
interpolating polynomial, introduced in Section 8.4.

The general procedure consists of partitioning the integration interval [a, b]
into m subintervals Tj = [yj , yj+1] such that yj = a + jH for j = 0, . . . , m,
where H = (b − a)/m. Then, over each subinterval, an interpolatory formula
with nodes {x(j)

k , 0 ≤ k ≤ n} and weights {α(j)
k , 0 ≤ k ≤ n} is used. Since

I(f) =

b∫

a

f(x)dx =
m−1∑

j=0

∫

Tj

f(x)dx,

a composite interpolatory quadrature formula is obtained by replacing
I(f) with

In,m(f) =
m−1∑

j=0

n∑

k=0

α
(j)
k f(x(j)

k). (9.25)

The quadrature error is defined as En,m(f) = I(f) − In,m(f). In particu-
lar, over each subinterval Tj one can resort to a Newton-Cotes formula with
n + 1 equally spaced nodes: in such a case, the weights α

(j)
k = hwk are still

independent of Tj .
Using the same notation as in Theorem 9.2, the following convergence

result holds for composite formulae.

Theorem 9.3 Let a composite Newton-Cotes formula, with n even, be used.
If f ∈ Cn+2([a, b]), then

En,m(f) =
b − a

(n + 2)!
Mn

γn+3
n

Hn+2f (n+2)(ξ), (9.26)

9.4 Composite Newton-Cotes Formulae 393

where ξ ∈ (a, b). Therefore, the quadrature error is an infinitesimal in H of
order n + 2 and the formula has degree of exactness equal to n + 1.

For a composite Newton-Cotes formula, with n odd, if f ∈ Cn+1([a, b])

En,m(f) =
b − a

(n + 1)!
Kn

γn+2
n

Hn+1f (n+1)(η), (9.27)

where η ∈ (a, b). Thus, the quadrature error is an infinitesimal in H of order
n+1 and the formula has degree of exactness equal to n. In (9.26) and (9.27),
γn = (n + 2) if the formula is open while γn = n if the formula is closed.

Proof. We only consider the case where n is even. Using (9.19), and noticing that
Mn does not depend on the integration interval, we get

En,m(f) =

m−1∑

j=0

[
I(f)|Tj − In(f)|Tj

]
=

Mn

(n + 2)!

m−1∑

j=0

hn+3
j f (n+2)(ξj),

where, for j = 0, . . . , (m − 1), hj = |Tj |/(n + 2) = (b − a)/(m(n + 2)); this time, ξj

is a suitable point of Tj . Since (b − a)/m = H, we obtain

En,m(f) =
Mn

(n + 2)!

b − a

m(n + 2)n+3
Hn+2

m−1∑

j=0

f (n+2)(ξj),

from which, applying Theorem 9.1 with u(x) = f (n+2)(x) and δj = 1 for

j = 0, . . . , m − 1, (9.26) immediately follows. A similar procedure can be followed

to prove (9.27). �

We notice that, for n fixed, En,m(f) → 0 as m → ∞ (i.e., as H → 0). This
ensures the convergence of the numerical integral to the exact value I(f). We
notice also that the degree of exactness of composite formulae coincides with
that of simple formulae, whereas its order of infinitesimal (with respect to
H) is reduced by 1 with respect to the order of infinitesimal (in h) of simple
formulae.

In practical computations, it is convenient to resort to a local interpo-
lation of low degree (typically n ≤ 2, as done in Section 9.2), this leads to
composite quadrature rules with positive weights, with a minimization of the
rounding errors.

Example 9.4 For the same integral (9.24) considered in Example 9.3, we show in
Table 9.7 the behavior of the absolute error as a function of the number of subin-
tervals m, in the case of the composite midpoint, trapezoidal and Cavalieri-Simpson
formulae. Convergence of In,m(f) to I(f) as m increases can be clearly observed.
Moreover, we notice that E0,m(f) � E1,m(f)/2 for m ≥ 32 (see Exercise 1). •

Convergence of In,m(f) to I(f) can be established under less stringent
regularity assumptions on f than those required by Theorem 9.3. In this
regard, the following result holds (see for the proof [IK66], pp. 341-343).

394 9 Numerical Integration

Table 9.7. Absolute error for composite quadratures in the computation of (9.24)

m |E0,m| |E1,m| |E2,m|
1 7.253 2.362 4.04
2 1.367 2.445 9.65 · 10−2

8 3.90 · 10−2 3.77 · 10−2 1.35 · 10−2

32 1.20 · 10−4 2.40 · 10−4 4.55 · 10−8

128 7.52 · 10−6 1.50 · 10−5 1.63 · 10−10

512 4.70 · 10−7 9.40 · 10−7 6.36 · 10−13

Property 9.1 Let f ∈ C0([a, b]) and assume that the weights α
(j)
k in (9.25)

are nonnegative. Then

lim
m→∞

In,m(f) =
∫ b

a

f(x)dx, ∀n ≥ 0.

Moreover ∣
∣
∣
∣
∣

∫ b

a

f(x)dx − In,m(f)

∣
∣
∣
∣
∣
≤ 2(b − a)Ω(f ;H),

where

Ω(f ;H) = sup{|f(x) − f(y)|, x, y ∈ [a, b], x �= y, |x − y| ≤ H}

is the module of continuity of function f .

9.5 Hermite Quadrature Formulae

Thus far we have considered quadrature formulae based on Lagrange inter-
polation (simple or composite). More accurate formulae can be devised by
resorting to Hermite interpolation (see Section 8.5).

Suppose that 2(n + 1) values f(xk), f ′(xk) are available at n + 1 distinct
points x0, . . . , xn, then the Hermite interpolating polynomial of f is given by

H2n+1f(x) =
n∑

i=0

f(xi)Li(x) +
n∑

i=0

f ′(xi)Mi(x), (9.28)

where the polynomials Lk,Mk ∈ P2n+1 are defined, for k = 0, . . . , n, as

Lk(x) =
[

1 − ω′′
n+1(xk)

ω′
n+1(xk)

(x − xk)
]

l2k(x), Mk(x) = (x − xk)l2k(x).

Integrating (9.28) over [a, b], we get the quadrature formula of type (9.4)

In(f) =
n∑

k=0

αkf(xk) +
n∑

k=0

βkf ′(xk), (9.29)

9.5 Hermite Quadrature Formulae 395

where

αk = I(Lk), βk = I(Mk), k = 0, . . . , n.

Formula (9.29) has degree of exactness equal to 2n + 1. Taking n = 1, the
so-called corrected trapezoidal formula is obtained

Icorr
1 (f) =

b − a

2
[f(a) + f(b)] +

(b − a)2

12
[f ′(a) − f ′(b)] , (9.30)

with weights α0 = α1 = (b− a)/2, β0 = (b− a)2/12 and β1 = −β0. Assuming
f ∈ C4([a, b]), the quadrature error associated with (9.30) is

Ecorr
1 (f) =

h5

720
f (4)(ξ), h = b − a, (9.31)

with ξ ∈ (a, b). Notice the increase of accuracy from O(h3) to O(h5) with
respect to the corresponding expression (9.12) (of the same order as the
Cavalieri-Simpson formula (9.15)). The composite formula can be generated
in a similar manner

Icorr
1,m (f) =

b − a

m

{
1
2

[f(x0) + f(xm)]

+f(x1) + . . . + f(xm−1)} +
(b − a)2

12m2
[f ′(a) − f ′(b)] ,

(9.32)

where the assumption that f ∈ C1([a, b]) gives rise to the cancellation of the
first derivatives at the nodes xk, with k = 1, . . . , m − 1.

Example 9.5 Let us check experimentally the error estimate (9.31) in the simple
(m = 1) and composite (m > 1) cases, running Program 75 for the approximate
computation of integral (9.18). Table 9.8 reports the behavior of the module of the
absolute error as H is halved (that is, m is doubled) and the ratio Rm between two
consecutive errors. This ratio, as happens in the case of Cavalieri-Simpson formula,
tends to 16, demonstrating that formula (9.32) has order of infinitesimal equal to
4. Comparing Table 9.8 with the corresponding Table 9.1, we can also notice that
|Ecorr

1,m (f)| � 4|E2,m(f)| (see Exercise 9). •

The corrected composite trapezoidal quadrature is implemented in Pro-
gram 75, where dfun contains the expression of the derivative of f .

Table 9.8. Absolute error for the corrected trapezoidal formula in the computation
of I(f) =

∫ 2π

0
xe−x cos(2x)dx

m Ecorr
1,m (f) Rm m Ecorr

1,m (f) Rm m Ecorr
1,m (f) Rm

1 3.4813 8 4.4 · 10−3 6.1 64 1.1 · 10−6 15.957
2 1.398 2.4 16 2.9 · 10−4 14.9 128 7.3 · 10−8 15.990
4 2.72 · 10−2 51.4 32 1.8 · 10−5 15.8 256 4.5 · 10−9 15.997

396 9 Numerical Integration

Program 75 - trapmodc : Composite corrected trapezoidal formula

function int = trapmodc(a,b,m,fun,dfun)
%TRAPMODC Composite corrected trapezoidal formula
% INT=TRAPMODC(A,B,M,FUN,DFUN) computes an approximation of the inte-
gral of the
% function FUN over (A,B) via the corrected trapezoidal method (with M equispaced
% intervals). FUN and DFUN accept a real vector input x and returns a real vector value.
h=(b-a)/m;
x=[a:h:b];
y=eval(fun);
x=a; f1a=eval(dfun);
x=b; f1b=eval(dfun);
int=h*(0.5*y(1)+sum(y(2:m))+0.5*y(m+1))+(hˆ2/12)*(f1a-f1b);
return

9.6 Richardson Extrapolation

The Richardson extrapolation method is a procedure which combines several
approximations of a certain quantity α0 in a smart way to yield a more accu-
rate approximation of α0. More precisely, assume that a method is available
to approximate α0 by a quantity A(h) that is computable for any value of
the parameter h �= 0. Moreover, assume that, for a suitable k ≥ 0, A(h) can
be expanded as follows

A(h) = α0 + α1h + . . . + αkhk + Rk+1(h), (9.33)

where |Rk+1(h)| ≤ Ck+1h
k+1. The constants Ck+1 and the coefficients αi, for

i = 0, . . . , k, are independent of h. Henceforth, α0 = limh→0 A(h).
Writing (9.33) with δh instead of h, for 0 < δ < 1 (typically,

δ = 1/2), we get

A(δh) = α0 + α1(δh) + . . . + αk(δh)k + Rk+1(δh).

Subtracting (9.33) multiplied by δ from this expression then yields

B(h) =
A(δh) − δA(h)

1 − δ
= α0 + α̃2h

2 + . . . + α̃khk + R̃k+1(h),

having defined, for k ≥ 2, α̃i = αi(δi − δ)/(1 − δ), for i = 2, . . . , k and
R̃k+1(h) = [Rk+1(δh) − δRk+1(h)] /(1 − δ).
Notice that α̃i �= 0 iff αi �= 0. In particular, if α1 �= 0, then A(h) is a first-
order approximation of α0, while B(h) is at least second-order accurate. More
generally, if A(h) is an approximation of α0 of order p, then the quantity
B(h) = [A(δh) − δpA(h)] /(1−δp) approximates α0 up to order p+1 (at least).

9.6 Richardson Extrapolation 397

Proceeding by induction, the following Richardson extrapolation algorithm is
generated: setting n ≥ 0, h > 0 and δ ∈ (0, 1), we construct the sequences

Am,0 = A(δmh), m = 0, . . . , n,

Am,q+1 =
Am,q − δq+1Am−1,q

1 − δq+1
, q = 0, . . . , n − 1,

m = q + 1, . . . , n,

(9.34)

which can be represented by the diagram below

A0,0

↘
A1,0 → A1,1

↘ ↘
A2,0 → A2,1 → A2,2

↘ ↘ ↘
A3,0 → A3,1 → A3,2 → A3,3

↘ ↘ ↘ ↘
...

.
↘ ↘ ↘ ↘

An,0 → An,1 → An,2 → An,3 . . . → An,n

where the arrows indicate the way the terms which have been already com-
puted contribute to the construction of the “new” ones.

The following result can be proved (see [Com95], Proposition 4.1).

Property 9.2 For n ≥ 0 and δ ∈ (0, 1)

Am,n = α0 + O((δmh)n+1), m = 0, . . . , n. (9.35)

In particular, for the terms in the first column (n = 0) the convergence rate
to α0 is O((δmh)), while for those of the last one it is O((δmh)n+1), i.e., n
times higher.

Example 9.6 Richardson extrapolation has been employed to approximate at
x = 0 the derivative of the function f(x) = xe−x cos(2x), introduced in Ex-
ample 9.1. For this purpose, algorithm (9.34) has been executed with A(h) =
[f(x + h) − f(x)] /h, δ = 0.5, n = 5 and h = 0.1. Table 9.9 reports the sequence of
absolute errors Em,k = |α0 −Am,k|. The results demonstrate that the error decays
as predicted by (9.35). •

9.6.1 Romberg Integration

The Romberg integration method is an application of Richardson extrapolation
to the composite trapezoidal rule. The following result, known as the Euler-
MacLaurin formula, will be useful (for its proof see, e.g., [Ral65], pp. 131-133,
and [DR75], pp. 106-111).

398 9 Numerical Integration

Table 9.9. Errors in the Richardson extrapolation for the approximate evaluation
of f ′(0) where f(x) = xe−x cos(2x)

Em,0 Em,1 Em,2 Em,3 Em,4 Em,5

0.113 – – – – –
5.3 · 10−2 6.1 · 10−3 – – – –
2.6 · 10−2 1.7 · 10−3 2.2 · 10−4 – – –
1.3 · 10−2 4.5 · 10−4 2.8 · 10−5 5.5 · 10−7 – –
6.3 · 10−3 1.1 · 10−4 3.5 · 10−6 3.1 · 10−8 3.0 · 10−9 –
3.1 · 10−3 2.9 · 10−5 4.5 · 10−7 1.9 · 10−9 9.9 · 10−11 4.9 · 10−12

Property 9.3 Let f ∈ C2k+2([a, b]), for k ≥ 0, and let us approximate α0

=
∫ b

a
f(x)dx by the composite trapezoidal rule (9.14). Letting hm = (b− a)/m

for m ≥ 1,

I1,m(f) = α0 +
k∑

i=1

B2i

(2i)!
h2i

m

(
f (2i−1)(b) − f (2i−1)(a)

)

+
B2k+2

(2k + 2)!
h2k+2

m (b − a)f (2k+2)(η),

(9.36)

where η ∈ (a, b) and B2j = (−1)j−1

[
+∞∑

n=1

2/(2nπ)2j

]

(2j)!, for j ≥ 1, are the

Bernoulli numbers.

Equation (9.36) is a special case of (9.33) where h = h2
m and A(h) = I1,m(f);

notice that only even powers of the parameter h appear in the expansion.
The Richardson extrapolation algorithm (9.34) applied to (9.36) gives

Am,0 = A(δmh), m = 0, . . . , n,

Am,q+1 =
Am,q − δ2(q+1)Am−1,q

1 − δ2(q+1)
, q = 0, . . . , n − 1,

m = q + 1, . . . , n.

(9.37)

Setting h = b − a and δ = 1/2 into (9.37) and denoting by T (hs) = I1,s(f)
the composite trapezoidal formula (9.14) over s = 2m subintervals of width
hs = (b − a)/2m, for m ≥ 0, the algorithm (9.37) becomes

Am,0 = T ((b − a)/2m), m = 0, . . . , n,

Am,q+1 =
4q+1Am,q −Am−1,q

4q+1 − 1
, q = 0, . . . , n − 1,

m = q + 1, . . . , n.

9.6 Richardson Extrapolation 399

This is the Romberg numerical integration algorithm. Recalling (9.35), the
following convergence result holds for Romberg integration

Am,n =

b∫

a

f(x)dx + O(h2(n+1)
s), n ≥ 0.

Example 9.7 Table 9.10 shows the results obtained by running Program 76 to
compute the quantity α0 in the two cases α

(1)
0 =

∫ π

0
ex cos(x)dx = −(eπ + 1)/2 and

α
(2)
0 =

∫ 1

0

√
xdx = 2/3.

The maximum size n has been set equal to 9. In the second and third columns
we show the modules of the absolute errors E

(r)
k = |α(r)

0 − A(r)
k+1,k+1|, for r = 1, 2

and k = 0, . . . , 6.
The convergence to zero is much faster for E

(1)
k than for E

(2)
k . Indeed, the

first integrand function is infinitely differentiable whereas the second is only
continuous. •

The Romberg algorithm is implemented in Program 76.

Program 76 - romberg : Romberg integration

function int = romberg(a,b,n,fun)
%ROMBERG Romberg integration
% INT=ROMBERG(A,B,N,FUN) computes an approximation of the integral of the
% function FUN over (A,B) via the Romberg method. FUN accepts a real vector
% input x and returns a real vector value.
for i=1:n+1

A(i,1)=trapezc(a,b,2ˆ(i-1),fun);
end
for j=2:n+1

for i=j:n+1
A(i,j)=(4ˆ(j-1)*A(i,j-1)-A(i-1,j-1))/(4ˆ(j-1)-1);

end
end
int=A(n+1,n+1);
return

Table 9.10. Romberg integration for the approximate evaluation of
∫ π

0
ex cos(x)dx

(error E
(1)
k) and

∫ 1

0

√
xdx (error E

(2)
k)

k E
(1)
k E

(2)
k k E

(1)
k E

(2)
k

0 22.71 0.1670 4 8.923 · 10−7 1.074 · 10−3

1 0.4775 2.860 · 10−2 5 6.850 · 10−11 3.790 · 10−4

2 5.926·10−2 8.910 · 10−3 6 5.330 · 10−14 1.340 · 10−4

3 7.410·10−5 3.060 · 10−3 7 0 4.734 · 10−5

400 9 Numerical Integration

9.7 Automatic Integration

An automatic numerical integration program, or automatic integrator, is a set
of algorithms which yield an approximation of the integral I(f) =

∫ b

a
f(x)dx,

within a given tolerance, εa, or relative tolerance, εr, prescribed by the user.
With this aim, the program generates a sequence {Ik, Ek}, for k = 1, . . . , N ,

where Ik is the approximation of I(f) at the k-th step of the computational
process, Ek is an estimate of the error I(f) − Ik, and is N a suitable fixed
integer.

The sequence terminates at the s-th level, with s ≤ N , such that the
automatic integrator fulfills the following requirement on the accuracy

max
{

εa, εr|Ĩ(f)|
}
≥ |Es|(� |I(f) − Is|), (9.38)

where Ĩ(f) is a reasonable guess of the integral I(f) provided as an input
datum by the user. Otherwise, the integrator returns the last computed
approximation IN , together with a suitable error message that warns the
user of the algorithm’s failure to converge.
Ideally, an automatic integrator should:

(a) provide a reliable criterion for determining |Es| that allows for monitoring
the convergence check (9.38);

(b) ensure an efficient implementation, which minimizes the number of func-
tional evaluations for yielding the desired approximation Is.

In computational practice, for each k ≥ 1, moving from level k to level k + 1
of the automatic integration process can be done according to two different
strategies, which we define as nonadaptive or adaptive.

In the nonadaptive case, the law of distribution of the quadrature nodes
is fixed a priori and the quality of the estimate Ik is refined by increasing the
number of nodes corresponding to each level of the computational process.
An example of an automatic integrator that is based on such a procedure is
provided by the composite Newton-Cotes formulae on m and 2m subintervals,
respectively, at levels k and k + 1, as described in Section 9.7.1.

In the adaptive case, the positions of the nodes is not set a priori, but at
each level k of the process they depend on the information that has been stored
during the previous k−1 levels. An adaptive automatic integration algorithm
is performed by partitioning the interval [a, b] into successive subdivisions
which are characterized by a nonuniform density of the nodes, this density
being typically higher in a neighborhood of strong gradients or singularities
of f . An example of an adaptive integrator based on the Cavalieri-Simpson
formula is described in Section 9.7.2.

9.7.1 Nonadaptive Integration Algorithms

In this section, we employ the composite Newton-Cotes formulae. Our aim
is to devise a criterion for estimating the absolute error |I(f) − Ik| by using

9.7 Automatic Integration 401

Richardson extrapolation. From (9.26) and (9.27) it turns out that, for m ≥ 1
and n ≥ 0, In,m(f) has order of infinitesimal equal to Hn+p, with p = 2 for n
even and p = 1 for n odd, where m, n and H = (b − a)/m are the number of
partitions of [a, b], the number of quadrature nodes over each subinterval and
the constant length of each subinterval, respectively. By doubling the value of
m (i.e., halving the stepsize H) and proceeding by extrapolation, we get

I(f) − In,2m(f) � 1
2n+p

[I(f) − In,m(f)] . (9.39)

The use of the symbol � instead of = is due to the fact that the point ξ or
η, where the derivative in (9.26) and (9.27) must be evaluated, changes when
passing from m to 2m subintervals. Solving (9.39) with respect to I(f) yields
the following absolute error estimate for In,2m(f)

I(f) − In,2m(f) � In,2m(f) − In,m(f)
2n+p − 1

. (9.40)

If the composite Simpson rule is considered (i.e., n = 2), (9.40) predicts a
reduction of the absolute error by a factor of 15 when passing from m to
2m subintervals. Notice also that only 2m−1 extra functional evaluations are
needed to compute the new approximation I2,2m(f) starting from I2,m(f).
Relation (9.40) is an instance of an a posteriori error estimate (see Chap-
ter 2, Section 2.3). It is based on the combined use of an a priori estimate
(in this case, (9.26) or (9.27)) and of two evaluations of the quantity to be
approximated (the integral I(f)) for two different values of the discretization
parameter (that is, H = (b − a)/m).

Example 9.8 Let us employ the a posteriori estimate (9.40) in the case of the
composite Simpson formula (n = p = 2), for the approximation of the integral

π∫

0

(ex/2 + cos 4x)dx = 2(eπ − 1) � 7.621,

where we require the absolute error to be less than 10−4. For k = 0, 1, . . ., set
hk = (b− a)/2k and denote by I2,m(k)(f) the integral of f which is computed using
the composite Simpson formula on a grid of size hk with m(k) = 2k intervals. We
can thus assume as a conservative estimate of the quadrature error the following
quantity

|Ek| = |I(f) − I2,m(k)(f)| � 1

10
|I2,2m(k)(f) − I2,m(k)(f)| = |Ek|, k ≥ 1. (9.41)

Table 9.11 shows the sequence of the estimated errors |Ek| and of the corre-
sponding absolute errors |Ek| that have been actually made by the numerical
integration process. Notice that, when convergence has been achieved, the error
estimated by (9.41) is definitely higher than the actual error, due to the conservative
choice above. •

402 9 Numerical Integration

Table 9.11. Nonadaptive automatic Simpson rule for the approximation of∫ π

0
(ex/2 + cos 4x)dx

k |Ek| |Ek| k |Ek| |Ek|
0 3.156 2 0.10 4.52 ·10−5

1 0.42 1.047 3 5.8 · 10−6 2 · 10−9

An alternative approach for fulfilling the constraints (a) and (b) consists
of employing a nested sequence of special Gaussian quadratures Ik(f) (see
Chapter 10), having increasing degree of exactness for k = 1, . . . , N . These
formulae are constructed in such a way that, denoting by Snk

= {x1, . . . , xnk
}

the set of quadrature nodes relative to quadrature Ik(f), Snk
⊂ Snk+1 for any

k = 1, . . . , N − 1. As a result, for k ≥ 1, the formula at the k + 1-th level
employs all the nodes of the formula at level k and this makes nested formulae
quite effective for computer implementation.

As an example, we recall the Gauss-Kronrod formulae with 10, 21, 43
and 87 points, that are available in [PdKÜK83] (in this case, N = 4). The
Gauss-Kronrod formulae have degree of exactness rnk

(optimal) equal to 2nk−
1, where nk is the number of nodes for each formula, with n1 = 10 and
nk+1 = 2nk + 1 for k = 1, 2, 3. The criterion for devising an error estimate is
based on comparing the results given by two successive formulae Ink

(f) and
Ink+1(f) with k = 1, 2, 3, and then terminating the computational process at
the level k such that (see also [DR75], p. 321)

|Ik+1 − Ik| ≤ max {εa, εr|Ik+1|} .

9.7.2 Adaptive Integration Algorithms

The goal of an adaptive integrator is to yield an approximation of I(f) within a
fixed tolerance ε by a nonuniform distribution of the integration stepsize along
the interval [a, b]. An optimal algorithm is able to adapt automatically the
choice of the steplength according to the behavior of the integrand function,
by increasing the density of the quadrature nodes where the function exhibits
stronger variations.

In view of describing the method, it is convenient to restrict our attention
to a generic subinterval [α, β] ⊆ [a, b]. Recalling the error estimates for the
Newton-Cotes formulae, it turns out that the evaluation of the derivatives
of f , up to a certain order, is needed to set a stepsize h such that a fixed
accuracy is ensured, say ε(β −α)/(b− a). This procedure, which is unfeasible
in practical computations, is carried out by an automatic integrator as follows.
We consider throughout this section the Cavalieri-Simpson formula (9.15),
although the method can be extended to other quadrature rules.

Set If (α, β) =
∫ β

α
f(x)dx, h = h0 = (β − α)/2 and

Sf (α, β) = (h0/3) [f(α) + 4f(α + h0) + f(β)] .

9.7 Automatic Integration 403

From (9.16) we get

If (α, β) − Sf (α, β) = −h5
0

90
f (4)(ξ), (9.42)

where ξ is a point in (α, β). To estimate the error If (α, β)− Sf (α, β) without
using explicitly the function f (4) we employ again the Cavalieri-Simpson for-
mula over the union of the two subintervals [α, (α + β)/2] and [(α + β)/2, β],
obtaining, for h = h0/2 = (β − α)/4

If (α, β) − Sf,2(α, β) = − (h0/2)5

90

(
f (4)(ξ) + f (4)(η)

)
,

where ξ ∈ (α, (α + β)/2), η ∈ ((α + β)/2, β) and Sf,2(α, β) = Sf

(α, (α + β)/2) + Sf ((α + β)/2, β).
Let us now make the assumption that f (4)(ξ) � f (4)(η) (which is true, in

general, only if the function f (4) does not vary “too much” on [α, β]). Then,

If (α, β) − Sf,2(α, β) � − 1
16

h5
0

90
f (4)(ξ), (9.43)

with a reduction of the error by a factor 16 with respect to (9.42), correspond-
ing to the choice of a steplength of doubled size. Comparing (9.42) and (9.43),
we get the estimate

h5
0

90
f (4)(ξ) � 16

15
Ef (α, β),

where Ef (α, β) = Sf (α, β) − Sf,2(α, β). Then, from (9.43), we have

|If (α, β) − Sf,2(α, β)| � |Ef (α, β)|
15

. (9.44)

We have thus obtained a formula that allows for easily computing the error
made by using composite Cavalieri-Simpson numerical integration on the
generic interval [α, β]. Relation (9.44), as well as (9.40), is another instance of
an a posteriori error estimate. It combines the use of an a priori estimate (in
this case, (9.16)) and of two evaluations of the quantity to be approximated
(the integral I(f)) for two different values of the discretization parameter h.

In the practice, it might be convenient to assume a more conservative error
estimate, precisely

|If (α, β) − Sf,2(α, β)| � |Ef (α, β)|/10.

Moreover, to ensure a global accuracy on [a, b] equal to the fixed tolerance ε, it
will suffice to enforce that the error Ef (α, β) satisfies on each single subinterval
[α, β] ⊆ [a, b] the following constraint

|Ef (α, β)|
10

≤ ε
β − α

b − a
. (9.45)

404 9 Numerical Integration

The adaptive automatic integration algorithm can be described as follows.
Denote by:

1. A: the active integration interval, i.e., the interval where the integral is
being computed;

2. S: the integration interval already examined, for which the error test (9.45)
has been successfully passed;

3. N : the integration interval yet to be examined.

At the beginning of the integration process we have N = [a, b], A = N and
S = ∅, while the situation at the generic step of the algorithm is depicted
in Figure 9.3. Set JS(f) �

∫ α

a
f(x)dx, with JS(f) = 0 at the beginning of

the process; if the algorithm successfully terminates, JS(f) yields the desired
approximation of I(f). We also denote by J(α,β)(f) the approximate integral
of f over the “active” interval [α, β]. This interval is drawn in bold in Figure
9.3. At each step of the adaptive integration method the following decisions
are taken:

1. if the local error test (9.45) is passed, then:
(i) JS(f) is increased by J(α,β)(f), that is, JS(f) ← JS(f) + J(α,β)(f);
(ii) we let S ← S ∪ A, A = N (corresponding to the path (I) in Figure

9.3), β = b;
2. if the local error test (9.45) fails, then:

(j) A is halved, and the new active interval is set to A = [α, α′] with
α′ = (α + β)/2 (corresponding to the path (II) in Figure 9.3);

(jj) we let N ← N ∪ [α′, β], β ← α′;
(jjj) a new error estimate is provided.

In order to prevent the algorithm from generating too small stepsizes, it is
convenient to monitor the width of A and warn the user, in case of an excessive
reduction of the steplength, about the presence of a possible singularity in the
integrand function (see Section 9.8).

a

α′

b

b

b

α βS A N

(I)
Sa

a

α A

αS A N

(II)

Fig. 9.3. Distribution of the integration intervals at the generic step of the adaptive
algorithm and updating of the integration grid

9.7 Automatic Integration 405

Example 9.9 Let us employ Cavalieri-Simpson adaptive integration for computing
the integral

I(f) =

4∫

−3

tan−1(10x)dx

= 4tan−1(40) + 3tan−1(−30) − (1/20) log(16/9) � 1.54201193.

Running Program 77 with tol = 10−4 and hmin = 10−3 yields an approxima-
tion of the integral with an absolute error of 2.104 · 10−5. The algorithm performs
77 functional evaluations, corresponding to partitioning the interval [a, b] into 38
nonuniform subintervals. We notice that the corresponding composite formula with
uniform stepsize would have required 128 subintervals with an absolute error of
2.413 · 10−5.

In Figure 9.4 (left) we show, together with the plot of the integrand function,
the distribution of the quadrature nodes as a function of x, while on the right the
integration step density (piecewise constant) ∆h(x) is shown, defined as the inverse
of the step size h over each active interval A. Notice the high value attained by ∆h

at x = 0, where the derivative of the integrand function is maximum. •

The adaptive algorithm described above is implemented in Program 77.
Among the input parameters, hmin is the minimum admissible value of the
integration steplength. In output the program returns the approximate value
of the integral JSF and the set of integration points nodes.

Program 77 - simpadpt : Adaptive Cavalieri-Simpson formula

function [JSf,nodes]=simpadpt(f,a,b,tol,hmin,varargin)
%SIMPADPT Adaptive Simpson quadrature.
% [JSF,NODES] = SIMPADPT(FUN,A,B,TOL,HMIN) tries to approximate the
% integral of function FUN over (A,B) to within an error of TOL
% using recursive adaptive Simpson quadrature. The inline function Y = FUN(V)

-3 -2 -1 0 1 2 3 4
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-3 -2 -1 0 1 2 3 4
0

10

20

30

40

50

60

70

80

Fig. 9.4. Distribution of quadrature nodes (left); density of the integration stepsize
in the approximation of the integral of Example 9.9 (right)

406 9 Numerical Integration

% should accept a vector argument V and return a vector result
% Y, the integrand evaluated at each element of X.
% JSF = SIMPADPT(FUN,A,B,TOL,HMIN,P1,P2,...) calls the function FUN passing
% the optional parameters P1,P2,... as FUN(X,P1,P2,...).
A=[a,b]; N=[]; S=[]; JSf = 0; ba = b - a; nodes=[];
while ˜isempty(A),

[deltaI,ISc]=caldeltai(A,f,varargin{:});
if abs(deltaI) <= 15*tol*(A(2)-A(1))/ba;

JSf = JSf + ISc; S = union(S,A);
nodes = [nodes, A(1) (A(1)+A(2))*0.5 A(2)];
S = [S(1), S(end)]; A = N; N = [];

elseif A(2)-A(1) < hmin
JSf=JSf+ISc; S = union(S,A);
S = [S(1), S(end)]; A=N; N=[];
warning(’Too small integration-step’);

else
Am = (A(1)+A(2))*0.5;
A = [A(1) Am];
N = [Am, b];

end
end
nodes=unique(nodes);
return

function [deltaI,ISc]=caldeltai(A,f,varargin)
L=A(2)-A(1);
t=[0; 0.25; 0.5; 0.5; 0.75; 1];
x=L*t+A(1);
L=L/6;
w=[1; 4; 1];
fx=feval(f,x,varargin{:}).*ones(6,1);
IS=L*sum(fx([1 3 6]).*w);
ISc=0.5*L*sum(fx.*[w;w]);
deltaI=IS-ISc;
return

9.8 Singular Integrals

In this section we extend our analysis to deal with singular integrals, arising
when f has finite jumps or is even infinite at some point. Besides, we will con-
sider the case of integrals of bounded functions over unbounded intervals. We
briefly address the most relevant numerical techniques for properly handling
these integrals.

9.8.1 Integrals of Functions with Finite Jump Discontinuities

Let c be a known point within [a, b] and assume that f is a continuous and
bounded function in [a, c) and (c, b], with finite jump f(c+) − f(c−). Since

9.8 Singular Integrals 407

I(f) =
∫ b

a

f(x)dx =
∫ c

a

f(x)dx +
∫ b

c

f(x)dx, (9.46)

any integration formula of the previous sections can be used on [a, c−] and
[c+, b] to furnish an approximation of I(f). We proceed similarly if f admits
a finite number of jump discontinuities within [a, b].

When the position of the discontinuity points of f is not known a priori,
a preliminary analysis of the graph of the function should be carried out.
Alternatively, one can resort to an adaptive integrator that is able to detect
the presence of discontinuities when the integration steplength falls below a
given tolerance (see Section 9.7.2).

9.8.2 Integrals of Infinite Functions

Let us deal with the case in which limx→a+ f(x) = ∞; similar considerations
hold when f is infinite as x → b−, while the case of a point of singularity c
internal to the interval [a, b] can be recast to one of the previous two cases
owing to (9.46). Assume that the integrand function is of the form

f(x) =
φ(x)

(x − a)µ
, 0 ≤ µ < 1,

where φ is a function whose absolute value is bounded by M . Then

|I(f)| ≤ M lim
t→a+

b∫

t

1
(x − a)µ

dx = M
(b − a)1−µ

1 − µ
.

Suppose we wish to approximate I(f) up to a fixed tolerance δ. For this, let
us describe the following two methods (for further details, see also [IK66],
Section 7.6, and [DR75], Section 2.12 and Appendix 1).

Method 1. For any ε such that 0 < ε < (b−a), we write the singular integral
as I(f) = I1 + I2, where

I1 =

a+ε∫

a

φ(x)
(x − a)µ

dx, I2 =

b∫

a+ε

φ(x)
(x − a)µ

dx.

The computation of I2 is not troublesome. After replacing φ in I1 by its p-th
order Taylor’s expansion around x = a, we obtain

φ(x) = Φp(x) +
(x − a)p+1

(p + 1)!
φ(p+1)(ξ(x)), p ≥ 0, (9.47)

408 9 Numerical Integration

where Φp(x) =
∑p

k=0 φ(k)(a)(x − a)k/k!. Then

I1 = ε1−µ

p∑

k=0

εkφ(k)(a)
k!(k + 1 − µ)

+
1

(p + 1)!

a+ε∫

a

(x − a)p+1−µφ(p+1)(ξ(x))dx.

Replacing I1 by the finite sum, the corresponding error E1 can be bounded as

|E1| ≤
εp+2−µ

(p + 1)!(p + 2 − µ)
max

a≤x≤a+ε
|φ(p+1)(x)|, p ≥ 0. (9.48)

For fixed p, the right side of (9.48) is an increasing function of ε. On the other
hand, taking ε < 1 and assuming that the successive derivatives of φ do not
grow too much as p increases, the same function is decreasing as p grows.

Let us next approximate I2 using a composite Newton-Cotes formula with
m subintervals and n + 1 quadrature nodes for each subinterval, n being
an even integer. Recalling (9.26) and aiming at equidistributing the error δ
between I1 and I2, it turns out that

|E2| ≤ M(n+2)(ε)
b − a − ε

(n + 2)!
|Mn|
nn+3

(
b − a − ε

m

)n+2

= δ/2, (9.49)

where

M(n+2)(ε) = max
a+ε≤x≤b

∣
∣
∣
∣

dn+2

dxn+2

(
φ(x)

(x − a)µ

)∣
∣
∣
∣ .

The value of the constant M(n+2)(ε) grows rapidly as ε tends to zero; as
a consequence, (9.49) might require such a large number of subintervals
mε = m(ε) to make the method at hand of little practical use.

Example 9.10 Consider the singular integral (known as the Fresnel integral)

I(f) =

π/2∫

0

cos(x)√
x

dx. (9.50)

Expanding the integrand function in a Taylor’s series around the origin and applying
the theorem of integration by series, we get

I(f) =

∞∑

k=0

(−1)k

(2k)!

1

(2k + 1/2)
(π/2)2k+1/2.

Truncating the series at the first 10 terms, we obtain an approximate value of the
integral equal to 1.9549.

Using the composite Cavalieri-Simpson formula, the a priori estimate (9.49)
yields, as ε tends to zero and letting n = 2, |M2| = 4/15,

9.8 Singular Integrals 409

mε �
[

0.018

δ

(
π

2
− ε

)5

ε−9/2

]1/4

.

For δ = 10−4, taking ε = 10−2, it turns out that 1140 (uniform) subintervals are
needed, while for ε = 10−4 and ε = 10−6 the number of subintervals is 2 · 105 and
3.6 · 107, respectively.

As a comparison, running Program 77 (adaptive integration with Cavalieri-
Simpson formula) with a = ε = 10−10, hmin = 10−12 and tol = 10−4, we get the
approximate value 1.955 for the integral at the price of 1057 functional evaluations,
which correspond to 528 nonuniform subdivisions of the interval [0, π/2]. •

Method 2. Using the Taylor expansion (9.47) we obtain

I(f) =

b∫

a

φ(x) − Φp(x)
(x − a)µ

dx +

b∫

a

Φp(x)
(x − a)µ

dx = I1 + I2.

Exact computation of I2 yields

I2 = (b − a)1−µ

p∑

k=0

(b − a)kφ(k)(a)
k!(k + 1 − µ)

. (9.51)

For p ≥ 0, the integral I1 is equal to

I1 =

b∫

a

(x − a)p+1−µ φ(p+1)(ξ(x))
(p + 1)!

dx =

b∫

a

g(x)dx. (9.52)

Unlike the case of method 1, the integrand function g does not blow up
at x = a, since its first p derivatives are finite at x = a. As a consequence,
assuming we approximate I1 using a composite Newton-Cotes formula, it is
possible to give an estimate of the quadrature error, provided that p ≥ n + 2,
for n ≥ 0 even, or p ≥ n + 1, for n odd.

Example 9.11 Consider again the singular Fresnel integral (9.50), and assume we
use the composite Cavalieri-Simpson formula for approximating I1. We will take
p = 4 in (9.51) and (9.52). Computing I2 yields the value (π/2)1/2(2−(1/5)(π/2)2 +
(1/108)(π/2)4) � 1.9588. Applying the error estimate (9.26) with n = 2 shows that
only 2 subdivisions of [0, π/2] suffice for approximating I1 up to an error δ = 10−4,
obtaining the value I1 � −0.0173. As a whole, method 2 returns for (9.50) the
approximate value 1.9415. •

9.8.3 Integrals over Unbounded Intervals

Let f ∈ C0([a,+∞)); should it exist and be finite, the following limit

lim
t→+∞

t∫

a

f(x)dx

410 9 Numerical Integration

is taken as being the value of the singular integral

I(f) =
∫ ∞

a

f(x)dx = lim
t→+∞

t∫

a

f(x)dx. (9.53)

An analogous definition holds if f is continuous over (−∞, b], while for a
function f : R → R, integrable over any bounded interval, we let

∫ ∞

−∞
f(x)dx =

∫ c

−∞
f(x)dx +

∫ +∞

c

f(x)dx (9.54)

if c is any real number and the two singular integrals on the right hand side
of (9.54) are convergent. This definition is correct since the value of I(f) does
not depend on the choice of c.
A sufficient condition for f to be integrable over [a,+∞) is that

∃ρ > 0, such that lim
x→+∞

x1+ρf(x) = 0,

that is, we require f to be infinitesimal of order > 1 with respect to 1/x
as x → ∞. For the numerical approximation of (9.53) up to a tolerance δ,
we consider the following methods, referring for further details to [DR75],
Chapter 3.

Method 1. To compute (9.53), we can split I(f) as I(f) = I1 + I2, where
I1 =

∫ c

a
f(x)dx and I2 =

∫∞
c

f(x)dx.
The end-point c, which can be taken arbitrarily, is chosen in such a way

that the contribution of I2 is negligible. Precisely, taking advantage of the
asymptotic behavior of f , c is selected to guarantee that I2 equals a fraction
of the fixed tolerance, say, I2 = δ/2.

Then, I1 will be computed up to an absolute error equal to δ/2. This
ensures that the global error in the computation of I1 + I2 is below the toler-
ance δ.

Example 9.12 Compute up to an error δ = 10−3 the integral

I(f) =

∞∫

0

cos2(x)e−xdx = 3/5.

For any given c > 0, we have I2 =

∞∫

c

cos2(x)e−xdx ≤
∫ ∞

c

e−xdx = e−c;

requiring that e−c = δ/2, one gets c � 7.6. Then, assuming we use the composite
trapezoidal formula for approximating I1, thanks to (9.27) with n = 1 and M =

max0≤x≤c |f ′′(x)| � 1.04, we obtain m ≥
(
Mc3/(6δ)

)1/2
= 277.

Program 72 returns the value I1 � 0.599905, instead of the exact value I1 =
3/5 − e−c(cos2(c) − (sin(2c) + 2 cos(2c))/5) � 0.599842, with an absolute error of
about 6.27 · 10−5. The global numerical outcome is thus I1 + I2 � 0.600405, with
an absolute error with respect to I(f) equal to 4.05 · 10−4. •

9.9 Multidimensional Numerical Integration 411

Method 2. For any real number c, we let I(f) = I1 + I2, as for method 1,
then we introduce the change of variable x = 1/t in order to transform I2 into
an integral over the bounded interval [0, 1/c]

I2 =

1/c∫

0

f(t)t−2dt =

1/c∫

0

g(t)dt. (9.55)

If g(t) is not singular at t = 0, (9.55) can be treated by any quadrature for-
mula introduced in this chapter. Otherwise, one can resort to the integration
methods considered in Section 9.8.2.

Method 3. Gaussian interpolatory formulae are used, where the integration
nodes are the zeros of Laguerre and Hermite orthogonal polynomials (see
Section 10.5).

9.9 Multidimensional Numerical Integration

Let Ω be a bounded domain in R
2 with a sufficiently smooth boundary. We

consider the problem of approximating the integral I(f) =
∫
Ω

f(x, y)dxdy,
where f is a continuous function in Ω. For this purpose, in Sections 9.9.1 and
9.9.2 we address two methods.

The first method applies when Ω is a normal domain with respect to a
coordinate axis. It is based on the reduction formula for double integrals and
consists of using one-dimensional quadratures along both coordinate direction.
The second method, which applies when Ω is a polygon, consists of employing
composite quadratures of low degree on a triangular decomposition of the
domain Ω. Section 9.9.3 briefly addresses the Monte Carlo method, which is
particularly well-suited to integration in several dimensions.

9.9.1 The Method of Reduction Formula

Let Ω be a normal domain with respect to the x axis, as drawn in Figure 9.5,
and assume for the sake of simplicity that φ2(x) > φ1(x), ∀x ∈ [a, b].
The reduction formula for double integrals gives (with obvious choice of no-
tation)

I(f) =

b∫

a

φ2(x)∫

φ1(x)

f(x, y)dydx =

b∫

a

Ff (x)dx. (9.56)

The integral I(Ff) =
∫ b

a
Ff (x)dx can be approximated by a composite quadra-

ture rule using Mx subintervals {Jk, k = 1, . . . ,Mx}, of width H = (b−a)/Mx,
and in each subinterval n

(k)
x + 1 nodes {xk

i , i = 0, . . . , n
(k)
x }. Thus, in the x

direction we can write

412 9 Numerical Integration

φ2(x)

φ1(x)

y

Ω

a b
x

Fig. 9.5. Normal domain with respect to x axis

Ic
nx

(f) =
Mx∑

k=1

n(k)
x∑

i=0

αk
i Ff (xk

i),

where the coefficients αk
i are the quadrature weights on each subinterval Jk.

For each node xk
i , the approximate evaluation of the integral Ff (xk

i) is then
carried out by a composite quadrature using My subintervals {Jm, m =
1, . . . ,My}, of width hk

i = (φ2(xk
i) − φ1(xk

i))/My and in each subinterval
n

(m)
y + 1 nodes {yi,k

j,m, j = 0, . . . , n
(m)
y }.

In the particular case Mx = My = M , n
(k)
x = n

(m)
y = 0, for k,m = 1, . . . , M ,

the resulting quadrature formula is the midpoint reduction formula

Ic
0,0(f) = H

M∑

k=1

hk
0

M∑

m=1

f(xk
0 , y0,k

0,m),

where H = (b − a)/M , xk
0 = a + (k − 1/2)H for k = 1, . . . ,M and

y0,k
0,m = φ1(xk

0) + (m − 1/2)hk
0 for m = 1, . . . ,M . With a similar procedure

the trapezoidal reduction formula can be constructed along the coordinate
directions (in that case, n

(k)
x = n

(m)
y = 1, for k,m = 1, . . . , M).

The efficiency of the approach can obviously be increased by employing the
adaptive method described in Section 9.7.2 to suitably allocate the quadra-
ture nodes xk

i and yi,k
j,m according to the variations of f over the domain

Ω. The use of the reduction formulae above becomes less and less convenient
as the dimension d of the domain Ω ⊂ R

d gets larger, due to the large increase
in the computational effort. Indeed, if any simple integral requires N func-
tional evaluations, the overall cost would be equal to Nd.

The midpoint and trapezoidal reduction formulae for approximating the
integral (9.56) are implemented in Programs 78 and 79. For the sake of
simplicity, we set Mx = My = M . The variables phi1 and phi2 contain
the expressions of the functions φ1 and φ2 which delimitate the integration
domain.

9.9 Multidimensional Numerical Integration 413

Program 78 - redmidpt : Midpoint reduction formula

function int=redmidpt(a,b,phi1,phi2,m,fun)
%REDMIDPT Midpoint reduction quadrature formula
% INT=REDMIDPT(A,B,PHI1,PHI2,M,FUN) computes the integral of the function
% FUN over the 2D domain with X in (A,B) and Y delimited by the functions PHI1 and
% PHI2. FUN is a function of y.
H=(b-a)/m;
xx=[a+H/2:H:b];
dim=length(xx);
for i=1:dim

x=xx(i); d=eval(phi2); c=eval(phi1); h=(d-c)/m;
y=[c+h/2:h:d]; w=eval(fun); psi(i)=h*sum(w(1:m));

end
int=H*sum(psi(1:m));
return

Program 79 - redtrap : Trapezoidal reduction formula

function int=redtrap(a,b,phi1,phi2,m,fun)
%REDTRAP Trapezoidal reduction quadrature formula
% INT=REDTRAP(A,B,PHI1,PHI2,M,FUN) computes the integral of the function
% FUN over the 2D domain with X in (A,B) and Y delimited by the functions PHI1 and
% PHI2. FUN is a function of y.
H=(b-a)/m;
xx=[a:H:b];
dim=length(xx);
for i=1:dim

x=xx(i); d=eval(phi2); c=eval(phi1); h=(d-c)/m;
y=[c:h:d]; w=eval(fun); psi(i)=h*(0.5*w(1)+sum(w(2:m))+0.5*w(m+1));

end
int=H*(0.5*psi(1)+sum(psi(2:m))+0.5*psi(m+1));
return

9.9.2 Two-Dimensional Composite Quadratures

In this section we extend to the two-dimensional case the composite inter-
polatory quadratures that have been considered in Section 9.4. We assume
that Ω is a convex polygon on which we introduce a triangulation Th of NT

triangles or elements, such that Ω =
⋃

T∈Th

T , where the parameter h > 0 is the

maximum edge-length in Th (see Section 8.6.2).
Exactly as happens in the one-dimensional case, interpolatory composite
quadrature rules on triangles can be devised by replacing

∫
Ω

f(x, y)dxdy with∫
Ω

Πk
hf(x, y)dxdy, where, for k ≥ 0, Πk

hf is the composite interpolating poly-
nomial of f on the triangulation Th introduced in Section 8.6.2.

For an efficient evaluation of this last integral, we employ the property of
additivity which, combined with (8.42), leads to the following interpolatory
composite rule

414 9 Numerical Integration

Ic
k(f) =

∫

Ω

Πk
hf(x, y)dxdy =

∑

T∈Th

∫

T

Πk
T f(x, y)dxdy =

∑

T∈Th

IT
k (f)

=
∑

T∈Th

dk−1∑

j=0

f(z̃T
j)
∫

T

lTj (x, y)dxdy =
∑

T∈Th

dk−1∑

j=0

αT
j f(z̃T

j).
(9.57)

The coefficients αT
j and the points z̃T

j are called the local weights and nodes
of the quadrature formula (9.57), respectively.

The weights αT
j can be computed on the reference triangle T̂ of vertices

(0, 0), (1, 0) and (0, 1), as follows

αT
j =

∫

T

lTj (x, y)dxdy = 2|T |
∫

T̂

l̂j(x̂, ŷ)dx̂dŷ, j = 0, . . . , dk − 1,

where |T | is the area of T . If k = 0, we get αT
0 = |T |, while if k = 1 we have

αT
j = |T |/3, for j = 0, 1, 2.

Denoting respectively by aT
j and aT =

∑3
j=1 a(j)

T /3, for j = 1, 2, 3, the vertices
and the center of gravity of the triangle T ∈ Th, the following formulae are
obtained.

Composite midpoint formula

Ic
0(f) =

∑

T∈Th

|T |f(aT). (9.58)

Composite trapezoidal formula

Ic
1(f) =

1
3

∑

T∈Th

|T |
3∑

j=1

f(aT
j). (9.59)

In view of the analysis of the quadrature error Ec
k(f) = I(f) − Ic

k(f), we
introduce the following definition.

Definition 9.1 The quadrature formula (9.57) has degree of exactness equal
to n, with n ≥ 0, if I T̂

k (p) =
∫

T̂
pdxdy for any p ∈ Pn(T̂), where Pn(T̂) is

defined in (8.39). �

The following result can be proved (see [IK66], pp. 361–362).

Property 9.4 Assume that the quadrature rule (9.57) has degree of exactness
on Ω equal to n, with n ≥ 0, and that its weights are all nonnegative. Then,
there exists a positive constant Kn, independent of h, such that

|Ec
k(f)| ≤ Knhn+1|Ω|Mn+1,

for any function f ∈ Cn+1(Ω), where Mn+1 is the maximum value of the
modules of the derivatives of order n + 1 of f and |Ω| is the area of Ω.

9.9 Multidimensional Numerical Integration 415

The composite formulae (9.58) and (9.59) both have degrees of exactness equal
to 1; then, due to Property 9.4, their order of infinitesimal with respect to h
is equal to 2.
An alternative family of quadrature rules on triangles is provided by the
so-called symmetric formulae. These are Gaussian formulae with n nodes and
high degree of exactness, and exhibit the feature that the quadrature nodes
occupy symmetric positions with respect to all corners of the reference trian-
gle T̂ or, as happens for Gauss-Radau formulae, with respect to the straight
line ŷ = x̂.
Considering the generic triangle T ∈ Th and denoting by aT

(j), j = 1, 2, 3,
the midpoints of the edges of T , two examples of symmetric formulae, having
degree of exactness equal to 2 and 3, respectively, are the following

I3(f) =
|T |
3

3∑

j=1

f(aT
(j)), n = 3,

I7(f) =
|T |
60

⎛

⎝3
3∑

j=1

f(aT
j) + 8

3∑

j=1

f(aT
(j)) + 27f(aT)

⎞

⎠ , n = 7.

For a description and analysis of symmetric formulae for triangles, see [Dun85],
while we refer to [Kea86] and [Dun86] for their extension to tetrahedra and
cubes.

The composite quadrature rules (9.58) and (9.59) are implemented in Pro-
grams 80 and 81 for the approximate evaluation of the integral of f(x, y) over
a single triangle T ∈ Th. To compute the integral over Ω it suffices to sum the
result provided by the program over each triangle of Th. The coordinates of
the vertices of the triangle T are stored in the arrays xv and yv.

Program 80 - midptr2d : Midpoint rule on a triangle

function int=midptr2d(xv,yv,fun)
%MIDPTR2D Midpoint formula on a triangle.
% INT=MIDPTR2D(XV,YV,FUN) computes the integral of FUN on the triangle with
% vertices XV(K),YV(K), K=1,2,3. FUN is a function of x and y.
y12=yv(1)-yv(2);
y23=yv(2)-yv(3);
y31=yv(3)-yv(1);
areat=0.5*abs(xv(1)*y23+xv(2)*y31+xv(3)*y12);
x=sum(xv)/3; y=sum(yv)/3;
int=areat*eval(fun);
return

Program 81 - traptr2d : Trapezoidal rule on a triangle

function int=traptr2d(xv,yv,fun)
%TRAPTR2D Trapezoidal formula on a triangle.

416 9 Numerical Integration

% INT=TRAPTR2D(XV,YV,FUN) computes the integral of FUN on the
% triangle with vertices XV(K),YV(K), K=1,2,3. FUN is a function of x and y.
y12=yv(1)-yv(2);
y23=yv(2)-yv(3);
y31=yv(3)-yv(1);
areat=0.5*abs(xv(1)*y23+xv(2)*y31+xv(3)*y12);
int=0;
for i=1:3

x=xv(i); y=yv(i); int=int+eval(fun);
end
int=int*areat/3;
return

9.9.3 Monte Carlo Methods for Numerical Integration

Numerical integration methods based on Monte Carlo techniques are a valid
tool for approximating multidimensional integrals when the space dimension
of R

n gets large. These methods differ from the approaches considered thus
far, since the choice of quadrature nodes is done statistically according to the
values attained by random variables having a known probability distribution.

The basic idea of the method is to interpret the integral as a statistic
mean value

∫

Ω

f(x)dx = |Ω|
∫

Rn

|Ω|−1χΩ(x)f(x)dx = |Ω|µ(f),

where x = (x1, x2, . . . , xn)T and |Ω| denotes the n-dimensional volume of Ω,
χΩ(x) is the characteristic function of the set Ω, equal to 1 for x ∈ Ω and to
0 elsewhere, while µ(f) is the mean value of the function f(X), where X is a
random variable with uniform probability density |Ω|−1χΩ over R

n.
We recall that the random variable X ∈ R

n (or, more properly, random
vector) is an n-tuple of real numbers X1(ζ), . . . , Xn(ζ) assigned to every out-
come ζ of a random experiment (see [Pap87], Chapter 4).

Having fixed a vector x ∈ R
n, the probability P{X ≤ x} of the random

event {X1 ≤ x1, . . . , Xn ≤ xn} is given by

P{X ≤ x} =
∫ x1

−∞
. . .

∫ xn

−∞
f(X1, . . . , Xn)dX1 . . . dXn,

where f(X) = f(X1, . . . , Xn) is the probability density of the random variable
X ∈ R

n, such that

f(X1, . . . , Xn) ≥ 0,

∫

Rn

f(X1, . . . , Xn)dX = 1.

The numerical computation of the mean value µ(f) is carried out by taking N
independent samples x1, . . . ,xN ∈ R

n with probability density |Ω|−1χΩ and
evaluating their average

9.10 Applications 417

fN =
1
N

N∑

i=1

f(xi) = IN (f). (9.60)

From a statistical standpoint, the samples x1, . . . ,xN can be regarded as the
realizations of a sequence of N random variables {X1, . . . , XN}, mutually
independent and each with probability density |Ω|−1χΩ.

For such a sequence the strong law of large numbers ensures with prob-
ability 1 the convergence of the average IN (f) =

(∑N
i=1 f(Xi)

)
/N to the

mean value µ(f) as N → ∞. In computational practice the sequence of sam-
ples x1, . . . ,xN is deterministically produced by a random-number generator,
giving rise to the so-called pseudo-random integration formulae.
The quadrature error EN (f) = µ(f) − IN (f) as a function of N can be
characterized through the variance

σ(IN (f)) =
√

µ (IN (f) − µ(f))2.

Interpreting again f as a function of the random variable X, distributed with
uniform probability density |Ω|−1 in Ω ⊆ R

n and variance σ(f), we have

σ(IN (f)) =
σ(f)√

N
, (9.61)

from which, as N → ∞, a convergence rate of O(N−1/2) follows for the statis-
tical estimate of the error σ(IN (f)). Such convergence rate does not depend
on the dimension n of the integration domain, and this is a most relevant
feature of the Monte Carlo method. However, it is worth noting that the con-
vergence rate is independent of the regularity of f ; thus, unlike interpolatory
quadratures, Monte Carlo methods do not yield more accurate results when
dealing with smooth integrands.

The estimate (9.61) is extremely weak and in practice one does often obtain
poorly accurate results. A more efficient implementation of Monte Carlo meth-
ods is based on composite approach or semi-analytical methods; an example
of these techniques is provided in [NAG95], where a composite Monte Carlo
method is employed for the computation of integrals over hypercubes in R

n.

9.10 Applications

We consider in the next sections the computation of two integrals suggested
by applications in geometry and the mechanics of rigid bodies.

9.10.1 Computation of an Ellipsoid Surface

Let E be the ellipsoid obtained by rotating the ellipse in Figure 9.6 around
the x axis, where the radius ρ is described as a function of the axial coordinate
by the equation

418 9 Numerical Integration

x)ρ

1/β− 1/β

(

x

E

Fig. 9.6. Section of the ellipsoid

ρ2(x) = α2(1 − β2x2), − 1
β

≤ x ≤ 1
β

,

α and β being given constants such that α2β2 < 1.
We set the following values for the parameters: α2 = (3− 2

√
2)/100 and β2 =

100. Letting K2 = β2
√

1 − α2β2, f(x) =
√

1 − K2x2 and θ = cos−1(K/β),
the computation of the surface of E requires evaluating the integral

I(f) = 4πα

1/β∫

0

f(x)dx =
2πα

K
[(π/2 − θ) + sin(2θ)/2] . (9.62)

Notice that f ′(1/β) = −100; this prompts us to use a numerical adaptive
formula able to provide a nonuniform distribution of quadrature nodes, with
a possible refinement around x = 1/β. With this aim, we have run Program
77 taking hmin=10−5 and tol=10−8.

In Figure 9.7 (left), we show, together with the graph of f , the nonuniform
distribution of the quadrature nodes on the x axis, while in Figure 9.7 (right)
we plot the logarithmic graph of the integration step density (piecewise con-
stant) ∆h(x), defined as the inverse of the value of the stepsize h on each
active interval A (see Section 9.7.2).

Notice the high value of ∆h at x = 1/β, where the derivative of the
integrand function is maximum.

9.10.2 Computation of the Wind Action on a Sailboat Mast

Let us consider the sailboat schematically drawn in Figure 9.8 (left) and sub-
ject to the action of the wind force. The mast, of length L, is denoted by
the straight line AB, while one of the two shrouds (strings for the side stiff-
ening of the mast) is represented by the straight line BO. Any infinitesimal
element of the sail transmits to the corresponding element of length dx of
the mast a force of magnitude equal to f(x)dx. The change of f along with
the height x, measured from the point A (basis of the mast), is expressed
by the following law

f(x) =
αx

x + β
e−γx,

where α, β and γ are given constants.

9.10 Applications 419

0 0.02 0.04 0.06 0.08 0.1
−0.2

0

0.2

0.4

0.6

0.8

1

0 0.02 0.04 0.06 0.08 0.1
102

103

104

105

Fig. 9.7. Distribution of quadrature nodes (left); integration stepsize density in the
approximation of integral (9.62) (right)

fdx

wind
direction

mast
shroud

T

A
O

dx

B

L

AO

V

B

T

M

H

b

R

Fig. 9.8. Schematic representation of a sailboat (left); forces acting on the
mast (right)

The resultant R of the force f is defined as

R =

L∫

0

f(x)dx ≡ I(f), (9.63)

and is applied at a point at distance equal to b (to be determined) from the
basis of the mast.
Computing R and the distance b, given by b = I(xf)/I(f), is crucial for the
structural design of the mast and shroud sections. Indeed, once the values
of R and b are known, it is possible to analyze the hyperstatic structure
mast-shroud (using for instance the method of forces), thus allowing for the

420 9 Numerical Integration

computation of the reactions V , H and M at the basis of the mast and the
traction T that is transmitted by the shroud, and are drawn in Figure 9.8
(right). Then, the internal actions in the structure can be found, as well as the
maximum stresses arising in the mast AB and in the shroud BO, from which,
assuming that the safety verifications are satisfied, one can finally design the
geometrical parameters of the sections of AB and BO.
For the approximate computation of R we have considered the composite
midpoint, trapezoidal and Cavalieri-Simpson rules, denoted henceforth by
(MP), (TR) and (CS), and, for a comparison, the adaptive Cavalieri-Simpson
quadrature formula introduced in Section 9.7.2 and denoted by (AD). Since
a closed-form expression for the integral (9.63) is not available, the compos-
ite rules have been applied taking mk = 2k uniform partitions of [0, L], with
k = 0, . . . , 15.

We have assumed in the numerical experiments α = 50, β = 5/3 and
γ = 1/4 and we have run Program 77 taking tol=10−4 and hmin=10−3.
The sequence of integrals computed using the composite formulae has been
stopped at k = 12 (corresponding to mk = 212 = 4096) since the remaining
elements, in the case of formula CS, differ among them only up to the last
significant figure. Therefore, we have assumed as the exact value of I(f) the
outcome I

(CS)
12 = 100.0613683179612 provided by formula CS.

We report in Figure 9.9 the logarithmic plots of the relative error |I(CS)
12 −

Ik|/I12, for k = 0, . . . , 7, Ik being the generic element of the sequence for the
three considered formulae. As a comparison, we also display the graph of the
relative error in the case of formula AD, applied on a number of (nonuniform)
partitions equivalent to that of the composite rules.
Notice how, for the same number of partitions, formula AD is more accurate,
with a relative error of 2.06 · 10−7 obtained using 37 (nonuniform) partitions
of [0, L]. Methods MP and TR achieve a comparable accuracy employing

0 20 40 60 80 100 120
10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

(TR)

(MP)

(CS)

(AD)

Fig. 9.9. Relative errors in the approximate computation of the integral∫ L

0
(αxe−γx)/(x + β)dx

9.11 Exercises 421

0 2 4 6 8 10
-5

0

5

10

15

20

0 2 4 6 8 10
0

5

10

15

20

25

30

Fig. 9.10. Distribution of quadrature nodes (left); integration step density in the

approximation of the integral
∫ L

0
(αxe−γx)/(x + β)dx (right)

2048 and 4096 uniform subintervals, respectively, while formula CS requires
about 64 partitions. The effectiveness of the adaptivity procedure is demon-
strated by the plots in Figure 9.10, which show, together with the graph of f ,
the distribution of the quadrature nodes (left) and the function ∆h(x) (right)
that expresses the (piecewise constant) density of the integration stepsize h,
defined as the inverse of the value of h over each active interval A (see Section
9.7.2).

Notice also the high value of ∆h at x = 0, where the derivatives of f are
maximum.

9.11 Exercises

1. Let E0(f) and E1(f) be the quadrature errors in (9.6) and (9.12). Prove that
|E1(f)| � 2|E0(f)|.

2. Check that the error estimates for the midpoint, trapezoidal and Cavalieri-
Simpson formulae, given respectively by (9.6), (9.12) and (9.16), are special
instances of (9.19) or (9.20). In particular, show that M0 = 2/3, K1 = −1/6
and M2 = −4/15 and determine, using the definition, the degree of exactness r
of each formula.
[Hint: find r such that In(xk) =

∫ b

a
xkdx, for k = 0, . . . , r, and In(xj) �=

∫ b

a
xjdx,

for j > r.]
3. Let In(f) =

∑n

k=0
αkf(xk) be a Lagrange quadrature formula on n + 1 nodes.

Compute the degree of exactness r of the formulae:
(a) I2(f) = (2/3)[2f(−1/2) − f(0) + 2f(1/2)],
(b) I4(f) = (1/4)[f(−1) + 3f(−1/3) + 3f(1/3) + f(1)].
Which is the order of infinitesimal p for (a) and (b)?
[Solution: r = 3 and p = 5 for both I2(f) and I4(f).]

4. Compute df [x0, . . . , xn, x]/dx by checking (9.22).
[Hint: proceed by computing directly the derivative at x as an incremental ratio,
in the case where only one node x0 exists, then upgrade progressively the order
of the divided difference.]

422 9 Numerical Integration

5. Let Iw(f) =
∫ 1

0
w(x)f(x)dx with w(x) =

√
x, and consider the quadrature

formula Q(f) = af(x1). Find a and x1 in such a way that Q has maximum
degree of exactness r.
[Solution: a = 2/3, x1 = 3/5 and r = 1.]

6. Let us consider the quadrature formula Q(f) = α1f(0) + α2f(1) + α3f
′(0) for

the approximation of I(f) =
∫ 1

0
f(x)dx, where f ∈ C1([0, 1]). Determine the

coefficients αj , for j = 1, 2, 3 in such a way that Q has degree of exactness
r = 2.
[Solution: α1 = 2/3, α2 = 1/3 and α3 = 1/6.]

7. Apply the midpoint, trapezoidal and Cavalieri-Simpson composite rules to
approximate the integral ∫ 1

−1

|x|exdx,

and discuss their convergence as a function of the size H of the subintervals.
8. Consider the integral I(f) =

∫ 1

0
exdx and estimate the minimum number m

of subintervals that is needed for computing I(f) up to an absolute error
≤ 5 · 10−4 using the composite trapezoidal (TR) and Cavalieri-Simpson (CS)
rules. Evaluate in both cases the absolute error Err that is actually made.
[Solution: for TR, we have m = 17 and Err = 4.95 · 10−4, while for CS, m = 2
and Err = 3.70 · 10−5.]

9. Consider the corrected trapezoidal formula (9.30) and check that |Ecorr
1 (f)| �

4|E2(f)|, where Ecorr
1 (f) and E2(f) are defined in (9.31) and (9.16), respectively.

10. Compute, with an error less than 10−4, the following integrals:

(a)

∫ ∞

0

sin(x)/(1 + x4)dx; (b)

∫ ∞

0

e−x(1 + x)−5dx; (c)

∫ ∞

−∞
cos(x)e−x2

dx.

11. Use the reduction midpoint and trapezoidal formulae for computing the double

integral I(f) =
∫
Ω

y

(1 + xy)
dxdy over the domain Ω = (0, 1)2. Run Programs

78 and 79 with M = 2i, for i = 0, . . . , 10 and plot in log-scale the absolute
error in the two cases as a function of M . Which method is the most accurate?
How many functional evaluations are needed to get an (absolute) accuracy of
the order of 10−6?
[Solution: the exact integral is I(f) = log(4) − 1, and almost 2002 = 40000
functional evaluations are needed.]

Part IV

Transforms, Differentiation and Problem
Discretization

10

Orthogonal Polynomials in Approximation
Theory

Trigonometric polynomials, as well as other orthogonal polynomials like
Legendre’s and Chebyshev’s, are widely employed in approximation theory.

This chapter addresses the most relevant properties of orthogonal poly-
nomials, and introduces the transforms associated with them, in particular
the discrete Fourier transform and the FFT, but also the Zeta and Wavelet
transforms.

Application to interpolation, least-squares approximation, numerical dif-
ferentiation and Gaussian integration are addressed.

10.1 Approximation of Functions by Generalized Fourier
Series

Let w = w(x) be a weight function on the interval (−1, 1), i.e., a nonnegative
integrable function in (−1, 1). Let us denote by {pk, k = 0, 1, . . .} a system
of algebraic polynomials, with pk of degree equal to k for each k, mutually
orthogonal on the interval (−1, 1) with respect to w. This means that

1∫

−1

pk(x)pm(x)w(x)dx = 0 if k �= m.

Set (f, g)w =
∫ 1

−1
f(x)g(x)w(x)dx and ‖f‖w = (f, f)1/2

w ; (·, ·)w and ‖ · ‖w are
respectively the scalar product and the norm for the function space

L2
w = L2

w(−1, 1) =
{

f : (−1, 1) → R,

∫ 1

−1

f2(x)w(x)dx < ∞
}

. (10.1)

For any function f ∈ L2
w the series

Sf =
+∞∑

k=0

f̂kpk, with f̂k =
(f, pk)w

‖pk‖2
w

,

426 10 Orthogonal Polynomials in Approximation Theory

is called the generalized Fourier series of f , and f̂k is the k-th Fourier coeffi-
cient. As is well-known, Sf converges in average (or in the sense of L2

w) to f .
This means that, letting for any integer n

fn(x) =
n∑

k=0

f̂kpk(x) (10.2)

(fn ∈ Pn is the truncation of order n of the generalized Fourier series of f),
the following convergence result holds

lim
n→+∞

‖f − fn‖w = 0.

Moreover, the following Parseval’s equality holds

‖f‖2
w =

+∞∑

k=0

f̂2
k‖pk‖2

w

and, for any n, ‖f − fn‖2
w =

∑+∞
k=n+1 f̂2

k‖pk‖2
w is the square of the remainder

of the generalized Fourier series.
The polynomial fn ∈ Pn satisfies the following minimization property

‖f − fn‖w = min
q∈Pn

‖f − q‖w. (10.3)

Indeed, since f − fn =
∑+∞

k=n+1 f̂kpk, the property of orthogonality of poly-
nomials {pk} implies (f − fn, q)w = 0 ∀q ∈ Pn. Then, the Cauchy-Schwarz
inequality (8.33) yields

‖f − fn‖2
w = (f − fn, f − fn)w = (f − fn, f − q)w + (f − fn, q − fn)w

= (f − fn, f − q)w ≤ ‖f − fn‖w‖f − q‖w, ∀q ∈ Pn,

and (10.3) follows since q is arbitrary in Pn. In such a case, we say that fn is the
orthogonal projection of f over Pn in the sense of L2

w. It is therefore interesting
to compute the coefficients f̂k of fn. As will be seen in later sections, this is
done by approximating the integrals that appear in the definition of f̂k using
Gaussian quadratures. By doing so, one gets the so-called discrete coefficients
f̃k of f , and, as a consequence, the new polynomial

f∗
n(x) =

n∑

k=0

f̃kpk(x), (10.4)

which is called the discrete truncation of order n of the Fourier series of f .
Typically,

f̃k =
(f, pk)n

‖pk‖2
n

, (10.5)

10.1 Approximation of Functions by Generalized Fourier Series 427

where, for any pair of continuous functions f and g, (f, g)n is the approxi-
mation of the scalar product (f, g)w and ‖g‖n =

√
(g, g)n is the seminorm

associated with (·, ·)n. In a manner analogous to what was done for fn, it can
be checked that

‖f − f∗
n‖n = min

q∈Pn

‖f − q‖n (10.6)

and we say that f∗
n is the approximation to f in Pn in the least-squares sense

(the reason for using this name will be made clear later on).
We conclude this section by recalling that, for any family of monic orthog-

onal polynomials {pk}, the following recursive three-term formula holds (for
the proof, see for instance [Gau96])

{
pk+1(x) = (x − αk)pk(x) − βkpk−1(x), k ≥ 0,

p−1(x) = 0, p0(x) = 1,
(10.7)

where

αk =
(xpk, pk)w

(pk, pk)w
, βk+1 =

(pk+1, pk+1)w

(pk, pk)w
, k ≥ 0. (10.8)

Since p−1 = 0, the coefficient β0 is arbitrary and is chosen according to the
particular family of orthogonal polynomials at hand. The recursive three-
term relation is generally quite stable and can thus be conveniently employed
in the numerical computation of orthogonal polynomials, as will be seen in
Section 10.6.
In the forthcoming sections we introduce two relevant families of orthogonal
polynomials.

10.1.1 The Chebyshev Polynomials

Consider the Chebyshev weight function w(x) = (1 − x2)−1/2 on the interval
(−1, 1), and, according to (10.1), introduce the space of square-integrable
functions with respect to the weight w

L2
w(−1, 1) =

{

f : (−1, 1) → R :
∫ 1

−1

f2(x)(1 − x2)−1/2dx < ∞
}

.

A scalar product and a norm for this space are defined as

(f, g)w =

1∫

−1

f(x)g(x)(1 − x2)−1/2dx,

‖f‖w =

⎧
⎨

⎩

1∫

−1

f2(x)(1 − x2)−1/2dx

⎫
⎬

⎭

1/2

.

(10.9)

428 10 Orthogonal Polynomials in Approximation Theory

The Chebyshev polynomials are defined as follows

Tk(x) = cos kθ, θ = arccos x, k = 0, 1, 2, . . . (10.10)

They can be recursively generated by the following formula (a consequence of
(10.7), see [DR75], pp. 25-26)

⎧
⎨

⎩

Tk+1(x) = 2xTk(x) − Tk−1(x) k = 1, 2, . . . ,

T0(x) = 1, T1(x) = x.

(10.11)

In particular, for any k ≥ 0, we notice that Tk ∈ Pk, i.e., Tk(x) is an algebraic
polynomial of degree k with respect to x. Using well-known trigonometric
relations, we have

(Tk, Tn)w = 0 if k �= n, (Tn, Tn)w =

{
c0 = π if n = 0,

cn = π/2 if n �= 0,

which expresses the orthogonality of the Chebyshev polynomials with respect
to the scalar product (·, ·)w. Therefore, the Chebyshev series of a function
f ∈ L2

w takes the form

Cf =
∞∑

k=0

f̂kTk, with f̂k =
1
ck

1∫

−1

f(x)Tk(x)(1 − x2)−1/2dx.

Notice that ‖Tn‖∞ = 1 for every n and the following minimax property holds

‖21−nTn‖∞ ≤ min
p∈P1

n

‖p‖∞, if n ≥ 1,

where P
1
n = {p(x) =

∑n
k=0 akxk, an = 1} denotes the subset of polynomials

of degree n with leading coefficient equal to 1.

10.1.2 The Legendre Polynomials

The Legendre polynomials are orthogonal polynomials over the interval
(−1, 1) with respect to the weight function w(x) = 1. For these polynomials,
L2

w is the usual L2(−1, 1) space introduced in (8.29), while (·, ·)w and ‖ · ‖w

coincide with the scalar product and norm in L2(−1, 1), respectively given by

(f, g) =

1∫

−1

f(x)g(x) dx, ‖f‖L2(−1,1) =

⎛

⎝

1∫

−1

f2(x) dx

⎞

⎠

1
2

.

10.2 Gaussian Integration and Interpolation 429

The Legendre polynomials are defined as

Lk(x) =
1
2k

[k/2]∑

l=0

(−1)l

(
k
l

)(
2k − 2l

k

)

xk−2l, k = 0, 1, . . . , (10.12)

where [k/2] is the integer part of k/2, or, recursively, through the three-term
relation

⎧
⎪⎨

⎪⎩

Lk+1(x) =
2k + 1
k + 1

xLk(x) − k

k + 1
Lk−1(x), k = 1, 2 . . . ,

L0(x) = 1, L1(x) = x.

For every k = 0, 1 . . ., Lk ∈ Pk and (Lk, Lm) = δkm(k + 1/2)−1 for
k,m = 0, 1, 2, For any function f ∈ L2(−1, 1), its Legendre series takes
the following form

Lf =
∞∑

k=0

f̂kLk, with f̂k =
(

k +
1
2

) 1∫

−1

f(x)Lk(x)dx.

Remark 10.1 (The Jacobi polynomials) The polynomials previously in-
troduced belong to the wider family of Jacobi polynomials {Jαβ

k , k = 0, . . . , n},
that are orthogonal with respect to the weight w(x) = (1 − x)α(1 + x)β , for
α, β > −1. Indeed, setting α = β = 0 we recover the Legendre polynomials,
while choosing α = β = −1/2 gives the Chebyshev polynomials. �

10.2 Gaussian Integration and Interpolation

Orthogonal polynomials play a crucial role in devising quadrature formulae
with maximal degrees of exactness. Let x0, . . . , xn be n + 1 given distinct
points in the interval [−1, 1]. For the approximation of the weighted integral
Iw(f) =

∫ 1

−1
f(x)w(x)dx, being f ∈ C0([−1, 1]), we consider quadrature rules

of the type

In,w(f) =
n∑

i=0

αif(xi), (10.13)

where αi are coefficients to be suitably determined. Obviously, both nodes
and weights depend on n, however this dependence will be understood.
Denoting by

En,w(f) = Iw(f) − In,w(f)

the error between the exact integral and its approximation (10.13), if En,w(p)
= 0 for any p ∈ Pr (for a suitable r ≥ 0) we shall say that formula (10.13) has
degree of exactness r with respect to the weight w. This definition generalizes
the one given for ordinary integration with weight w = 1.

430 10 Orthogonal Polynomials in Approximation Theory

Clearly, we can get a degree of exactness equal to (at least) n taking

In,w(f) =

1∫

−1

Πnf(x)w(x)dx,

where Πnf ∈ Pn is the Lagrange interpolating polynomial of the function f
at the nodes {xi, i = 0, . . . , n}, given by (8.4). Therefore, (10.13) has degree
of exactness at least equal to n taking

αi =

1∫

−1

li(x)w(x)dx, i = 0, . . . , n, (10.14)

where li ∈ Pn is the i-th characteristic Lagrange polynomial such that li(xj) =
δij , for i, j = 0, . . . , n.

The question that arises is whether suitable choices of the nodes exist such
that the degree of exactness is greater than n, say, equal to r = n+m for some
m > 0. The answer to this question is furnished by the following theorem, due
to Jacobi [Jac26].

Theorem 10.1 For a given m > 0, the quadrature formula (10.13) has degree
of exactness n+m iff it is of interpolatory type and the nodal polynomial ωn+1

(8.6) associated with the nodes {xi} is such that

1∫

−1

ωn+1(x)p(x)w(x)dx = 0, ∀p ∈ Pm−1. (10.15)

Proof. Let us prove that these conditions are sufficient. If f ∈ Pn+m then there exist
a quotient πm−1 ∈ Pm−1 and a remainder qn ∈ Pn, such that f = ωn+1πm−1 + qn.
Since the degree of exactness of an interpolatory formula with n + 1 nodes is equal
to n (at least), we get

n∑

i=0

αiqn(xi) =

1∫

−1

qn(x)w(x)dx =

1∫

−1

f(x)w(x)dx −
1∫

−1

ωn+1(x)πm−1(x)w(x)dx.

As a consequence of (10.15), the last integral is null, thus

1∫

−1

f(x)w(x)dx =

n∑

i=0

αiqn(xi) =

n∑

i=0

αif(xi).

Since f is arbitrary, we conclude that En,w(f) = 0 for any f ∈ Pn+m. Proving that

the conditions are also necessary is an exercise left to the reader. �

Corollary 10.2 The maximum degree of exactness of the quadrature formula
(10.13) is 2n + 1.

10.2 Gaussian Integration and Interpolation 431

Proof. If this would not be true, one could take m ≥ n + 2 in the previous theo-

rem. This, in turn, would allow us to choose p = ωn+1 in (10.15) and come to the

conclusion that ωn+1 is identically zero, which is absurd. �

Setting m = n + 1 (the maximum admissible value), from (10.15) we get that
the nodal polynomial ωn+1 satisfies the relation

1∫

−1

ωn+1(x)p(x)w(x)dx = 0, ∀p ∈ Pn.

Since ωn+1 is a polynomial of degree n+1 orthogonal to all the polynomials of
lower degree, we conclude that ωn+1 is the only monic polynomial multiple of
pn+1 (recall that {pk} is the system of orthogonal polynomials introduced in
Section 10.1). In particular, its roots {xj} coincide with those of pn+1, that is

pn+1(xj) = 0, j = 0, . . . , n. (10.16)

The abscissae {xj} are the Gauss nodes associated with the weight function
w(x). We can thus conclude that the quadrature formula (10.13) with coef-
ficients and nodes given by (10.14) and (10.16), respectively, has degree of
exactness 2n + 1, the maximum value that can be achieved using interpola-
tory quadrature formulae with n+1 nodes, and is called the Gauss quadrature
formula.

Its weights are all positive and the nodes are internal to the interval (−1, 1)
(see, for instance, [CHQZ06], p. 70). However, it is often useful to also include
the end points of the interval among the quadrature nodes. By doing so, the
Gauss formula with the highest degree of exactness is the one that employs
as nodes the n + 1 roots of the polynomial

ωn+1(x) = pn+1(x) + apn(x) + bpn−1(x), (10.17)

where the constants a and b are selected in such a way that ωn+1(−1) =
ωn+1(1) = 0.

Denoting these roots by x0 = −1, x1, . . . , xn = 1, the coefficients {αi, i =
0, . . . , n} can then be obtained from the usual formulae (10.14), that is

αi =

1∫

−1

li(x)w(x)dx, i = 0, . . . , n,

where li ∈ Pn is the i-th characteristic Lagrange polynomial such that li(xj) =
δij , for i, j = 0, . . . , n. The quadrature formula

IGL
n,w(f) =

n∑

i=0

αif(xi) (10.18)

432 10 Orthogonal Polynomials in Approximation Theory

is called the Gauss-Lobatto formula with n+1 nodes, and has degree of exact-
ness 2n− 1. Indeed, for any f ∈ P2n−1, there exist a polynomial πn−2 ∈ Pn−2

and a remainder qn ∈ Pn such that f = ωn+1πn−2 + qn.
The quadrature formula (10.18) has degree of exactness at least equal to

n (being interpolatory with n + 1 distinct nodes), thus we get

n∑

j=0

αjqn(x̄j) =

1∫

−1

qn(x)w(x)dx =

1∫

−1

f(x)w(x)dx −
1∫

−1

ωn+1(x)πn−2(x)w(x)dx.

From (10.17) we conclude that ω̄n+1 is orthogonal to all the polynomials of
degree ≤ n−2, so that the last integral is null. Moreover, since f(xj) = qn(xj)
for j = 0, . . . , n, we conclude that

1∫

−1

f(x)w(x)dx =
n∑

i=0

αif(xi), ∀f ∈ P2n−1.

Denoting by ΠGL
n,wf the polynomial of degree n that interpolates f at the

nodes {xj , j = 0, . . . , n}, we get

ΠGL
n,wf(x) =

n∑

i=0

f(xi)li(x) (10.19)

and thus IGL
n,w(f) =

∫ 1

−1
ΠGL

n,wf(x)w(x)dx.

Remark 10.2 In the special case where the Gauss-Lobatto quadrature is
considered with respect to the Jacobi weight w(x) = (1 − x)α(1 + x)β , with
α, β > −1, the internal nodes x1, . . . , xn−1 can be identified as the roots of the
polynomial (J (α,β)

n)′, that is, the extremants of the n-th Jacobi polynomial
J

(α,β)
n (see [CHQZ06], pp. 71-72). �

The following convergence result holds for Gaussian integration (see [Atk89],
Chapter 5)

lim
n→+∞

∣
∣
∣
∣
∣
∣

1∫

−1

f(x)w(x)dx −
n∑

j=0

αjf(xj)

∣
∣
∣
∣
∣
∣
= 0, ∀f ∈ C0([−1, 1]).

A similar result also holds for Gauss-Lobatto integration. If the integrand
function is not only continuous, but also differentiable up to the order p ≥ 1,
we shall see that Gaussian integration converges with an order of infinitesi-
mal with respect to 1/n that is larger when p is greater. In the forthcoming
sections, the previous results will be specified in the cases of the Chebyshev
and Legendre polynomials.

10.3 Chebyshev Integration and Interpolation 433

Remark 10.3 (Integration over an arbitrary interval) A quadrature
formula with nodes ξj and coefficients βj , j = 0, . . . , n over the interval
[−1, 1] can be mapped on any interval [a, b]. Indeed, let ϕ : [−1, 1] → [a, b] be
the affine map x = ϕ(ξ) = b−a

2 ξ + a+b
2 . Then

b∫

a

f(x)dx =
b − a

2

1∫

−1

(f ◦ ϕ)(ξ)dξ.

Therefore, we can employ on the interval [a, b] the quadrature formula with
nodes xj = ϕ(ξj) and weights αj = b−a

2 βj . Notice that this formula maintains
on the interval [a, b] the same degree of exactness of the generating formula
over [−1, 1]. Indeed, assuming that

1∫

−1

p(ξ)dξ =
n∑

j=0

p(ξj)βj

for any polynomial p of degree r over [−1, 1] (for a suitable integer r), for any
polynomial q of the same degree on [a, b] we get

n∑

j=0

q(xj)αj =
b − a

2

n∑

j=0

(q ◦ ϕ)(ξj)βj =
b − a

2

1∫

−1

(q ◦ ϕ)(ξ)dξ =

b∫

a

q(x)dx,

having recalled that (q ◦ ϕ)(ξ) is a polynomial of degree r on [−1, 1]. �

10.3 Chebyshev Integration and Interpolation

If Gaussian quadratures are considered with respect to the Chebyshev weight
w(x) = (1 − x2)−1/2, Gauss nodes and coefficients are given by

xj = − cos
(2j + 1)π
2(n + 1)

, αj =
π

n + 1
, 0 ≤ j ≤ n, (10.20)

while Gauss-Lobatto nodes and weights are

xj = − cos
πj

n
, αj =

π

djn
, 0 ≤ j ≤ n, n ≥ 1, (10.21)

where d0 = dn = 2 and dj = 1 for j = 1, . . . , n − 1. Notice that the Gauss
nodes (10.20) are, for a fixed n ≥ 0, the zeros of the Chebyshev polynomial
Tn+1 ∈ Pn+1, while, for n ≥ 1, the internal nodes {x̄j , j = 1, . . . , n − 1} are
the zeros of T ′

n, as anticipated in Remark 10.2.
Denoting by ΠGL

n,wf the polynomial of degree n that interpolates f at the
nodes (10.21), it can be shown that the interpolation error can be bounded as

434 10 Orthogonal Polynomials in Approximation Theory

‖f − ΠGL
n,wf‖w ≤ Cn−s‖f‖s,w, for s ≥ 1, (10.22)

where ‖ · ‖w is the norm in L2
w defined in (10.9), provided that for some s ≥ 1

the function f has derivatives f (k) of order k = 0, . . . , s in L2
w. In such a case

‖f‖s,w =

(
s∑

k=0

‖f (k)‖2
w

) 1
2

. (10.23)

Here and in the following, C is a constant independent of n that can assume
different values at different places. In particular, for any continuous function
f the following pointwise error estimate can be derived (see Exercise 3)

‖f − ΠGL
n,wf‖∞ ≤ Cn1/2−s‖f‖s,w. (10.24)

Thus, ΠGL
n,wf converges pointwise to f as n → ∞, for any f ∈ C1([−1, 1]). The

same kind of results (10.22) and (10.24) hold if ΠGL
n,wf is replaced with the

polynomial ΠG
n f of degree n that interpolates f at the n + 1 Gauss nodes xj

in (10.20). (For the proof of these results see, for instance, [CHQZ06], p. 296,
or [QV94], p. 112). We have also the following result (see [Riv74], p.13)

‖f − ΠG
n f‖∞ ≤ (1 + Λn)E∗

n(f), with Λn ≤ 2
π

log(n + 1) + 1, (10.25)

where ∀n, E∗
n(f) = inf

p∈Pn

‖f − p‖∞ is the best approximation error for f in

Pn and Λn is the Lebesgue constant associated with the Chebyshev nodes
(10.20).

Remark 10.4 (Barycentric weigths) When Gauss nodes (10.20) or
Gauss-Lobatto nodes (10.21) are used, it is possible to compute in an explicit
form the weigths of the barycentric formula (8.24). For Gauss nodes we have

wj = (−1)j sin
(2j + 1)π
2n + 2

,

while for Gauss-Lobatto nodes become

wj = (−1)jγj , γj =
{

1
2 , if j = 0 or j = n,
1, otherwise.

We can done in this case a numerical example in order to appreciate the
efficiency and the robustness of the barycentric formula for the Lagrange in-
terpolant. We interpolate in 1001 Gauss-Lobatto nodes the function f(x) =
|x|+x/2−x2 and we evaluate the Lagrange polynomial in 5000 uniform nodes
in [−1, 1]. On a PC this computation requires 0.16 s if one use the barycen-
tric formula and 23.17 s if the Newton formula is used. Moreover, in this last
case the evaluated polynomial is complete wrong since it is affected by over-
flow errors, while the barycentric formula produces an accurate evaluation
of Πn. �

10.3 Chebyshev Integration and Interpolation 435

As far as the numerical integration error is concerned, let us consider, for
instance, the Gauss-Lobatto quadrature rule (10.18) with nodes and weights
given in (10.21). First of all, notice that

1∫

−1

f(x)(1 − x2)−1/2dx = lim
n→∞

IGL
n,w(f)

for any function f whose left integral is finite (see [Sze67], p. 342). If, moreover,
‖f‖s,w is finite for some s ≥ 1, we have

∣
∣
∣
∣
∣
∣

1∫

−1

f(x)(1 − x2)−1/2dx − IGL
n,w(f)

∣
∣
∣
∣
∣
∣
≤ Cn−s‖f‖s,w. (10.26)

This result follows from the more general one

|(f, vn)w − (f, vn)n| ≤ Cn−s‖f‖s,w‖vn‖w, ∀vn ∈ Pn, (10.27)

where the so-called discrete scalar product has been introduced

(f, g)n =
n∑

j=0

αjf(xj)g(xj) = IGL
n,w(fg). (10.28)

Actually, (10.26) follows from (10.27) setting vn ≡ 1 and noticing that

‖vn‖w =
(∫ 1

−1
(1 − x2)−1/2dx

)1/2

=
√

π. Thanks to (10.26) we can thus con-
clude that the (Chebyshev) Gauss-Lobatto formula has degree of exactness
2n − 1 and order of accuracy (with respect to n−1) equal to s, provided that
‖f‖s,w < ∞. Therefore, the order of accuracy is only limited by the regularity
threshold s of the integrand function. Completely similar considerations can
be drawn for (Chebyshev) Gauss formulae with n + 1 nodes.
Let us finally determine the coefficients f̃k, k = 0, . . . , n, of the interpolating
polynomial ΠGL

n,wf at the n + 1 Gauss-Lobatto nodes in the expansion with
respect to the Chebyshev polynomials (10.10)

ΠGL
n,wf(x) =

n∑

k=0

f̃kTk(x). (10.29)

Notice that ΠGL
n,wf coincides with the discrete truncation of the Chebyshev

series f∗
n defined in (10.4). Enforcing the equality ΠGL

n,wf(xj) = f(xj), j =
0, . . . , n, we find

f(xj) =
n∑

k=0

cos
(

kjπ

n

)

f̃k, j = 0, . . . , n. (10.30)

436 10 Orthogonal Polynomials in Approximation Theory

Recalling the exactness of the Gauss-Lobatto quadrature, it can be checked
that (see Exercise 2)

f̃k =
2

ndk

n∑

j=0

1
dj

cos
(

kjπ

n

)

f(xj), k = 0, . . . , n, (10.31)

where dj = 2 if j = 0, n, and dj = 1 if j = 1, . . . , n − 1. Relation (10.31)
yields the discrete coefficients {f̃k, k = 0, . . . , n} in terms of the nodal values
{f(xj), j = 0, . . . , n}. For this reason it is called the Chebyshev discrete trans-
form (CDT) and, thanks to its trigonometric structure, it can be efficiently
computed using the FFT algorithm (Fast Fourier transform) with a number of
floating-point operations of the order of n log2 n (see Section 10.9.2). Of course,
(10.30) is the inverse of the CDT, and can be computed using the FFT.

10.4 Legendre Integration and Interpolation

As previously noticed, the Legendre weight is w(x) ≡ 1. For n ≥ 0, the Gauss
nodes and the related coefficients are given by

xj zeros of Ln+1(x), αj =
2

(1 − x2
j)[L

′
n+1(xj)]2

, j = 0, . . . , n, (10.32)

while the Gauss-Lobatto ones are, for n ≥ 1

x0 = −1, xn = 1, xj zeros of L′
n(x), j = 1, . . . , n − 1, (10.33)

αj =
2

n(n + 1)
1

[Ln(xj)]2
, j = 0, . . . , n, (10.34)

where Ln is the n-th Legendre polynomial defined in (10.12). It can be checked
that, for a suitable constant C independent of n,

2
n(n + 1)

≤ αj ≤ C

n
, ∀j = 0, . . . , n

(see [BM92], p. 76). Then, letting ΠGL
n f be the polynomial of degree n that

interpolates f at the n + 1 nodes xj given by (10.33), it can be proved that
it fulfills the same error estimates as those reported in (10.22) and (10.24) in
the case of the corresponding Chebyshev polynomial.

Of course, the norm ‖ · ‖w must here be replaced by the norm ‖ · ‖L2(−1,1),
while ‖f‖s,w becomes

‖f‖s =

(
s∑

k=0

‖f (k)‖2
L2(−1,1)

) 1
2

. (10.35)

The same kinds of results are ensured if ΠGL
n f is replaced by the polynomial

of degree n that interpolates f at the n + 1 nodes xj given by (10.32).

10.4 Legendre Integration and Interpolation 437

Referring to the discrete scalar product defined in (10.28), but taking now
the nodes and coefficients given by (10.33) and (10.34), we see that (·, ·)n is
an approximation of the usual scalar product (·, ·) of L2(−1, 1). Actually, the
equivalent relation to (10.27) now reads

|(f, vn) − (f, vn)n| ≤ Cn−s‖f‖s‖vn‖L2(−1,1), ∀vn ∈ Pn (10.36)

and holds for any s ≥ 1 such that ‖f‖s < ∞. In particular, setting vn ≡ 1,
we get ‖vn‖ =

√
2, and from (10.36) it follows that

∣
∣
∣
∣
∣
∣

1∫

−1

f(x)dx − IGL
n (f)

∣
∣
∣
∣
∣
∣
≤ Cn−s‖f‖s, (10.37)

which demonstrates a convergence of the Gauss-Legendre-Lobatto quadrature
formula to the exact integral of f with order of accuracy s with respect to
n−1 provided that ‖f‖s < ∞. A similar result holds for the Gauss-Legendre
quadrature formulae.

Example 10.1 Consider the approximate evaluation of the integral of f(x) =

|x|α+ 3
5 over [−1, 1] for α = 0, 1, 2. Notice that f has “piecewise” derivatives up

to order s = s(α) = α + 1 in L2(−1, 1). Figure 10.1 shows the behavior of the error
as a function of n for the Gauss-Legendre quadrature formula. According to (10.37),
the convergence rate of the formula increases by one when α increases by one. •

The interpolating polynomial at the nodes (10.33) is given by

ΠGL
n f(x) =

n∑

k=0

f̃kLk(x). (10.38)

100
10−10

10−8

10−6

10−4

10−2

100

102

101 102 103

Fig. 10.1. The quadrature error in logarithmic scale as a function of n in the case
of a function with the first s derivatives in L2(−1, 1) for s = 1 (solid line), s = 2
(dashed line), s = 3 (dotted line)

438 10 Orthogonal Polynomials in Approximation Theory

Notice that also in this case ΠGL
n f coincides with the discrete truncation of

the Legendre series f∗
n defined in (10.4). Proceeding as in the previous section,

we get

f(xj) =
n∑

k=0

f̃kLk(xj), j = 0, . . . , n, (10.39)

and also

f̃k =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2k + 1
n(n + 1)

n∑

j=0

Lk(xj)
1

L2
n(xj)

f(xj), k = 0, . . . , n − 1,

1
n + 1

n∑

j=0

1
Ln(xj)

f(xj), k = n

(10.40)

(see Exercise 6). Formulae (10.40) and (10.39) provide, respectively, the dis-
crete Legendre transform (DLT) and its inverse.

10.5 Gaussian Integration over Unbounded Intervals

We consider integration on both half and on the whole of real axis. In both
cases we use interpolatory Gaussian formulae whose nodes are the zeros of
Laguerre and Hermite orthogonal polynomials, respectively.

The Laguerre polynomials. These are algebraic polynomials, orthogonal
on the interval [0,+∞) with respect to the weight function w(x) = e−x. They
are defined by

Ln(x) = ex dn

dxn
(e−xxn), n ≥ 0,

and satisfy the following three-term recursive relation
{
Ln+1(x) = (2n + 1 − x)Ln(x) − n2Ln−1(x), n ≥ 0,

L−1 = 0, L0 = 1.

For any function f , define ϕ(x) = f(x)ex. Then, I(f) =
∫∞
0

f(x)dx =
∫∞
0

e−xϕ(x)dx, so that it suffices to apply to this last integral the Gauss-
Laguerre quadratures, to get, for n ≥ 1 and f ∈ C2n([0,+∞))

I(f) =
n∑

k=1

αkϕ(xk) +
(n!)2

(2n)!
ϕ(2n)(ξ), 0 < ξ < +∞, (10.41)

where the nodes xk, for k = 1, . . . , n, are the zeros of Ln and the weights are
αk = (n!)2xk/[Ln+1(xk)]2. From (10.41), one concludes that Gauss-Laguerre
formulae are exact for functions f of the type ϕe−x, where ϕ ∈ P2n−1. In a
generalized sense, we can then state that they have optimal degrees of exact-
ness equal to 2n − 1.

Example 10.2 Using a Gauss-Laguerre quadrature formula with n = 12 to
compute the integral in Example 9.12 we obtain the value 0.5997 with an absolute

10.6 Programs for the Implementation of GaussianQuadratures 439

error with respect to exact integration equal to 2.96 · 10−4. For the sake of compari-
son, the composite trapezoidal formula would require 277 nodes to obtain the same
accuracy. •

The Hermite polynomials. These are orthogonal polynomials on the real
line with respect to the weight function w(x) = e−x2

. They are defined by

Hn(x) = (−1)nex2 dn

dxn
(e−x2

), n ≥ 0.

Hermite polynomials can be recursively generated as
{
Hn+1(x) = 2xHn(x) − 2nHn−1(x), n ≥ 0,

H−1 = 0, H0 = 1.

As in the previous case, letting ϕ(x) = f(x)ex2
, we have I(f) =

∫∞
−∞ f(x)dx =

∫∞
−∞ e−x2

ϕ(x)dx. Applying to this last integral the Gauss-Hermite quadra-
tures we obtain, for n ≥ 1 and f ∈ C2n(R)

I(f) =

∞∫

−∞

e−x2
ϕ(x)dx =

n∑

k=1

αkϕ(xk) +
(n!)

√
π

2n(2n)!
ϕ(2n)(ξ), ξ ∈ R, (10.42)

where the nodes xk, for k = 1, . . . , n, are the zeros of Hn and the weights
are αk = 2n+1n!

√
π/[Hn+1(xk)]2. As for Gauss-Laguerre quadratures, the

Gauss-Hermite rules also are exact for functions f of the form ϕe−x2
, where

ϕ ∈ P2n−1; therefore, they have optimal degrees of exactness equal to 2n− 1.
More details on the subject can be found in [DR75], pp. 173-174.

10.6 Programs for the Implementation of Gaussian
Quadratures

Programs 82, 83 and 84 compute the coefficients {αk} and {βk}, introduced in
(10.8), in the cases of the Legendre, Laguerre and Hermite polynomials. These
programs are then called by Program 85 for the computation of nodes and
weights (10.32), in the case of the Gauss-Legendre formulae, and by Programs
86, 87 for computing nodes and weights in the Gauss-Laguerre and Gauss-
Hermite quadrature rules (10.41) and (10.42). All the codings reported in this
section are excerpts from the library ORTHPOL [Gau94].

Program 82 - coeflege : Coefficients of Legendre polynomials

function [a,b]=coeflege(n)
%COEFLEGE Coefficients of Legendre polynomials.
% [A,B]=COEFLEGE(N): A and B are the alpha(k) and beta(k) coefficients

440 10 Orthogonal Polynomials in Approximation Theory

% for the Legendre polynomial of degree N.
if n<=1, error(’n must be >1’);end
a = zeros(n,1); b=a; b(1)=2;
k=[2:n]; b(k)=1./(4-1./(k-1).ˆ2);
return

Program 83 - coeflagu : Coefficients of Laguerre polynomials

function [a,b]=coeflagu(n)
%COEFLAGU Coefficients of Laguerre polynomials.
% [A,B]=COEFLAGU(N): A and B are the alpha(k) and beta(k) coefficients
% for the Laguerre polynomial of degree N.
if n<=1, error(’n must be >1 ’); end
a=zeros(n,1); b=zeros(n,1); a(1)=1; b(1)=1;
k=[2:n]; a(k)=2*(k-1)+1; b(k)=(k-1).ˆ2;
return

Program 84 - coefherm : Coefficients of Hermite polynomials

function [a,b]=coefherm(n)
%COEFHERM Coefficients of Hermite polynomials.
% [A,B]=COEFHERM(N): A and B are the alpha(k) and beta(k) coefficients
% for the Hermite polynomial of degree N.
if n<=1, error(’n must be >1 ’); end
a=zeros(n,1); b=zeros(n,1); b(1)=sqrt(4.*atan(1.));
k=[2:n]; b(k)=0.5*(k-1);
return

Program 85 - zplege : Coefficients of Gauss-Legendre formulae

function [x,w]=zplege(n)
%ZPLEGE Gauss-Legendre formula.
% [X,W]=ZPLEGE(N) computes the nodes and the weights of the Gauss-Legendre
% formula with N nodes.
if n<=1, error(’n must be >1’); end
[a,b]=coeflege(n);
JacM=diag(a)+diag(sqrt(b(2:n)),1)+diag(sqrt(b(2:n)),-1);
[w,x]=eig(JacM); x=diag(x); scal=2; w=w(1,:)’.ˆ2*scal;
[x,ind]=sort(x); w=w(ind);
return

Program 86 - zplagu : Coefficients of Gauss-Laguerre formulae

function [x,w]=zplagu(n)
%ZPLAGU Gauss-Laguerre formula.
% [X,W]=ZPLAGU(N) computes the nodes and the weights of the Gauss-Laguerre
% formula with N nodes.
if n<=1, error(’n must be >1 ’); end

10.7 Approximation of a Function in the Least-Squares Sense 441

[a,b]=coeflagu(n);
JacM=diag(a)+diag(sqrt(b(2:n)),1)+diag(sqrt(b(2:n)),-1);
[w,x]=eig(JacM); x=diag(x); w=w(1,:)’.ˆ2;
return

Program 87 - zpherm : Coefficients of Gauss-Hermite formulae

function [x,w]=zpherm(n)
%ZPHERM Gauss-Hermite formula.
% [X,W]=ZPHERM(N) computes the nodes and the weights of the Gauss-Hermite
% formula with N nodes.
if n<=1, error(’n must be >1 ’); end
[a,b]=coefherm(n);
JacM=diag(a)+diag(sqrt(b(2:n)),1)+diag(sqrt(b(2:n)),-1);
[w,x]=eig(JacM); x=diag(x); scal=sqrt(pi); w=w(1,:)’.ˆ2*scal;
[x,ind]=sort(x); w=w(ind);
return

10.7 Approximation of a Function in the Least-Squares
Sense

Given a function f ∈ L2
w(a, b), we look for a polynomial rn of degree ≤ n that

satisfies

‖f − rn‖w = min
pn∈Pn

‖f − pn‖w,

where w is a fixed weight function in (a, b). Should it exist, rn is called a
least-squares polynomial. The name derives from the fact that, if w ≡ 1, rn

is the polynomial that minimizes the mean-square error E = ‖f − rn‖L2(a,b)

(see Exercise 8).
As seen in Section 10.1, rn coincides with the truncation fn of order n

of the Fourier series (see (10.2) and (10.3)). Depending on the choice of the
weight w(x), different least-squares polynomials arise with different conver-
gence properties.

Analogous to Section 10.1, we can introduce the discrete truncation f∗
n

(10.4) of the Chebyshev series (setting pk = Tk) or the Legendre series (set-
ting pk = Lk). If the discrete scalar product induced by the Gauss-Lobatto
quadrature rule (10.28) is used in (10.5) then the f̃k’s coincide with the co-
efficients of the expansion of the interpolating polynomial ΠGL

n,wf (see (10.29)
in the Chebyshev case, or (10.38) in the Legendre case).

Consequently, f∗
n = ΠGL

n,wf , i.e., the discrete truncation of the (Chebyshev
or Legendre) series of f turns out to coincide with the interpolating polynomial
at the n+1 Gauss-Lobatto nodes. In particular, in such a case (10.6) is trivially
satisfied, since ‖f − f∗

n‖n = 0.

442 10 Orthogonal Polynomials in Approximation Theory

10.7.1 Discrete Least-Squares Approximation

Several applications require representing in a synthetic way, using elementary
functions, a large set of data that are available at a discrete level, for instance,
the results of experimental measurements. This approximation process, often
referred to as data fitting, can be satisfactorily solved using the discrete least-
squares technique that can be formulated as follows.

Assume we are given m + 1 pairs of data

{(xi, yi), i = 0, . . . ,m} , (10.43)

where yi may represent, for instance, the value of a physical quantity measured
at the position xi. We assume that all the abscissae are distinct.

We look for a polynomial pn(x) =
n∑

i=0

aiϕi(x) such that

m∑

j=0

wj |pn(xj) − yj |2 ≤
m∑

j=0

wj |qn(xj) − yj |2 ∀qn ∈ Pn, (10.44)

for suitable coefficients wj > 0. If n = m the polynomial pn clearly coincides
with the interpolating polynomial of degree n at the nodes {xi}. Problem
(10.44) is called a discrete least-squares problem since a discrete scalar product
is involved, and is the discrete counterpart of the continuous least-squares
problem. The solution pn is therefore referred to as a least-squares polynomial.
Notice that

|||q||| =

⎧
⎨

⎩

m∑

j=0

wj [q(xj)]2

⎫
⎬

⎭

1/2

(10.45)

is an essentially strict seminorm on Pn (see, Exercise 7). By definition a dis-
crete norm (or seminorm) ‖ · ‖∗ is essentially strict if ‖f + g‖∗ = ‖f‖∗ + ‖g‖∗
implies there exist nonnull α, β such that αf(xi)+βg(xi) = 0 for i = 0, . . . , m.
Since ||| · ||| is an essentially strict seminorm, problem (10.44) admits a unique
solution (see, [IK66], Section 3.5). Proceeding as in Section 3.13, we find

n∑

k=0

ak

m∑

j=0

wjϕk(xj)ϕi(xj) =
m∑

j=0

wjyjϕi(xj), ∀i = 0, . . . , n,

which is called a system of normal equations, and can be conveniently written
in the form

BT Ba = BT y, (10.46)

where B is the rectangular matrix (m + 1) × (n + 1) of entries bij = ϕj(xi),
i = 0, . . . , m, j = 0, . . . , n, a ∈ R

n+1 is the vector of the unknown coefficients
and y ∈ R

m+1 is the vector of data.
Notice that the system of normal equations obtained in (10.46) is of the

same nature as that introduced in Section 3.13 in the case of over-determined

10.8 The Polynomial of Best Approximation 443

systems. Actually, if wj = 1 for j = 0, . . . ,m, the above system can be re-
garded as the solution in the least-squares sense of the system

n∑

k=0

akϕk(xi) = yi, i = 0, 1, . . . ,m,

which would not admit a solution in the classical sense, since the number of
rows is greater than the number of columns. In the case n = 1, the solution
to (10.44) is a linear function, called linear regression for the data fitting of
(10.43). The associated system of normal equations is

1∑

k=0

m∑

j=0

wjϕi(xj)ϕk(xj)ak =
m∑

j=0

wjϕi(xj)yj , i = 0, 1.

Setting (f, g)m =
m∑

j=0

wjf(xj)g(xj) the previous system becomes

{
(ϕ0, ϕ0)ma0 + (ϕ1, ϕ0)ma1 = (y, ϕ0)m,

(ϕ0, ϕ1)ma0 + (ϕ1, ϕ1)ma1 = (y, ϕ1)m,

where y(x) is a function that takes the value yi at the nodes xi, i = 0, . . . , m.
After some algebra, we get this explicit form for the coefficients

a0 =
(y, ϕ0)m(ϕ1, ϕ1)m − (y, ϕ1)m(ϕ1, ϕ0)m

(ϕ1, ϕ1)m(ϕ0, ϕ0)m − (ϕ0, ϕ1)2m
,

a1 =
(y, ϕ1)m(ϕ0, ϕ0)m − (y, ϕ0)m(ϕ1, ϕ0)m

(ϕ1, ϕ1)m(ϕ0, ϕ0)m − (ϕ0, ϕ1)2m
.

Example 10.3 As already seen in Example 8.2, small changes in the data can give
rise to large variations on the interpolating polynomial of a given function f . This
doesn’t happen for the least-squares polynomial where m is much larger than n. As
an example, consider the function f(x) = sin(2πx) in [−1, 1] and evaluate it at the
22 equally spaced nodes xi = −1 + 2i/21, i = 0, . . . , 21, setting fi = f(xi). Then,
suppose to add to the data fi a random perturbation of the order of 10−3 and denote
by p5 and p̃5 the least-squares polynomials of degree 5 approximating the data fi

and f̃i, respectively. The maximum norm of the difference p5 − p̃5 over [−1, 1] is of
the order of 10−3, i.e., it is of the same order as the perturbation on the data. For
comparison, the same difference in the case of Lagrange interpolation is about equal
to 2 as can be seen in Figure 10.2. •

10.8 The Polynomial of Best Approximation

Consider a function f ∈ C0([a, b]). A polynomial p∗n ∈ Pn is said to be the
polynomial of best approximation of f if it satisfies

444 10 Orthogonal Polynomials in Approximation Theory

−1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Fig. 10.2. The perturbed data (circles), the associated least-squares polynomial of
degree 5 (solid line) and the Lagrange interpolating polynomial (dashed line)

‖f − p∗n‖∞ = min
pn∈Pn

‖f − pn‖∞, ∀pn ∈ Pn, (10.47)

where ‖g‖∞ = maxa≤x≤b |g(x)|. This problem is referred to as a minimax
approximation, as we are looking for the minimum error measured in the
maximum norm.

Property 10.1 (Chebyshev equioscillation theorem) For any n ≥ 0,
the polynomial of best approximation p∗n of f exists and is unique. Moreover,
in [a, b] there exist n + 2 points x0 < x1 < . . . < xn+1 such that

f(xj) − p∗n(xj) = σ(−1)jE∗
n(f), j = 0, . . . , n + 1,

with σ = 1 or σ = −1 depending on f and n, and E∗
n(f) = ‖f − p∗n‖∞.

(For the proof, see [Dav63], Chapter 7). As a consequence, there exist n + 1
points x̃0 < x̃1 < . . . < x̃n, with xk < x̃k < xk+1 for k = 0, . . . , n, to be
determined in [a, b] such that

p∗n(x̃j) = f(x̃j), j = 0, 1, . . . , n,

so that the best approximation polynomial is a polynomial of degree n that
interpolates f at n + 1 unknown nodes.

The following result yields an estimate of E∗
n(f) without explicitly com-

puting p∗n (we refer for the proof to [Atk89], Chapter 4).

Property 10.2 (de la Vallée-Poussin theorem) Let f ∈ C0([a, b]) and
n ≥ 0, and let x0 < x1 < . . . < xn+1 be n + 2 points in [a, b]. If there exists a
polynomial qn of degree ≤ n such that

f(xj) − qn(xj) = (−1)jej j = 0, 1, . . . , n + 1,

10.9 Fourier Trigonometric Polynomials 445

where all ej have the same sign and are nonnull, then

min
0≤j≤n+1

|ej | ≤ E∗
n(f).

We can now relate E∗
n(f) with the interpolation error. Indeed,

‖f − Πnf‖∞ ≤ ‖f − p∗n‖∞ + ‖p∗n − Πnf‖∞.

On the other hand, using the Lagrange representation of p∗n we get

‖p∗n − Πnf‖∞ =

∥
∥
∥
∥
∥

n∑

i=0

(p∗n(xi) − f(xi))li

∥
∥
∥
∥
∥
∞

≤ ‖p∗n − f‖∞

∥
∥
∥
∥
∥

n∑

i=0

|li|
∥
∥
∥
∥
∥
∞

,

from which it follows

‖f − Πnf‖∞ ≤ (1 + Λn)E∗
n(f),

where Λn is the Lebesgue constant (8.11) associated with the nodes {xi}.
Thanks to (10.25) we can conclude that the Lagrange interpolating polynomial
on the Chebyshev nodes is a good approximation of p∗n. The above results yield
a characterization of the best approximation polynomial, but do not provide
a constructive way for generating it. However, starting from the Chebyshev
equioscillation theorem, it is possible to devise an algorithm, called the Remes
algorithm, that is able to construct an arbitrarily good approximation of the
polynomial p∗n (see [Atk89], Section 4.7).

10.9 Fourier Trigonometric Polynomials

Let us apply the theory developed in the previous sections to a particular
family of orthogonal polynomials which are no longer algebraic polynomials
but rather trigonometric. The Fourier polynomials on (0, 2π) are defined as

ϕk(x) = eikx, k = 0,±1,±2, . . . ,

where i is the imaginary unit. These are complex-valued periodic functions
with period equal to 2π. We shall use the notation L2(0, 2π) to denote the
complex-valued functions that are square integrable over (0, 2π). Therefore

L2(0, 2π) =
{

f : (0, 2π) → C such that
∫ 2π

0

|f(x)|2dx < ∞
}

with scalar product and norm defined respectively by

(f, g) =
∫ 2π

0
f(x)g(x)dx, ‖f‖L2(0,2π) =

√
(f, f).

If f ∈ L2(0, 2π), its Fourier series is

Ff =
∞∑

k=−∞
f̂kϕk, with f̂k =

1
2π

2π∫

0

f(x)e−ikxdx =
1
2π

(f, ϕk). (10.48)

446 10 Orthogonal Polynomials in Approximation Theory

If f is complex-valued we set f(x) = α(x) + iβ(x) for x ∈ [0, 2π], where α(x)
is the real part of f and β(x) is the imaginary one. Recalling that e−ikx =
cos(kx) − i sin(kx) and letting

ak =
1
2π

2π∫

0

[α(x) cos(kx) + β(x) sin(kx)] dx,

bk =
1
2π

2π∫

0

[−α(x) sin(kx) + β(x) cos(kx)] dx,

the Fourier coefficients of the function f can be written as

f̂k = ak + ibk ∀k = 0,±1,±2, (10.49)

We shall assume henceforth that f is a real-valued function; in such a case
f̂−k = f̂k for any k.

Let N be an even positive integer. Analogously to what was done in Section
10.1, we call the truncation of order N of the Fourier series the function

f∗
N (x) =

N
2 −1∑

k=−N
2

f̂keikx.

The use of capital N instead of small n is to conform with the notation usually
adopted in the analysis of discrete Fourier series (see [Bri74], [Wal91]). To
simplify the notations we also introduce an index shift so that

f∗
N (x) =

N−1∑

k=0

f̂kei(k−N
2)x,

where now

f̂k =
1
2π

2π∫

0

f(x)e−i(k−N/2)xdx =
1
2π

(f, ϕ̃k), k = 0, . . . , N − 1 (10.50)

and ϕ̃k = ei(k−N/2)x. Denoting by

SN = span{ϕ̃k, 0 ≤ k ≤ N − 1},

if f ∈ L2(0, 2π) its truncation of order N satisfies the following optimal ap-
proximation property in the least-squares sense

‖f − f∗
N‖L2(0,2π) = min

g∈SN

‖f − g‖L2(0,2π).

Set h = 2π/N and xj = jh, for j = 0, . . . , N − 1, and introduce the
following discrete scalar product

10.9 Fourier Trigonometric Polynomials 447

(f, g)N = h

N−1∑

j=0

f(xj)g(xj). (10.51)

Replacing (f, ϕ̃k) in (10.50) with (f, ϕ̃k)N , we get the discrete Fourier coeffi-
cients of the function f

f̃k =
1
N

N−1∑

j=0

f(xj)e−ikjheijπ =
1
N

N−1∑

j=0

f(xj)W
(k−N

2)j

N (10.52)

for k = 0, . . . , N − 1, where

WN = exp
(

−i
2π

N

)

is the principal root of order N of unity. According to (10.4), the trigonometric
polynomial

ΠF
Nf(x) =

N−1∑

k=0

f̃kei(k−N
2)x (10.53)

is called the discrete Fourier series of order N of f .

Lemma 10.2 The following property holds

(ϕl, ϕj)N = h
N−1∑

k=0

e−ik(l−j)h = 2πδjl, 0 ≤ l, j ≤ N − 1, (10.54)

where δjl is the Kronecker symbol.

Proof. For l = j the result is immediate. Thus, assume l �= j; we have that

N−1∑

k=0

e−ik(l−j)h =
1 −

(
e−i(l−j)h

)N

1 − e−i(l−j)h
= 0.

Indeed, the numerator is 1 − (cos(2π(l − j)) − i sin(2π(l − j))) = 1 − 1 = 0, while

the denominator cannot vanish. Actually, it vanishes iff (j− l)h = 2π, i.e., j− l = N ,

which is impossible. �

Thanks to Lemma 10.2, the trigonometric polynomial ΠF
Nf is the Fourier

interpolate of f at the nodes xj , that is

ΠF
Nf(xj) = f(xj), j = 0, 1, . . . , N − 1.

Indeed, using (10.52) and (10.54) in (10.53) it follows that

ΠF
Nf(xj) =

N−1∑

k=0

f̃keikjhe−ijh N
2 =

N−1∑

l=0

f(xl)

[
1
N

N−1∑

k=0

e−ik(l−j)h

]

= f(xj).

448 10 Orthogonal Polynomials in Approximation Theory

Therefore, looking at the first and last equality, we get

f(xj) =
N−1∑

k=0

f̃keik(j−N
2)h =

N−1∑

k=0

f̃kW
−(j−N

2)k

N , j = 0, . . . , N − 1. (10.55)

The mapping {f(xj)} → {f̃k} described by (10.52) is called the Discrete
Fourier Transform (DFT), while the mapping (10.55) from {f̃k} to {f(xj)}
is called the inverse transform (IDFT). Both DFT and IDFT can be written
in matrix form as {f̃k} = T{f(xj)} and {f(xj)} = C{f̃k}, where T ∈ C

N×N ,
C denotes the inverse of T and

Tkj =
1
N

W
(k−N

2)j

N , k, j = 0, . . . , N − 1,

Cjk = W
−(j−N

2)k

N , j, k = 0, . . . , N − 1.

A naive implementation of the matrix-vector computation in the DFT and
IDFT would require N2 operations. Using the FFT (Fast Fourier Transform)
algorithm only O(N log2 N) flops are needed, provided that N is a power of
2, as will be explained in Section 10.9.2.

The function ΠF
Nf ∈ SN introduced in (10.53) is the solution of the

minimization problem ‖f − ΠF
Nf‖N ≤ ‖f − g‖N for any g ∈ SN , where

‖ · ‖N = (·, ·)1/2
N is a discrete norm for SN . In the case where f is periodic

with all its derivatives up to order s (s ≥ 1), an error estimate analogous to
that for Chebyshev and Legendre interpolation holds

‖f − ΠF
Nf‖L2(0,2π) ≤ CN−s‖f‖s

and also
max

0≤x≤2π
|f(x) − ΠF

Nf(x)| ≤ CN1/2−s‖f‖s.

In a similar manner, we also have

|(f, vN) − (f, vN)N | ≤ CN−s‖f‖s‖vN‖

for any vN ∈ SN , and in particular, setting vN = 1 we have the following
error for the quadrature formula (10.51)

∣
∣
∣
∣
∣
∣

2π∫

0

f(x)dx − h

N−1∑

j=0

f(xj)

∣
∣
∣
∣
∣
∣
≤ CN−s‖f‖s

(see for the proof [CHQZ06], Chapter 2).
Notice that h

∑N−1
j=0 f(xj) is nothing else than the composite trapezoidal

rule for approximating the integral
∫ 2π

0
f(x)dx. Therefore, such a formula

turns out to be extremely accurate when dealing with periodic and smooth
integrands.

10.9 Fourier Trigonometric Polynomials 449

Programs 88 and 89 provide an implementation of the DFT and IDFT. The
input parameter f is a string containing the function f to be transformed
while fc is a vector of size N containing the values f̃k.

Program 88 - dft : Discrete Fourier transform

function fc=dft(N,f)
%DFT Discrete Fourier transform.
% FC=DFT(N,F) computes the coefficients of the discrete Fourier
% transform of a function F.
h = 2*pi/N;
x=[0:h:2*pi*(1-1/N)]; fx = eval(f);
wn = exp(-i*h);
for k=0:N-1,

s = 0;
for j=0:N-1

s = s + fx(j+1)*wnˆ((k-N/2)*j);
end
fc (k+1) = s/N;

end
return

Program 89 - idft : Inverse discrete Fourier transform

function fv = idft(N,fc)
%IDFT Inverse discrete Fourier transform.
% FV=IDFT(N,F) computes the coefficients of the inverse discrete Fourier
% transform of a function F.
h = 2*pi/N; wn = exp(-i*h);
for k=0:N-1

s = 0;
for j=0:N-1

s = s + fc(j+1)*wnˆ(-k*(j-N/2));
end
fv (k+1) = s;

end
return

10.9.1 The Gibbs Phenomenon

Consider the discontinuous function f(x) = x/π for x ∈ [0, π] and equal
to x/π − 2 for x ∈ (π, 2π], and compute its DFT using Program 88. The
interpolate ΠF

Nf is shown in Figure 10.3 (above) for N = 8, 16, 32. Notice the
spurious oscillations around the point of discontinuity of f whose maximum
amplitude, however, tends to a finite limit. The arising of these oscillations is
known as Gibbs phenomenon and is typical of functions with isolated jump
discontinuities; it affects the behavior of the truncated Fourier series not only

450 10 Orthogonal Polynomials in Approximation Theory

in the neighborhood of the discontinuity but also over the entire interval,
as can be clearly seen in the figure. The convergence rate of the truncated
series for functions with jump discontinuities is linear in N−1 at every given
non-singular point of the interval of definition of the function (see [CHQZ06],
Section 2.1.4).

Since the Gibbs phenomenon is related to the slow decay of the Fourier co-
efficients of a discontinuous function, smoothing procedures can be profitably
employed to attenuate the higher-order Fourier coefficients. This can be done
by multiplying each coefficient f̃k by a factor σk such that σk is a decreasing
function of k. An example is provided by the Lanczos smoothing

σk =
sin(2(k − N/2)(π/N))

2(k − N/2)(π/N)
, k = 0, . . . , N − 1. (10.56)

The effect of applying the Lanczos smoothing to the computation of the DFT
of the above function f is represented in Figure 10.3 (below), which shows
that the oscillations have almost completely disappeared.

For a deeper analysis of this subject we refer to [CHQZ06], Chapter 2.

10.9.2 The Fast Fourier Transform

As pointed out in the previous section, computing the discrete Fourier trans-
form (DFT) or its inverse (IDFT) as a matrix-vector product, would require
N2 operations. In this section we illustrate the basic steps of the Cooley-
Tukey algorithm [CT65], commonly known as Fast Fourier Transform (FFT).
The computation of a DFT of order N is split into DFTs of order p0, . . . , pm,
where {pi} are the prime factors of N . If N is a power of 2, the computational
cost has the order of N log2 N flops.

0 1 2 3 4 5 6
−1

−0.5

0

0.5

1

0 1 2 3 4 5 6
−1

−0.5

0

0.5

1

Fig. 10.3. Above: Fourier interpolate of the sawtooth function (thick solid line) for
N = 8 (dash-dotted line), 16 (dashed line) and 32 (thin solid line). Below: the same
informations are plotted in the case of the Lanczos smoothing

10.9 Fourier Trigonometric Polynomials 451

A recursive algorithm to compute the DFT when N is a power of 2
is described in the following. Let f = (fi)T , i = 0, . . . , N − 1 and set
p(x) = 1

N

∑N−1
j=0 fjx

j . Then, computing the DFT of the vector f amounts to

evaluating p(W k−N
2

N) for k = 0, . . . , N − 1. Let us introduce the polynomials

pe(x) =
1
N

[
f0 + f2x + . . . + fN−2x

N
2 −1

]
,

po(x) =
1
N

[
f1 + f3x + . . . + fN−1x

N
2 −1

]
.

Notice that
p(x) = pe(x2) + xpo(x2)

from which it follows that the computation of the DFT of f can be carried
out by evaluating the polynomials pe and po at the points W

2(k−N
2)

N , k =
0, . . . , N − 1. Since

W
2(k−N

2)

N = W 2k−N
N = exp

(

−i
2πk

N/2

)

exp(i2π) = W k
N/2,

it turns out that we must evaluate pe and po at the principal roots of unity of
order N/2. In this manner the DFT of order N is rewritten in terms of two
DFTs of order N/2; of course, we can recursively apply again this procedure
to po and pe. The process is terminated when the degree of the last generated
polynomials is equal to one.
In Program 90 we propose a simple implementation of the FFT recursive
algorithm. The input parameters are the vector f containing the NN values fk,
where NN is a power of 2.

Program 90 - fftrec : FFT algorithm in the recursive version

function [fftv]=fftrec(f,NN)
%FFTREC FFT algorithm in recursive form.
N = length(f); w = exp(-2*pi*sqrt(-1)/N);
if N == 2

fftv = f(1)+w.ˆ[-NN/2:NN-1-NN/2]*f(2);
else

a1 = f(1:2:N); b1 = f(2:2:N);
a2 = fftrec(a1,NN); b2 = fftrec(b1,NN);
for k=-NN/2:NN-1-NN/2

fftv(k+1+NN/2) = a2(k+1+NN/2) + b2(k+1+NN/2)*wˆk;
end

end
return

Remark 10.5 A FFT procedure can also be set up when N is not a power of
2. The simplest approach consists of adding some zero samples to the original

452 10 Orthogonal Polynomials in Approximation Theory

sequence {fi} in such a way to obtain a total number of Ñ = 2p values. This
technique, however, does not necessarily yield the correct result. Therefore,
an effective alternative is based on partitioning the Fourier matrix C into
subblocks of smaller size. Practical FFT implementations can handle both
strategies (see, for instance, the fft package available in MATLAB). �

10.10 Approximation of Function Derivatives

A problem which is often encountered in numerical analysis is the approxima-
tion of the derivative of a function f(x) on a given interval [a, b]. A natural
approach to it consists of introducing in [a, b] n + 1 nodes {xk, k = 0, . . . , n},
with x0 = a, xn = b and xk+1 = xk +h, k = 0, . . . , n− 1 where h = (b−a)/n.
Then, we approximate f ′(xi) using the nodal values f(xk) as

h

m∑

k=−m

αkui−k =
m′
∑

k=−m′

βkf(xi−k), (10.57)

where {αk}, {βk} ∈ R are 2(m+m′ +1) coefficients to be determined and uk

is the desired approximation to f ′(xk).
A nonnegligible issue in the choice of scheme (10.57) is the computational

efficiency. Regarding this concern, it is worth noting that, if m �= 0, determin-
ing the values {ui} requires the solution of a linear system.

The set of nodes which are involved in constructing the derivative of f
at a certain node, is called a stencil. The band of the matrix associated with
system (10.57) increases as the stencil gets larger.

10.10.1 Classical Finite Difference Methods

The simplest way to generate a formula like (10.57) consists of resorting to
the definition of the derivative. If f ′(xi) exists, then

f ′(xi) = lim
h→0+

f(xi + h) − f(xi)
h

. (10.58)

Replacing the limit with the incremental ratio, with h finite, yields the
approximation

uFD
i =

f(xi+1) − f(xi)
h

, 0 ≤ i ≤ n − 1. (10.59)

Relation (10.59) is a special instance of (10.57) setting m = 0, α0 = 1, m′ = 1,
β−1 = 1, β0 = −1, β1 = 0.
The right side of (10.59) is called the forward finite difference and the approx-
imation that is being used corresponds to replacing f ′(xi) with the slope of
the straight line passing through the points (xi, f(xi)) and (xi+1, f(xi+1)), as
shown in Figure 10.4.

10.10 Approximation of Function Derivatives 453

xixi−1 xi+1

f(xi+1)
f(xi)

f(xi−1)
f

Fig. 10.4. Finite difference approximation of f ′(xi): backward (solid line), forward
(dotted line) and centered (dashed line)

To estimate the error that is made, it suffices to expand f in Taylor’s
series, obtaining

f(xi+1) = f(xi) + hf ′(xi) +
h2

2
f ′′(ξi) with ξi ∈ (xi, xi+1).

We assume henceforth that f has the required regularity, so that

f ′(xi) − uFD
i = −h

2
f ′′(ξi). (10.60)

Obviously, instead of (10.58) we could employ a centered incremental ratio,
obtaining the following approximation

uCD
i =

f(xi+1) − f(xi−1)
2h

, 1 ≤ i ≤ n − 1. (10.61)

Scheme (10.61) is a special instance of (10.57) setting m = 0, α0 = 1, m′ = 1,
β−1 = 1/2, β0 = 0, β1 = −1/2.
The right side of (10.61) is called the centered finite difference and geometri-
cally amounts to replacing f ′(xi) with the slope of the straight line passing
through the points (xi−1, f(xi−1)) and (xi+1, f(xi+1)) (see Figure 10.4). Re-
sorting again to Taylor’s series, we get

f ′(xi) − uCD
i = −h2

6
f ′′′(ξi). (10.62)

Formula (10.61) thus provides a second-order approximation to f ′(xi) with
respect to h.

Finally, with a similar procedure, we can derive a backward finite difference
scheme, where

uBD
i =

f(xi) − f(xi−1)
h

, 1 ≤ i ≤ n, (10.63)

454 10 Orthogonal Polynomials in Approximation Theory

which is affected by the following error

f ′(xi) − uBD
i =

h

2
f ′′(ξi). (10.64)

The values of the parameters in (10.57) are m = 0, α0 = 1, m′ = 1 and
β−1 = 0, β0 = 1, β1 = −1.

Higher-order schemes, as well as finite difference approximations of higher-
order derivatives of f , can be constructed using Taylor’s expansions of higher
order. A remarkable example is the approximation of f ′′; if f ∈ C4([a, b]) we
easily get

f ′′(xi) =
f(xi+1) − 2f(xi) + f(xi−1)

h2

−h2

24

(
f (4)(xi + θih) + f (4)(xi − ωih)

)
, 0 < θi, ωi < 1.

The following centered finite difference scheme can thus be derived

u′′
i =

f(xi+1) − 2f(xi) + f(xi−1)
h2

, 1 ≤ i ≤ n − 1 (10.65)

which is affected by the error

f ′′(xi) − u′′
i = −h2

24

(
f (4)(xi + θih) + f (4)(xi − ωih)

)
. (10.66)

Formula (10.65) provides a second-order approximation to f ′′(xi) with respect
to h.

10.10.2 Compact Finite Differences

More accurate approximations are provided by using the following formula
(which we call compact differences)

αui−1 + ui + αui+1 =
β

2h
(fi+1 − fi−1) +

γ

4h
(fi+2 − fi−2) (10.67)

for i = 2, . . . , n − 2. We have set, for brevity, fi = f(xi).
The coefficients α, β and γ are to be determined in such a way that the

relations (10.67) yield values ui that approximate f ′(xi) up to the highest
order with respect to h. For this purpose, the coefficients are selected in such
a way as to minimize the consistency error (see Section 2.2)

σi(h) = αf
(1)
i−1 + f

(1)
i + αf

(1)
i+1

−
(

β

2h
(fi+1 − fi−1) +

γ

4h
(fi+2 − fi−2)

)

, (10.68)

10.10 Approximation of Function Derivatives 455

which comes from “forcing” f to satisfy the numerical scheme (10.67). For
brevity, we set f

(k)
i = f (k)(xi), k = 1, 2,

Precisely, assuming that f ∈ C5([a, b]) and expanding it in a Taylor’s series
around xi, we find

fi±1 = fi ± hf
(1)
i + h2

2 f
(2)
i ± h3

6 f
(3)
i + h4

24 f
(4)
i ± h5

120f
(5)
i + O(h6),

f
(1)
i±1 = f

(1)
i ± hf

(2)
i + h2

2 f
(3)
i ± h3

6 f
(4)
i + h4

24 f
(5)
i + O(h5).

Substituting into (10.68) we get

σi(h) = (2α + 1)f (1)
i + α

h2

2
f

(3)
i + α

h4

12
f

(5)
i − (β + γ)f (1)

i

−h2

2

(
β

6
+

2γ

3

)

f
(3)
i − h4

60

(
β

2
+ 8γ

)

f
(5)
i + O(h6).

Second-order methods are obtained by equating to zero the coefficient of f
(1)
i ,

i.e., if 2α + 1 = β + γ, while we obtain schemes of order 4 by equating to zero
also the coefficient of f

(3)
i , yielding 6α = β+4γ and finally, methods of order 6

are obtained by setting to zero also the coefficient of f
(5)
i , i.e., 10α = β +16γ.

The linear system formed by these last three equations has a nonsingular
matrix. Thus, there exists a unique scheme of order 6 that corresponds to the
following choice of the parameters

α = 1/3, β = 14/9, γ = 1/9, (10.69)

while there exist infinitely many methods of second and fourth order. Among
these infinite methods, a popular scheme has coefficients α = 1/4, β = 3/2 and
γ = 0. Schemes of higher order can be generated at the expense of furtherly
expanding the computational stencil.

Traditional finite difference schemes correspond to setting α = 0 and allow
for computing explicitly the approximant of the first derivative of f at a node,
in contrast with compact schemes which are required in any case to solve a lin-
ear system of the form Au = Bf (where the notation has the obvious meaning).
To make the system solvable, it is necessary to provide values to the variables
ui with i < 0 and i > n. A particularly favorable instance is that where f is
a periodic function of period b − a, in which case ui+n = ui for any i ∈ Z. In
the nonperiodic case, system (10.67) must be supplied by suitable relations
at the nodes near the boundary of the approximation interval. For example,
the first derivative at x0 can be computed using the relation

u0 + αu1 =
1
h

(Af1 + Bf2 + Cf3 + Df4),

and requiring that

A = −3 + α + 2D
2

, B = 2 + 3D, C = −1 − α + 6D
2

,

456 10 Orthogonal Polynomials in Approximation Theory

in order for the scheme to be at least second-order accurate (see [Lel92] for the
relations to enforce in the case of higher-order methods). Finally, we notice
that, for any given order of accuracy, compact schemes have a stencil smaller
than the one of standard finite differences.
Program 91 provides an implementation of the compact finite difference
schemes (10.67) for the approximation of the derivative of a given function f
which is assumed to be periodic on the interval [a, b). The input parameters
alpha, beta and gamma contain the coefficients of the scheme, a and b are the
endpoints of the interval, f is a string containing the expression of f and n
denotes the number of subintervals in which [a, b] is partitioned. The output
vectors u and x contain the computed approximate values ui and the node
coordinates. Notice that setting alpha=gamma=0 and beta=1 we recover the
centered finite difference approximation (10.61).

Program 91 - compdiff : Compact difference schemes

function [u,x] = compdiff(alpha,beta,gamma,a,b,n,f)
%COMPDIFF Compact difference scheme.
% [U,X]=COMPDIFF(ALPHA,BETA,GAMMA,A,B,N,F) computes the first
% derivative of a function F over the interval (A,B) using a compact finite
% difference scheme with coefficients ALPHA, BETA and GAMMA.
h=(b-a)/(n+1); x=[a:h:b]; fx = eval(f);
A=eye(n+2)+alpha*diag(ones(n+1,1),1)+alpha*diag(ones(n+1,1),-1);
rhs=0.5*beta/h*(fx(4:n+1)-fx(2:n-1))+0.25*gamma/h*(fx(5:n+2)-fx(1:n-2));
if gamma == 0

rhs=[0.5*beta/h*(fx(3)-fx(1)), rhs, 0.5*beta/h*(fx(n+2)-fx(n))];
A(1,1:n+2)=zeros(1,n+2);
A(1,1)= 1; A(1,2)=alpha; A(1,n+1)=alpha;
rhs=[0.5*beta/h*(fx(2)-fx(n+1)), rhs];
A(n+2,1:n+2)=zeros(1,n+2);
A(n+2,n+2)=1; A(n+2,n+1)=alpha; A(n+2,2)=alpha;
rhs=[rhs, 0.5*beta/h*(fx(2)-fx(n+1))];

else
rhs=[0.5*beta/h*(fx(3)-fx(1))+0.25*gamma/h*(fx(4)-fx(n+1)), rhs];
A(1,1:n+2)=zeros(1,n+2);
A(1,1)=1; A(1,2)=alpha; A(1,n+1)=alpha;
rhs=[0.5*beta/h*(fx(2)-fx(n+1))+0.25*gamma/h*(fx(3)-fx(n)), rhs];
rhs=[rhs,0.5*beta/h*(fx(n+2)-fx(n))+0.25*gamma/h*(fx(2)-fx(n-1))];
A(n+2,1:n+2)=zeros(1,n+2);
A(n+2,n+2)=1; A(n+2,n+1)=alpha; A(n+2,2)=alpha;
rhs=[rhs,0.5*beta/h*(fx(2)-fx(n+1))+0.25*gamma/h*(fx(3)-fx(n))];

end
u = A\rhs’;
return

Example 10.4 Let us consider the approximate evaluation of the derivative of the
function f(x) = sin(x) on the interval [0, 2π]. Figure 10.5 shows the logarithm of the

10.10 Approximation of Function Derivatives 457

4
10−10

10−8

10−6

10−4

10−2

100

8 16 32 64

Fig. 10.5. Maximum nodal errors for the second-order centered finite difference
scheme (solid line) and for the fourth (dashed line) and sixth-order (dotted line)
compact difference schemes as functions of p = log(n)

maximum nodal errors for the second-order centered finite difference scheme (10.61)
and of the fourth and sixth-order compact difference schemes introduced above, as
a function of p = log(n). •

Another nice feature of compact schemes is that they maximize the range of
well-resolved waves as we are going to explain. Assume that f is a real and
periodic function on [0, 2π], that is, f(0) = f(2π). Using the same notation as
in Section 10.9, we let N be an even positive integer and set h = 2π/N . Then
replace f by its truncated Fourier series

f∗
N (x) =

N/2−1∑

k=−N/2

f̂keikx.

Since the function f is real-valued, f̂k = f̂−k for k = 1, . . . , N/2 and f̂0 =

f̂0. For sake of convenience, introduce the normalized wave number wk =
kh = 2πk/N and perform a scaling of the coordinates setting s = x/h. As a
consequence, we get

f∗
N (x(s)) =

N/2−1∑

k=−N/2

f̂keiksh =
N/2−1∑

k=−N/2

f̂keiwks. (10.70)

Taking the first derivative of (10.70) with respect to s yields a function whose
Fourier coefficients are f̂ ′

k = iwkf̂k. We can thus estimate the approximation
error on (f∗

N)′ by comparing the exact coefficients f̂ ′
k with the corresponding

ones obtained by an approximate derivative, in particular, by comparing the
exact wave number wk with the approximate one, say wk,app.

458 10 Orthogonal Polynomials in Approximation Theory

0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

(a)

(b)

(c)

(d)

Fig. 10.6. Computed wave numbers for centered finite differences (10.61) (a) and
for compact schemes of fourth (b), sixth (c) and tenth (d) order, compared with the
exact wave number (the straight line). On the x axis the normalized coordinate s is
represented

Let us neglect the subscript k and perform the comparison over the whole
interval [0, π) where wk is varying. It is clear that methods based on the
Fourier expansion have wapp = w if w �= π (wapp = 0 if w = π). The family of
schemes (10.67) is instead characterized by the wave number

wapp(z) =
a sin(z) + (b/2) sin(2z) + (c/3) sin(3z)

1 + 2α cos(z) + 2β cos(2z)
, z ∈ [0, π)

(see [Lel92]). Figure 10.6 displays a comparison among wave numbers of sev-
eral schemes, of compact and noncompact type.

The range of values for which the wave number computed by the numerical
scheme adequately approximates the exact wave number, is the set of well-
resolved waves. As a consequence, if wmin is the smallest well-resolved wave,
the difference 1−wmin/π represents the fraction of waves that are unresolved
by the numerical scheme. As can be seen in Figure 10.6, the standard finite
difference schemes approximate correctly the exact wave number only for small
wave numbers.

10.10.3 Pseudo-Spectral Derivative

An alternative way for numerical differentiation consists of approximating the
first derivative of a function f with the exact first derivative of the polynomial
Πnf interpolating f at the nodes {x0, . . . , xn}.

Exactly as happens for Lagrange interpolation, using equally spaced
nodes does not yield stable approximations to the first derivative of f for
n large. For this reason, we limit ourselves to considering the case where

10.10 Approximation of Function Derivatives 459

the nodes are nonuniformly distributed according to the Gauss-Lobatto-
Chebyshev formula.

For simplicity, assume that I = [a, b] = [−1, 1] and for n ≥ 1, take in I the
Gauss-Lobatto-Chebyshev nodes as in (10.21). Then, consider the Lagrange
interpolating polynomial ΠGL

n,wf , introduced in Section 10.3. We define the
pseudo-spectral derivative of f ∈ C0(I) to be the derivative of the polynomial
ΠGL

n,wf

Dnf = (ΠGL
n,wf)′ ∈ Pn−1(I).

The error made in replacing f ′ with Dnf is of exponential type, that is, it only
depends on the smoothness of the function f . More precisely, there exists a
constant C > 0 independent of n such that

‖f ′ −Dnf‖w ≤ Cn1−m‖f‖m,w, (10.71)

for any m ≥ 2 such that the norm ‖f‖m,w, introduced in (10.23), is finite.
Recalling (10.19)

(Dnf)(x̄i) =
n∑

j=0

f(x̄j)l̄′j(x̄i), i = 0, . . . , n, (10.72)

so that the pseudo-spectral derivative at the interpolation nodes can be com-
puted knowing only the nodal values of f and of l̄′j . These values can be
computed once for all and stored in a matrix D ∈ R

(n+1)×(n+1): Dij = l̄′j(x̄i)
for i, j = 0, ..., n, called a pseudo-spectral differentiation matrix.

Relation (10.72) can thus be cast in matrix form as f ′ = Df , letting
f = (f(x̄i)) and f ′ = ((Dnf)(x̄i)) for i = 0, ..., n.
The entries of D have the following explicit form (see [CHQZ06], p. 89)

Dlj =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dl

dj

(−1)l+j

x̄l − x̄j
, l �= j,

−x̄j

2(1 − x̄2
j)

, 1 ≤ l = j ≤ n − 1,

−2n2 + 1
6

, l = j = 0,

2n2 + 1
6

, l = j = n,

(10.73)

where the coefficients dl have been defined in Section 10.3 (see also Example
5.13 concerning the approximation of the multiple eigenvalue λ = 0 of D).
To compute the pseudo-spectral derivative of a function f over the generic
interval [a, b], we only have to resort to the change of variables considered in
Remark 10.3.

The second-order pseudo-spectral derivative can be computed as the prod-
uct of the matrix D and the vector f ′, that is, f ′′ = Df ′, or by directly applying
matrix D2 to the vector f .

460 10 Orthogonal Polynomials in Approximation Theory

10.11 Transforms and Their Applications

In this section we provide a short introduction to the most relevant integral
transforms and discuss their basic analytical and numerical properties.

10.11.1 The Fourier Transform

Definition 10.1 Let L1(R) denote the space of real or complex functions
defined on the real line such that

∞∫

−∞

|f(t)| dt < +∞.

For any f ∈ L1(R) its Fourier transform is a complex-valued function F =
F [f] defined as

F (ν) =

∞∫

−∞

f(t)e−i2πνt dt.

�

Should the independent variable t denote time, then ν would have the meaning
of frequency. Thus, the Fourier transform is a mapping that to a function of
time (typically, real-valued) associates a complex-valued function of frequency.
The following result provides the conditions under which an inversion formula
exists that allows us to recover the function f from its Fourier transform F
(for the proof see [Rud83], p. 199).

Property 10.3 (Inversion theorem) Let f be a given function in L1(R),
F ∈ L1(R) be its Fourier transform and g be the function defined by

g(t) =

∞∫

−∞

F (ν)ei2πνt dν, t ∈ R. (10.74)

Then g ∈ C0(R), with lim|x|→∞ g(x) = 0, and f(t) = g(t) almost everywhere
in R (i.e., for any t unless possibly a set of zero measure).

The integral at right-hand side of (10.74) is to be meant in the Cauchy prin-
cipal value sense, i.e., we let

∞∫

−∞

F (ν)ei2πνt dν = lim
a→∞

a∫

−a

F (ν)ei2πνt dν

10.11 Transforms and Their Applications 461

and we call it the inverse Fourier transform or inversion formula of the Fourier
transform. This mapping that associates to the complex function F the gen-
erating function f will be denoted by F−1[F], i.e., F = F [f] iff f = F−1[F].
Let us briefly summarize the main properties of the Fourier transform and its
inverse:

1. F and F−1 are linear operators, i.e.

F [αf + βg] = αF [f] + βF [g], ∀α, β ∈ C,

F−1[αF + βG] = αF−1[F] + βF−1[G], ∀α, β ∈ C;
(10.75)

2. scaling: if α is any nonzero real number and fα is the function fα(t) =
f(αt), then

F [fα] =
1
|α|F 1

α
,

where F 1
α
(ν) = F (ν/α);

3. duality: let f(t) be a given function and F (ν) be its Fourier transform.
Then the function g(t) = F (−t) has a Fourier transform given by f(ν).
Thus, once an associated function-transform pair is found, another dual
pair is automatically generated. An application of this property is provided
by the pair r(t)-F [r] in Example 10.5;

4. parity: if f(t) is a real even function then F (ν) is real and even, while
if f(t) is a real and odd function then F (ν) is imaginary and odd. This
property allows one to work only with nonnegative frequencies;

5. convolution and product: for any given functions f, g ∈ L1(R), we have

F [f ∗ g] = F [f]F [g], F [fg] = F ∗ G, (10.76)

where the convolution integral of two functions φ and ψ is given by

(φ ∗ ψ)(t) =

∞∫

−∞

φ(τ)ψ(t − τ) dτ. (10.77)

Example 10.5 We provide two examples of the computation of the Fourier trans-
forms of functions that are typically encountered in signal processing.
Let us first consider the square wave (or rectangular) function r(t) defined as

r(t) =

{
A if − T

2
≤ t ≤ T

2
,

0 otherwise,

where T and A are two given positive numbers. Its Fourier transform F [r] is the
function

F (ν) =

T/2∫

−T/2

Ae−i2πνt dt = AT
sin(πνT)

πνT
, ν ∈ R,

where AT is the area of the rectangular function.

462 10 Orthogonal Polynomials in Approximation Theory

−10 −8 −6 −4 −2 0 2 4 6 8 10
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

, −10 −8 −6 −4 −2 0 2 4 6 8 10
−0.5
−0.4

−0.2

−0.1

0

−0.3

0.1

0.2

0.3

0.4

0.5

Fig. 10.7. Fourier transforms of the rectangular (left) and the sawtooth (right)
functions

Let us consider the sawtooth function

s(t) =

{
2At

T
if − T

2
≤ t ≤ T

2
,

0 otherwise,

whose DFT is shown in Figure 10.3 and whose Fourier transform F [s] is the function

F (ν) = i
AT

πνT

[

cos(πνT) − sin(πνT)

πνT

]

, ν ∈ R

and is purely imaginary since s is an odd real function. Notice also that the functions
r and s have a finite support whereas their transforms have an infinite support (see
Figure 10.7). In signal theory this corresponds to saying that the transform has an
infinite bandwidth. •

Example 10.6 The Fourier transform of a sinusoidal function is of paramount
interest in signal and communication systems. To start with, consider the constant
function f(t) = A for a given A ∈ R. Since it has an infinite time duration its Fourier
transform F [A] is the function

F (ν) = lim
a→∞

a∫

−a

Ae−i2πνt dt = A lim
a→∞

sin(2πνa)

πν
,

where the integral above is again the Cauchy principal value of the corresponding
integral over (−∞,∞). It can be proved that the limit exists and is unique in the
sense of distributions (see Section 12.4) yielding

F (ν) = Aδ(ν), (10.78)

where δ is the so-called Dirac mass, i.e., a distribution that satisfies
∫ ∞

−∞
δ(ξ)φ(ξ) dξ = φ(0) (10.79)

10.11 Transforms and Their Applications 463

for any function φ continuous at the origin. From (10.78) we see that the transform
of a function with infinite time duration has a finite bandwidth.

Let us now consider the computation of the Fourier transform of the function
f(t) = A cos(2πν0t), where ν0 is a fixed frequency. Recalling Euler’s formula

cos(θ) =
eiθ + e−iθ

2
, θ ∈ R,

and applying (10.78) twice we get

F [A cos(2πν0t)] =
A

2
δ(ν − ν0) +

A

2
δ(ν + ν0),

which shows that the spectrum of a sinusoidal function with frequency ν0 is centered
around ±ν0 (notice that the transform is even and real since the same holds for the
function f(t)). •

It is worth noting that in real-life there do not exist functions (i.e. signals)
with infinite duration or bandwidth. Actually, if f(t) is a function whose value
may be considered as “negligible” outside of some interval (ta, tb), then we can
assume that the effective duration of f is the length ∆t = tb − ta. In a similar
manner, if F (ν) is the Fourier transform of f and it happens that F (ν) may be
considered as “negligible” outside of some interval (νa, νb), then the effective
bandwidth of f is ∆ν = νb − νa. Referring to Figure 10.7, we clearly see that
the effective bandwidth of the rectangular function can be taken as (−10, 10).

10.11.2 (Physical) Linear Systems and Fourier Transform

Mathematically speaking, a physical linear system (LS) can be regarded as
a linear operator S that enjoys the linearity property (10.75). Denoting by
i(t) and u(t) an admissible input function for S and its corresponding output
function respectively, the LS can be represented as u(t) = S(i(t)) or S : i → u.
A special category of LS are the so-called shift invariant (or time-invariant)
linear systems (ILS) which satisfy the property

S(i(t − t0)) = u(t − t0), ∀t0 ∈ R

and for any admissible input function i.
Let S be an ILS system and let f and g be two admissible input functions

for S with w = S(g). An immediate consequence of the linearity and shift-
invariance is that

S((f ∗ g)(t)) = (f ∗ S(g))(t) = (f ∗ w)(t), (10.80)

where ∗ is the convolution operator defined in (10.77).
Assume we take as input function the impulse function δ(t) introduced

in the previous section and denote by h(t) = S(δ(t)) the corresponding out-
put through S (usually referred to as the system impulse response function).

464 10 Orthogonal Polynomials in Approximation Theory

Property (10.79) implies that for any function φ, (φ ∗ δ)(t) = φ(t), so that,
recalling (10.80) and taking φ(t) = i(t) we have

u(t) = S(i(t)) = S(i ∗ δ)(t) = (i ∗ S(δ))(t) = (i ∗ h)(t).

Thus, S can be completely described through its impulse response function.
Equivalently, we can pass to the frequency domain by means of the first rela-
tion in (10.76) obtaining

U(ν) = I(ν)H(ν), (10.81)

where I, U and H are the Fourier transforms of i(t), u(t) and h(t), respectively;
H is the so-called system transfer function.

Relation (10.81) plays a central role in the analysis of linear time-invariant
systems as it is simpler to deal with the system transfer function than with
the corresponding impulse response function, as demonstrated in the following
example.

Example 10.7 (Ideal low-pass filter) An ideal low-pass filter is an ILS charac-
terized by the transfer function

H(ν) =

{
1, if |ν| ≤ ν0/2,
0, otherwise.

Using the duality property, the impulse response function F−1[H] is

h(t) = ν0
sin(πν0t)

πν0t
.

Given an input signal i(t) with Fourier transform I(ν), the corresponding output
u(t) has a spectrum given by (10.81)

I(ν)H(ν) =

{
I(ν), if |ν| ≤ ν0/2,
0, otherwise.

The effect of the filter is to cut off the input frequencies that lie outside the window
|ν| ≤ ν0/2. •

The input/output functions i(t) and u(t) usually denote signals and the lin-
ear system described by H(ν) is typically a communication system. Therefore,
as pointed out at the end of Section 10.11.1, we are legitimated in assuming
that both i(t) and u(t) have a finite effective duration. In particular, referring
to i(t) we suppose i(t) = 0 if t �∈ [0, T0). Then, the computation of the Fourier
transform of i(t) yields

I(ν) =

T0∫

0

i(t)e−i2πνt dt.

Letting ∆t = T0/n for n ≥ 1 and approximating the integral above by the
composite trapezoidal formula (9.14), we get

10.11 Transforms and Their Applications 465

Ĩ(ν) = ∆t

n−1∑

k=0

i(k∆t)e−i2πνk∆t.

It can be proved (see, e.g., [Pap62]) that Ĩ(ν)/∆t is the Fourier transform of
the so-called sampled signal

is(t) =
∞∑

k=−∞
i(k∆t)δ(t − k∆t),

where δ(t − k∆t) is the Dirac mass at k∆t. Then, using the convolution and
the duality properties of the Fourier transform, we get

Ĩ(ν) =
∞∑

j=−∞
I

(

ν − j

∆t

)

, (10.82)

which amounts to replacing I(ν) by its periodic repetition with period 1/∆t.
Let J∆t = [− 1

2∆t ,
1

2∆t]; then, it suffices to compute (10.82) for ν ∈ J∆t. This
can be done numerically by introducing a uniform discretization of J∆t with
frequency step ν0 = 1/(m∆t) for m ≥ 1. By doing so, the computation of Ĩ(ν)
requires evaluating the following m + 1 discrete Fourier transforms (DFT)

Ĩ(jν0) = ∆t

n−1∑

k=0

i(k∆t)e−i2πjν0k∆t, j = −m
2 , . . . , m

2 .

For an efficient computation of each DFT in the formula above it is crucial to
use the FFT algorithm described in Section 10.9.2.

10.11.3 The Laplace Transform

The Laplace transform can be employed to solve ordinary differential equa-
tions with constant coefficients as well as partial differential equations.

Definition 10.2 Let f ∈ L1
loc([0,∞)) i.e., f ∈ L1([0, T]) for any T > 0. Let

s = σ + iω be a complex variable. The Laplace integral of f is defined as

∞∫

0

f(t)e−st dt = lim
T→∞

T∫

0

f(t)e−st dt.

If this integral exists for some s, it turns out to be a function of s; then, the
Laplace transform L[f] of f is the function

L(s) =

∞∫

0

f(t)e−st dt.

�

466 10 Orthogonal Polynomials in Approximation Theory

The following relation between Laplace and Fourier transforms holds

L(s) = F (e−σtf̃(t)),

where f̃(t) = f(t) if t ≥ 0 while f̃(t) = 0 if t < 0.

Example 10.8 The Laplace transform of the unit step function f(t) = 1 if t > 0,
f(t) = 0 otherwise, is given by

L(s) =

∞∫

0

e−st dt =
1

s
.

We notice that the Laplace integral exists if σ > 0. •

In Example 10.8 the convergence region of the Laplace integral is the half-
plane {Re(s) > 0} of the complex field. This property is quite general, as
stated by the following result.

Property 10.4 If the Laplace transform exists for s = s̄ then it exists for
all s with Re(s) > Re(s̄). Moreover, let E be the set of the real parts of s
such that the Laplace integral exists and denote by λ the infimum of E. If λ
happens to be finite, the Laplace integral exists in the half-plane Re(s) > λ. If
λ = −∞ then it exists for all s ∈ C; λ is called the abscissa of convergence.

We recall that the Laplace transform enjoys properties completely analogous
to those of the Fourier transform. The inverse Laplace transform is denoted
formally as L−1 and is such that

f(t) = L−1[L(s)].

Example 10.9 Let us consider the ordinary differential equation y′(t)+ay(t) = g(t)
with y(0) = y0. Multiplying by est, integrating between 0 and ∞ and passing to the
Laplace transform, yields

sY (s) − y0 + aY (s) = G(s). (10.83)

Should G(s) be easily computable, (10.83) would furnish Y (s) and then, by applying
the inverse Laplace transform, the generating function y(t). For instance, if g(t) is
the unit step function, we obtain

y(t) = L−1
{

1

a

[
1

s
− 1

s + a

]
+

y0

s + a

}
=

1

a
(1 − e−at) + y0e

−at.

•

For an extensive presentation and analysis of the Laplace transform see, e.g.,
[Tit37]. In the next section we describe a discrete version of the Laplace trans-
form, known as the Z-transform.

10.11 Transforms and Their Applications 467

10.11.4 The Z-Transform

Definition 10.3 Let f be a given function, defined for any t ≥ 0, and ∆t > 0
be a given time step. The function

Z(z) =
∞∑

n=0

f(n∆t)z−n, z ∈ C, (10.84)

is called the Z-transform of the sequence {f(n∆t)} and is denoted by
Z[f(n∆t)]. �

The parameter ∆t is the sampling time step of the sequence of samples f(n∆t).
The infinite sum (10.84) converges if

|z| > R = lim sup
n→∞

n
√

|f(n∆t)|.

It is possible to deduce the Z-transform from the Laplace transform as follows.
Denoting by f0(t) the piecewise constant function such that f0(t) = f(n∆t)
for t ∈ (n∆t, (n + 1)∆t), the Laplace transform L[f0] of f0 is the function

L(s) =

∞∫

0

f0(t)e−st dt =
∞∑

n=0

(n+1)∆t∫

n∆t

e−stf(n∆t) dt

=
∞∑

n=0

f(n∆t)
e−ns∆t − e−(n+1)s∆t

s
=
(

1 − e−s∆t

s

) ∞∑

n=0

f(n∆t)e−ns∆t.

The discrete Laplace transform Zd[f0] of f0 is the function

Zd(s) =
∞∑

n=0

f(n∆t)e−ns∆t.

Then, the Z-transform of the sequence {f(n∆t), n = 0, . . . ,∞} coincides with
the discrete Laplace transform of f0 up to the change of variable z = e−s∆t.
The Z-transform enjoys similar properties (linearity, scaling, convolution and
product) to those already seen in the continuous case.
The inverse Z-transform is denoted by Z−1 and is defined as

f(n∆t) = Z−1[Z(z)].

The practical computation of Z−1 can be carried out by resorting to classical
techniques of complex analysis (for example, using the Laurent formula or the
Cauchy theorem for residual integral evaluation) coupled with an extensive
use of tables (see, e.g., [Pou96]).

468 10 Orthogonal Polynomials in Approximation Theory

10.12 The Wavelet Transform

This technique, originally developed in the area of signal processing, has suc-
cessively been extended to many different branches of approximation theory,
including the solution of differential equations. It is based on the so-called
wavelets, which are functions generated by an elementary wavelet through
traslations and dilations. We shall limit ourselves to a brief introduction of
univariate wavelets and their transform in both the continuous and discrete
cases referring to [DL92], [Dau88] and to the references cited therein for a
detailed presentation and analysis.

10.12.1 The Continuous Wavelet Transform

Any function

hs,τ (t) =
1√
s
h

(
t − τ

s

)

, t ∈ R, (10.85)

that is obtained from a reference function h ∈ L2(R) by means of traslations
by a traslation factor τ and dilations by a positive scaling factor s is called a
wavelet. The function h is called an elementary wavelet.
Its Fourier transform, written in terms of ω = 2πν, is

Hs,τ (ω) =
√

sH(sω)e−iωτ , (10.86)

where i denotes the imaginary unit and H(ω) is the Fourier transform of
the elementary wavelet. A dilation t/s (s > 1) in the real domain produces
therefore a contraction sω in the frequency domain. Therefore, the factor 1/s
plays the role of the frequency ν in the Fourier transform (see Section 10.11.1).
In wavelets theory s is usually referred to as the scale. Formula (10.86) is
known as the filter of the wavelet transform.

Definition 10.4 Given a function f ∈ L2(R), its continuous wavelet trans-
form Wf = W[f] is a decomposition of f(t) onto a wavelet basis {hs,τ (t)},
that is

Wf (s, τ) =

∞∫

−∞

f(t)h̄s,τ (t) dt, (10.87)

where the overline bar denotes complex conjugate. �

When t denotes the time-variable, the wavelet transform of f(t) is a function
of the two variables s (scale) and τ (time shift); as such, it is a represen-
tation of f in the time-scale space and is usually referred to as time-scale
joint representation of f . The time-scale representation is the analogue of the
time-frequency representation introduced in the Fourier analysis. This latter

10.12 The Wavelet Transform 469

representation has an intrinsic limitation: the product of the resolution in time
∆t and the resolution in frequency ∆ω must satisfy the following constraint
(Heisenberg inequality)

∆t∆ω ≥ 1
2
, (10.88)

which is the counterpart of the Heisenberg uncertainty principle in quantum
mechanics. This inequality states that a signal cannot be represented as a
point in the time-frequency space. We can only determine its position within
a rectangle of area ∆t∆ω in the time-frequency space.

The wavelet transform (10.87) can be rewritten in terms of the Fourier
transform F (ω) of f as

Wf (s, τ) =
√

s

2π

∞∫

−∞

F (ω)H̄(sω)eiωτ dω, ∀s �= 0, ∀τ,

which shows that the wavelets transform is a bank of wavelet filters charac-
terized by different scales. More precisely, if the scale is small the wavelet is
concentrated in time and the wavelet transform provides a detailed descrip-
tion of f(t) (which is the signal). Conversely, if the scale is large, the wavelet
transform is able to resolve only the large-scale details of f . Thus, the wavelet
transform can be regarded as a bank of multiresolution filters.

The theoretical properties of this transform do not depend on the partic-
ular elementary wavelet that is considered. Hence, specific bases of wavelets
can be derived for specific applications. Some examples of elementary wavelets
are reported below.

Example 10.10 (Haar wavelets) These functions can be obtained by choosing
as the elementary wavelet the Haar function defined as

h(x) =

{
1, if x ∈ (0, 1

2
),

−1, if x ∈ (1
2
, 1),

0, otherwise.

Its Fourier transform is the complex-valued function

H(ω) = 4ie−iω/2
(
1 − cos(

ω

2
)
)

/ω,

which has symmetric module with respect to the origin (see Figure 10.8). The bases
that are obtained from this wavelet are not used in practice due to their ineffective
localization properties in the frequency domain. •

Example 10.11 (Morlet wavelets) The Morlet wavelet is defined as follows
(see [MMG87])

h(x) = eiω0xe−x2/2.

470 10 Orthogonal Polynomials in Approximation Theory

-0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

-80 -60 -40 -20 0 20 40 60 80
0

0.5

1

1.5

Fig. 10.8. The Haar wavelet (left) and the module of its Fourier transform
(right)

-10 -8 -6 -4 -2 0 2 4 6 8 10
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

-10 -8 -6 -4 -2 0 2 4 6 8 10

Fig. 10.9. The real part of the Morlet wavelet (left) and the real part of the
corresponding Fourier transforms (right) for ω0 = 1 (solid line), ω0 = 2.5 (dashed
line) and ω0 = 5 (dotted line)

Thus, it is a complex-valued function whose real part has a real positive Fourier
transform, symmetric with respect to the origin, given by

H(ω) =
√

π
[
e−(ω−ω0)2/2 + e−(ω+ω0)2/2

]
.

•

We point out that the presence of the dilation factor allows for the wavelets
to easily handle possible discontinuities or singularities in f . Indeed, using
the multi-resolution analysis, the signal, properly divided into frequency
bandwidths, can be processed at each frequency by suitably tuning up the
scale factor of the wavelets.
Recalling what was already pointed out in Section 10.11.1, the time localiza-
tion of the wavelet gives rise to a filter with infinite bandwidth. In particular,
defining the bandwidth ∆ω of the wavelet filter as

10.12 The Wavelet Transform 471

∆ω =

⎛

⎝

∞∫

−∞

ω2|H(ω)|2 dω/

∞∫

−∞

|H(ω)|2 dω

⎞

⎠

2

,

then the bandwidth of the wavelet filter with scale equal to s is

∆ωs =

⎛

⎝

∞∫

−∞

ω2|H(sω)|2 dω/

∞∫

−∞

|H(sω)|2 dω

⎞

⎠

2

=
1
s
∆ω.

Consequently, the quality factor Q of the wavelet filter, defined as the inverse
of the bandwidth of the filter, is independent of s since

Q =
1/s

∆ωs
= ∆ω

provided that (10.88) holds. At low frequencies, corresponding to large values
of s, the wavelet filter has a small bandwidth and a large temporal width
(called window) with a low resolution. Conversely, at high frequencies the
filter has a large bandwidth and a small temporal window with a high reso-
lution. Thus, the resolution furnished by the wavelet analysis increases with
the frequency of the signal. This property of adaptivity makes the wavelets a
crucial tool in the analysis of unsteady signals or signals with fast transients
for which the standard Fourier analysis turns out to be ineffective.

10.12.2 Discrete and Orthonormal Wavelets

The continuous wavelet transform maps a function of one variable into a bi-
dimensional representation in the time-scale domain. In many applications this
description is excessively rich. Resorting to the discrete wavelets is an attempt
to represent a function using a finite (and small) number of parameters.

A discrete wavelet is a continuous wavelet that is generated by using dis-
crete scale and translation factors. For s0 > 1, denote by s = sj

0 the scale
factors; the dilation factors usually depend on the scale factors by setting
τ = kτ0s

j
0, τ0 ∈ R. The corresponding discrete wavelet is

hj,k(t) = s
−j/2
0 h(s−j

0 (t − kτ0s
j
0)) = s

−j/2
0 h(s−j

0 t − kτ0).

The scale factor sj
0 corresponds to the magnification or the resolution of the

observation, while the translation factor τ0 is the location where the obser-
vations are made. If one looks at very small details, the magnification must
be large, which corresponds to large negative index j. In this case the step
of translation is small and the wavelet is very concentrated around the ob-
servation point. For large and positive j, the wavelet is spread out and large
translation steps are used.

472 10 Orthogonal Polynomials in Approximation Theory

The behavior of the discrete wavelets depends on the steps s0 and τ0.
When s0 is close to 1 and τ0 is small, the discrete wavelets are close to the
continuous ones. For a fixed scale s0 the localization points of the discrete
wavelets along the scale axis are logarithmic as log s = j log s0. The choice
s0 = 2 corresponds to the dyadic sampling in frequency. The discrete time-
step is τ0s

j
0 and, typically, τ0 = 1. Hence, the time-sampling step is a function

of the scale and along the time axis the localization points of the wavelet
depend on the scale.

For a given function f ∈ L1(R), the corresponding discrete wavelet trans-
form is

Wf (j, k) =

∞∫

−∞

f(t)h̄j,k(t) dt.

It is possible to introduce an orthonormal wavelet basis using discrete dilation
and traslation factors, i.e.

∞∫

−∞

hi,j h̄k,l(t) dt = δikδjl, ∀i, j, k, l ∈ Z.

With an orthogonal wavelet basis, an arbitrary function f can be recon-
structed by the expansion

f(t) = A
∑

j,k∈Z

Wf (j, k)hj,k(t),

where A is a constant that does not depend on f .
As of the computational standpoint, the wavelet discrete transform can be

implemented at even a cheaper cost than the FFT algorithm for computing
the Fourier transform.

10.13 Applications

In this section we apply the theory of orthogonal polynomials to solve two
problems arising in quantum physics. In the first example we deal with Gauss-
Laguerre quadratures, while in the second case the Fourier analysis and the
FFT are considered.

10.13.1 Numerical Computation of Blackbody Radiation

The monochromatic energy density E(ν) of blackbody radiation as a function
of frequency ν is expressed by the following law

10.13 Applications 473

E(ν) =
8πh

c3

ν3

ehν/KBT − 1
,

where h is the Planck constant, c is the speed of light, KB is the Boltzmann
constant and T is the absolute temperature of the blackbody (see, for instance,
[AF83]).

To compute the total density of monochromatic energy that is emitted by
the blackbody (that is, the emitted energy per unit volume) we must evaluate
the integral

E =

∞∫

0

E(ν)dν = αT 4

∞∫

0

x3

ex − 1
dx,

where x = hν/KBT and α = (8πK4
B)/(ch)3 � 1.16 · 10−16 [J][K−4][m−3]. We

also let f(x) = x3/(ex − 1) and I(f) =
∫∞
0

f(x)dx.
To approximate I(f) up to a previously fixed absolute error ≤ δ, we compare
method 1. introduced in Section 9.8.3 with Gauss-Laguerre quadratures.
In the case of method 1. we proceed as follows. For any a > 0 we let I(f) =∫ a

0
f(x)dx +

∫∞
a

f(x)dx and try to find a function φ such that

∞∫

a

f(x)dx ≤
∞∫

a

φ(x)dx ≤ δ

2
, (10.89)

the integral
∫∞

a
φ(x)dx being “easy” to compute. Once the value of a has been

found such that (10.89) is fulfilled, we compute the integral I1(f) =
∫ a

0
f(x)dx

using for instance the adaptive Cavalieri-Simpson formula introduced in
Section 9.7.2 and denoted in the following by AD.
A natural choice of a bounding function for f is φ(x) = Kx3e−x, for a suitable
constant K > 1. Thus, we have K ≥ ex/(ex−1), for any x > 0, that is, letting
x = a, K = ea/(ea − 1). Substituting back into (10.89) yields

∞∫

a

f(x)dx ≤ a3 + 3a2 + 6a + 6
ea − 1

= η(a) ≤ δ

2
.

Letting δ = 10−3, we see that (10.89) is satisfied by taking a � 16. Program
77 for computing I1(f) with the AD method, setting hmin=10−3 and tol=5 ·
10−4, yields the approximate value I1 � 6.4934 with a number of (nonuniform)
partitions equal to 25.

The distribution of the quadrature nodes produced by the adaptive algo-
rithm is plotted in Figure 10.10. Globally, using method 1. yields an approxi-
mation of I(f) equal to 6.4984. Table 10.1 shows, for sake of comparison, some
approximate values of I(f) obtained using the Gauss-Laguerre formulae with
the number of nodes varying between 2 to 20. Notice that, taking n = 4 nodes,
the accuracy of the two computational procedures is roughly equivalent.

474 10 Orthogonal Polynomials in Approximation Theory

0 2 4 6 8 10 12 14 16
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Fig. 10.10. Distribution of quadrature nodes and graph of the integrand function

Table 10.1. Approximate evaluation of I(f) =
∫∞
0

x3/(ex − 1)dx with Gauss-
Laguerre quadratures

n In(f)

2 6.413727469517582
3 6.481130171540022
4 6.494535639802632
5 6.494313365790864

10 6.493939967652101
15 6.493939402671590
20 6.493939402219742

10.13.2 Numerical Solution of Schrödinger Equation

Let us consider the following differential equation arising in quantum mechan-
ics known as the Schrödinger equation

i
∂ψ

∂t
= − �

2m

∂2ψ

∂x2
, x ∈ R t > 0. (10.90)

The symbols i and � denote the imaginary unit and the reduced Planck con-
stant, respectively. The complex-valued function ψ = ψ(x, t), the solution
of (10.90), is called a wave function and the quantity |ψ(x, t)|2 defines the
probability density in the space x of a free electron of mass m at time t (see
[FRL55]).
The corresponding Cauchy problem may represent a physical model for de-
scribing the motion of an electron in a cell of an infinite lattice (for more
details see, e.g., [AF83]).

Consider the initial condition ψ(x, 0) = w(x), where w is the step function
that takes the value 1/

√
2b for |x| ≤ b and is zero for |x| > b, with b = a/5,

10.13 Applications 475

and where 2a represents the inter-ionic distance in the lattice. Therefore, we
are searching for periodic solutions, with period equal to 2a.

Solving problem (10.90) can be carried out using Fourier analysis as fol-
lows. We first write the Fourier series of w and ψ (for any t > 0)

w(x) =
N/2−1∑

k=−N/2

ŵkeiπkx/a, ŵk =
1
2a

a∫

−a

w(x)e−iπkx/adx,

ψ(x, t) =
N/2−1∑

k=−N/2

ψ̂k(t)eiπkx/a, ψ̂k(t) =
1
2a

a∫

−a

ψ(x, t)e−iπkx/adx.

(10.91)

Then, we substitute back (10.91) into (10.90), obtaining the following Cauchy
problem for the Fourier coefficients ψ̂k, for k = −N/2, . . . , N/2 − 1

⎧
⎪⎨

⎪⎩

ψ̂′
k(t) = −i

�

2m

(
kπ

a

)2

ψ̂k(t),

ψ̂k(0) = ˜̂wk.

(10.92)

The coefficients { ˜̂wk} have been computed by regularizing the coefficients
{ŵk} of the step function w using the Lanczos smoothing (10.56) in order
to avoid the Gibbs phenomenon arising around the discontinuities of w (see
Section 10.9.1).
After solving (10.92), we finally get, recalling (10.91), the following expression
for the wave function

ψN (x, t) =
N/2−1∑

k=−N/2

˜̂wke−iEkt/�eiπkx/a, (10.93)

where the coefficients Ek = (k2π2
�

2)/(2ma2) represent, from the physical
standpoint, the energy levels that the electron may assume in its motion
within the potential well.
To compute the coefficients ŵk (and, as a consequence, ˜̂wk), we have used the
MATLAB intrinsic function fft (see Section 10.9.2), employing N = 26 = 64

points and letting a = 10[
◦
A] = 10−9[m]. Time analysis has been carried out

up to T = 10 [s], with time steps of 1 [s]; in all the reported graphs, the x-axis

is measured in [
◦
A], while the y-axes are respectively in units of 105 [m−1/2]

and 1010 [m−1].
In Figure 10.11 we draw the probability density |ψ(x, t)|2 at t = 0, 2 and

5 [s]. The result obtained without the regularizing procedure above is shown
on the left, while the same calculation with the “filtering” of the Fourier coef-
ficients is reported on the right. The second plot demonstrates the smoothing
effect on the solution by the regularization, at the price of a slight enlargement
of the step-like initial probability distribution.

476 10 Orthogonal Polynomials in Approximation Theory

-10 -5 0 5 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

-10 -5 0 5 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Fig. 10.11. Probability density |ψ(x, t)|2 at t = 0, 2, 5 [s], corresponding to a step
function as initial datum: solution without filtering (left), with Lanczos filtering
(right)

−10 −5 0 5 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Fig. 10.12. Probability density |ψ(x, t)|2 at t = 0, 2, 5, 7, 9[s], corresponding to an
initial datum with Gaussian form

Finally, it is interesting to apply Fourier analysis to solve problem (10.90)
starting from a smooth initial datum. For this, we choose an initial probabil-
ity density w of Gaussian form such that ‖w‖2 = 1. The solution |ψ(x, t)|2,
this time computed without regularization, is shown in Figure 10.12, at
t = 0, 2, 5, 7, 9[s]. Notice the absence of spurious oscillations with respect
to the previous case.

10.14 Exercises

1. Prove the three-term relation (10.11).
[Hint: set x = cos(θ), for 0 ≤ θ ≤ π.]

2. Prove (10.31).

10.14 Exercises 477

[Hint: first prove that ‖vn‖n = (vn, vn)1/2, ‖Tk‖n = ‖Tk‖w for k < n and
‖Tn‖2

n = 2‖Tn‖2
w (see [QV94], formula (4.3.16)). Then, the thesis follows from

(10.29) multiplying by Tl (l �= k) and taking (·, ·)n.]
3. Prove (10.24) after showing that ‖(f − ΠGL

n f)′‖ω ≤ Cn1−s‖f‖s,ω.
[Hint: use the Gagliardo-Nirenberg inequality

max
−1≤x≤1

|f(x)| ≤ ‖f‖1/2‖f ′‖1/2

valid for any f ∈ L2 with f ′ ∈ L2. Next, use the relation that has been just
shown to prove (10.24).]

4. Prove that the discrete seminorm ‖f‖n = (f, f)
1/2
n is a norm for Pn.

5. Compute weights and nodes of the following quadrature formulae

b∫

a

w(x)f(x)dx =

n∑

i=0

ωif(xi),

in such a way that the order is maximum, setting

ω(x) =
√

x, a = 0, b = 1, n = 1;
ω(x) = 2x2 + 1, a = −1, b = 1, n = 0;

ω(x) =

{
2 if 0 < x ≤ 1,
1 if − 1 ≤ x ≤ 0

a = −1, b = 1, n = 1.

[Solution: for ω(x) =
√

x, the nodes x1 = 5
9

+ 2
9

√
10/7, x2 = 5

9
− 2

9

√
10/7

are obtained, from which the weights can be computed (order 3); for ω(x) =
2x2 + 1, we get x1 = 3/5 and ω1 = 5/3 (order 1); for ω(x) = 2x2 + 1, we have
x1 = 1

22
+ 1

22

√
155, x2 = 1

22
− 1

22

√
155 (order 3).]

6. Prove (10.40).
[Hint: notice that (ΠGL

n f, Lj)n =
∑

k
f∗

k (Lk, Lj)n = . . ., distinguishing the case
j < n from the case j = n.]

7. Show that ||| · |||, defined in (10.45), is an essentially strict seminorm.
[Solution : use the Cauchy-Schwarz inequality (1.14) to check that the triangular
inequality is satisfied. This proves that ||| · ||| is a seminorm. The second part of
the exercise follows after a direct computation.]

8. Consider in an interval [a, b] the nodes

xj = a +
(
j − 1

2

)(
b − a

m

)
, j = 1, 2, . . . , m

for m ≥ 1. They are the midpoints of m equally spaced intervals in [a, b]. Let f
be a given function; prove that the least-squares polynomial rn with respect to
the weight w(x) = 1 minimizes the error average, defined as

E = lim
m→∞

{
1

m

m∑

j=1

[f(xj) − rn(xj)]
2

}1/2

.

478 10 Orthogonal Polynomials in Approximation Theory

9. Consider the function

F (a0, a1, . . . , an) =

1∫

0

[

f(x) −
n∑

j=0

ajx
j

]2

dx

and determine the coefficients a0, a1, . . . , an in such a way that F is minimized.
Which kind of linear system is obtained?
[Hint: enforce the conditions ∂F/∂ai = 0 with i = 0, 1, . . . , n. The matrix of the
final linear system is the Hilbert matrix (see Example 3.2, Chapter 3) which is
strongly ill-conditioned.]

11

Numerical Solution of Ordinary Differential
Equations

In this chapter we deal with the numerical solutions of the Cauchy problem
for ordinary differential equations (henceforth abbreviated by ODEs). After
a brief review of basic notions about ODEs, we introduce the most widely
used techniques for the numerical approximation of scalar equations. The
concepts of consistency, convergence, zero-stability and absolute stability will
be addressed. Then, we extend our analysis to systems of ODEs, with emphasis
on stiff problems.

11.1 The Cauchy Problem

The Cauchy problem (also known as the initial-value problem) consists of
finding the solution of an ODE, in the scalar or vector case, given suitable
initial conditions. In particular, in the scalar case, denoting by I an interval
of R containing the point t0, the Cauchy problem associated with a first order
ODE reads:

find a real-valued function y ∈ C1(I), such that
{

y′(t) = f(t, y(t)), t ∈ I,

y(t0) = y0,
(11.1)

where f(t, y) is a given real-valued function in the strip S = I × (−∞,+∞),
which is continuous with respect to both variables. Should f depend on t only
through y, the differential equation is called autonomous.

Most of our analysis will be concerned with one single differential equation
(scalar case). The extension to the case of systems of first-order ODEs will be
addressed in Section 11.9.
If f is continuous with respect to t, then the solution to (11.1) satisfies

y(t) − y0 =

t∫

t0

f(τ, y(τ))dτ. (11.2)

480 11 Numerical Solution of Ordinary Differential Equations

Conversely, if y is defined by (11.2), then it is continuous in I and y(t0) = y0.
Moreover, since y is a primitive of the continuous function f(·, y(·)), y ∈ C1(I)
and satisfies the differential equation y′(t) = f(t, y(t)).

Thus, if f is continuous the Cauchy problem (11.1) is equivalent to the
integral equation (11.2). We shall see later on how to take advantage of this
equivalence in the numerical methods.

Let us now recall two existence and uniqueness results for (11.1).

1. Local existence and uniqueness.
Suppose that f(t, y) is locally Lipschitz continuous at (t0, y0) with respect
to y, that is, there exist two neighborhoods, J ⊆ I of t0 of width rJ , and
Σ of y0 of width rΣ, and a constant L > 0, such that

|f(t, y1) − f(t, y2)| ≤ L|y1 − y2| ∀t ∈ J, ∀y1, y2 ∈ Σ. (11.3)

Then, the Cauchy problem (11.1) admits a unique solution in a neigh-
borhood of t0 with radius r0 with 0 < r0 < min(rJ , rΣ/M, 1/L), where
M is the maximum of |f(t, y)| on J × Σ. This solution is called the local
solution.
Notice that condition (11.3) is automatically satisfied if f has continuous
derivative with respect to y: indeed, in such a case it suffices to choose L
as the maximum of |∂f(t, y)/∂y| in J × Σ.

2. Global existence and uniqueness. The problem admits a unique global
solution if one can take J = I and Σ = R in (11.3), that is, if f is uniformly
Lipschitz continuous with respect to y.

In view of the stability analysis of the Cauchy problem, we consider the fol-
lowing problem

{
z′(t) = f(t, z(t)) + δ(t), t ∈ I,

z(t0) = y0 + δ0,
(11.4)

where δ0 ∈ R and δ is a continuous function on I. Problem (11.4) is derived
from (11.1) by perturbing both the initial datum y0 and the function f . Let
us now characterize the sensitivity of the solution z to those perturbations.

Definition 11.1 ([Hah67] or [Ste71]). Let I be a bounded set. The Cauchy
problem (11.1) is stable in the sense of Liapunov (or stable) on I if, for any
perturbation (δ0, δ(t)) satisfying

|δ0| < ε, |δ(t)| < ε ∀t ∈ I,

with ε > 0 sufficiently small to guarantee that the solution to the perturbed
problem (11.4) does exist, then

∃C > 0 such that |y(t) − z(t)| < Cε, ∀t ∈ I. (11.5)

11.1 The Cauchy Problem 481

The constant C depends in general on problem data t0, y0 and f , but
not on ε.

If I has no upper bound we say that (11.1) is asymptotically stable if, as
well as being Liapunov stable in any bounded interval I, the following limit
also holds

|y(t) − z(t)| → 0, for t → +∞, (11.6)

provided that limt→∞ |δ(t)| = 0. �

The requirement that the Cauchy problem is stable is equivalent to requiring
that it is well-posed in the sense stated in Chapter 2.

The uniform Lipschitz-continuity of f with respect to y suffices to
ensure the stability of the Cauchy problem. Indeed, letting w(t) = z(t)− y(t),
we have

w′(t) = f(t, z(t)) − f(t, y(t)) + δ(t).

Therefore,

w(t) = δ0 +

t∫

t0

[f(s, z(s)) − f(s, y(s))] ds +

t∫

t0

δ(s)ds, ∀t ∈ I.

Thanks to previous assumptions, it follows that

|w(t)| ≤ (1 + |t − t0|) ε + L

t∫

t0

|w(s)|ds.

Applying the Gronwall lemma (which we include below for the reader’s ease)
yields

|w(t)| ≤ (1 + |t − t0|) εeL|t−t0|, ∀t ∈ I

and, thus, (11.5) with C = (1 + KI)eLKI , where KI = maxt∈I |t − t0|.

Lemma 11.1 (Gronwall) Let p be an integrable function nonnegative on the
interval (t0, t0+T), and let g and ϕ be two continuous functions on [t0, t0+T],
g being nondecreasing. If ϕ satisfies the inequality

ϕ(t) ≤ g(t) +

t∫

t0

p(τ)ϕ(τ)dτ, ∀t ∈ [t0, t0 + T],

then

ϕ(t) ≤ g(t) exp

⎛

⎝

t∫

t0

p(τ)dτ

⎞

⎠, ∀t ∈ [t0, t0 + T].

482 11 Numerical Solution of Ordinary Differential Equations

For the proof, see, for instance, [QV94], Lemma 1.4.1.
The constant C that appears in (11.5) could be very large and, in general,

depends on the upper extreme of the interval I, as in the proof above. For that
reason, the property of asymptotic stability is more suitable for describing the
behavior of the dynamical system (11.1) as t → +∞ (see [Arn73]).

As is well-known, only a restricted number of nonlinear ODEs can be
solved in closed form (see, for instance, [Arn73]). Moreover, even when this is
possible, it is not always a straightforward task to find an explicit expression
of the solution; for example, consider the (very simple) equation y′ = (y− t)/
(y + t), whose solution is only implicitly defined by the relation (1/2) log(t2 +
y2)+tan−1(y/t) = C, where C is a constant depending on the initial condition.

For this reason we are interested in numerical methods, since these can be
applied to any ODE under the sole condition that it admits a unique solution.

11.2 One-Step Numerical Methods

Let us address the numerical approximation of the Cauchy problem (11.1).
Fix 0 < T < +∞ and let I = (t0, t0 + T) be the integration interval and,
correspondingly, for h > 0, let tn = t0 + nh, with n = 0, 1, 2, . . . , Nh, be
the sequence of discretization nodes of I into subintervals In = [tn, tn+1]. The
width h of such subintervals is called the discretization stepsize. Notice that Nh

is the maximum integer such that tNh
≤ t0 + T . Let uj be the approximation

at node tj of the exact solution y(tj); this solution will be henceforth shortly
denoted by yj . Similarly, fj denotes the value f(tj , uj). We obviously set
u0 = y0.

Definition 11.2 A numerical method for the approximation of problem
(11.1) is called a one-step method if ∀n ≥ 0, un+1 depends only on un. Oth-
erwise, the scheme is called a multistep method. �

For now, we focus our attention on one-step methods. Here are some of them:

1. forward Euler method

un+1 = un + hfn; (11.7)

2. backward Euler method

un+1 = un + hfn+1. (11.8)

In both cases, y′ is approximated through a finite difference: forward and back-
ward differences are used in (11.7) and (11.8), respectively. Both finite differ-
ences are first-order approximations of the first derivative of y with respect
to h (see Section 10.10.1).

11.3 Analysis of One-Step Methods 483

3. trapezoidal (or Crank-Nicolson) method

un+1 = un +
h

2
[fn + fn+1] . (11.9)

This method stems from approximating the integral on the right side of (11.2)
by the trapezoidal quadrature rule (9.11).

4. Heun method

un+1 = un +
h

2
[fn + f(tn+1, un + hfn)]. (11.10)

This method can be derived from the trapezoidal method substituting
f(tn+1, un + hfn) for fn+1 in (11.9) (i.e., using the forward Euler method to
compute un+1).

In this last case, we notice that the aim is to transform an implicit method
into an explicit one. Addressing this concern, we recall the following.

Definition 11.3 (Explicit and implicit methods) A method is called
explicit if un+1 can be computed directly in terms of (some of) the previous
values uk, k ≤ n, implicit if un+1 depends implicitly on itself through f . �

Methods (11.7) and (11.10) are explicit, while (11.8) and (11.9) are implicit.
These latter require at each time step to solving a nonlinear problem if f
depends nonlinearly on the second argument.

A remarkable example of one-step methods are the Runge-Kutta methods,
which will be analyzed in Section 11.8.

11.3 Analysis of One-Step Methods

Any one-step explicit method for the approximation of (11.1) can be cast in
the concise form

un+1 = un + hΦ(tn, un, fn;h), 0 ≤ n ≤ Nh − 1, u0 = y0, (11.11)

where Φ(·, ·, ·; ·) is called an increment function. Letting as usual yn = y(tn),
analogously to (11.11) we can write

yn+1 = yn + hΦ(tn, yn, f(tn, yn);h) + εn+1, 0 ≤ n ≤ Nh − 1, (11.12)

where εn+1 is the residual arising at the point tn+1 when we pretend that the
exact solution “satisfies” the numerical scheme. Let us write the residual as

εn+1 = hτn+1(h).

The quantity τn+1(h) is called the local truncation error (LTE) at the node
tn+1. We thus define the global truncation error to be the quantity

484 11 Numerical Solution of Ordinary Differential Equations

τ(h) = max
0≤n≤Nh−1

|τn+1(h)|.

Notice that τ(h) depends on the solution y of the Cauchy problem (11.1).
The forward Euler’s method is a special instance of (11.11), where

Φ(tn, un, fn;h) = fn,

while to recover Heun’s method we must set

Φ(tn, un, fn;h) =
1
2

[fn + f(tn + h, un + hfn)] .

A one-step explicit scheme is fully characterized by its increment function Φ.
This function, in all the cases considered thus far, is such that

lim
h→0

Φ(tn, yn, f(tn, yn);h) = f(tn, yn), ∀tn ≥ t0. (11.13)

Property (11.13), together with the obvious relation yn+1 − yn = hy′(tn) +
O(h2), ∀n ≥ 0, allows one to obtain from (11.12) that lim

h→0
τn+1(h) = 0,

0 ≤ n ≤ Nh − 1. In turn, this condition ensures that

lim
h→0

τ(h) = 0,

which expresses the consistency of the numerical method (11.11) with the
Cauchy problem (11.1). In general, a method is said to be consistent if its
LTE is infinitesimal with respect to h. Moreover, a scheme has order p if,
∀t ∈ I, the solution y(t) of the Cauchy problem (11.1) fulfills the condition

τ(h) = O(hp) for h → 0. (11.14)

Using Taylor expansions, as was done in Section 11.2, it can be proved that
the forward Euler method has order 1, while the Heun method has order 2
(see Exercises 1 and 2).

11.3.1 The Zero-Stability

Let us formulate a requirement analogous to the one for Liapunov stability
(11.5), specifically for the numerical scheme. If (11.5) is satisfied with a con-
stant C independent of h, we shall say that the numerical problem is zero-
stable. Precisely:

Definition 11.4 (Zero-stability of one-step methods) The numerical
method (11.11) for the approximation of problem (11.1) is zero-stable if ∃h0

> 0, ∃C > 0 such that ∀h ∈ (0, h0], ∀ε > 0 sufficiently small, if |δn| ≤ ε,
0 ≤ n ≤ Nh, then

|z(h)
n − u(h)

n | ≤ Cε, 0 ≤ n ≤ Nh, (11.15)

11.3 Analysis of One-Step Methods 485

where z
(h)
n , u

(h)
n are respectively the solutions of the problems

⎧
⎨

⎩

z
(h)
n+1 = z

(h)
n + h

[
Φ(tn, z

(h)
n , f(tn, z

(h)
n);h) + δn+1

]
,

z
(h)
0 = y0 + δ0,

(11.16)

⎧
⎨

⎩

u
(h)
n+1 = u

(h)
n + hΦ(tn, u

(h)
n , f(tn, u

(h)
n);h),

u
(h)
0 = y0,

(11.17)

for 0 ≤ n ≤ Nh − 1. �

Both constants C and h0 may depend on problem’s data t0, T , y0 and f .
Zero-stability thus requires that, in a bounded interval, (11.15) holds for any
value h ≤ h0. This property deals, in particular, with the behavior of the
numerical method in the limit case h → 0 and this justifies the name of
zero-stability. This latter is therefore a distinguishing property of the numeri-
cal method itself, not of the Cauchy problem (which, indeed, is stable thanks
to the uniform Lipschitz continuity of f). Property (11.15) ensures that the
numerical method has a weak sensitivity with respect to small changes in
the data and is thus stable in the sense of the general definition given in
Chapter 2.
The request that a numerical method be stable arises, before anything else,
from the need of keeping under control the (unavoidable) errors introduced by
the finite arithmetic of the computer. Indeed, if the numerical method were
not zero-stable, the rounding errors made on y0 as well as in the process of
computing f(tn, un) would make the computed solution useless.

Theorem 11.1 (Zero-stability) Consider the explicit one-step method
(11.11) for the numerical solution of the Cauchy problem (11.1). Assume that
the increment function Φ is Lipschitz continuous with respect to the second
argument, with constant Λ independent of h and of the nodes tj ∈ [t0, t0 +T],
that is

∃h0 > 0, ∃Λ > 0 : ∀h ∈ (0, h0]

|Φ(tn, u
(h)
n , f(tn, u

(h)
n);h) − Φ(tn, z

(h)
n , f(tn, z

(h)
n);h)|

≤ Λ|u(h)
n − z

(h)
n |, 0 ≤ n ≤ Nh.

(11.18)

Then, method (11.11) is zero-stable.

Proof. Setting w
(h)
j = z

(h)
j − u

(h)
j , by subtracting (11.17) from (11.16) we obtain,

for j = 0, . . . , Nh − 1,

w
(h)
j+1 = w

(h)
j + h

[
Φ(tj , z

(h)
j , f(tj , z

(h)
j); h) − Φ(tj , u

(h)
j , f(tj , u

(h)
j); h)

]
+ hδj+1.

486 11 Numerical Solution of Ordinary Differential Equations

Summing over j gives, for n = 1, . . . , Nh,

w
(h)
n = w

(h)
0

+h

n−1∑

j=0

δj+1 + h

n−1∑

j=0

(
Φ(tj , z

(h)
j , f(tj , z

(h)
j); h) − Φ(tj , u

(h)
j , f(tj , u

(h)
j); h)

)
,

so that, by (11.18)

|w(h)
n | ≤ |w0| + h

n−1∑

j=0

|δj+1| + hΛ

n−1∑

j=0

|w(h)
j |, 1 ≤ n ≤ Nh. (11.19)

Applying the discrete Gronwall lemma, given below, we obtain

|w(h)
n | ≤ (1 + hn) εenhΛ, 1 ≤ n ≤ Nh.

Then (11.15) follows from noticing that hn ≤ T and setting C = (1 + T) eΛT . �

Notice that zero-stability implies the boundedness of the solution when f is
linear with respect to the second argument.

Lemma 11.2 (Discrete Gronwall) Let kn be a nonnegative sequence and
ϕn a sequence such that

⎧
⎪⎪⎨

⎪⎪⎩

ϕ0 ≤ g0,

ϕn ≤ g0 +
n−1∑

s=0

ps +
n−1∑

s=0

ksϕs, n ≥ 1.

If g0 ≥ 0 and pn ≥ 0 for any n ≥ 0, then

ϕn ≤
(

g0 +
n−1∑

s=0

ps

)

exp

(
n−1∑

s=0

ks

)

, n ≥ 1.

For the proof, see, for instance, [QV94], Lemma 1.4.2. In the specific case of
the Euler method, checking the property of zero-stability can be done directly
using the Lipschitz continuity of f (we refer the reader to the end of Section
11.3.2). In the case of multistep methods, the analysis will lead to the verifi-
cation of a purely algebraic property, the so-called root condition (see Section
11.6.3).

11.3.2 Convergence Analysis

Definition 11.5 A method is said to be convergent if

∀n = 0, . . . , Nh, |un − yn| ≤ C(h),

where C(h) is an infinitesimal with respect to h. In that case, it is said to be
convergent with order p if ∃C > 0 such that C(h) = Chp. �

We can prove the following theorem.

11.3 Analysis of One-Step Methods 487

Theorem 11.2 (Convergence) Under the same assumptions as in Theorem
11.1, we have

|yn − un| ≤ (|y0 − u0| + nhτ(h)) enhΛ, 1 ≤ n ≤ Nh. (11.20)

Therefore, if the consistency assumption (11.13) holds and |y0 − u0| → 0 as
h → 0, then the method is convergent. Moreover, if |y0 −u0| = O(hp) and the
method has order p, then it is also convergent with order p.

Proof. Setting wj = yj − uj , subtracting (11.11) from (11.12) and proceeding as
in the proof of the previous theorem yields inequality (11.19), with the understand-
ing that

w0 = y0 − u0, and δj+1 = τj+1(h).

The estimate (11.20) is then obtained by applying again the discrete Gronwall

lemma. From the fact that nh ≤ T and τ(h) = O(hp), we can conclude that

|yn − un| ≤ Chp with C depending on T and Λ but not on h. �

A consistent and zero-stable method is thus convergent. This property is
known as the Lax-Richtmyer theorem or equivalence theorem (the converse:
“a convergent method is zero-stable” being obviously true). This theorem,
which is proven in [IK66], was already advocated in Section 2.2.1 and is a
central result in the analysis of numerical methods for ODEs (see [Dah56] or
[Hen62] for linear multistep methods, [But66], [MNS74] for a wider classes
of methods). It will be considered again in Section 11.5 for the analysis of
multistep methods.

We carry out in detail the convergence analysis in the case of the for-
ward Euler method, without resorting to the discrete Gronwall lemma. In the
first part of the proof we assume that any operation is performed in exact
arithmetic and that u0 = y0.

Denote by en+1 = yn+1 − un+1 the error at node tn+1 with n = 0, 1, . . .
and notice that

en+1 = (yn+1 − u∗
n+1) + (u∗

n+1 − un+1), (11.21)

where u∗
n+1 = yn + hf(tn, yn) is the solution obtained after one step of the

forward Euler method starting from the initial datum yn (see Figure 11.1).
The first addendum in (11.21) accounts for the consistency error, the second
one for the cumulation of these errors. Then

yn+1 − u∗
n+1 = hτn+1(h), u∗

n+1 − un+1 = en + h [f(tn, yn) − f(tn, un)] .

As a consequence,

|en+1| ≤ h|τn+1(h)| + |en| + h|f(tn, yn) − f(tn, un)| ≤ hτ(h) + (1 + hL)|en|,

488 11 Numerical Solution of Ordinary Differential Equations

y(x)

yn

un

tn tn+1

un+1

u∗
n+1

yn+1

hτn+1
en+1

Fig. 11.1. Geometrical interpretation of the local truncation error τn+1 and the
true error en+1 at node tn+1 for the forward Euler method

L being the Lipschitz constant of f . By recursion on n, we find

|en+1| ≤ [1 + (1 + hL) + . . . + (1 + hL)n] hτ(h)

=
(1 + hL)n+1 − 1

L
τ(h) ≤ eL(tn+1−t0) − 1

L
τ(h).

The last inequality follows from noticing that 1 + hL ≤ ehL and (n + 1)h
= tn+1 − t0.

On the other hand, if y ∈ C2(I), the LTE for the forward Euler method
is (see Section 10.10.1)

τn+1(h) =
h

2
y′′(ξ), ξ ∈ (tn, tn+1),

and thus, τ(h) ≤ (M/2)h, where M = maxξ∈I |y′′(ξ)|. In conclusion,

|en+1| ≤
eL(tn+1−t0) − 1

L

M

2
h, ∀n ≥ 0, (11.22)

from which it follows that the error tends to zero with the same order as the
local truncation error.

If also the rounding errors are accounted for, we can assume that the
solution ūn+1, actually computed by the forward Euler method at time tn+1,
is such that

ū0 = y0 + ζ0, ūn+1 = ūn + hf(tn, ūn) + ζn+1, (11.23)

having denoted the rounding error by ζj , for j ≥ 0.
Problem (11.23) is an instance of (11.16), provided that we identify ζn+1 and
ūn with hδn+1 and z

(h)
n in (11.16), respectively. Combining Theorems 11.1

and 11.2 we get, instead of (11.22), the following error estimate

11.3 Analysis of One-Step Methods 489

|yn+1 − ūn+1| ≤ eL(tn+1−t0)

[

|ζ0| +
1
L

(
M

2
h +

ζ

h

)]

,

where ζ = max1≤j≤n+1 |ζj |. The presence of rounding errors does not allow,
therefore, to conclude that as h → 0, the error goes to zero. Actually, there
exists an optimal (nonnull) value of h, hopt, for which the error is minimized.
For h < hopt, the rounding error dominates the truncation error and the error
increases.

11.3.3 The Absolute Stability

The property of absolute stability is in some way specular to zero-stability,
as far as the roles played by h and I are concerned. Heuristically, we say that a
numerical method is absolutely stable if, for h fixed, un remains bounded
as tn → +∞. This property, thus, deals with the asymptotic behavior of un, as
opposed to a zero-stable method for which, for a fixed integration interval, un

remains bounded as h → 0.
For a precise definition, consider the linear Cauchy problem (that from now
on, we shall refer to as the test problem)

{
y′(t) = λy(t), t > 0,

y(0) = 1,
(11.24)

with λ ∈ C, whose solution is y(t) = eλt. Notice that lim
t→+∞

|y(t)| = 0 if

Re(λ) < 0.

Definition 11.6 A numerical method for approximating (11.24) is absolutely
stable if

|un| −→ 0 as tn −→ +∞. (11.25)

Let h be the discretization stepsize. The numerical solution un of (11.24)
obviously depends on h and λ. Therefore, a method will be absolutely stable
for certain values of h and λ and not fot other values. More precisely, the
region of absolute stability of the numerical method is defined as the subset of
the complex plane

A = {z = hλ ∈ C : (11.25) is satisfied} . (11.26)

Thus, A is the set of the values of the product hλ for which the numerical
method furnishes solutions that decay to zero as tn tends to infinity. �

Remark 11.1 Let us now consider the general case of the Cauchy prob-
lem (11.1) and assume that there exist two positive constant µmin and µmax

such that

490 11 Numerical Solution of Ordinary Differential Equations

−µmax <
∂f

∂y
(t, y(t)) < −µmin,∀t ∈ I.

Then, a suitable candidate to play the role of λ in the previous stability
analysis is −µmax (for more details, see [QS06]). �

Let us check whether the one-step methods introduced previously are
absolutely stable.

1. Forward Euler method: applying (11.7) to problem (11.24) yields un+1 =
un + hλun for n ≥ 0, with u0 = 1. Proceeding recursively on n we get

un = (1 + hλ)n, n ≥ 0.

Therefore, condition (11.25) is satisfied iff |1 + hλ| < 1, that is, if hλ lies
within the unit circle with center at (−1, 0) (see Figure 11.3). This amounts
to requiring that

hλ ∈ C
− and 0 < h < −2Re(λ)

|λ|2 , (11.27)

where

C
− = {z ∈ C : Re(z) < 0} .

Example 11.1 For the Cauchy problem y′(x) = −5y(x) for x > 0 and y(0) = 1,
condition (11.27) implies 0 < h < 2/5. Figure 11.2 on the left shows the behavior of
the computed solution for two values of h which do not fulfill this condition, while
on the right we show the solutions for two values of h that do. Notice that in this
second case the oscillations, if present, damp out as t grows. •

0 1 2 3 4 5 6 7 8
-3

-2

-1

0

1

2

3

0 1 2 3 4 5 6 7 8
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Fig. 11.2. Left: computed solutions for h = 0.41 > 2/5 (dashed line) and h =
2/5 (solid line). Notice how, in the limiting case h = 2/5, the oscillations remain
unmodified as t grows. Right: two solutions are reported for h = 0.39 (solid line)
and h = 0.15 (dashed line)

11.3 Analysis of One-Step Methods 491

FE

H

Re

BE

−1 1

Im

1.75

−1.75

Fig. 11.3. Regions of absolute stability for the forward (FE) and backward Euler
(BE) methods and for Heun’s method (H). Notice that the region of absolute sta-
bility of the BE method lies outside the unit circle of center (1, 0) (shaded area)

2. Backward Euler method: proceeding as before, we get this time

un =
1

(1 − hλ)n
, n ≥ 0.

The absolute stability property (11.25) is satisfied for any value of hλ that
does not belong to the unit circle of center (1, 0) (see Figure 11.3, on the
right).

Example 11.2 The numerical solution given by the backward Euler method in
the case of Example 11.1 does not exhibit any oscillation for any value of h. On the
other hand, the same method, if applied to the problem y′(t) = 5y(t) for t > 0 and
with y(0) = 1, computes a solution that decays anyway to zero as t → ∞ if h > 2/5,
despite the fact that the exact solution of the Cauchy problem tends to infinity. •

3. Trapezoidal (or Crank-Nicolson) method: we get

un =
[(

1 +
1
2
λh

)

/

(

1 − 1
2
λh

)]n

, n ≥ 0,

hence (11.25) is fulfilled for any hλ ∈ C
−.

4. Heun’s method: applying (11.10) to problem (11.24) and proceeding by
recursion on n, we obtain

un =
[

1 + hλ +
(hλ)2

2

]n

, n ≥ 0.

492 11 Numerical Solution of Ordinary Differential Equations

As shown in Figure 11.3 the region of absolute stability of Heun’s method is
larger than the corresponding one of Euler’s method. However, its restriction
to the real axis is the same.
We say that a method is A-stable if A∩ C

− = C
−, i.e., if condition (11.25) is

satisfied for all values of h when Re(λ) < 0.
The backward Euler and Crank-Nicolson methods are A-stable, while the

forward Euler and Heun methods are conditionally stable.

Remark 11.2 Notice that the implicit one-step methods examined so far
are unconditionally absolutely stable, while explicit schemes are conditionally
absolutely stable. This is, however, not a general rule: in fact, there exist
implicit unstable or only conditionally stable schemes. On the contrary, there
are no explicit unconditionally absolutely stable schemes [Wid67]. �

11.4 Difference Equations

For any integer k ≥ 1, an equation of the form

un+k + αk−1un+k−1 + . . . + α0un = ϕn+k, n = 0, 1, . . . (11.28)

is called a linear difference equation of order k. The coefficients α0 �= 0,
α1, . . . , αk−1 may or may not depend on n. If, for any n, the right side ϕn+k

is equal to zero, the equation is said homogeneous, while if the α′
js are inde-

pendent of n it is called linear difference equation with constant coefficients.
Difference equations arise for instance in the discretization of ordinary dif-
ferential equations. Regarding this, we notice that all the numerical methods
examined so far generate equations like (11.28). More generally, equations like
(11.28) are encountered when quantities are defined through linear recursive
relations. Another relevant application is concerned with the discretization of
boundary value problems (see Chapter 12). For further details on the subject,
we refer to Chapters 2 and 5 of [BO78] and to Chapter 6 of [Gau97].

Any sequence {un, n = 0, 1, . . .} of values that satisfy (11.28) is called
a solution to the equation (11.28). Given k initial values u0, . . . , uk−1, it is
always possible to construct a solution of (11.28) by computing (sequentially)

un+k = ϕn+k − (αk−1un+k−1 + . . . + α0un), n = 0, 1,

However, our interest is to find an expression of the solution un+k which
depends only on the coefficients and on the initial values.

We start by considering the homogeneous case with constant coefficients,

un+k + αk−1un+k−1 + . . . + α0un = 0, n = 0, 1, . . . (11.29)

and associate with (11.29) the characteristic polynomial Π ∈ Pk defined as

Π(r) = rk + αk−1r
k−1 + . . . + α1r + α0. (11.30)

11.4 Difference Equations 493

Denoting its roots by rj , j = 0, . . . , k − 1, any sequence of the form
{
rn
j , n = 0, 1, . . .

}
, for j = 0, . . . , k − 1, (11.31)

is a solution of (11.29), since

rn+k
j + αk−1r

n+k−1
j + . . . + α0r

n
j

= rn
j

(
rk
j + αk−1r

k−1
j + . . . + α0

)
= rn

j Π(rj) = 0.

We say that the k sequences defined in (11.31) are the fundamental solutions
of the homogeneous equation (11.29). Any sequence of the form

un = γ0r
n
0 + γ1r

n
1 + . . . + γk−1r

n
k−1, n = 0, 1, . . . (11.32)

is still a solution to (11.29), since it is a linear equation.
The coefficients γ0, . . . , γk−1 can be determined by imposing the k initial
conditions u0, . . . , uk−1. Moreover, it can be proved that if all the roots
of Π are simple, then all the solutions of (11.29) can be cast in the form
(11.32).

This last statement no longer holds if there are roots of Π with multiplic-
ity greater than 1. If, for a certain j, the root rj has multiplicity m ≥ 2, in
order to obtain a system of fundamental solutions that generate all the solu-
tions of (11.29), it suffices to replace the corresponding fundamental solution{
rn
j , n = 0, 1, . . .

}
with the m sequences

{
rn
j , n = 0, 1, . . .

}
,
{
nrn

j , n = 0, 1, . . .
}

, . . . ,
{
nm−1rn

j , n = 0, 1, . . .
}

.

More generally, assuming that r0, . . . , rk′ are distinct roots of Π, with mul-
tiplicities equal to m0, . . . ,mk′ , respectively, we can write the solution of
(11.29) as

un =
k′
∑

j=0

(
mj−1∑

s=0

γsjn
s

)

rn
j , n = 0, 1, (11.33)

Notice that even in presence of complex conjugate roots one can still obtain
a real solution (see Exercise 3).

Example 11.3 For the difference equation un+2 − un = 0, we have Π(r) = r2 − 1,
then r0 = −1 and r1 = 1, therefore the solution is given by un = γ00(−1)n + γ01.
In particular, enforcing the initial conditions u0 and u1 gives γ00 = (u0 − u1)/2,
γ01 = (u0 + u1)/2. •

Example 11.4 For the difference equation un+3−2un+2−7un+1−4un = 0, Π(r) =
r3−2r2−7r−4. Its roots are r0 = −1 (with multiplicity 2), r1 = 4 and the solution
is un = (γ00 + nγ10)(−1)n + γ014

n. Enforcing the initial conditions we can compute
the unknown coefficients as the solution of the following linear system

494 11 Numerical Solution of Ordinary Differential Equations

{
γ00 + γ01 = u0,
−γ00 − γ10 + 4γ01 = u1,
γ00 + 2γ10 + 16γ01 = u2,

that yields γ00 = (24u0 − 2u1 − u2)/25, γ10 = (u2 − 3u1 − 4u0)/5 and γ01 =
(2u1 + u0 + u2)/25. •

The expression (11.33) is of little practical use since it does not outline the
dependence of un on the k initial conditions. A more convenient representation
is obtained by introducing a new set

{
ψ

(n)
j , n = 0, 1, . . .

}
of fundamental

solutions that satisfy

ψ
(i)
j = δij , i, j = 0, 1, . . . , k − 1. (11.34)

Then, the solution of (11.29) subject to the initial conditions u0, . . . , uk−1 is
given by

un =
k−1∑

j=0

ujψ
(n)
j , n = 0, 1, (11.35)

The new fundamental solutions
{

ψ
(n)
j , n = 0, 1, . . .

}
can be represented in

terms of those in (11.31) as follows

ψ
(n)
j =

k−1∑

m=0

βj,mrn
m for j = 0, . . . , k − 1, n = 0, 1, (11.36)

By requiring (11.34), we obtain the k linear systems

k−1∑

m=0

βj,mri
m = δij , i, j = 0, . . . , k − 1,

whose matrix form is

Rbj = ej , j = 0, . . . , k − 1. (11.37)

Here ej denotes the unit vector of R
k, R = (rim) = (ri

m) and bj =
(βj,0, . . . , βj,k−1)T . If all r′js are simple roots of Π, the matrix R is nonsin-
gular (see Exercise 5).

The general case where Π has k′ + 1 distinct roots r0, . . . , rk′ with mul-
tiplicities m0, . . . ,mk′ respectively, can be dealt with by replacing in (11.36){
rn
j , n = 0, 1, . . .

}
with

{
rn
j ns, n = 0, 1, . . .

}
, where j = 0, . . . , k′ and s =

0, . . . ,mj − 1.

Example 11.5 We consider again the difference equation of Example 11.4. Here
we have {rn

0 , nrn
0 , rn

1 , n = 0, 1, . . .} so that the matrix R becomes

11.4 Difference Equations 495

R =

[
r0
0 0 r0

1

r1
0 r1

0 r1
1

r2
0 2r2

0 r2
1

]

=

[
1 0 1

−1 −1 4
1 2 16

]

.

Solving the three systems (11.37) yields

ψ
(n)
0 =

24

25
(−1)n − 4

5
n(−1)n +

1

25
4n,

ψ
(n)
1 = − 2

25
(−1)n − 3

5
n(−1)n +

2

25
4n,

ψ
(n)
2 = − 1

25
(−1)n +

1

5
n(−1)n +

1

25
4n,

from which it can be checked that the solution un =
∑2

j=0
ujψ

(n)
j coincides with

the one already found in Example 11.4. •

Now we return to the case of nonconstant coefficients and consider the follow-
ing homogeneous equation

un+k +
k∑

j=1

αk−j(n)un+k−j = 0, n = 0, 1, (11.38)

The goal is to transform it into an ODE by means of a function F , called the
generating function of the equation (11.38). F depends on the real variable t
and is derived as follows. We require that the n-th coefficient of the Taylor
series of F around t = 0 can be written as γnun, for some unknown constant
γn, so that

F (t) =
∞∑

n=0

γnuntn. (11.39)

The coefficients {γn} are unknown and must be determined in such a way
that

k∑

j=0

cjF
(k−j)(t) =

∞∑

n=0

⎡

⎣un+k +
k∑

j=1

αk−j(n)un+k−j

⎤

⎦ tn, (11.40)

where cj are suitable unknown constants not depending on n. Note that owing
to (11.38) we obtain the ODE

k∑

j=0

cjF
(k−j)(t) = 0

to which we must add the initial conditions F (j)(0) = γjuj for j = 0, . . . , k−1.
Once F is available, it is simple to recover un through the definition of F itself.

Example 11.6 Consider the difference equation

(n + 2)(n + 1)un+2 − 2(n + 1)un+1 − 3un = 0, n = 0, 1, . . . (11.41)

496 11 Numerical Solution of Ordinary Differential Equations

with the initial conditions u0 = u1 = 2. We look for a generating function of the
form (11.39). By term-to-term derivation of the series, we get

F ′(t) =

∞∑

n=0

γnnuntn−1, F ′′(t) =

∞∑

n=0

γnn(n − 1)untn−2,

and, after some algebra, we find

F ′(t) =

∞∑

n=0

γnnuntn−1 =

∞∑

n=0

γn+1(n + 1)un+1t
n,

F ′′(t) =

∞∑

n=0

γnn(n − 1)untn−2 =

∞∑

n=0

γn+2(n + 2)(n + 1)un+2t
n.

As a consequence, (11.40) becomes

∞∑

n=0

(n + 1)(n + 2)un+2t
n − 2

∞∑

n=0

(n + 1)un+1t
n − 3

∞∑

n=0

untn

= c0

∞∑

n=0

γn+2(n + 2)(n + 1)un+2t
n + c1

∞∑

n=0

γn+1(n + 1)un+1t
n + c2

∞∑

n=0

γnuntn,

so that, equating both sides, we find

γn = 1 ∀n ≥ 0, c0 = 1, c1 = −2, c2 = −3.

We have thus associated with the difference equation the following ODE with con-
stant coefficients

F ′′(t) − 2F ′(t) − 3F (t) = 0,

with the initial condition F (0) = F ′(0) = 2. The n-th coefficient of the solution
F (t) = e3t + e−t is

1

n!
F (n)(0) =

1

n!
[(−1)n + 3n] ,

so that un = (1/n!) [(−1)n + 3n] is the solution of (11.41). •

The nonhomogeneous case (11.28) can be tackled by searching for solutions
of the form

un = u(0)
n + u(ϕ)

n ,

where u
(0)
n is the solution of the associated homogeneous equation and u

(ϕ)
n

is a particular solution of the nonhomogeneous equation. Once the solution
of the homogeneous equation is available, a general technique to obtain the
solution of the nonhomogeneous equation is based on the method of varia-
tion of parameters, combined with a reduction of the order of the difference
equation (see [BO78]).

In the special case of difference equations with constant coefficients, with
ϕn+k of the form cnQ(n), where c is a constant and Q is a polynomial of degree

11.5 Multistep Methods 497

p with respect to the variable n, a possible approach is that of undetermined
coefficients, where one looks for a particular solution that depends on some
undetermined constants and has a known form for some classes of right sides
ϕn+k. It suffices to look for a particular solution of the form

u(ϕ)
n = cn(bpn

p + bp−1n
p−1 + . . . + b0),

where bp, . . . , b0 are constants to be determined in such a way that u
(ϕ)
n is

actually a solution of (11.28).

Example 11.7 Consider the difference equation un+3 − un+2 + un+1 − un = 2nn2.
The particular solution is of the form un = 2n(b2n

2 + b1n + b0). Substituting this
solution into the equation, we find 5b2n

2 +(36b2 +5b1)n+(58b2 +18b1 +5b0) = n2,
from which, recalling the principle of identity for polynomials, one gets b2 = 1/5,
b1 = −36/25 and b0 = 358/125. •

Analogous to the homogeneous case, it is possible to express the solution of
(11.28) as

un =
k−1∑

j=0

ujψ
(n)
j +

n∑

l=k

ϕlψ
(n−l+k−1)
k−1 , n = 0, 1, . . . , (11.42)

where we define ψ
(i)
k−1 ≡ 0 for all i < 0 and ϕj ≡ 0 for all j < k.

11.5 Multistep Methods

Let us now introduce some examples of multistep methods (shortly, MS).

Definition 11.7 (q-steps methods) A q-step method (q ≥ 1) is a method
for which ∀n ≥ q−1, un+1 depends on un+1−q, but not on the values uk with
k < n + 1 − q. �

A well-known two-step explicit method can be obtained by using the cen-
tered finite difference (10.61) to approximate the first order derivative in
(11.1). This yields the midpoint method

un+1 = un−1 + 2hfn, n ≥ 1, (11.43)

where u0 = y0, u1 is to be determined and fk denotes the value f(tk, uk).
An example of an implicit two-step scheme is the Simpson method, ob-

tained from (11.2) with t0 = tn−1 and t = tn+1 and by using the Cavalieri-
Simpson quadrature rule to approximate the integral of f

un+1 = un−1 +
h

3
[fn−1 + 4fn + fn+1], n ≥ 1, (11.44)

498 11 Numerical Solution of Ordinary Differential Equations

where u0 = y0, and u1 is to be determined.
From these examples, it is clear that a multistep method requires q initial

values u0, . . . , uq−1 for “taking off ”. Since the Cauchy problem provides only
one datum (u0), one way to assign the remaining values consists of resorting
to explicit one-step methods of high order. An example is given by Heun’s
method (11.10), other examples are provided by the Runge-Kutta methods,
which will be introduced in Section 11.8.

In this section we deal with linear multistep methods

un+1 =
p∑

j=0

ajun−j + h

p∑

j=0

bjfn−j + hb−1fn+1, n = p, p + 1, . . . (11.45)

which are p+1-step methods, p ≥ 0. For p = 0, we recover one-step methods.
The coefficients aj , bj are real and fully identify the scheme; they are such

that ap �= 0 or bp �= 0. If b−1 �= 0 the scheme is implicit, otherwise it is explicit.
Also for MS methods we can characterize consistency in terms of the local
truncation error, according to the following definition.

Definition 11.8 The local truncation error (LTE) τn+1(h) introduced by the
multistep method (11.45) at tn+1 (for n ≥ p) is defined through the following
relation

hτn+1(h) = yn+1 −

⎡

⎣
p∑

j=0

ajyn−j + h

p∑

j=−1

bjy
′
n−j

⎤

⎦ , n ≥ p, (11.46)

where yn−j = y(tn−j) and y′
n−j = y′(tn−j) for j = −1, . . . , p. �

Analogous to one-step methods, the quantity hτn+1(h) is the residual gener-
ated at tn+1 if we pretend that the exact solution “satisfies” the numerical
scheme. Letting τ(h) = max

n
|τn(h)|, we have the following definition.

Definition 11.9 (Consistency) The multistep method (11.45) is consistent
if τ(h) → 0 as h → 0. Moreover, if τ(h) = O(hq), for some q ≥ 1, then the
method is said to have order q. �

A more precise characterization of the LTE can be given by introducing the
following linear operator L associated with the linear MS method (11.45)

L[w(t);h] = w(t + h) −
p∑

j=0

ajw(t − jh) − h

p∑

j=−1

bjw
′(t − jh), (11.47)

where w ∈ C1(I) is an arbitrary function. Notice that the LTE is exactly
L[y(tn);h]. If we assume that w is sufficiently smooth and expand w(t − jh)
and w′(t − jh) about t − ph, we obtain

11.5 Multistep Methods 499

L[w(t);h] = C0w(t − ph) + C1hw(1)(t − ph) + . . . + Ckhkw(k)(t − ph) + . . .

Consequently, if the MS method has order q and y ∈ Cq+1(I), we obtain

τn+1(h) = Cq+1h
q+1y(q+1)(tn−p) + O(hq+2).

The term Cq+1h
q+1y(q+1)(tn−p) is the so-called principal local truncation error

(PLTE) while Cq+1 is the error constant. The PLTE is widely employed in
devising adaptive strategies for MS methods (see [Lam91], Chapter 3).
Program 92 provides an implementation of the multistep method in the form
(11.45) for the solution of a Cauchy problem on the interval (t0, T). The input
parameters are: the column vector a containing the p + 1 coefficients ai; the
column vector b containing the p + 2 coefficients bi; the discretization step-
size h; the vector of initial data u0 at the corresponding time instants t0;
the macros fun and dfun containing the functions f and ∂f/∂y. If the MS
method is implicit, a tolerance tol and a maximum number of admissible
iterations itmax must be provided. These two parameters monitor the con-
vergence of Newton’s method that is employed to solve the nonlinear equation
(11.45) associated with the MS method. In output the code returns the vectors
u and t containing the computed solution at the time instants t.

Program 92 - multistep : Linear multistep methods

function [t,u]=multistep(a,b,tf,t0,u0,h,fun,dfun,tol,itmax)
%MULTISTEP Multistep method.
% [T,U]=MULTISTEP(A,B,TF,T0,U0,H,FUN,DFUN,TOL,ITMAX) solves the
% Cauchy problem Y’=FUN(T,Y) for T in (T0,TF) using a multistep method
% with coefficients A and B. H specifies the time step. TOL specifies the
% tolerance of the fixed-point iteration when the selected multistep method
% is of implicit type.
y = u0; t = t0; f = eval (fun); p = length(a) - 1; u = u0;
nt = fix((tf - t0 (1))/h);
for k = 1:nt

lu=length(u);
G=a’*u(lu:-1:lu-p)+ h*b(2:p+2)’*f(lu:-1:lu-p);
lt=length(t0);
t0=[t0; t0(lt)+h];
unew=u(lu);
t=t0(lt+1); err=tol+1; it=0;
while err>tol & it<=itmax

y=unew;
den=1-h*b(1)*eval(dfun);
fnew=eval(fun);
if den == 0

it=itmax+1;
else

it=it+1;
unew=unew-(unew-G-h*b(1)* fnew)/den;

500 11 Numerical Solution of Ordinary Differential Equations

err=abs(unew-y);
end

end
u=[u; unew]; f=[f; fnew];

end
t=t0;
return

In the forthcoming sections we examine some families of multistep methods.

11.5.1 Adams Methods

These methods are derived from the integral form (11.2) through an approx-
imate evaluation of the integral of f between tn and tn+1. We suppose that
the discretization nodes are equally spaced, i.e., tj = t0 + jh, with h > 0 and
j ≥ 1, and then we integrate, instead of f , its interpolating polynomial on
p̃ + θ distinct nodes, where θ = 1 if the methods are explicit (p̃ ≥ 0 in this
case) and θ = 2 if the methods are implicit (p̃ ≥ −1). The resulting schemes
are thus consistent by construction and have the following form

un+1 = un + h

p̃+θ∑

j=−1

bjfn−j . (11.48)

The interpolation nodes can be either:

1. tn, tn−1, . . . , tn−p̃ (in this case b−1 = 0 and the resulting method is
explicit);
or

2. tn+1, tn, . . . , tn−p̃ (in this case b−1 �= 0 and the scheme is implicit).

The implicit schemes are called Adams-Moulton methods, while the explicit
ones are called Adams-Bashforth methods.

Adams-Bashforth methods (AB)

Taking p̃ = 0 we recover the forward Euler method, since the interpolating
polynomial of degree zero at node tn is given by Π0f = fn. For p̃ = 1, the
linear interpolating polynomial at the nodes tn−1 and tn is

Π1f(t) = fn + (t − tn)
fn−1 − fn

tn−1 − tn
.

Since Π1f(tn) = fn and Π1f(tn+1) = 2fn − fn−1, we get

tn+1∫

tn

Π1f(t) =
h

2
[Π1f(tn) + Π1f(tn+1)] =

h

2
[3fn − fn−1] .

Therefore, the two-step AB method is

11.5 Multistep Methods 501

Table 11.1. Error constants for Adams-Bashforth methods (C∗
q+1) and Adams-

Moulton methods (Cq+1) of order q

q C∗
q+1 Cq+1 q C∗

q+1 Cq+1

1 1
2

− 1
2

3 3
8

− 1
24

2 5
12

− 1
12

4 251
720

− 19
720

un+1 = un +
h

2
[3fn − fn−1] . (11.49)

With a similar procedure, if p̃ = 2, we find the three-step AB method

un+1 = un +
h

12
[23fn − 16fn−1 + 5fn−2] ,

while for p̃ = 3 we get the four-step AB scheme

un+1 = un +
h

24
(55fn − 59fn−1 + 37fn−2 − 9fn−3) .

Note that the Adams-Bashforth methods use p̃ + 1 nodes and are p̃ + 1-step
methods (with p̃ ≥ 0). In general, q-step Adams-Bashforth methods have order
q. The error constants C∗

q+1 of these methods are collected in Table 11.1.

Adams-Moulton methods (AM)

If p̃ = −1, the Backward Euler scheme is recovered, while if p̃ = 0, we construct
the linear polynomial interpolating f at the nodes tn and tn+1 to recover the
Crank-Nicolson scheme (11.9). In the case of the two-step method (p̃ = 1), the
polynomial of degree 2 interpolating f at the nodes tn−1, tn, tn+1 is generated,
yielding the following scheme

un+1 = un +
h

12
[5fn+1 + 8fn − fn−1] . (11.50)

The methods corresponding to p̃ = 2 and p̃ = 3 are respectively given by

un+1 = un +
h

24
(9fn+1 + 19fn − 5fn−1 + fn−2) ,

un+1 = un +
h

720
(251fn+1 + 646fn − 264fn−1 + 106fn−2 − 19fn−3) .

The Adams-Moulton methods use p̃ + 2 nodes and are p̃ + 1-steps methods if
p̃ ≥ 0, the only exception being the Backward Euler scheme (corresponding
to p̃ = −1) which uses one node and is a one-step method. In general, the
q-steps Adams-Moulton methods have order q + 1 (the only exception being
again the Backward Euler scheme which is a one-step method of order one)
and their error constants Cq+1 are summarized in Table 11.1.

502 11 Numerical Solution of Ordinary Differential Equations

Table 11.2. Coefficients of zero-stable BDF methods for p = 0, 1, . . . , 5

p a0 a1 a2 a3 a4 a5 b−1

0 1 0 0 0 0 0 1
1 4

3
- 1
3

0 0 0 0 2
3

2 18
11

- 9
11

2
11

0 0 0 6
11

3 48
25

- 36
25

16
25

- 3
25

0 0 12
25

4 300
137

- 300
137

200
137

- 75
137

12
137

0 60
137

5 360
147

- 450
147

400
147

- 225
147

72
147

- 10
147

60
147

11.5.2 BDF Methods

The so-called backward differentiation formulae (henceforth denoted by BDF)
are implicit MS methods derived from a complementary approach to the
one followed for the Adams methods. In fact, for the Adams methods we
have resorted to numerical integration for the source function f , whereas
in BDF methods we directly approximate the value of the first deriva-
tive of y at node tn+1 through the first derivative of the polynomial of
degree p + 1 interpolating y at the p + 2 nodes tn+1, tn, . . . , tn−p with
p ≥ 0.

By doing so, we get schemes of the form

un+1 =
p∑

j=0

ajun−j + hb−1fn+1,

with b−1 �= 0. Method (11.8) represents the most elementary example, corre-
sponding to the coefficients a0 = 1 and b−1 = 1.

We summarize in Table 11.2 the coefficients of BDF methods that are
zero-stable. In fact, we shall see in Section 11.6.3 that only for p ≤ 5 are BDF
methods zero-stable (see [Cry73]).

11.6 Analysis of Multistep Methods

Analogous to what has been done for one-step methods, in this section we
provide algebraic conditions that ensure consistency and stability of multistep
methods.

11.6.1 Consistency

The property of consistency of a multistep method introduced in Definition
11.9 can be verified by checking that the coefficients satisfy certain algebraic
equations, as stated in the following theorem.

11.6 Analysis of Multistep Methods 503

Theorem 11.3 The multistep method (11.45) is consistent iff the following
algebraic relations among the coefficients are satisfied

p∑

j=0

aj = 1, −
p∑

j=0

jaj +
p∑

j=−1

bj = 1. (11.51)

Moreover, if y ∈ Cq+1(I) for some q ≥ 1, where y is the solution of the
Cauchy problem (11.1), then the method is of order q iff (11.51) holds and the
following additional conditions are satisfied

p∑

j=0

(−j)iaj + i

p∑

j=−1

(−j)i−1bj = 1, i = 1, . . . , q.

(Note that if q = 1 this reduces to the second condition of (11.51).)

Proof. Expanding y and f in a Taylor series yields, for any n ≥ p

yn−j = yn − jhy′
n + O(h2), f(tn−j , yn−j) = f(tn, yn) + O(h). (11.52)

Plugging these values back into the multistep scheme and neglecting the terms in h
of order higher than 1 gives

yn+1 −
p∑

j=0

ajyn−j − h

p∑

j=−1

bjf(tn−j , yn−j)

= yn+1 −
p∑

j=0

ajyn + h

p∑

j=0

jajy
′
n − h

p∑

j=−1

bjf(tn, yn) −O(h2)

(
p∑

j=0

aj −
p∑

j=−1

bj

)

= yn+1 −
p∑

j=0

ajyn − hy′
n

(

−
p∑

j=0

jaj +

p∑

j=−1

bj

)

−O(h2)

(
p∑

j=0

aj −
p∑

j=−1

bj

)

,

where we have replaced y′
n by f(tn, yn). From the definition (11.46) we then obtain

hτn+1(h) = yn+1 −
p∑

j=0

ajyn − hy′
n

(

−
p∑

j=0

jaj +

p∑

j=−1

bj

)

−O(h2)

(
p∑

j=0

aj −
p∑

j=−1

bj

)

,

from which the local truncation error is

τn+1(h) =
yn+1 − yn

h
+

yn

h

(

1 −
p∑

j=0

aj

)

+y′
n

(
p∑

j=0

jaj −
p∑

j=−1

bj

)

−O(h)

(
p∑

j=0

aj −
p∑

j=−1

bj

)

.

Since, for any n, (yn+1 − yn)/h → y′
n, as h → 0, it follows that τn+1(h) tends to 0

as h goes to 0 iff the algebraic conditions (11.51) are satisfied. The rest of the proof

can be carried out in a similar manner, accounting for terms of progressively higher

order in the expansions (11.52). �

504 11 Numerical Solution of Ordinary Differential Equations

11.6.2 The Root Conditions

Let us employ the multistep method (11.45) to solve the model problem
(11.24). The numerical solution satisfies the linear difference equation

un+1 =
p∑

j=0

ajun−j + hλ

p∑

j=−1

bjun−j , (11.53)

which fits the form (11.29). We can therefore apply the theory devel-
oped in Section 11.4 and look for fundamental solutions of the form
uk = [ri(hλ)]k, k = 0, 1, . . ., where ri(hλ), for i = 0, . . . , p, are the roots
of the polynomial Π ∈ Pp+1

Π(r) = ρ(r) − hλσ(r). (11.54)

We have denoted by

ρ(r) = rp+1 −
p∑

j=0

ajr
p−j , σ(r) = b−1r

p+1 +
p∑

j=0

bjr
p−j

the first and second characteristic polynomials of the multistep method
(11.45), respectively. The polynomial Π(r) is the characteristic polynomial
associated with the difference equation (11.53), and rj(hλ) are its character-
istic roots.

The roots of ρ are ri(0), i = 0, . . . , p, and will be abbreviated henceforth
by ri. From the first condition in (11.51) it follows that if a multistep method
is consistent then 1 is a root of ρ. We shall assume that such a root (the
consistency root) is labelled as r0(0) = r0 and call the corresponding root
r0(hλ) the principal root.

Definition 11.10 (Root condition) The multistep method (11.45) is said
to satisfy the root condition if all roots ri are contained within the unit circle
centered at the origin of the complex plane, otherwise, if they fall on its
boundary, they must be simple roots of ρ. Equivalently,

{
|rj | ≤ 1, j = 0, . . . , p;

furthermore, for those j such that |rj | = 1, then ρ′(rj) �= 0.
(11.55)

�

Definition 11.11 (Strong root condition) The multistep method (11.45)
is said to satisfy the strong root condition if it satisfies the root condition and
r0 = 1 is the only root lying on the boundary of the unit circle. Equivalently,

|rj | < 1, j = 1, . . . , p. (11.56)

�

11.6 Analysis of Multistep Methods 505

Definition 11.12 (Absolute root condition) The multistep method
(11.45) satisfies the absolute root condition if there exists h0 > 0 such
that

|rj(hλ)| < 1, j = 0, . . . , p, ∀h ≤ h0.

�

11.6.3 Stability and Convergence Analysis for Multistep Methods

Let us now examine the relation between root conditions and the stability of
multistep methods. Generalizing the Definition 11.4, we can get the following
definition of zero-stability.

Definition 11.13 (Zero-stability of multistep methods) The multistep
method (11.45) is zero-stable if ∃h0 > 0, ∃C > 0 such that ∀h ∈ (0, h0],
∀ε > 0 sufficiently small, if |δk| ≤ ε, 0 ≤ k ≤ Nh, then

|z(h)
n − u(h)

n | ≤ Cε, 0 ≤ n ≤ Nh, (11.57)

where Nh = max {n : tn ≤ t0 + T} and z
(h)
n and u

(h)
n are, respectively, the

solutions of problems
⎧
⎪⎨

⎪⎩

z
(h)
n+1 =

p∑

j=0

ajz
(h)
n−j + h

p∑

j=−1

bjf(tn−j , z
(h)
n−j) + hδn+1,

z
(h)
k = w

(h)
k + δk, k = 0, . . . , p

(11.58)

⎧
⎪⎨

⎪⎩

u
(h)
n+1 =

p∑

j=0

aju
(h)
n−j + h

p∑

j=−1

bjf(tn−j , u
(h)
n−j),

u
(h)
k = w

(h)
k , k = 0, . . . , p

(11.59)

for p ≤ n ≤ Nh − 1, where w
(h)
0 = y0 and w

(h)
k , k = 1, . . . , p, are p initial

values generated by using another numerical scheme. �

Theorem 11.4 (Equivalence of zero-stability and root condition) For
a consistent multistep method, the root condition is equivalent to zero-stability.

Proof. Let us begin by proving that the root condition is necessary for the zero-
stability to hold. We proceed by contradiction and assume that the method is zero-
stable and there exists a root ri which violates the root condition.

Since the method is zero-stable, condition (11.57) must be satisfied for any
Cauchy problem, in particular for the problem y′(t) = 0 with y(0) = 0, whose

solution is, clearly, the null function. Similarly, the solution u
(h)
n of (11.59) with

f = 0 and w
(h)
k = 0 for k = 0, . . . , p is identically zero.

Consider first the case |ri| > 1. Then, define

506 11 Numerical Solution of Ordinary Differential Equations

δn =

{
εrn

i if ri ∈ R,

ε(ri + r̄i)
n if ri ∈ C,

for ε > 0. It is simple to check that the sequence z
(h)
n = δn for n = 0, 1, . . . is

a solution of (11.58) with initial conditions z
(h)
k = δk and that |δk| ≤ ε for k =

0, 1, . . . , p. Let us now choose t̄ in (t0, t0 + T) and let xn be the nearest grid node to

t̄. Clearly, n is the integral part of t̄/h and limh→0 |z(h)
n | = limh→0 |u(h)

n − z
(h)
n | → ∞

as h → 0. This proves that |u(h)
n − z

(h)
n | cannot be uniformly bounded with respect

to h as h → 0, which contradicts the assumption that the method is zero-stable.
A similar proof can be carried out if |ri| = 1 but has multiplicity greater than

1, provided that one takes into account the form of the solution (11.33).
Let us now prove that the root condition is sufficient for method (11.45) to be

zero-stable. With this aim, it is convenient to reformulate (11.45) as follows

p+1∑

s=0

αsun+s = h

p+1∑

s=0

βsf(tn+s, un+s), n = 0, 1, . . . , Nh − (p + 1) (11.60)

having set αp+1 = 1, αs = −ap−s for s = 0, . . . , p and βs = bp−s for s = 0, . . . , p+1.
Relation (11.60) is a special instance of the linear difference equation (11.28), where
we set k = p + 1 and ϕn+j = hβjf(tn+j , un+j), for j = 0, . . . , p + 1. Using (11.60)

and denoting by z
(h)
n+j and u

(h)
n+j the solutions to (11.58) and (11.59), respectively,

for j ≥ 1, it turns out that the function w
(h)
n+j = z

(h)
n+j − u

(h)
n+j satisfies the following

difference equation

p+1∑

j=0

αjw
(h)
n+j = ϕn+p+1, n = 0, . . . , Nh − (p + 1), (11.61)

having set

ϕn+p+1 = h

p+1∑

j=0

βj

[
f(tn+j , z

(h)
n+j) − f(tn+j , u

(h)
n+j)

]
+ hδn+p+1. (11.62)

Denote by
{

ψ
(n)
j

}
a sequence of fundamental solutions to the homogeneous equation

associated with (11.61). Recalling (11.42), the general solution of (11.61) is given by

w
(h)
n =

p∑

j=0

w
(h)
j ψ

(n)
j +

n∑

l=p+1

ψ(n−l+p)
p ϕl, n = p + 1, . . .

The following result expresses the connection between the root condition and the
boundedness of the solution of a difference equation (for the proof, see [Gau97],
Theorem 6.3.2).

Lemma 11.3 For any solution {un} of the difference equation (11.28) there exists
a constant M > 0 such that

|un| ≤ M

{

max
j=0,...,k−1

|uj | +
n∑

l=k

|ϕl|

}

, n = 0, 1, . . . (11.63)

11.6 Analysis of Multistep Methods 507

iff the root condition is satisfied for the polynomial (11.30), i.e., (11.55) holds for
the zeros of the polynomial (11.30).

Let us now recall that, for any j, {ψ(n)
j } is solution of a homogeneous difference

equation whose initial data are ψ
(i)
j = δij , i, j = 0, . . . , p. On the other hand, for

any l, ψ
(n−l+p)
p is solution of a difference equation with zero initial conditions and

right-hand sides equal to zero except for the one corresponding to n = l which is
ψ

(p)
p = 1.

Therefore, Lemma 11.3 can be applied in both cases so we can conclude that
there exists a constant M > 0 such that |ψ(n)

j | ≤ M and |ψ(n−l+p)
p | ≤ M , uniformly

with respect to n and l. The following estimate thus holds

|w(h)
n | ≤ M

{

(p + 1) max
j=0,...,p

|w(h)
j | +

n∑

l=p+1

|ϕl|

}

, n = 0, 1, . . . , Nh. (11.64)

If L denotes the Lipschitz constant of f , from (11.62) we get

|ϕn+p+1| ≤ h max
j=0,...,p+1

|βj |L
p+1∑

j=0

|w(h)
n+j | + h|δn+p+1|.

Let β = max
j=0,...,p+1

|βj | and ∆[q,r] = max
j=q,...,r

|δj+q|, q and r being some integers with

q ≤ r. From (11.64), the following estimate is therefore obtained

|w(h)
n | ≤ M

{

(p + 1)∆[0,p] + hβL

n∑

l=p+1

p+1∑

j=0

|w(h)
l−p−1+j | + Nhh∆[p+1,n]

}

≤ M

{

(p + 1)∆[0,p] + hβL(p + 2)

n∑

m=0

|w(h)
m | + T∆[p+1,n]

}

.

Let Q = 2(p + 2)βLM and h0 = 1/Q, so that 1 − hQ
2
≥ 1

2
if h ≤ h0. Then

1

2
|w(h)

n | ≤ |w(h)
n |(1 − hQ

2
)

≤ M

{

(p + 1)∆[0,p] + hβL(p + 2)

n−1∑

m=0

|w(h)
m | + T∆[p+1,n]

}

.

Letting R = 2M
{
(p + 1)∆[0,p] + T∆[p+1,n]

}
, we finally obtain

|w(h)
n | ≤ hQ

n−1∑

m=0

|w(h)
m | + R.

Applying Lemma 11.2 with the following identifications: ϕn = |w(h)
n |, g0 = R, ps = 0

and ks = hQ for any s = 0, . . . , n − 1, yields

|w(h)
n | ≤ 2MeTQ

{
(p + 1)∆[0,p] + T∆[p+1,n]

}
. (11.65)

Method (11.45) is thus zero-stable for any h ≤ h0. �

508 11 Numerical Solution of Ordinary Differential Equations

Theorem 11.4 allows for characterizing the stability behavior of several families
of discretization methods.

In the special case of consistent one-step methods, the polynomial ρ admits
only the root r0 = 1. They thus automatically satisfy the root condition and
are zero-stable.

For the Adams methods (11.48), the polynomial ρ is always of the form
ρ(r) = rp+1 − rp. Thus, its roots are r0 = 1 and r1 = 0 (with multiplicity p)
so that all Adams methods are zero-stable.

Also the midpoint method (11.43) and Simpson method (11.44) are zero-
stable: for both of them, the first characteristic polynomial is ρ(r) = r2 − 1,
so that r0 = 1 and r1 = −1.

Finally, the BDF methods of Section 11.5.2 are zero-stable provided that
p ≤ 5, since in such a case the root condition is satisfied (see [Cry73]).
We are in position to give the following convergence result.

Theorem 11.5 (Convergence) A consistent multistep method is convergent
iff it satisfies the root condition and the error on the initial data tends to zero
as h → 0. Moreover, the method converges with order q if it has order q and
the error on the initial data tends to zero as O(hq).

Proof. Suppose that the MS method is consistent and convergent. To prove that
the root condition is satisfied, we refer to the problem y′(t) = 0 with y(0) = 0 and
on the interval I = (0, T). Convergence means that the numerical solution {un}
must tend to the exact solution y(t) = 0 for any converging set of initial data
uk, k = 0, . . . , p, i.e. max

k=0,...,p
|uk| → 0 as h → 0. From this observation, the proof

follows by contradiction along the same lines as the proof of Theorem 11.4, where
the parameter ε is now replaced by h.

Let us now prove that consistency, together with the root condition, implies
convergence under the assumption that the error on the initial data tends to zero
as h → 0. We can apply Theorem 11.4, setting u

(h)
n = un (approximate solution of

the Cauchy problem) and z
(h)
n = yn (exact solution), and from (11.46) it turns out

that δm = τm(h). Then, due to (11.65), for any n ≥ p + 1 we obtain

|un − yn| ≤ 2MeTQ

{

(p + 1) max
j=0,...,p

|uj − yj | + T max
j=p+1,...,n

|τj(h)|
}

.

Convergence holds by noticing that the right-hand side of this inequality tends to

zero as h → 0. �

A remarkable consequence of the above theorem is the following equivalence
Lax-Richtmyer theorem.

Corollary 11.1 (Equivalence theorem) A consistent multistep method is
convergent iff it is zero-stable and if the error on the initial data tends to zero
as h tends to zero.

We conclude this section with the following result, which establishes an upper
limit for the order of multistep methods (see [Dah63]).

11.6 Analysis of Multistep Methods 509

Im

Re

Im

Re
ϑ

ϑ

Fig. 11.4. Regions of absolute stability for A-stable (left) and ϑ-stable methods
(right)

Property 11.1 (First Dahlquist barrier) There isn’t any zero-stable, q-
step linear multistep method with order greater than q + 1 if q is odd, q + 2 if
q is even.

11.6.4 Absolute Stability of Multistep Methods

Consider again the difference equation (11.53), which was obtained by
applying the MS method (11.45) to the model problem (11.24). Accord-
ing to (11.33), its solution takes the form

un =
k′
∑

j=1

(
mj−1∑

s=0

γsjn
s

)

[rj(hλ)]n, n = 0, 1, . . . ,

where rj(hλ), j = 1, . . . , k′, are the distinct roots of the characteristic poly-
nomial (11.54), and having denoted by mj the multiplicity of rj(hλ). In view
of (11.25), it is clear that the absolute root condition introduced by Definition
11.12 is necessary and sufficient to ensure that the multistep method (11.45)
is absolutely stable as h ≤ h0.

Among the methods enjoying the absolute stability property, the prefer-
ence should go to those for which the region of absolute stability A, intro-
duced in (11.26), is as wide as possible or even unbounded. Among these are
the A-stable methods introduced at the end of Section 11.3.3 and the ϑ-stable
methods; the latter are those for which A contains the angular region defined
by z ∈ C such that −ϑ < π−arg(z) < ϑ, with ϑ ∈ (0, π/2). A-stable methods
are of remarkable importance when solving stiff problems (see Section 11.10).
The following result, whose proof is given in [Wid67], establishes a relation
between the order of a multistep method, the number of its steps and its
stability properties.

510 11 Numerical Solution of Ordinary Differential Equations

-2 -1.5 -1 -0.5 0
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

AB2
AB3

AB4

-6 -4 -2 0
-4

-3

-2

-1

0

1

2

3

4

AM3

AM4
AM5

Fig. 11.5. Outer contours of the regions of absolute stability for Adams-Bashforth
methods (left) ranging from second to fourth-order (AB2, AB3 and AB4) and for
Adams-Moulton methods (right), from third to sixth-order (AM3, AM4 and AM5).
Notice that the region of the AB3 method extends into the half-plane with positive
real part. The region for the explicit Euler (AB1) method was drawn in Figure 11.3

Property 11.2 (Second Dahlquist barrier) A linear explicit multistep
method can be neither A-stable, nor ϑ-stable. Moreover, there is no A-
stable linear multistep method with order greater than 2. Finally, for any
ϑ ∈ (0, π/2), there only exist ϑ-stable q-step linear multistep methods of order
q for q = 3 and q = 4.

Let us now examine the region of absolute stability of several MS methods.
The regions of absolute stability of both explicit and implicit Adams schemes
reduce progressively as the order of the method increases. In Figure 11.5
(left) we show the regions of absolute stability for the AB methods examined
in Section 11.5.1, with exception of the Forward Euler method whose region
is shown in Figure 11.3.

The regions of absolute stability of the Adams-Moulton schemes, except
for the Crank-Nicolson method which is A-stable, are represented in Figure
11.5 (right).
In Figure 11.6 the regions of absolute stability of some of the BDF methods
introduced in Section 11.5.2 are drawn. They are unbounded and always con-
tain the negative real numbers. These stability features make BDF methods
quite attractive for solving stiff problems (see Section 11.10).

Remark 11.3 Some authors (see, e.g., [BD74]) adopt an alternative defini-
tion of absolute stability by replacing (11.25) with the milder property

∃C > 0 : |un| ≤ C, as tn → +∞.

11.7 Predictor-Corrector Methods 511

-2 0 2 4 6 8 10 12
-8

-6

-4

-2

0

2

4

6

8

BDF3
BDF4

-5 0 5 10 15 20 25 30

-20

-15

-10

-5

0

5

10

15

20

BDF6

BDF5

Fig. 11.6. Inner contours of regions of absolute stability for three- and four-step
BDF methods (BDF3 and BDF4, left), and five- and six-step BDF methods (BDF5
and BDF6, right). Unlike Adams methods, these regions are unbounded and extend
outside the limited portion that is shown in the figure

According to this new definition, the absolute stability of a numerical method
should be regarded as the counterpart of the asymptotic stability (11.6) of the
Cauchy problem. The new region of absolute stability A∗ would be

A∗ = {z ∈ C : ∃C > 0, |un| ≤ C, ∀n ≥ 0}

and it would not necessarily coincide with A. For example, in the case of the
midpoint method A is empty (thus, it is unconditionally absolutely unstable),
while A∗ = {z = αi, α ∈ [−1, 1]}.

In general, if A is nonempty, then A∗ is its closure. We notice that zero-
stable methods are those for which the region A∗ contains the origin z = 0 of
the complex plane. �

To conclude, let us notice that the strong root condition (11.56) implies, for
a linear problem, that

∀h ≤ h0, ∃C > 0 : |un| ≤ C(|u0| + . . . + |up|), ∀n ≥ p + 1. (11.66)

We say that a method is relatively stable if it satisfies (11.66). Clearly, (11.66)
implies zero-stability, but the converse does not hold.
Figure 11.7 summarizes the main conclusions drawn in this section about
stability, convergence and root-conditions, in the particular case of a consistent
method applied to the model problem (11.24).

11.7 Predictor-Corrector Methods

When solving a nonlinear Cauchy problem of the form (11.1), at each time
step implicit schemes require dealing with a nonlinear equation. For instance,

512 11 Numerical Solution of Ordinary Differential Equations

Root ⇐= Strong root ⇐= Absolute root
condition condition condition

C
D
E

D
D
E

C
D
E

Convergence ⇐⇒ Zero ⇐= (11.66) ⇐= Absolute
stability stability

Fig. 11.7. Relations between the various root conditions, stability and convergence
for a consistent method applied to the model problem (11.24)

if the Crank-Nicolson method is used, we get the nonlinear equation

un+1 = un +
h

2
[fn + fn+1] = Ψ(un+1),

that can be cast in the form Φ(un+1) = 0, where Φ(un+1) = un+1 −Ψ(un+1).
To solve this equation the Newton method would give

u
(k+1)
n+1 = u

(k)
n+1 − Φ(u(k)

n+1)/Φ′(u(k)
n+1),

for k = 0, 1, . . ., until convergence and require an initial datum u
(0)
n+1 suffi-

ciently close to un+1. Alternatively, one can resort to fixed-point iterations

u
(k+1)
n+1 = Ψ(u(k)

n+1) (11.67)

for k = 0, 1, . . ., until convergence. In such a case, the global convergence
condition for the fixed-point method (see Theorem 6.1) sets a constraint on
the discretization stepsize of the form

h <
1

|b−1|L
, (11.68)

where L is the Lipschitz constant of f with respect to y. In practice, ex-
cept for the case of stiff problems (see Section 11.10), this restriction on h is
not significant since considerations of accuracy put a much more restrictive
constraint on h. However, each iteration of (11.67) requires one evaluation
of the function f and the computational cost can be reduced by providing
a good initial guess u

(0)
n+1. This can be done by taking one step of an ex-

plicit MS method and then iterating on (11.67) for a fixed number m of
iterations. By doing so, the implicit MS method that is employed in the fixed-
point scheme “corrects” the value of un+1 “predicted” by the explicit MS
method. A procedure of this type is called a predictor-corrector method, or
PC method. There are many ways in which a predictor-corrector method can
be implemented.

11.7 Predictor-Corrector Methods 513

In its basic version, the value u
(0)
n+1 is computed by an explicit p̃ + 1-step

method, called the predictor (here identified by the coefficients {ãj , b̃j})

[P] u
(0)
n+1 =

p̃∑

j=0

ãju
(1)
n−j + h

p̃∑

j=0

b̃jf
(0)
n−j ,

where f
(0)
k = f(tk, u

(0)
k) and u

(1)
k are the solutions computed by the PC method

at the previous steps or are the initial conditions. Then, we evaluate the
function f at the new point (tn+1, u

(0)
n+1) (evaluation step)

[E] f
(0)
n+1 = f(tn+1, u

(0)
n+1),

and finally, one single fixed-point iteration is carried out using an implicit MS
scheme of the form (11.45)

[C] u
(1)
n+1 =

p∑

j=0

aju
(1)
n−j + h

p∑

j=0

bjf
(0)
n−j + hb−1f

(0)
n+1.

This second step of the procedure, which is actually explicit, is called the cor-
rector. The overall procedure is shortly denoted by PEC or P (EC)1 method,
in which P and C denote one application at time tn+1 of the predictor and
the corrector methods, respectively, while E indicates one evaluation of the
function f .

This strategy above can be generalized supposing to perform m > 1
iterations at each step tn+1. The corresponding methods are called predictor-
multicorrector schemes and compute u

(0)
n+1 at time step tn+1 using the

predictor in the following form

[P] u
(0)
n+1 =

p̃∑

j=0

ãju
(m)
n−j + h

p̃∑

j=0

b̃jf
(m−1)
n−j . (11.69)

Here m ≥ 1 denotes the (fixed) number of corrector iterations that are carried
out in the following steps [E], [C]: for k = 0, 1, . . . ,m − 1

[E] f
(k)
n+1 = f(tn+1, u

(k)
n+1),

[C] u
(k+1)
n+1 =

p∑

j=0

aju
(m)
n−j + hb−1f

(k)
n+1 + h

p∑

j=0

bjf
(m−1)
n−j .

These implementations of the predictor-corrector technique are referred to as
P (EC)m. Another implementation, denoted by P (EC)mE, consists of updat-
ing at the end of the process also the function f and is given by

[P] u
(0)
n+1 =

p̃∑

j=0

ãju
(m)
n−j + h

p̃∑

j=0

b̃jf
(m)
n−j ,

514 11 Numerical Solution of Ordinary Differential Equations

and for k = 0, 1, . . . ,m − 1,

[E] f
(k)
n+1 = f(tn+1, u

(k)
n+1),

[C] u
(k+1)
n+1 =

p∑

j=0

aju
(m)
n−j + hb−1f

(k)
n+1 + h

p∑

j=0

bjf
(m)
n−j ,

followed by

[E] f
(m)
n+1 = f(tn+1, u

(m)
n+1).

Example 11.8 Heun’s method (11.10) can be regarded as a predictor-corrector
method whose predictor is the forward Euler method, while the corrector is the
Crank-Nicolson method.

Another example is provided by the Adams-Bashforth method of order 2
(11.49) and the Adams-Moulton method of order 3 (11.50). Its corresponding PEC

implementation is: given u
(0)
0 = u

(1)
0 = u0, u

(0)
1 = u

(1)
1 = u1 and f

(0)
0 = f(t0, u

(0)
0),

f
(0)
1 = f(t1, u

(0)
1), compute for n = 1, 2, . . . ,

[P] u
(0)
n+1 = u

(1)
n +

h

2

[
3f (0)

n − f
(0)
n−1

]
,

[E] f
(0)
n+1 = f(tn+1, u

(0)
n+1),

[C] u
(1)
n+1 = u

(1)
n +

h

12

[
5f

(0)
n+1 + 8f (0)

n − f
(0)
n−1

]
,

while the PECE implementation is: given u
(0)
0 = u

(1)
0 = u0, u

(0)
1 = u

(1)
1 = u1 and

f
(1)
0 = f(t0, u

(1)
0), f

(1)
1 = f(t1, u

(1)
1), compute for n = 1, 2, . . . ,

[P] u
(0)
n+1 = u

(1)
n +

h

2

[
3f (1)

n − f
(1)
n−1

]
,

[E] f
(0)
n+1 = f(tn+1, u

(0)
n+1),

[C] u
(1)
n+1 = u

(1)
n +

h

12

[
5f

(0)
n+1 + 8f (1)

n − f
(1)
n−1

]
,

[E] f
(1)
n+1 = f(tn+1, u

(1)
n+1).

•

Before studying the convergence of predictor-corrector methods, we intro-
duce a simplification in the notation. Usually the number of steps of the
predictor is greater than those of the corrector, so that we define the num-
ber of steps of the predictor-corrector pair as being equal to the number
of steps of the predictor. This number will be denoted henceforth by p.
Owing to this definition we no longer demand that the coefficients of the
corrector satisfy |ap| + |bp| �= 0. Consider for example the predictor-corrector
pair

11.7 Predictor-Corrector Methods 515

[P] u
(0)
n+1 = u

(1)
n + hf(tn−1, u

(0)
n−1),

[C] u
(1)
n+1 = u

(1)
n + h

2

[
f(tn, u

(0)
n) + f(tn+1, u

(0)
n+1)

]
,

for which p = 2 (even though the corrector is a one-step method). Conse-
quently, the first and the second characteristic polynomials of the corrector
method will be ρ(r) = r2 − r and σ(r) = (r2 + r)/2 instead of ρ(r) = r − 1
and σ(r) = (r + 1)/2.

In any predictor-corrector method, the truncation error of the predictor
combines with the one of the corrector, generating a new truncation error
which we are going to examine. Let q̃ and q be, respectively, the orders
of the predictor and the corrector and assume that y ∈ C q̂+1, where q̂
= max(q̃, q). Then

y(tn+1) −
p∑

j=0

ãjy(tn−j) − h

p∑

j=0

b̃jf(tn−j , yn−j)

= C̃q̃+1h
q̃+1y(q̃+1)(tn−p) + O(hq̃+2),

y(tn+1) −
p∑

j=0

ajy(tn−j) − h

p∑

j=−1

bjf(tn−j , yn−j)

= Cq+1h
q+1y(q+1)(tn−p) + O(hq+2),

where C̃q̃+1, Cq+1 are the error constants of the predictor and the corrector
method respectively. The following result holds.

Property 11.3 Let the predictor method have order q̃ and the corrector
method have order q. Then:

- if q̃ ≥ q (or q̃ < q with m > q − q̃), the predictor-corrector method has the
same order and the same PLTE as the corrector;

- if q̃ < q and m = q − q̃, the predictor-corrector method has the same order
as the corrector, but different PLTE;

- if q̃ < q and m ≤ q − q̃ − 1, the predictor-corrector method has order equal
to q̃ + m (thus less than q).

In particular, notice that if the predictor has order q−1 and the corrector has
order q, the PEC suffices to get a method of order q. Moreover, the P (EC)mE
and P (EC)m schemes have always the same order and the same PLTE.

Combining the Adams-Bashforth method of order q with the correspond-
ing Adams-Moulton method of the same order we obtain the so-called ABM
method of order q. It is possible to estimate its PLTE as

Cq+1

C∗
q+1 − Cq+1

(
u

(m)
n+1 − u

(0)
n+1

)
,

516 11 Numerical Solution of Ordinary Differential Equations

where Cq+1 and C∗
q+1 are the error constants given in Table 11.1. Accordingly,

the steplength h can be decreased if the estimate of the PLTE exceeds a given
tolerance and increased otherwise (for the adaptivity of the step length in a
predictor-corrector method, see [Lam91], pp.128–147).

Program 93 provides an implementation of the P (EC)mE methods. The
input parameters at, bt, a, b contain the coefficients ãj , b̃j (j = 0, . . . , p̃) of
the predictor and the coefficients aj (j = 0, . . . , p), bj (j = −1, . . . , p) of the
corrector. Moreover, f is a string containing the expression of f(t, y), h is the
stepsize, t0 and tf are the end points of the time integration interval, u0 is
the vector of the initial data, m is the number of the corrector inner iterations.
The input variable pece must be set equal to ‘y’ if the P (EC)mE is selected,
conversely the P (EC)m scheme is chosen.

Program 93 - predcor : Predictor-corrector scheme

function [t,u]=predcor(a,b,at,bt,h,f,t0,u0,tf,pece,m)
%PREDCOR Predictor-corrector method.
% [T,U]=PREDCOR(A,B,AT,BT,TF,T0,U0,H,FUN,PECE,M) solves the Cauchy
% problem Y’=FUN(T,Y) for T in (T0,TF) using a predictor method with
% coefficients AT and BT for the predictor, A and B for the corrector. H specifies
% the time step. If PECE=1, then the P(EC)ˆmE method is selected, other-
wise the P(EC)ˆm
% is considered.
p = max(length(a),length(b)-1);
pt = max(length(at),length(bt));
q = max(p,pt); if length(u0)<q, break, end;
t = [t0:h:t0+(q-1)*h]; u = u0; y = u0; fe = eval(f);
k = q;
for t = t0+q*h:h:tf

ut=sum(at.*u(k:-1:k-pt+1))+h*sum(bt.*fe(k:-1:k-pt+1));
y=ut; foy=eval(f);
uv=sum(a.*u(k:-1:k-p+1))+h*sum(b(2:p+1).*fe(k:-1:k-p+1));
k = k+1;
for j=1:m

fy=foy; up=uv+h*b(1)*fy; y=up; foy=eval(f);
end
if pece==’y’|pece==’Y’

fe=[fe,foy];
else

fe=[fe,fy];
end
u=[u,up];

end
t=[t0:h:tf];
return

Example 11.9 Let us check the performance of the P (EC)mE method on the
Cauchy problem y′(t) = e−y(t) for t ∈ [0, 1] with y(0) = 0. The exact solution is

11.7 Predictor-Corrector Methods 517

10−3 10−2

10−1
10−12

10−10

10−8

10−6

10−4

10−2

Fig. 11.8. Convergence rate for P (EC)mE methods as a function of log(h). The
symbol ∇ refers to the AB2-AM3 method (m = 1), ◦ to AB1-AM3 (m = 1) and �
to AB1-AM3 with m = 2

y(t) = log(1 + t). In all the numerical experiments, the corrector method is the
Adams-Moulton third-order scheme (AM3), while the explicit Euler (AB1) and the
Adams-Bashforth second-order (AB2) methods are used as predictors. Figure 11.8
shows that the pair AB2-AM3 (m = 1) yields third-order convergence rate, while
AB1-AM3 (m = 1) has a second-order accuracy. Taking m = 2 allows to recover the
third-order convergence rate of the corrector for the AB1-AM3 pair. •

As for the absolute stability, the characteristic polynomial of P (EC)m meth-
ods reads

ΠP (EC)m(r) = b−1r
p (ρ̂(r) − hλσ̂(r)) +

Hm(1 − H)
1 − Hm

(ρ̃(r)σ̂(r) − ρ̂(r)σ̃(r)) ,

while for P (EC)mE we have

ΠP (EC)mE(r) = ρ̂(r) − hλσ̂(r) +
Hm(1 − H)

1 − Hm
(ρ̃(r) − hλσ̃(r)) .

We have set H = hλb−1 and denoted by ρ̃ and σ̃ the first and second char-
acteristic polynomial of the predictor method, respectively. The polynomials
ρ̂ and σ̂ are related to the first and second characteristic polynomials of the
corrector, as previously explained after Example 11.8. Notice that in both
cases the characteristic polynomial tends to the corresponding polynomial of
the corrector method, since the function Hm(1 − H)/(1 − Hm) tends to zero
as m tends to infinity.

Example 11.10 If we consider the ABM methods with a number of steps p, the
characteristic polynomials are ρ̂(r) = ρ̃(r) = r(rp−1 − rp−2), while σ̂(r) = rσ(r),
where σ(r) is the second characteristic polynomial of the corrector. In Figure 11.9
(right) the stability regions for the ABM methods of order 2 are plotted. In the case

518 11 Numerical Solution of Ordinary Differential Equations

-1.5 -1 -0.5 0 0.5
-1.5

-1

-0.5

0

0.5

1

1.5

PECE

P(EC)2E

PEC

P(EC)2

-2 -1.5 -1 -0.5 0 0.5
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

PECE

P(EC)2E

PEC

Fig. 11.9. Stability regions for the ABM methods of order 1 (left) and 2 (right)

of the ABM methods of order 2, 3 and 4, the corresponding stability regions can be
ordered by size, namely, from the largest to the smallest one the regions of PECE,
P (EC)2E, the predictor and PEC methods are plotted in Figure 11.9, left. The
one-step ABM method is an exception to the rule and the largest region is the one
corresponding to the predictor method (see Figure 11.9, left). •

11.8 Runge-Kutta (RK) Methods

When moving from the forward Euler method (11.7) toward higher-order
methods, linear multistep methods (MS) and Runge-Kutta methods (RK)
adopt two opposite strategies.

Like the Euler method, MS schemes are linear with respect to both un

and fn = f(tn, un), require only one functional evaluation at each time step
and their accuracy can be increased at the expense of increasing the number
of steps. On the other hand, RK methods maintain the structure of one-step
methods, and increase their accuracy at the price of an increase of functional
evaluations at each time level, thus sacrifying linearity.

A consequence is that RK methods are more suitable than MS methods
at adapting the stepsize, whereas estimating the local error for RK methods
is more difficult than it is in the case of MS methods.
In its most general form, an RK method can be written as

un+1 = un + hF (tn, un, h; f), n ≥ 0, (11.70)

where F is the increment function defined as follows

F (tn, un, h; f) =
s∑

i=1

biKi,

Ki = f(tn + cih, un + h

s∑

j=1

aijKj), i = 1, 2, . . . , s

(11.71)

11.8 Runge-Kutta (RK) Methods 519

and s denotes the number of stages of the method. The coefficients {aij}, {ci}
and {bi} fully characterize an RK method and are usually collected in the
so-called Butcher array

c1 a11 a12 . . . a1s

c2 a21 a22 a2s

...
...

. . .
...

cs as1 as2 . . . ass

b1 b2 . . . bs

or
c A

bT

,

where A = (aij) ∈ R
s×s, b = (b1, . . . , bs)

T ∈ R
s and c = (c1, . . . , cs)

T ∈ R
s.

We shall henceforth assume that the following condition holds

ci =
s∑

j=1

aij i = 1, . . . , s. (11.72)

If the coefficients aij in A are equal to zero for j ≥ i, with i = 1, 2, . . . , s,
then each Ki can be explicitly computed in terms of the i − 1 coefficients
K1, . . . ,Ki−1 that have already been determined. In such a case the RK
method is explicit. Otherwise, it is implicit and solving a nonlinear system
of size s is necessary for computing the coefficients Ki.

The increase in the computational effort for implicit schemes makes their
use quite expensive; an acceptable compromise is provided by RK semi-
implicit methods, in which case aij = 0 for j > i so that each Ki is the
solution of the nonlinear equation

Ki = f

⎛

⎝tn + cih, un + haii Ki + h

i−1∑

j=1

aijKj

⎞

⎠ .

A semi-implicit scheme thus requires s nonlinear independent equations to be
solved.

The local truncation error τn+1(h) at node tn+1 of the RK method (11.70)
is defined through the residual equation

hτn+1(h) = yn+1 − yn − hF (tn, yn, h; f),

where y(t) is the exact solution to the Cauchy problem (11.1). Method (11.70)
is consistent if τ(h) = maxn |τn(h)| → 0 as h → 0. It can be shown (see
[Lam91]) that this happens iff

s∑

i=1

bi = 1.

As usual, we say that (11.70) is a method of order p (≥ 1) with respect to h
if τ(h) = O(hp) as h → 0.

520 11 Numerical Solution of Ordinary Differential Equations

As for convergence, since RK methods are one-step methods, consistency
implies stability and, in turn, convergence. As happens for MS methods, esti-
mates of τ(h) can be derived; however, these estimates are often too involved
to be profitably used. We only mention that, as for MS methods, if a RK
scheme has a local truncation error τn(h) = O(hp), for any n, then also the
convergence order will be equal to p.

The following result establishes a relation between order and number of
stages of explicit RK methods.

Property 11.4 The order of an s-stage explicit RK method cannot be greater
than s. Also, there do not exist s-stage explicit RK methods with order s if
s ≥ 5.

We refer the reader to [But87] for the proofs of this result and the results we
give below. In particular, for orders ranging between 1 and 8, the minimum
number of stages smin required to get a method of corresponding order is
shown below

order 1 2 3 4 5 6 7 8
smin 1 2 3 4 6 7 9 11

.

Notice that 4 is the maximum number of stages for which the order of the
method is not less than the number of stages itself. An example of a fourth-
order RK method is provided by the following explicit 4-stage method

un+1 = un +
h

6
(K1 + 2K2 + 2K3 + K4),

K1 = fn,

K2 = f(tn + h
2 , un + h

2 K1),

K3 = f(tn + h
2 , un + h

2 K2),

K4 = f(tn+1, un + hK3).

(11.73)

As far as implicit schemes are concerned, the maximum achievable order using
s stages is equal to 2s.

Remark 11.4 (The case of systems of ODEs) A RK method can be
readily extended to systems of ODEs. However, the order of a RK method in
the scalar case does not necessarily coincide with that in the vector case. In
particular, for p ≥ 4, a method having order p in the case of the autonomous
system y′ = f(y), with f : R

m → R
n, maintains order p even when applied

to an autonomous scalar equation y′ = f(y), but the converse is not true, see
[Lam91], Section 5.8. �

11.8 Runge-Kutta (RK) Methods 521

11.8.1 Derivation of an Explicit RK Method

The standard technique for deriving an explicit RK method consists of
enforcing that the highest number of terms in Taylor’s expansion of the exact
solution yn+1 about tn coincide with those of the approximate solution un+1,
assuming that we take one step of the RK method starting from the exact
solution yn. We provide an example of this technique in the case of an explicit
2-stage RK method.

Let us consider a 2-stage explicit RK method and assume to dispose at
the n-th step of the exact solution yn. Then

un+1 = yn + hF (tn, yn, h; f) = yn + h(b1K1 + b2K2),

K1 = f(tn, yn), K2 = f(tn + hc2, yn + hc2K1),

having assumed that (11.72) is satisfied. Expanding K2 in a Taylor series
in a neighborhood of tn and truncating the expansion at the second order,
we get

K2 = fn + hc2(fn,t + K1fn,y) + O(h2).

We have denoted by fn,z (for z = t or z = y) the partial derivative of f with
respect to z evaluated at (tn, yn). Then

un+1 = yn + hfn(b1 + b2) + h2c2b2(fn,t + fnfn,y) + O(h3).

If we perform the same expansion on the exact solution, we find

yn+1 = yn + hy′
n +

h2

2
y′′

n + O(h3) = yn + hfn +
h2

2
(fn,t + fnfn,y) + O(h3).

Forcing the coefficients in the two expansions above to agree, up to higher-
order terms, we obtain that the coefficients of the RK method must satisfy
b1 + b2 = 1, c2b2 = 1

2 .
Thus, there are infinitely many 2-stage explicit RK methods with second-

order accuracy. Two examples are the Heun method (11.10) and the modified
Euler method (11.91). Of course, with similar (and cumbersome) compu-
tations in the case of higher-stage methods, and accounting for a higher
number of terms in Taylor’s expansion, one can generate higher-order RK
methods. For instance, retaining all the terms up to the fifth one, we get
scheme (11.73).

11.8.2 Stepsize Adaptivity for RK Methods

Since RK schemes are one-step methods, they are well-suited to adapting the
stepsize h, provided that an efficient estimator of the local error is available.
Usually, a tool of this kind is an a posteriori error estimator, since the a priori

522 11 Numerical Solution of Ordinary Differential Equations

local error estimates are too complicated to be used in practice. The error
estimator can be constructed in two ways:

- using the same RK method, but with two different stepsizes (typically 2h
and h);
- using two RK methods of different order, but with the same number s of
stages.

In the first case, if a RK method of order p is being used, one pretends
that, starting from an exact datum un = yn (which would not be available
if n ≥ 1), the local error at tn+1 is less than a fixed tolerance. The following
relation holds

yn+1 − un+1 = Φ(yn)hp+1 + O(hp+2), (11.74)

where Φ is an unknown function evaluated at yn. (Notice that, in this special
case, yn+1 − un+1 = hτn+1(h).)

Carrying out the same computation with a stepsize of 2h, starting from
tn−1, and denoting by ûn+1 the computed solution, yields

yn+1 − ûn+1 = Φ(yn−1)(2h)p+1 + O(hp+2)

= Φ(yn)(2h)p+1 + O(hp+2),
(11.75)

having expanded also yn−1 with respect to tn. Subtracting (11.74) from
(11.75), we get

(2p+1 − 1)hp+1Φ(yn) = un+1 − ûn+1 + O(hp+2),

from which

yn+1 − un+1 � un+1 − ûn+1

(2p+1 − 1)
= E .

If |E| is less than the fixed tolerance ε, the scheme moves to the next time
step, otherwise the estimate is repeated with a halved stepsize. In general, the
stepsize is doubled whenever |E| is less than ε/2p+1.

This approach yields a considerable increase in the computational effort,
due to the s − 1 extra functional evaluations needed to generate the value
ûn+1. Moreover, if one needs to half the stepsize, the value un must also be
computed again.

An alternative that does not require extra functional evaluations consists
of using simultaneously two different RK methods with s stages, of order p
and p+1, respectively, which share the same set of values Ki. These methods
are synthetically represented by the modified Butcher array

c A
bT 2

b̂T 2

ET 2

, (11.76)

11.8 Runge-Kutta (RK) Methods 523

where the method of order p is identified by the coefficients c, A and b, while
that of order p + 1 is identified by c, A and b̂, and where E = b − b̂.

Taking the difference between the approximate solutions at tn+1 produced
by the two methods provides an estimate of the local truncation error for the
scheme of lower order. On the other hand, since the coefficients Ki coincide,
this difference is given by h

∑s
i=1 EiKi and thus it does not require extra

functional evaluations.
Notice that, if the solution un+1 computed by the scheme of order p is

used to initialize the scheme at time step n + 2, the method will have order
p, as a whole. If, conversely, the solution computed by the scheme of order
p + 1 is employed, the resulting scheme would still have order p + 1 (exactly
as happens with predictor-corrector methods).

The Runge-Kutta Fehlberg method of fourth-order is one of the most
popular schemes of the form (11.76) and consists of a fourth-order RK scheme
coupled with a fifth-order RK method (for this reason, it is known as the RK45
method). The modified Butcher array for this method is shown below

0 0 0 0 0 0 0
1
4

1
4 0 0 0 0 0

3
8

3
32

9
32 0 0 0 0

12
13

1932
2197 − 7200

2197
7296
2197 0 0 0

1 439
216 −8 3680

513 − 845
4104 0 0

1
2 − 8

27 2 − 3544
2565

1859
4104 − 11

40 0

25
216 0 1408

2565
2197
4104 − 1

5 0
16
135 0 6656

12825
28561
56430 − 9

50
2
55

1
360 0 − 128

4275 − 2197
75240

1
50

2
55

This method tends to underestimate the error. As such, its use is not com-
pletely reliable when the stepsize h is large.

Remark 11.5 MATLAB provides a package tool funfun, which, besides the
two classical Runge-Kutta Fehlberg methods, RK23 (second-order and third-
order pair) and RK45 (fourth-order and fifth-order pair), also implements
other methods suitable for solving stiff problems. These methods are derived
from BDF methods (see [SR97]) and are included in the MATLAB program
ode15s. �

11.8.3 Implicit RK Methods

Implicit RK methods can be derived from the integral formulation (11.2) of
the Cauchy problem. In fact, if a quadrature formula with s nodes in (tn, tn+1)

524 11 Numerical Solution of Ordinary Differential Equations

is employed to approximate the integral of f (which we assume, for simplicity,
to depend only on t), we get

tn+1∫

tn

f(τ) dτ � h

s∑

j=1

bjf(tn + cjh),

having denoted by bj the weights and by tn + cjh the quadrature nodes. It
can be proved (see [But64]) that for any RK formula (11.70)-(11.71), there
exists a correspondence between the coefficients bj , cj of the formula and the
weights and nodes of a Gauss quadrature rule (see, [Lam91], Section 5.11).

Once the s coefficients cj have been found, we can construct RK methods
of order 2s, by determining the coefficients aij and bj as being the solutions
of the linear systems

s∑

j=1

ck−1
j aij = (1/k)ck

i , k = 1, 2, . . . , s, i = 1, . . . , s,

s∑

j=1

ck−1
j bj = 1/k, k = 1, 2, . . . , s.

The following families can be derived:

1. Gauss-Legendre RK methods, if Gauss-Legendre quadrature nodes are
used. These methods, for a fixed number of stages s, attain the maxi-
mum possible order 2s. Remarkable examples are the one-stage method
(implicit midpoint method) of order 2

un+1 = un + hf
(
tn + 1

2h, 1
2 (un + un+1)

)
,

1
2

1
2

1

and the 2-stage method of order 4, described by the following Butcher
array

3−
√

3
6

1
4

3−2
√

3
12

3+
√

3
6

3+2
√

3
12

1
4

1
2

1
2

;

2. Gauss-Radau methods, which are characterized by the fact that the
quadrature nodes include one of the two endpoints of the interval
(tn, tn+1). The maximum order that can be achieved by these meth-
ods is 2s − 1, when s stages are used. Elementary examples correspond
to the following Butcher arrays

11.8 Runge-Kutta (RK) Methods 525

0 1
1
,

1 1
1
,

1
3

5
12 − 1

12

1 3
4

1
4

3
4

1
4

and have order 1, 1 and 3, respectively. The Butcher array in the middle
represents the backward Euler method.

3. Gauss-Lobatto methods, where both the endpoints tn and tn+1 are quadra-
ture nodes. The maximum order that can be achieved using s stages is
2s−2. We recall the methods of the family corresponding to the following
Butcher arrays

0 0 0
1 1

2
1
2

1
2

1
2

,

0 1
2 0

1 1
2 0

1
2

1
2

,

0 1
6 − 1

3
1
6

1
2

1
6

5
12 − 1

12

1 1
6

2
3

1
6

1
6

2
3

1
6

,

which have order 2, 2 and 3, respectively. The first array represents the
Crank-Nicolson method.
As for semi-implicit RK methods, we limit ourselves to mentioning the
case of DIRK methods (diagonally implicit RK), which, for s = 3, are
represented by the following Butcher array

1+µ
2

1+µ
2 0 0

1
2 −µ

2
1+µ

2 0
1−µ

2 1 + µ −1 − 2µ 1+µ
2

1
6µ2 1 − 1

3µ2
1

6µ2

.

The parameter µ represents one of the three roots of 3µ3 − 3µ − 1 = 0
(i.e., (2/

√
3) cos(10◦), −(2/

√
3) cos(50◦), −(2/

√
3) cos(70◦)). The maxi-

mum order that has been determined in the literature for these methods
is 4.

11.8.4 Regions of Absolute Stability for RK Methods

Applying an s-stage RK method to the model problem (11.24) yields

Ki = λ

⎛

⎝un + h

s∑

j=1

aijKj

⎞

⎠ , un+1 = un + h

s∑

i=1

biKi, (11.77)

526 11 Numerical Solution of Ordinary Differential Equations

that is, a first-order difference equation. If K and 1 are the vectors of compo-
nents (K1, . . . ,Ks)T and (1, . . . , 1)T , respectively, then (11.77) becomes

K = λ(un1 + hAK), un+1 = un + hbT K,

from which, K = (I − hλA)−11λun and thus

un+1 =
[
1 + hλbT (I − hλA)−11

]
un = R(hλ)un,

where R(hλ) is the so-called stability function.
The RK method is absolutely stable, i.e., the sequence {un} satisfies

(11.25), iff |R(hλ)| < 1. Its region of absolute stability is given by

A = {z = hλ ∈ C such that |R(hλ)| < 1} .

If the method is explicit, A is strictly lower triangular and the function R can
be written in the following form (see [DV84])

R(hλ) =
det(I − hλA + hλ1bT)

det(I − hλA)
.

Thus since det(I − hλA) = 1, R(hλ) is a polynomial function in the variable
hλ, |R(hλ)| can never be less than 1 for all values of hλ. Consequently, A can
never be unbounded for an explicit RK method.
In the special case of an explicit RK of order s = 1, . . . , 4, one gets (see
[Lam91])

R(hλ) =
s∑

k=0

1
k!

(hλ)k.

The corresponding regions of absolute stability are drawn in Figure 11.10.
Notice that, unlike MS methods, the regions of absolute stability of RK
methods increase in size as the order grows.
We finally notice that the regions of absolute stability for explicit RK methods
can fail to be connected; an example is given in Exercise 14.

11.9 Systems of ODEs

Let us consider the system of first-order ODEs

y′ = F(t,y), (11.78)

where F : R × R
n → R

n is a given vector function and y ∈ R
n is the solution

vector which depends on n arbitrary constants set by the n initial conditions

y(t0) = y0. (11.79)

Let us recall the following property (see [Lam91], Theorem 1.1).

11.9 Systems of ODEs 527

−4 −3 −2 −1 0 1 2
0

0.5

1

1.5

2

2.5

3

3.5

4

s = 1

s = 2

s = 4

s = 3

Fig. 11.10. Regions of absolute stability for s-stage explicit RK methods, with
s = 1, . . . , 4. The plot only shows the portion Im(hλ) ≥ 0 since the regions are
symmetric about the real axis

Property 11.5 Let F : R × R
n → R

n be a continuous function on D =
[t0, T] × R

n, with t0 and T finite. Then, if there exists a positive constant L
such that

‖F(t,y) − F(t, ȳ)‖ ≤ L‖y − ȳ‖ (11.80)

holds for any (t,y) and (t, ȳ) ∈ D, then, for any y0 ∈ R
n there exists a unique

y, continuous and differentiable with respect to t for any (t,y) ∈ D, which is
a solution of the Cauchy problem (11.78)-(11.79).

Condition (11.80) expresses the fact that F is Lipschitz continuous with
respect to the second argument.

It is seldom possible to write the solution to system (11.78) in closed form.
A special case is where the system is linear and autonomous, that is

y′(t) = Ay(t), (11.81)

with A∈ R
n×n. Assume that A has n distinct eigenvalues λj , j = 1, . . . , n;

therefore, the solution y can be written as

y(t) =
n∑

j=1

Cje
λjtvj , (11.82)

where C1, . . . , Cn are some constants and {vj} is a basis formed by the eigen-
vectors of A, associated with the eigenvalues λj for j = 1, . . . , n. The solution
is determined by setting n initial conditions.

From the numerical standpoint, the methods introduced in the scalar case
can be extended to systems. A delicate matter is how to generalize the theory
developed about absolute stability.

528 11 Numerical Solution of Ordinary Differential Equations

With this aim, let us consider system (11.81). As previously seen, the
property of absolute stability is concerned with the behavior of the numerical
solution as t grows to infinity, in the case where the solution of problem (11.78)
satisfies

‖y(t)‖ → 0 as t → ∞. (11.83)

Condition (11.83) is satisfied if all the real parts of the eigenvalues of A are
negative since this ensures that

eλjt = eReλjt(cos(Imλjt) + i sin(Imλjt)) → 0, as t → ∞, (11.84)

from which (11.83) follows recalling (11.82). Since A has n distinct eigenvalues,
there exists a nonsingular matrix Q such that Λ = Q−1AQ, Λ being the
diagonal matrix whose entries are the eigenvalues of A (see Section 1.8).

Introducing the auxiliary variable z = Q−1y, the initial system can there-
fore be transformed into

z′ = Λz. (11.85)

Since Λ is a diagonal matrix, the results holding in the scalar case immediately
apply to the vector case as well, provided that the analysis is repeated on all
the (scalar) equations of system (11.85).

11.10 Stiff Problems

Consider a nonhomogeneous linear system of ODEs with constant coefficients

y′(t) = Ay(t) + ϕ(t), with A ∈ R
n×n, ϕ(t) ∈ R

n,

and assume that A has n distinct eigenvalues λj , j = 1, . . . , n. Then

y(t) =
n∑

j=1

Cje
λjtvj + ψ(t) = yhom(t) + ψ(t),

where C1, . . . , Cn, are n constants, {vj} is a basis formed by the eigenvectors
of A and ψ(t) is a particular solution of the ODE at hand. Throughout the
section, we assume that Reλj < 0 for all j.

As t → ∞, the solution y tends to the particular solution ψ. We can
therefore interpret ψ as the steady-state solution (that is, after an infinite
time) and yhom as being the transient solution (that is, for t finite). Assume
that we are interested only in the steady-state. If we employ a numerical
scheme with a bounded region of absolute stability, the stepsize h is subject
to a constraint that depends on the maximum module eigenvalue of A. On
the other hand, the greater this module, the shorter the time interval where

11.10 Stiff Problems 529

the corresponding component in the solution is meaningful. We are thus faced
with a sort of paradox: the scheme is forced to employ a small integration
stepsize to track a component of the solution that is virtually flat for large
values of t.

Precisely, if we assume that

σ ≤ Reλj ≤ τ < 0, ∀j = 1, . . . , n (11.86)

and introduce the stiffness quotient rs = σ/τ , we say that a linear system of
ODEs with constant coefficients is stiff if the eigenvalues of matrix A all have
negative real parts and rs � 1.
However, referring only to the spectrum of A to characterize the stiffness of a
problem might have some drawbacks. For instance, when τ � 0, the stiffness
quotient can be very large while the problem appears to be “genuinely” stiff
only if |σ| is very large. Moreover, enforcing suitable initial conditions can
affect the stiffness of the problem (for example, selecting the data in such
a way that the constants multiplying the “stiff” components of the solution
vanish).

For this reason, several authors find the previous definition of a stiff prob-
lem unsatisfactory, and, on the other hand, they agree on the fact that it is
not possible to exactly state what it is meant by a stiff problem. We limit
ourselves to quoting only one alternative definition, which is of some interest
since it focuses on what is observed in practice to be a stiff problem.

Definition 11.14 (from [Lam91], p. 220) A system of ODEs is stiff if, when
approximated by a numerical scheme characterized by a region of absolute sta-
bility with finite size, it forces the method, for any initial condition for which
the problem admits a solution, to employ a discretization stepsize excessively
small with respect to the smoothness of the exact solution. �

From this definition, it is clear that no conditionally absolute stable method
is suitable for approximating a stiff problem. This prompts resorting to im-
plicit methods, such as MS or RK, which are more expensive than explicit
schemes, but have regions of absolute stability of infinite size. However, it is
worth recalling that, for nonlinear problems, implicit methods lead to nonlin-
ear equations, for which it is thus crucial to select iterative numerical methods
free of limitations on h for convergence.

For instance, in the case of MS methods, we have seen that using fixed-
point iterations sets the constraint (11.68) on h in terms of the Lipschitz
constant L of f . In the case of a linear system this constraint is

L ≥ max
i=1,...,n

|λi|,

so that (11.68) would imply a strong limitation on h (which could even be more
stringent than those required for an explicit scheme to be stable). One way

530 11 Numerical Solution of Ordinary Differential Equations

of circumventing this drawback consists of resorting to Newton’s method or
some variants. The presence of Dahlquist barriers imposes a strong limitation
on the use of MS methods, the only exception being BDF methods, which, as
already seen, are θ-stable for p ≤ 5 (for a larger number of steps they are even
not zero-stable). The situation becomes definitely more favorable if implicit
RK methods are considered, as observed at the end of Section 11.8.4.

The theory developed so far holds rigorously if the system is linear. In
the nonlinear case, let us consider the Cauchy problem (11.78), where the
function F : R × R

n → R
n is assumed to be differentiable. To study its

stability a possible strategy consists of linearizing the system as

y′(t) = F(τ,y(τ)) + JF(τ,y(τ)) [y(t) − y(τ)] ,

in a neighborhood (τ,y(τ)), where τ is an arbitrarily chosen value of t within
the time integration interval.

The above technique might be dangerous since the eigenvalues of JF do
not suffice in general to describe the behavior of the exact solution of the
original problem. Actually, some counterexamples can be found where:

1. JF has complex conjugate eigenvalues, while the solution of (11.78) does
not exhibit oscillatory behavior;

2. JF has real nonnegative eigenvalues, while the solution of (11.78) does not
grow monotonically with t;

3. JF has eigenvalues with negative real parts, but the solution of (11.78)
does not decay monotonically with t.
As an example of the case at item 3. let us consider the system of ODEs

y′ =

⎡

⎢
⎣

− 1
2t

2
t3

− t

2
− 1

2t

⎤

⎥
⎦y = A(t)y.

For t ≥ 1 its solution is

y(t) = C1

[
t−3/2

− 1
2 t1/2

]

+ C2

[
2t−3/2 log t
t1/2(1 − log t)

]

,

whose Euclidean norm diverges monotonically for t > (12)1/4 � 1.86 when
C1 = 1, C2 = 0, whilst the eigenvalues of A(t), equal to (−1 ± 2i)/(2t),
have negative real parts.

Therefore, the nonlinear case must be tackled using ad hoc techniques, by
suitably reformulating the concept of stability itself (see [Lam91], Chapter 7).

11.11 Applications

We consider two examples of dynamical systems that are well-suited to check-
ing the performances of several numerical methods introduced in the previous
sections.

11.11 Applications 531

y1
weight

A

A’ −πK1/2

πK1/2

Fig. 11.11. Left: frictionless pendulum; right: orbits of system (11.87) in the phase
space

11.11.1 Analysis of the Motion of a Frictionless Pendulum

Let us consider the frictionless pendulum in Figure 11.11 (left), whose motion
is governed by the following system of ODEs

{
y′
1 = y2,

y′
2 = −K sin(y1),

(11.87)

for t > 0, where y1(t) and y2(t) represent the position and angular velocity of
the pendulum at time t, respectively, while K is a positive constant depending
on the geometrical-mechanical parameters of the pendulum. We consider the
initial conditions: y1(0) = θ0, y2(0) = 0.
Denoting by y = (y1, y2)T the solution to system (11.87), this admits
infinitely many equilibrium conditions of the form y = (nπ, 0)T for n ∈ Z,
corresponding to the situations where the pendulum is vertical with zero
velocity. For n even, the equilibrium is stable, while for n odd it is unsta-
ble. These conclusions can be drawn by analyzing the linearized system

y′ = Aey =

[
0 1

−K 0

]

y, y′ = Aoy =

[
0 1

K 0

]

y.

If n is even, matrix Ae has complex conjugate eigenvalues λ1,2 = ±i
√

K and
associated eigenvectors y1,2 = (∓i/

√
K, 1)T , while for n odd, Ao has real and

opposite eigenvalues λ1,2 = ±
√

K and eigenvectors y1,2 = (1/
√

K,∓1)T .
Let us consider two different sets of initial data: y(0) = (θ0, 0)T and y(0) =

(π + θ0, 0)T , where |θ0| � 1. The solutions of the corresponding linearized
system are, respectively,

532 11 Numerical Solution of Ordinary Differential Equations

{
y1(t) = θ0 cos(

√
Kt),

y2(t) = −
√

Kθ0 sin(
√

Kt),

{
y1(t) = (π + θ0) cosh(

√
Kt),

y2(t) =
√

K(π + θ0) sinh(
√

Kt),

and will be henceforth denoted as “stable” and “unstable”, respectively, for
reasons that will be clear later on. To these solutions we associate in the plane
(y1, y2), called the phase space, the following orbits (i.e., the graphs obtained
plotting the curve (y1(t), y2(t)) in the phase space).

(
y1

θ0

)2

+
(

y2√
Kθ0

)2

= 1, (stable case),
(

y1

π + θ0

)2

−
(

y2√
K(π + θ0)

)2

= 1, (unstable case).

In the stable case, the orbits are ellipses with period 2π/
√

K and are centered
at (0, 0)T , while in the unstable case they are hyperbolae centered at (0, 0)T

and asymptotic to the straight lines y2 = ±
√

Ky1.
The complete picture of the motion of the pendulum in the phase space is
shown in Figure 11.11 (right). Notice that, letting v = |y2| and fixing the initial
position y1(0) = 0, there exists a limit value vL = 2

√
K which corresponds in

the figure to the points A and A’. For v(0) < vL, the orbits are closed, while
for v(0) > vL they are open, corresponding to a continuous revolution of the
pendulum, with infinite passages (with periodic and non null velocity) through
the two equilibrium positions y1 = 0 and y1 = π. The limit case v(0) = vL

yields a solution such that, thanks to the total energy conservation principle,
y2 = 0 when y1 = π. Actually, these two values are attained asymptotically
only as t → ∞.
The first-order nonlinear differential system (11.87) has been numerically
solved using the forward Euler method (FE), the midpoint method (MP) and
the Adams-Bashforth second-order scheme (AB). In Figure 11.12 we show the
orbits in the phase space that have been computed by the two methods on
the time interval (0, 30) and taking K = 1 and h = 0.1. The crosses denote
initial conditions.

As can be noticed, the orbits generated by FE do not close. This kind
of instability is due to the fact that the region of absolute stability of the
FE method completely excludes the imaginary axis. On the contrary, the MP
method describes accurately the closed system orbits due to the fact that its
region of asymptotic stability (see Section 11.6.4) includes pure imaginary
eigenvalues in the neighborhood of the origin of the complex plane. It must
also be noticed that the MP scheme gives rise to oscillating solutions as v0 gets
larger. The second-order AB method, instead, describes correctly all kinds of
orbits.

11.11.2 Compliance of Arterial Walls

An arterial wall subject to blood flow can be modelled by a compliant circu-
lar cylinder of length L and radius R0 with walls made by an incompressible,

11.11 Applications 533

−10 −5 0 5 10

−2

0

2

−10 −5 0 5 10

−2

0

2

−10 −5 0 5 10

−2

0

2

Fig. 11.12. Orbits for system (11.87) in the case K = 1 and h = 0.1, computed
using the FE method (upper plot), the MP method (central plot) and the AB method
(lower plot), respectively. The initial conditions are θ0 = π/10 and v0 = 0 (thin solid
line), v0 = 1 (dashed line), v0 = 2 (dash-dotted line) and v0 = −2 (thick solid line)

homogeneous, isotropic, elastic tissue of thickness H. A simple model describ-
ing the mechanical behavior of the walls interacting with the blood flow is
the so called “independent-rings” model according to which the vessel wall is
regarded as an assembly of rings which are not influenced one by the others.

This amounts to neglecting the longitudinal (or axial) inner actions along
the vessel, and to assuming that the walls can deform only in the radial
direction. Thus, the vessel radius R is given by R(t) = R0 + y(t), where y is
the radial deformation of the ring with respect to a reference radius R0 and
t is the time variable. The application of Newton’s law to the independent-ring
system yields the following equation modeling the time mechanical behavior
of the wall

y′′(t) + βy′(t) + αy(t) = γ(p(t) − p0), (11.88)

where α = E/(ρwR2
0), γ = 1/(ρwH) and β is a positive constant. The physical

parameters ρw and E denote the vascular wall density and the Young modulus
of the vascular tissue, respectively. The function p − p0 is the forcing term
acting on the wall due to the pressure drop between the inner part of the
vessel (where the blood flows) and its outer part (surrounding organs). At
rest, if p = p0, the vessel configuration coincides with the undeformed circular
cylinder having radius equal exactly to R0 (y = 0).

534 11 Numerical Solution of Ordinary Differential Equations

Equation (11.88) can be formulated as y′(t) = Ay(t) + b(t) where y =
(y, y′)T , b = (0, γ(p − p0))T and

A =

[
0 1

−α −β

]

. (11.89)

The eigenvalues of A are λ± = (−β ±
√

β2 − 4α)/2; if β ≥ 2
√

α both the
eigenvalues are real and negative and the system is asymptotically stable with
y(t) decaying exponentially to zero as t → ∞. Conversely, if 0 < β < 2

√
α

the eigenvalues are complex conjugate and damped oscillations arise in the
solution which again decays exponentially to zero as t → ∞.
Numerical approximations have been carried out using both the backward
Euler (BE) and Crank-Nicolson (CN) methods. We have set y(t) = 0
and used the following (physiological) values of the physical parameters:
L = 5 · 10−2[m], R0 = 5 · 10−3[m], ρw = 103[Kgm−3], H = 3 · 10−4[m]
and E = 9 · 105[Nm−2], from which γ � 3.3[Kg−1m−2] and α = 36 · 106[s−2].
A sinusoidal function p − p0 = x∆p(a + b cos(ω0t)) has been used to model
the pressure variation along the vessel direction x and time, where ∆p =
0.25 · 133.32 [Nm−2], a = 10 · 133.32 [Nm−2], b = 133.32 [Nm−2] and the
pulsation ω0 = 2π/0.8 [rad s−1] corresponds to a heart beat.

The results reported below refer to the ring coordinate x = L/2. The
two (very different) cases (1) β =

√
α [s−1] and (2) β = α [s−1] have been

analyzed; it is easily seen that in case (2) the stiffness quotient (see Section
11.10) is almost equal to α, thus the problem is highly stiff. We notice also
that in both cases the real parts of the eigenvalues of A are very large, so that
an appropriately small time step should be taken to accurately describe the
fast transient of the problem.
In case (1) the differential system has been studied on the time interval
[0, 2.5 · 10−3] with a time step h = 10−4. We notice that the two eigenval-
ues of A have modules equal to 6000, thus our choice of h is compatible with
the use of an explicit method as well.

Figure 11.13 (left) shows the numerical solutions as functions of time.
The solid (thin) line is the exact solution while the thick dashed and solid
lines are the solutions given by the CN and BE methods, respectively. A far
better accuracy of the CN method over the BE is clearly demonstrated; this
is confirmed by the plot in Figure 11.13 (right) which shows the trajectories
of the computed solutions in the phase space. In this case the differential
system has been integrated on the time interval [0, 0.25] with a time step
h = 2.5 · 10−4. The dashed line is the trajectory of the CN method while the
solid line is the corresponding one obtained using the BE scheme. A strong
dissipation is clearly introduced by the BE method with respect to the CN
scheme; the plot also shows that both methods converge to a limit cycle which
corresponds to the cosine component of the forcing term.
In the second case (2) the differential system has been integrated on the
time interval [0, 10] with a time step h = 0.1. The stiffness of the problem

11.11 Applications 535

0 0.5 1 1.5 2 2.5
x 10−3

−2

0

2

4

6

8

10

12

14 x 10−5

0 0.5 1 1.5
x 10-4

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Fig. 11.13. Transient simulation (left) and phase space trajectories (right)

is demonstrated by the plot of the deformation velocities z shown in Figure
11.14 (left). The solid line is the solution computed by the BE method while
the dashed line is the corresponding one given by the CN scheme; for the sake
of graphical clarity, only one third of the nodal values have been plotted for
the CN method. Strong oscillations arise since the eigenvalues of matrix A
are λ1 = −1, λ2 = −36 · 106 so that the CN method approximates the first
component y of the solution y as

yCN
k =

(
1 + (hλ1)/2
1 − (hλ1)/2

)k

� (0.9048)k, k ≥ 0,

which is clearly stable, while the approximate second component z(= y′) is

zCN
k =

(
1 + (hλ2)/2
1 − (hλ2)/2

)k

� (−0.9999)k, k ≥ 0,

which is obviously oscillating. On the contrary, the BE method yields

yBE
k =

(
1

1 − hλ1

)k

� (0.9090)k, k ≥ 0,

and

zBE
k =

(
1

1 − hλ2

)k

� (0.2777)k, k ≥ 0,

which are both stable for every h > 0. According to these conclusions the
first component y of the vector solution y is correctly approximated by both
the methods as can be seen in Figure 11.14 (right) where the solid line refers
to the BE scheme while the dashed line is the solution computed by the CN
method.

536 11 Numerical Solution of Ordinary Differential Equations

0 1 2 3 4 5 6 7 8 9 10
−1.5

−1

−0.5

0

0.5

1

1.5

2 x 10−4

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2 x 10−4

Fig. 11.14. Long-time behavior of the solution: velocities (left) and displacements
(right)

11.12 Exercises

1. Prove that Heun’s method has order 2 with respect to h.
[Hint: notice that hτn+1 = yn+1 − yn − hΦ(tn, yn; h) = E1 + E2, where

E1 =

∫ tn+1

tn

f(s, y(s))ds − h

2
[f(tn, yn) + f(tn+1, yn+1)]

and

E2 =
h

2
{[f(tn+1, yn+1) − f(tn+1, yn + hf(tn, yn))]} ,

where E1 is the error due to numerical integration with the trapezoidal method
and E2 can be bounded by the error due to using the forward Euler method.]

2. Prove that the Crank-Nicoloson method has order 2 with respect to h.
[Solution: using (9.12) we get, for a suitable ξn in (tn, tn+1)

yn+1 = yn +
h

2
[f(tn, yn) + f(tn+1, yn+1)] −

h3

12
f ′′(ξn, y(ξn))

or, equivalently,

yn+1 − yn

h
=

1

2
[f(tn, yn) + f(tn+1, yn+1)] −

h2

12
f ′′(ξn, y(ξn)). (11.90)

Therefore, relation (11.9) coincides with (11.90) up to an infinitesimal of order
2 with respect to h, provided that f ∈ C2(I).]

3. Solve the difference equation un+4−6un+3+14un+2−16un+1+8un = n subject
to the initial conditions u0 = 1, u1 = 2, u2 = 3 and u3 = 4.
[Solution: un = 2n(n/4 − 1) + 2(n−2)/2 sin(π/4) + n + 2.]

4. Prove that if the characteristic polynomial Π defined in (11.30) has simple roots,
then any solution of the associated difference equation can be written in the form
(11.32).
[Hint: notice that a generic solution un+k is completely determined by the initial
values u0, . . . , uk−1. Moreover, if the roots ri of Π are distinct, there exist unique
k coefficients αi such that α1r

j
1 + . . . + αkrj

k = uj with j = 0, . . . , k − 1.]

11.12 Exercises 537

5. Prove that if the characteristic polynomial Π has simple roots, the matrix R
defined in (11.37) is not singular.
[Hint: it coincides with the transpose of the Vandermonde matrix where xj

i is
replaced by ri

j (see Exercise 2, Chapter 8).]
6. The Legendre polynomials Li satisfy the difference equation

(n + 1)Ln+1(x) − (2n + 1)xLn(x) + nLn−1(x) = 0,

with L0(x) = 1 and L1(x) = x (see Section 10.1.2). Defining the generating
function F (z, x) =

∑∞
n=0

Pn(x)zn, prove that F (z, x) = (1 − 2zx + z2)−1/2.
7. Prove that the gamma function

Γ(z) =

∞∫

0

e−ttz−1dt, z ∈ C, Rez > 0,

is the solution of the difference equation Γ(z + 1) = zΓ(z)
[Hint: integrate by parts.]

8. Study, as functions of α ∈ R, stability and order of the family of linear multistep
methods

un+1 = αun + (1 − α)un−1 + 2hfn +
hα

2
[fn−1 − 3fn] .

9. Consider the following family of one-step methods depending on the real
parameter α

un+1 = un + h[(1 − α

2
)f(xn, un) +

α

2
f(xn+1, un+1)].

Study their consistency as a function of α; then, take α = 1 and use the
corresponding method to solve the Cauchy problem

{
y′(x) = −10y(x), x > 0,
y(0) = 1.

Determine the values of h in correspondance of which the method is absolutely
stable.
[Solution: the family of methods is consistent for any value of α. The method
of highest order (equal to two) is obtained for α = 1 and coincides with the
Crank-Nicolson method.]

10. Consider the family of linear multistep methods

un+1 = αun +
h

2
(2(1 − α)fn+1 + 3αfn − αfn−1) ,

where α is a real parameter.
a) Analyze consistency and order of the methods as functions of α, determining

the value α∗ for which the resulting method has maximal order.
b) Study the zero-stability of the method with α = α∗, write its characteris-

tic polynomial Π(r; hλ) and, using MATLAB, draw its region of absolute
stability in the complex plane.

538 11 Numerical Solution of Ordinary Differential Equations

11. Adams methods can be easily generalized, integrating between tn−r and tn+1

with r ≥ 1. Show that, by doing so, we get methods of the form

un+1 = un−r + h

p∑

j=−1

bjfn−j

and prove that for r = 1 the midpoint method introduced in (11.43) is recovered
(the methods of this family are called Nystron methods.)

12. Check that Heun’s method (11.10) is an explicit two-stage RK method and
write the Butcher arrays of the method. Then, do the same for the modified
Euler method, given by

un+1 = un + hf(tn +
h

2
, un +

h

2
fn), n ≥ 0. (11.91)

[Solution: the methods have the following Butcher arrays

0 0 0
1 1 0

2 1
2

2 1
2

0 0 0

2
3

1
2 2

3

1
2

0

0 1

.]

13. Check that the Butcher array for method (11.73) is given by

0 0 0 0 0
1
2

2 1
2

2
0 0 0

1
2

0 2 1
2

2
0 0

1 0 0 1 0
1
6

2 1
3

2 1
3

1
6

.

14. Write a MATLAB program to draw the regions of absolute stability for a RK
method, for which the function R(hλ) is available. Check the code in the special
case of

R(hλ) = 1 + hλ + (hλ)2/2 + (hλ)3/6 + (hλ)4/24 + (hλ)5/120 + (hλ)6/600

and verify that such a region is not connected.
15. Determine the function R(hλ) associated with the Merson method, whose

Butcher array is

0 0 0 0 0 0
1
3

1
3

0 0 0 0
1
3

1
6

1
6

0 0 0
1
2

1
8

0 3
8

0 0

1 1
2

0 − 3
2

2 0
1
6

0 0 2
3

1
6

.

[Solution: one gets R(hλ) = 1 +
∑4

i=1
(hλ)i/i! + (hλ)5/144.]

12

Two-Point Boundary Value Problems

This chapter is devoted to the analysis of approximation methods for two-
point boundary value problems for differential equations of elliptic type. Finite
differences, finite elements and spectral methods will be considered. A short
account is also given on the extension to elliptic boundary value problems in
two-dimensional regions.

12.1 A Model Problem

To start with, let us consider the two-point boundary value problem

−u′′(x) = f(x), 0 < x < 1, (12.1)

u(0) = u(1) = 0. (12.2)

From the fundamental theorem of calculus, if u ∈ C2([0, 1]) and satisfies the
differential equation (12.1) then

u(x) = c1 + c2x −
x∫

0

F (s) ds,

where c1 and c2 are arbitrary constants and F (s) =
∫ s

0
f(t) dt. Using integra-

tion by parts one has

x∫

0

F (s) ds = [sF (s)]x0 −
x∫

0

sF ′(s) ds =

x∫

0

(x − s)f(s) ds.

The constants c1 and c2 can be determined by enforcing the boundary condi-
tions. The condition u(0) = 0 implies that c1 = 0, and then u(1) = 0 yields

540 12 Two-Point Boundary Value Problems

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

Fig. 12.1. Green’s function for three different values of x: x = 1/4 (solid line),
x = 1/2 (dashed line), x = 3/4 (dash-dotted line)

c2 =
∫ 1

0
(1 − s)f(s) ds. Consequently, the solution of (12.1)-(12.2) can be

written in the following form

u(x) = x

1∫

0

(1 − s)f(s) ds −
x∫

0

(x − s)f(s) ds

or, more compactly,

u(x) =

1∫

0

G(x, s)f(s) ds, (12.3)

where, for any fixed x, we have defined

G(x, s) =

{
s(1 − x) if 0 ≤ s ≤ x,

x(1 − s) if x ≤ s ≤ 1.
(12.4)

The function G is called Green’s function for the boundary value problem
(12.1)-(12.2). It is a piecewise linear function of x for fixed s, and vice versa.
It is continuous, symmetric (i.e., G(x, s) = G(s, x) for all x, s ∈ [0, 1]), non-
negative, null if x or s are equal to 0 or 1, and

∫ 1

0
G(x, s) ds = 1

2x(1−x). The
function is plotted in Figure 12.1.

We can therefore conclude that for every f ∈ C0([0, 1]) there is a unique
solution u ∈ C2([0, 1]) of the boundary value problem (12.1)-(12.2) which
admits the representation (12.3). Further smoothness of u can be derived by
(12.1); indeed, if f ∈ Cm([0, 1]) for some m ≥ 0 then u ∈ Cm+2([0, 1]).
An interesting property of the solution u is that if f ∈ C0([0, 1]) is a non-
negative function, then u is also nonnegative. This is referred to as the

12.2 Finite Difference Approximation 541

monotonicity property, and follows directly from (12.3), since G(x, s) ≥ 0
for all x, s ∈ [0, 1]. The next property is called the maximum principle and
states that if f ∈ C0([0, 1]),

‖u‖∞ ≤ 1
8
‖f‖∞, (12.5)

where ‖u‖∞ = max
0≤x≤1

|u(x)| is the maximum norm. Indeed, since G is nonneg-

ative,

|u(x)| ≤
1∫

0

G(x, s)|f(s)| ds ≤ ‖f‖∞
1∫

0

G(x, s) ds =
1
2
x(1 − x)‖f‖∞

from which the inequality (12.5) follows.

12.2 Finite Difference Approximation

We introduce on [0, 1] the grid points {xj}n
j=0 given by xj = jh, where n ≥ 2

is an integer and h = 1/n is the grid spacing. The approximation to the
solution u is a finite sequence {uj}n

j=0 defined only at the grid points (with
the understanding that uj approximates u(xj)) by requiring that

−uj+1 − 2uj + uj−1

h2
= f(xj), for j = 1, . . . , n − 1 (12.6)

and u0 = un = 0. This corresponds to having replaced u′′(xj) by its second
order centered finite difference (10.65) (see Section 10.10.1).

If we set u = (u1, . . . , un−1)T and f = (f1, . . . , fn−1)T , with fi = f(xi), it
is a simple matter to see that (12.6) can be written in the more compact form

Afdu = f , (12.7)

where Afd is the symmetric (n − 1) × (n − 1) finite difference matrix defined
as

Afd = h−2tridiagn−1(−1, 2,−1). (12.8)

This matrix is diagonally dominant by rows; moreover, it is positive definite
since for any vector x ∈ R

n−1

xT Afdx = h−2

[

x2
1 + x2

n−1 +
n−1∑

i=2

(xi − xi−1)2
]

.

This implies that (12.7) admits a unique solution. Another interesting
property is that Afd is an M-matrix (see Definition 1.25 and Exercise 2), which

542 12 Two-Point Boundary Value Problems

guarantees that the finite difference solution enjoys the same monotonicity
property as the exact solution u(x), namely u is nonnegative if f is nonnega-
tive. This property is called discrete maximum principle.
In order to rewrite (12.6) in operator form, let Vh be a collection of discrete
functions defined at the grid points xj for j = 0, . . . , n. If vh ∈ Vh, then vh(xj)
is defined for all j and we sometimes use the shorthand notation vj instead of
vh(xj). Next, we let V 0

h be the subset of Vh containing discrete functions that
are zero at the endpoints x0 and xn. For a function wh we define the operator
Lh by

(Lhwh)(xj) = −wj+1 − 2wj + wj−1

h2
, j = 1, . . . , n − 1, (12.9)

and reformulate the finite difference problem (12.6) equivalently as: find uh ∈
V 0

h such that

(Lhuh)(xj) = f(xj) for j = 1, . . . , n − 1. (12.10)

Notice that, in this formulation, the boundary conditions are taken care of by
the requirement that uh ∈ V 0

h .
Finite differences can be used to provide approximations of higher-order

differential operators than the one considered in this section. An example is
given in Section 4.7.2 where the finite difference centered discretization of the
fourth-order derivative −u(iv)(x) is carried out by applying twice the discrete
operator Lh (see also Exercise 11). Again, extra care is needed to properly
handle the boundary conditions.

12.2.1 Stability Analysis by the Energy Method

For two discrete functions wh, vh ∈ Vh we define the discrete inner product

(wh, vh)h = h
n∑

k=0

ckwkvk,

with c0 = cn = 1/2 and ck = 1 for k = 1, . . . , n − 1. This is nothing but
the composite trapezoidal rule (9.13) which is here used to evaluate the inner
product (w, v) =

∫ 1

0
w(x)v(x)dx. Clearly,

‖vh‖h = (vh, vh)1/2
h

is a norm on Vh.

Lemma 12.1 The operator Lh is symmetric, i.e.

(Lhwh, vh)h = (wh, Lhvh)h ∀ wh, vh ∈ V 0
h ,

and is positive definite, i.e.

(Lhvh, vh)h ≥ 0 ∀vh ∈ V 0
h ,

with equality only if vh ≡ 0.

12.2 Finite Difference Approximation 543

Proof. From the identity

wj+1vj+1 − wjvj = (wj+1 − wj)vj + (vj+1 − vj)wj+1,

upon summation over j from 0 to n − 1 we obtain the following relation for all
wh, vh ∈ Vh

n−1∑

j=0

(wj+1 − wj)vj = wnvn − w0v0 −
n−1∑

j=0

(vj+1 − vj)wj+1,

which is referred to as summation by parts. Using summation by parts twice, and
setting for ease of notation w−1 = v−1 = 0, for all wh, vh ∈ V 0

h we obtain

(Lhwh, vh)h = −h−1

n−1∑

j=0

[(wj+1 − wj) − (wj − wj−1)] vj

= h−1

n−1∑

j=0

(wj+1 − wj)(vj+1 − vj).

From this relation we deduce that (Lhwh, vh)h = (wh, Lhvh)h; moreover, taking
wh = vh we obtain

(Lhvh, vh)h = h−1

n−1∑

j=0

(vj+1 − vj)
2. (12.11)

This quantity is always positive, unless vj+1 = vj for j = 0, . . . , n− 1, in which case

vj = 0 for j = 0, . . . , n since v0 = 0. �

For any grid function vh ∈ V 0
h we define the following norm

|||vh|||h =

⎧
⎨

⎩
h

n−1∑

j=0

(
vj+1 − vj

h

)2
⎫
⎬

⎭

1/2

. (12.12)

Thus, (12.11) is equivalent to

(Lhvh, vh)h = |||vh|||2h for all vh ∈ V 0
h . (12.13)

Lemma 12.2 The following inequality holds for any function vh ∈ V 0
h

‖vh‖h ≤ 1√
2
|||vh|||h. (12.14)

Proof. Since v0 = 0, we have

vj = h

j−1∑

k=0

vk+1 − vk

h
for all j = 1, . . . , n − 1.

544 12 Two-Point Boundary Value Problems

Then,

v2
j = h2

[
j−1∑

k=0

(
vk+1 − vk

h

)
]2

.

Using the Minkowski inequality

(
m∑

k=1

pk

)2

≤ m

(
m∑

k=1

p2
k

)

, (12.15)

which holds for every integer m ≥ 1 and every sequence {p1, . . . , pm} of real numbers
(see Exercise 4), we obtain

n−1∑

j=1

v2
j ≤ h2

n−1∑

j=1

j

j−1∑

k=0

(
vk+1 − vk

h

)2

.

Then for every vh ∈ V 0
h we get

‖vh‖2
h = h

n−1∑

j=1

v2
j ≤ h2

n−1∑

j=1

jh

n−1∑

k=0

(
vk+1 − vk

h

)2

= h2 (n − 1)n

2
|||vh|||2h.

Inequality (12.14) follows since h = 1/n. �

Remark 12.1 For every vh ∈ V 0
h , the grid function v

(1)
h whose grid values

are (vj+1 − vj)/h, j = 0, . . . , n− 1, can be regarded as a discrete derivative of
vh (see Section 10.10.1). Inequality (12.14) can thus be rewritten as

‖vh‖h ≤ 1√
2
‖v(1)

h ‖h ∀vh ∈ V 0
h .

It can be regarded as the discrete counterpart in [0, 1] of the following Poincaré
inequality: for every interval [a, b] there exists a constant CP > 0 such that

‖v‖L2(a,b) ≤ CP ‖v(1)‖L2(a,b) (12.16)

for all v ∈ C1([a, b]) such that v(a) = v(b) = 0 and where ‖ · ‖L2(a,b) is the
norm in L2(a, b) (see (8.29)). �

Inequality (12.14) has an interesting consequence. If we multiply every equa-
tion of (12.10) by uj and then sum for j from 1 on n − 1, we obtain

(Lhuh, uh)h = (f, uh)h.

Applying to (12.13) the Cauchy-Schwarz inequality (1.14) (valid in the finite
dimensional case), we obtain

|||uh|||2h ≤ ‖fh‖h‖uh‖h,

12.2 Finite Difference Approximation 545

where fh ∈ Vh is the grid function such that fh(xj) = f(xj) for all j = 0, . . . , n.
Owing to (12.14) we conclude that

‖uh‖h ≤ 1
2
‖fh‖h, (12.17)

from which we deduce that the finite difference problem (12.6) has a unique
solution (equivalently, the only solution corresponding to fh = 0 is uh = 0).
Moreover, (12.17) is a stability result, as it states that the finite difference
solution is bounded by the given datum fh.

To prove convergence, we first introduce the notion of consistency. Accord-
ing to our general definition (2.13), if f ∈ C0([0, 1]) and u ∈ C2([0, 1]) is the
corresponding solution of (12.1)-(12.2), the local truncation error is the grid
function τh defined by

τh(xj) = (Lhu)(xj) − f(xj), j = 1, . . . , n − 1. (12.18)

By Taylor series expansion and recalling (10.66), one obtains

τh(xj) = −h−2 [u(xj−1) − 2u(xj) + u(xj+1)] − f(xj)

= −u′′(xj) − f(xj) +
h2

24
(u(iv)(ξj) + u(iv)(ηj))

=
h2

24
(u(iv)(ξj) + u(iv)(ηj))

(12.19)

for suitable ξj ∈ (xj−1, xj) and ηj ∈ (xj , xj+1). Upon defining the discrete
maximum norm as

‖vh‖h,∞ = max
0≤j≤n

|vh(xj)|,

we obtain from (12.19)

‖τh‖h,∞ ≤ ‖f ′′‖∞
12

h2 (12.20)

provided that f ∈ C2([0, 1]). In particular, lim
h→0

‖τh‖h,∞ = 0 and therefore

the finite difference scheme is consistent with the differential problem (12.1)-
(12.2).

Remark 12.2 Taylor’s expansion of u around xj can also be written as

u(xj ± h) = u(xj) ± hu′(xj) +
h2

2
u′′(xj) ±

h3

6
u′′′(xj) + R4(xj ± h)

with the following integral form of the remainder

R4(xj + h) =

xj+h∫

xj

(u′′′(t) − u′′′(xj))
(xj + h − t)2

2
dt,

R4(xj − h) = −
xj∫

xj−h

(u′′′(t) − u′′′(xj))
(xj − h − t)2

2
dt.

546 12 Two-Point Boundary Value Problems

Using the two formulae above, by inspection on (12.18) it is easy to see that

τh(xj) =
1
h2

(R4(xj + h) + R4(xj − h)) . (12.21)

For any integer m ≥ 0, we denote by Cm,1(0, 1) the space of all functions in
Cm(0, 1) whose m-th derivative is Lipschitz continuous, i.e.

max
x,y∈(0,1),x �=y

|v(m)(x) − v(m)(y)|
|x − y| ≤ M < ∞.

Looking at (12.21) we see that it suffices to assuming that u ∈ C3,1(0, 1) to
conclude that

‖τh‖h,∞ ≤ Mh2,

which shows that the finite difference scheme is consistent with the differential
problem (12.1)-(12.2) even under a slightly weaker regularity of the exact
solution u. �

Remark 12.3 Let e = u−uh be the discretization error grid function. Then,

Lhe = Lhu − Lhuh = Lhu − fh = τh. (12.22)

It can be shown (see Exercise 5) that

‖τh‖2
h ≤ 3

(
‖f‖2

h + ‖f‖2
L2(0,1)

)
(12.23)

from which it follows that the norm of the discrete second-order derivative
of the discretization error is bounded, provided that the norms of f at the
right-hand side of (12.23) are also bounded. �

12.2.2 Convergence Analysis

The finite difference solution uh can be characterized by a discrete Green’s
function as follows. For a given grid point xk define a grid function Gk ∈ V 0

h

as the solution to the following problem

LhGk = ek, (12.24)

where ek ∈ V 0
h satisfies ek(xj) = δkj , 1 ≤ j ≤ n − 1. It is easy to see that

Gk(xj) = hG(xj , xk), where G is the Green’s function introduced in (12.4)
(see Exercise 6). For any grid function g ∈ V 0

h we can define the grid function

wh = Thg, wh =
n−1∑

k=1

g(xk)Gk. (12.25)

12.2 Finite Difference Approximation 547

Then

Lhwh =
n−1∑

k=1

g(xk)LhGk =
n−1∑

k=1

g(xk)ek = g.

In particular, the solution uh of (12.10) satisfies uh = Thf , therefore

uh =
n−1∑

k=1

f(xk)Gk, and uh(xj) = h

n−1∑

k=1

G(xj , xk)f(xk). (12.26)

Theorem 12.1 Assume that f ∈ C2([0, 1]). Then, the nodal error e(xj) =
u(xj) − uh(xj) satisfies

‖u − uh‖h,∞ ≤ h2

96
‖f ′′‖∞, (12.27)

i.e. uh converges to u (in the discrete maximum norm) with second order with
respect to h.

Proof. We start by noticing that, thanks to the representation (12.26), the following
discrete counterpart of (12.5) holds

‖uh‖h,∞ ≤ 1

8
‖f‖h,∞. (12.28)

Indeed, we have

|uh(xj)| ≤ h

n−1∑

k=1

G(xj , xk)|f(xk)| ≤ ‖f‖h,∞

(

h

n−1∑

k=1

G(xj , xk)

)

= ‖f‖h,∞
1

2
xj(1 − xj) ≤

1

8
‖f‖h,∞

since, if g = 1, then Thg is such that Thg(xj) = 1
2
xj(1 − xj) (see Exercise 7).

Inequality (12.28) provides a result of stability in the discrete maximum norm
for the finite difference solution uh. Using (12.22), by the same argument used to
prove (12.28) we obtain

‖e‖h,∞ ≤ 1

8
‖τh‖h,∞.

Finally, the thesis (12.27) follows owing to (12.20). �

Observe that for the derivation of the convergence result (12.27) we have used
both stability and consistency. In particular, the discretization error is of the
same order (with respect to h) as the consistency error τh.

548 12 Two-Point Boundary Value Problems

12.2.3 Finite Differences for Two-Point Boundary Value Problems
with Variable Coefficients

A two-point boundary value problem more general than (12.1)-(12.2) is the
following one

Lu(x) = −(J(u)(x))′ + γ(x)u(x) = f(x), 0 < x < 1,

u(0) = d0, u(1) = d1,
(12.29)

where

J(u)(x) = α(x)u′(x), (12.30)

d0 and d1 are assigned constants and α, γ and f are given functions that are
continuous in [0, 1]. Finally, γ(x) ≥ 0 in [0, 1] and α(x) ≥ α0 > 0 for a suitable
α0. The auxiliary variable J(u) is the flux associated with u and very often
has a precise physical meaning.

For the approximation, it is convenient to introduce on [0, 1] a new grid
made by the midpoints xj+1/2 = (xj + xj+1)/2 of the intervals [xj , xj+1] for
j = 0, . . . , n − 1. Then, a finite difference approximation of (12.29) is given
by: find uh ∈ Vh such that

Lhuh(xj) = f(xj) for all j = 1, . . . , n − 1,

uh(x0) = d0, uh(xn) = d1,
(12.31)

where Lh is defined for j = 1, . . . , n − 1 as

Lhwh(xj) = −
Jj+1/2(wh) − Jj−1/2(wh)

h
+ γjwj . (12.32)

We have defined γj = γ(xj) and, for j = 0, . . . , n − 1, the approximate fluxes
are given by

Jj+1/2(wh) = αj+1/2
wj+1 − wj

h
, (12.33)

with αj+1/2 = α(xj+1/2).
The finite difference scheme (12.31)-(12.32) with the approximate fluxes
(12.33) can still be cast in the form (12.7) by setting

Afd = h−2tridiagn−1(a,d,a) + diagn−1(c), (12.34)

where

a = −
(
α3/2, α5/2, . . . , αn−3/2

)T ∈ R
n−2,

d =
(
α1/2 + α3/2, . . . , αn−3/2 + αn−1/2

)T ∈ R
n−1,

c = (γ1, . . . , γn−1)
T ∈ R

n−1.

12.2 Finite Difference Approximation 549

The matrix (12.34) is symmetric positive definite and is also strictly diagonally
dominant if γ > 0.

The convergence analysis of the scheme (12.31)-(12.32) can be carried out
by extending straightforwardly the techniques developed in Sections 12.2.1
and 12.2.2.
We conclude this section by addressing boundary conditions that are more
general than those considered in (12.29). For this purpose we assume that

u(0) = d0, J(u)(1) = g1,

where d0 and g1 are two given data. The boundary condition at x = 1 is
called a Neumann condition while the condition at x = 0 (where the value
of u is assigned) is a Dirichlet boundary condition. The finite difference
discretization of the Neumann boundary condition can be performed by using
the mirror imaging technique. For any sufficiently smooth function ψ we write
its truncated Taylor’s expansion at xn as

ψn =
ψn−1/2 + ψn+1/2

2
− h2

16
(ψ′′(ηn) + ψ′′(ξn))

for suitable ηn ∈ (xn−1/2, xn), ξn ∈ (xn, xn+1/2). Taking ψ = J(u) and ne-
glecting the term containing h2 yields

Jn+1/2(uh) = 2g1 − Jn−1/2(uh). (12.35)

Notice that the point xn+1/2 = xn+h/2 and the corresponding flux Jn+1/2 do
not really exist (indeed, xn+1/2 is called a “ghost” point), but it is generated
by linear extrapolation of the flux at the nearby nodes xn−1/2 and xn. The
finite difference equation (12.32) at the node xn reads

Jn−1/2(uh) − Jn+1/2(uh)
h

+ γnun = fn.

Using (12.35) to obtain Jn+1/2(uh) we finally get the second-order accurate
approximation

−αn−1/2
un−1

h2
+
(αn−1/2

h2
+

γn

2

)
un =

g1

h
+

fn

2
.

This formula suggests easy modification of the matrix and right-hand side
entries in the finite difference system (12.7).

For a further generalization of the boundary conditions in (12.29) and their
discretization using finite differences we refer to Exercise 10 where boundary
conditions of the form λu + µu′ = g at both the endpoints of (0, 1) are con-
sidered for u (Robin boundary conditions).

For a thorough presentation and analysis of finite difference approxima-
tions of two-point boundary value problems, see, e.g., [Str89] and [HGR96].

550 12 Two-Point Boundary Value Problems

12.3 The Spectral Collocation Method

Other discretization schemes can be derived which exhibit the same structure
as the finite difference problem (12.10), with a discrete operator Lh being
defined in a different manner, though.

Actually, numerical approximations of the second derivative other than the
centered finite difference one can be set up, as described in Section 10.10.3.
A noticeable instance is provided by the spectral collocation method. In that
case we assume the differential equation (12.1) to be set on the interval (−1, 1)
and choose the nodes {x0, . . . , xn} to coincide with the n+1 Legendre-Gauss-
Lobatto nodes introduced in Section 10.4. Besides, uh is a polynomial of degree
n. For coherence, we will use throughout the section the index n instead of h.

The spectral collocation problem reads

find un ∈ P
0
n : Lnun(xj) = f(xj), j = 1, . . . , n − 1, (12.36)

where P
0
n is the set of polynomials p ∈ Pn([−1, 1]) such that p(−1) = p(1) = 0.

Besides, Lnv = LInv for any continuous function v where Inv ∈ Pn is the
interpolant of v at the nodes {x0, . . . , xn} and L denotes the differential op-
erator at hand, which, in the case of equation (12.1), coincides with −d2/dx2.
Clearly, if v ∈ Pn then Lnv = Lv.

The algebraic form of (12.36) becomes

Aspu = f ,

where uj = un(xj), fj = f(xj) j = 1, . . . , n − 1 and the spectral collocation
matrix Asp ∈ R

(n−1)×(n−1) is equal to D̃2, where D̃ is the matrix obtained
from the pseudo-spectral differentiation matrix (10.73) by eliminating the first
and the n + 1-th rows and columns.

For the analysis of (12.36) we can introduce the following discrete scalar
product

(u, v)n =
n∑

j=0

u(xj)v(xj)wj , (12.37)

where wj are the weights of the Legendre-Gauss-Lobatto quadrature formula
(see Section 10.4). Then (12.36) is equivalent to

(Lnun, vn)n = (f, vn)n ∀vn ∈ P
0
n. (12.38)

Since (12.37) is exact for u, v such that uv ∈ P2n−1 (see Section 10.2) then

(Lnvn, vn)n = (Lnvn, vn) = ‖v′
n‖2

L2(−1,1), ∀vn ∈ P
0
n.

Besides,

(f, vn)n ≤ ‖f‖n‖vn‖n ≤
√

6‖f‖∞ ‖vn‖L2(−1,1),

12.3 The Spectral Collocation Method 551

where ‖f‖∞ denotes the maximum of f in [−1, 1] and we have used the fact
that ‖f‖n ≤

√
2‖f‖∞ and the result of equivalence

‖vn‖L2(−1,1) ≤ ‖vn‖n ≤
√

3‖vn‖L2(−1,1), ∀vn ∈ Pn

(see [CHQZ06], p. 280).
Taking vn = un in (12.38) and using the Poincaré inequality (12.16) we

finally obtain

‖u′
n‖L2(−1,1) ≤

√
6CP ‖f‖∞,

which ensures that problem (12.36) has a unique solution which is stable. As
for consistency, we can notice that

τn(xj) = (Lnu − f)(xj) = (−(Inu)′′ − f)(xj) = (u − Inu)′′(xj)

and this right-hand side tends to zero as n → ∞ provided that u ∈ C2([−1, 1]).
Let us now establish a convergence result for the spectral collocation ap-

proximation of (12.1). In the following, C is a constant independent of n that
can assume different values at different places.

Moreover, we denote by Hs(a, b), for s ≥ 1, the space of the functions
f ∈ Cs−1(a, b) such that f (s−1) is continuous and piecewise differentiable, so
that f (s) exists unless for a finite number of points and belongs to L2(a, b).
The space Hs(a, b) is known as the Sobolev function space of order s and is
endowed with the norm ‖ · ‖Hs(a,b) defined in (10.35).

Theorem 12.2 Let f ∈ Hs(−1, 1) for some s ≥ 1. Then

‖u′ − u′
n‖L2(−1,1) ≤ Cn−s

(
‖f‖Hs(−1,1) + ‖u‖Hs+1(−1,1)

)
. (12.39)

Proof. Note that un satisfies

(u′
n, v′

n) = (f, vn)n,

where (u, v) =
∫ 1

−1
uvdx is the scalar product of L2(−1, 1). Similarly, u satisfies

(u′, v′) = (f, v) ∀v ∈ C1([0, 1]) such that v(0) = v(1) = 0

(see (12.43) of Section 12.4). Then

((u − un)′, v′
n) = (f, vn) − (f, vn)n =: E(f, vn), ∀vn ∈ P

0
n.

It follows that

((u − un)′, (u − un)′) = ((u − un)′, (u − Inu)′) + ((u − un)′, (Inu − un)′)

= ((u − un)′, (u − Inu)′) + E(f, Inu − un).

We recall the following result (see (10.36))

|E(f, vn)| ≤ Cn−s‖f‖Hs(−1,1)‖vn‖L2(−1,1).

552 12 Two-Point Boundary Value Problems

Then

|E(f, Inu − un)| ≤ Cn−s‖f‖Hs(−1,1)

(
‖Inu − u‖L2(−1,1) + ‖u − un‖L2(−1,1)

)
.

We recall now the following Young’s inequality (see Exercise 8)

ab ≤ εa2 +
1

4ε
b2, ∀a, b ∈ R, ∀ε > 0. (12.40)

Using this inequality we obtain

(
(u − un)′, (u − Inu)′

)
≤ 1

4
‖(u − un)′‖2

L2(−1,1) + ‖(u − Inu)′‖2
L2(−1,1),

and also (using the Poincaré inequality (12.16))

Cn−s‖f‖Hs(−1,1)‖u − un‖L2(−1,1) ≤ C CP n−s‖f‖Hs(−1,1)‖(u − un)′‖L2(−1,1)

≤ (CCP)2n−2s‖f‖2
Hs(−1,1) +

1

4
‖(u − un)′‖2

L2(−1,1).

Finally,

Cn−s‖f‖Hs(−1,1)‖Inu − u‖L2(−1,1) ≤
1

2
C2n−2s‖f‖2

Hs(−1,1) +
1

2
‖Inu − u‖2

L2(−1,1).

Using the interpolation error estimate (10.22) for u − Inu we finally obtain the

desired error estimate (12.39). �

12.4 The Galerkin Method

We now derive the Galerkin approximation of problem (12.1)-(12.2), which
is the basic ingredient of the finite element method and the spectral method,
widely employed in the numerical approximation of boundary value problems.

12.4.1 Integral Formulation of Boundary Value Problems

We consider a problem which is slightly more general than (12.1), namely

−(αu′)′(x) + (βu′)(x) + (γu)(x) = f(x) 0 < x < 1, (12.41)

with u(0) = u(1) = 0, where α, β and γ are continuous functions on [0, 1]
with α(x) ≥ α0 > 0 for any x ∈ [0, 1]. Let us now multiply (12.41) by a
function v ∈ C1([0, 1]), hereafter called a “test function”, and integrate over
the interval [0, 1]

1∫

0

αu′v′ dx +

1∫

0

βu′v dx +

1∫

0

γuv dx =

1∫

0

fv dx + [αu′v]10,

where we have used integration by parts on the first integral. If the function
v is required to vanish at x = 0 and x = 1 we obtain

12.4 The Galerkin Method 553

1∫

0

αu′v′ dx +

1∫

0

βu′v dx +

1∫

0

γuv dx =

1∫

0

fv dx.

We will denote by V the test function space. This consists of all functions v
that are continuous, vanish at x = 0 and x = 1 and whose first derivative
is piecewise continuous, i.e., continuous everywhere except at a finite number
of points in [0, 1] where the left and right limits v′

− and v′
+ exist but do not

necessarily coincide.
V is actually a vector space which is denoted by H1

0(0, 1). Precisely,

H1
0(0, 1) =

{
v ∈ L2(0, 1) : v′ ∈ L2(0, 1), v(0) = v(1) = 0

}
, (12.42)

where v′ is the distributional derivative of v whose definition is given in Section
12.4.2.
We have therefore shown that if a function u ∈ C2([0, 1]) satisfies (12.41),
then u is also a solution of the following problem

find u ∈ V : a(u, v) = (f, v) for all v ∈ V, (12.43)

where now (f, v) =
∫ 1

0
fv dx denotes the scalar product of L2(0, 1) and

a(u, v) =

1∫

0

αu′v′ dx +

1∫

0

βu′v dx +

1∫

0

γuv dx (12.44)

is a bilinear form, i.e. it is linear with respect to both arguments u and v.
Problem (12.43) is called the weak formulation of problem (12.1). Since (12.43)
contains only the first derivative of u it might cover cases in which a classical
solution u ∈ C2([0, 1]) of (12.41) does not exist although the physical problem
is well defined.

If for instance, α = 1, β = γ = 0, the solution u(x) denotes of the dis-
placement at point x of an elastic cord having linear density equal to f , whose
position at rest is u(x) = 0 for all x ∈ [0, 1] and which remains fixed at the
endpoints x = 0 and x = 1. Figure 12.2 (right) shows the solution u(x) corre-
sponding to a function f which is discontinuous (see Figure 12.2, left). Clearly,
u′′ does not exist at the points x = 0.4 and x = 0.6 where f is discontinuous.

If (12.41) is supplied with nonhomogeneous boundary conditions, say
u(0) = u0, u(1) = u1, we can still obtain a formulation like (12.43) by proceed-
ing as follows. Let ū(x) = xu1+(1−x)u0 be the straight line that interpolates

the data at the endpoints, and set
0
u= u(x) − ū(x). Then

0
u∈ V satisfies the

following problem

find
0
u∈ V : a(

0
u, v) = (f, v) − a(ū, v) for all v ∈ V.

A similar problem is obtained in the case of Neumann boundary conditions,
say u′(0) = u′(1) = 0. Proceeding as we did to obtain (12.43), we see that the

554 12 Two-Point Boundary Value Problems

1 0.6 0.4 0

-1

f(x)

x

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.05

-0.045

-0.04

-0.035

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

u(x)

Fig. 12.2. Elastic cord fixed at the endpoints and subject to a discontinuous load
f (left). The vertical displacement u is shown on the right

solution u of this homogeneous Neumann problem satisfies the same prob-
lem (12.43) provided the space V is now H1(0, 1). More general boundary
conditions of mixed type can be considered as well (see Exercise 12).

12.4.2 A Quick Introduction to Distributions

Let X be a Banach space, i.e., a normed and complete vector space. We
say that a functional T : X → R is continuous if limx→x0 T (x) = T (x0)
for all x0 ∈ X and linear if T (x + y) = T (x) + T (y) for any x, y ∈ X and
T (λx) = λT (x) for any x ∈ X and λ ∈ R.

Usually, a linear continuous functional is denoted by 〈T, x〉 and the symbol
〈·, ·〉 is called duality. As an example, let X = C0([0, 1]) be endowed with the
maximum norm ‖ · ‖∞ and consider on X the two functionals defined as

〈T, x〉 = x(0), 〈S, x〉 =
∫ 1

0

x(t) sin(t)dt.

It is easy to check that both T and S are linear and continuous functionals
on X. The set of all linear continuous functionals on X identifies an abstract
space which is called the dual space of X and is denoted by X ′.

We then introduce the space C∞
0 (0, 1) (or D(0, 1)) of infinitely differen-

tiable functions having compact support in [0, 1], i.e., vanishing outside a
bounded open set (a, b) ⊂ (0, 1) with 0 < a < b < 1. We say that vn ∈ D(0, 1)
converges to v ∈ D(0, 1) if there exists a closed bounded set K ⊂ (0, 1) such
that vn vanishes outside K for each n and for any k ≥ 0 the derivative v

(k)
n

converges to v(k) uniformly in (0, 1).
The space of linear functionals on D(0, 1) which are continuous with re-

spect to the convergence introduced above is denoted by D′(0, 1) (the dual
space of D(0, 1)) and its elements are called distributions.

12.4 The Galerkin Method 555

We are now in position to introduce the derivative of a distribution. Let
T be a distribution, i.e. an element of D′(0, 1). Then, for any k ≥ 0, T (k) is
also a distribution, defined as

〈T (k), ϕ〉 = (−1)k〈T, ϕ(k)〉, ∀ϕ ∈ D(0, 1). (12.45)

As an example, consider the Heaviside function

H(x) =

{
1 x ≥ 0,

0 x < 0.

The distributional derivative of H is the Dirac mass δ at the origin, defined
as

v → δ(v) = v(0), v ∈ D(R).

From the definition (12.45), it turns out that any distribution is infinitely dif-
ferentiable; moreover, if T is a differentiable function its distributional deriv-
ative coincides with the usual one.

12.4.3 Formulation and Properties of the Galerkin Method

Unlike the finite difference method which stems directly from the differential
(or strong) form (12.41), the Galerkin method is based on the weak formulation
(12.43). If Vh is a finite dimensional vector subspace of V , the Galerkin method
consists of approximating (12.43) by the problem

find uh ∈ Vh : a(uh, vh) = (f, vh) ∀vh ∈ Vh. (12.46)

This is a finite dimensional problem. Actually, let {ϕ1, . . . , ϕN} denote a basis
of Vh, i.e. a set of N linearly independent functions of Vh. Then we can write

uh(x) =
N∑

j=1

ujϕj(x).

The integer N denotes the dimension of the vector space Vh. Taking vh = ϕi

in (12.46), it turns out that the Galerkin problem (12.46) is equivalent to
seeking N unknown coefficients {u1, . . . , uN} such that

N∑

j=1

uja(ϕj , ϕi) = (f, ϕi) ∀i = 1, . . . , N. (12.47)

We have used the linearity of a(·, ·) with respect to its first argument, i.e.

a(
N∑

j=1

ujϕj , ϕi) =
N∑

j=1

uja(ϕj , ϕi).

556 12 Two-Point Boundary Value Problems

If we introduce the matrix AG = (aij), aij = a(ϕj , ϕi) (called the stiffness
matrix), the unknown vector u = [u1, . . . , uN]T and the right-hand side vector
fG = [f1, . . . , fN]T , with fi = (f, ϕi), we see that (12.47) is equivalent to the
linear system

AGu = fG. (12.48)

The structure of AG, as well as the degree of accuracy of uh, depends on the
form of the basis functions {ϕi}, and therefore on the choice of Vh.

We will see two remarkable instances, the finite element method, where
Vh is a space of piecewise polynomials over subintervals of [0, 1] of length not
greater than h which are continuous and vanish at the endpoints x = 0 and 1,
and the spectral method in which Vh is a space of algebraic polynomials still
vanishing at the endpoints x = 0, 1.

However, before specifically addressing those cases, we state a couple of
general results that hold for any Galerkin problem (12.46).

12.4.4 Analysis of the Galerkin Method

We endow the space H1
0(0, 1) with the following norm

|v|H1(0,1) =

⎧
⎨

⎩

1∫

0

|v′(x)|2 dx

⎫
⎬

⎭

1/2

. (12.49)

We will address the special case where β = 0 and γ(x) ≥ 0. In the most
general case given by the differential problem (12.41) we shall assume that
the coefficients satisfy

−1
2
β′ + γ ≥ 0, ∀x ∈ [0, 1]. (12.50)

This ensures that the Galerkin problem (12.46) admits a unique solution
depending continuously on the data. Taking vh = uh in (12.46) we obtain

α0|uh|2H1(0,1) ≤
1∫

0

αu′
hu′

h dx +

1∫

0

γuhuh dx = (f, uh) ≤ ‖f‖L2(0,1)‖uh‖L2(0,1),

where we have used the Cauchy-Schwarz inequality (8.33) to set the right-
hand side inequality. Owing to the Poincaré inequality (12.16) we conclude
that

|uh|H1(0,1) ≤
CP

α0
‖f‖L2(0,1). (12.51)

Thus, the norm of the Galerkin solution remains bounded (uniformly with
respect to the dimension of the subspace Vh) provided that f ∈ L2(0, 1).

12.4 The Galerkin Method 557

Inequality (12.51) therefore represents a stability result for the solution of the
Galerkin problem.

As for convergence, we can prove the following result.

Theorem 12.3 Let C = α−1
0 (‖α‖∞ + C2

P ‖γ‖∞); then, we have

|u − uh|H1(0,1) ≤ C min
wh∈Vh

|u − wh|H1(0,1). (12.52)

Proof. Subtracting (12.46) from (12.43) (where we use vh ∈ Vh ⊂ V), owing to the
bilinearity of the form a(·, ·) we obtain

a(u − uh, vh) = 0 ∀vh ∈ Vh. (12.53)

Then, setting e(x) = u(x) − uh(x), we deduce

α0|e|2H1(0,1) ≤ a(e, e) = a(e, u − wh) + a(e, wh − uh) ∀wh ∈ Vh.

The last term is null due to (12.53). On the other hand, still by the Cauchy-Schwarz
inequality we obtain

a(e, u − wh) =

1∫

0

αe′(u − wh)′ dx +

1∫

0

γe(u − wh) dx

≤ ‖α‖∞|e|H1(0,1)|u − wh|H1(0,1) + ‖γ‖∞‖e‖L2(0,1)‖u − wh‖L2(0,1).

The desired result (12.52) now follows by using again the Poincaré inequality for

both ‖e‖L2(0,1) and ‖u − wh‖L2(0,1). �

The previous results can be obtained under more general hypotheses on prob-
lems (12.43) and (12.46). Precisely, we can assume that V is a Hilbert space,
endowed with norm ‖ · ‖V , and that the bilinear form a : V × V → R satisfies
the following properties:

∃α0 > 0 : a(v, v) ≥ α0‖v‖2
V ∀v ∈ V (coercivity), (12.54)

∃M > 0 : |a(u, v)| ≤ M‖u‖V ‖v‖V ∀u, v ∈ V (continuity). (12.55)

Moreover, the right hand side (f, v) satisfies the following inequality

|(f, v)| ≤ K‖v‖V ∀v ∈ V.

Then both problems (12.43) and (12.46) admit unique solutions that satisfy

‖u‖V ≤ K

α0
, ‖uh‖V ≤ K

α0
.

This is a celebrated result which is known as the Lax-Milgram Lemma (for
its proof see, e.g., [QV94]). Besides, the following error inequality holds

‖u − uh‖V ≤ M

α0
min

wh∈Vh

‖u − wh‖V . (12.56)

558 12 Two-Point Boundary Value Problems

The proof of this last result, which is known as Céa’s Lemma, is very similar
to that of (12.52) and is left to the reader.
We now wish to notice that, under the assumption (12.54), the matrix in-
troduced in (12.48) is positive definite. To show this, we must check that
vT AGv ≥ 0 ∀v ∈ R

N and that vT AGv = 0 ⇔ v = 0 (see Section 1.12).
Let us associate with a generic vector v = (vi) of R

N the function vh =
∑N

j=1 vjϕj ∈ Vh. Since the form a(·, ·) is bilinear and coercive we get

vT AGv =
N∑

j=1

N∑

i=1

viaijvj =
N∑

j=1

N∑

i=1

via(ϕj , ϕi)vj

=
N∑

j=1

N∑

i=1

a(vjϕj , viϕi) = a

⎛

⎝
N∑

j=1

vjϕj ,
N∑

i=1

viϕi

⎞

⎠

= a(vh, vh) ≥ α0‖vh‖2
V ≥ 0.

Moreover, if vT AGv = 0 then also ‖vh‖2
V = 0 which implies vh = 0 and thus

v = 0.
It is also easy to check that the matrix AG is symmetric iff the bilinear form
a(·, ·) is symmetric.

For example, in the case of problem (12.41) with β = γ = 0 the matrix AG

is symmetric and positive definite (s.p.d.) while if β and γ are nonvanishing,
AG is positive definite only under the assumption (12.50). If AG is s.p.d. the
numerical solution of the linear system (12.48) can be efficiently carried out
using direct methods like the Cholesky factorization (see Section 3.4.2) as well
as iterative methods like the conjugate gradient method (see Section 4.3.4).
This is of particular interest in the solution of boundary value problems in
more than one space dimension (see Section 12.6).

12.4.5 The Finite Element Method

The finite element method (FEM) is a special technique for constructing a
subspace Vh in (12.46) based on the piecewise polynomial interpolation con-
sidered in Section 8.4. With this aim, we introduce a partition Th of [0,1] into
n subintervals Ij = [xj , xj+1], n ≥ 2, of width hj = xj+1−xj , j = 0, . . . , n−1,
with

0 = x0 < x1 < . . . < xn−1 < xn = 1

and let h = max
Th

(hj). Since functions in H1
0(0, 1) are continuous it makes sense

to consider for k ≥ 1 the family of piecewise polynomials Xk
h introduced in

(8.26) (where now [a, b] must be replaced by [0, 1]). Any function vh ∈ Xk
h

is a continuous piecewise polynomial over [0, 1] and its restriction over each
interval Ij ∈ Th is a polynomial of degree ≤ k. In the following we shall mainly
deal with the cases k = 1 and k = 2.

12.4 The Galerkin Method 559

Then, we set

Vh = Xk,0
h =

{
vh ∈ Xk

h : vh(0) = vh(1) = 0
}

. (12.57)

The dimension N of the finite element space Vh is equal to nk − 1.
To assess the accuracy of the Galerkin FEM we first notice that, thanks

to Céa’s lemma (12.56), we have

min
wh∈Vh

‖u − wh‖H1
0(0,1) ≤ ‖u − Πk

hu‖H1
0(0,1), (12.58)

where Πk
hu is the interpolant of the exact solution u ∈ V of (12.43) (see Section

8.4). From inequality (12.58) we conclude that the matter of estimating the
Galerkin approximation error ‖u − uh‖H1

0(0,1) is turned into the estimate of
the interpolation error ‖u−Πk

hu‖H1
0(0,1). When k = 1, using (12.56) and (8.31)

we obtain
‖u − uh‖H1

0(0,1) ≤
M

α0
Ch‖u‖H2(0,1),

provided that u ∈ H2(0, 1). This estimate can be extended to the case k > 1
as stated in the following convergence result (for its proof we refer, e.g., to
[QV94], Theorem 6.2.1).

Property 12.1 Let u ∈ H1
0(0, 1) be the exact solution of (12.43) and uh ∈ Vh

its finite element approximation using continuous piecewise polynomials of
degree k ≥ 1. Assume also that u ∈ Hs(0, 1) for some s ≥ 2. Then the
following error estimate holds

‖u − uh‖H1
0(0,1) ≤

M

α0
Chl‖u‖Hl+1(0,1), (12.59)

where l = min(k, s−1). Under the same assumptions, one can also prove that

‖u − uh‖L2(0,1) ≤ Chl+1‖u‖Hl+1(0,1). (12.60)

The estimate (12.59) shows that the Galerkin method is convergent, i.e. the
approximation error tends to zero as h → 0 and the order of convergence is l.
We also see that there is no convenience in increasing the degree k of the
finite element approximation if the solution u is not sufficiently smooth. In
this respect l is called a regularity threshold. The obvious alternative to gain
accuracy in such a case is to reduce the stepzise h. Spectral methods, which
will be considered in Section 12.4.7, instead pursue the opposite strategy (i.e.
increasing the degree k) and are thus ideally suited to approximating problems
with highly smooth solutions.

An interesting situation is that where the exact solution u has the mini-
mum regularity (s = 1). In such a case, Céa’s lemma ensures that the Galerkin
FEM is still convergent since as h → 0 the subspace Vh becomes dense into

560 12 Two-Point Boundary Value Problems

Table 12.1. Order of convergence of the FEM as a function of k (the degree of
interpolation) and s (the Sobolev regularity of the solution u)

k s = 1 s = 2 s = 3 s = 4 s = 5

1 only convergence h1 h1 h1 h1

2 only convergence h1 h2 h2 h2

3 only convergence h1 h2 h3 h3

4 only convergence h1 h2 h3 h4

V . However, the estimate (12.59) is no longer valid so that it is not pos-
sible to establish the order of convergence of the numerical method. Table
12.1 summarizes the orders of convergence of the FEM for k = 1, . . . , 4 and
s = 1, . . . , 5.
Let us now focus on how to generate a suitable basis {ϕj} for the finite element
space Xk

h in the special cases k = 1 and k = 2. The basic point is to choose
appropriately a set of degrees of freedom for each element Ij of the partition
Th (i.e., the parameters which permit uniquely identifying a function in Xk

h).
The generic function vh in Xk

h can therefore be written as

vh(x) =
nk∑

i=0

viϕi(x),

where {vi} denote the set of the degrees of freedom of vh and the basis
functions ϕi (which are also called shape functions) are assumed to satisfy
the Lagrange interpolation property ϕi(xj) = δij , i, j = 0, . . . , n, where δij is
the Kronecker symbol.

The space X1
h

This space consists of all continuous and piecewise linear functions over the
partition Th. Since a unique straight line passes through two distinct nodes
the number of degrees of freedom for vh is equal to the number n+1 of nodes
in the partition. As a consequence, n + 1 shape functions ϕi, i = 0, . . . , n,
are needed to completely span the space X1

h. The most natural choice for ϕi,
i = 1, . . . , n − 1, is

ϕi(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x − xi−1

xi − xi−1
for xi−1 ≤ x ≤ xi,

xi+1 − x

xi+1 − xi
for xi ≤ x ≤ xi+1,

0 elsewhere.

(12.61)

The shape function ϕi is thus piecewise linear over Th, its value is 1 at the node
xi and 0 at all the other nodes of the partition. Its support (i.e., the subset of

12.4 The Galerkin Method 561

1

x1x0 xi−1 xi xi+1 xn−1 xn = 1

ϕi ϕnϕ0

Fig. 12.3. Shape functions of X1
h associated with internal and boundary nodes

1

1

0

1

0

f

x xi xi+1 x

j j〉

Fig. 12.4. Linear affine mapping φ from the reference interval to the generic interval
of the partition

[0, 1] where ϕi is nonvanishing) consists of the union of the intervals Ii−1 and
Ii if 1 ≤ i ≤ n − 1 while it coincides with the interval I0 (respectively In−1)
if i = 0 (resp., i = n). The plots of ϕi, ϕ0 and ϕn are shown in Figure 12.3.
For any interval Ii = [xi, xi+1], i = 0, . . . , n − 1, the two basis functions ϕi

and ϕi+1 can be regarded as the images of two “reference” shape functions
ϕ̂0 and ϕ̂1 (defined over the reference interval [0, 1]) through the linear affine
mapping φ : [0, 1] → Ii

x = φ(ξ) = xi + ξ(xi+1 − xi), i = 0, . . . , n − 1. (12.62)

Defining ϕ̂0(ξ) = 1 − ξ, ϕ̂1(ξ) = ξ, the two shape functions ϕi and ϕi+1 can
be constructed over the interval Ii as

ϕi(x) = ϕ̂0(ξ(x)), ϕi+1(x) = ϕ̂1(ξ(x)),

where ξ(x) = (x − xi)/(xi+1 − xi) (see Figure 12.4).

The space X2
h

The generic function vh ∈ X2
h is a piecewise polynomial of degree 2 over each

interval Ii. As such, it can be uniquely determined once three values of it at
three distinct points of Ii are assigned. To ensure continuity of vh over [0, 1]
the degrees of freedom are chosen as the function values at the nodes xi of
Th, i = 0, . . . , n, and at the midpoints of each interval Ii, i = 0, . . . , n− 1, for

562 12 Two-Point Boundary Value Problems

a total number equal to 2n + 1. It is convenient to label the degrees of free-
dom and the corresponding nodes in the partition starting from x0 = 0 until
x2n = 1 in such a way that the midpoints of each interval correspond to the
nodes with odd index while the endpoints of each interval correspond to the
nodes with even index.

The explicit expression of the single shape function is

(i even) ϕi(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(x − xi−1)(x − xi−2)
(xi − xi−1)(xi − xi−2)

for xi−2 ≤ x ≤ xi,

(xi+1 − x)(xi+2 − x)
(xi+1 − xi)(xi+2 − xi)

for xi ≤ x ≤ xi+2,

0 elsewhere,

(12.63)

(i odd) ϕi(x) =

⎧
⎪⎨

⎪⎩

(xi+1 − x)(x − xi−1)
(xi+1 − xi)(xi − xi−1)

for xi−1 ≤ x ≤ xi+1,

0 elsewhere.

(12.64)

Each basis function enjoys the property that ϕi(xj) = δij , i, j = 0, . . . , 2n.
The shape functions for X2

h on the reference interval [0, 1] are

ϕ̂0(ξ) = (1 − ξ)(1 − 2ξ), ϕ̂1(ξ) = 4(1 − ξ)ξ, ϕ̂2(ξ) = ξ(2ξ − 1) (12.65)

and are shown in Figure 12.5. As in the case of piecewise linear finite ele-
ments of X1

h the shape functions (12.63) and (12.64) are the images of (12.65)
through the affine mapping (12.62). Notice that the support of the basis func-
tion ϕ2i+1 associated with the midpoint x2i+1 coincides with the interval to
which the midpoint belongs. Due to its shape ϕ2i+1 is usually referred to as
bubble function.
So far, we have considered only lagrangian-type shape functions. If this con-
straint is removed other kind of bases can be derived. A notable example (on
the reference interval) is given by

ϕ̂0 ϕ̂1

ϕ̂2

ξ
0

1

0.5 1

Fig. 12.5. Basis functions of X2
h on the reference interval

12.4 The Galerkin Method 563

ψ̂0(ξ) = 1 − ξ, ψ̂1(ξ) = (1 − ξ)ξ, ψ̂2(ξ) = ξ. (12.66)

This basis is called hierarchical since it is generated using the shape functions
of the subspace having an immediately lower dimension than X2

h (i.e. X1
h).

Precisely, the bubble function ψ̂1 ∈ X2
h is added to the shape functions ψ̂0

and ψ̂2 which belong to X1
h. Hierarchical bases can be of some interest in

numerical computations if the local degree of the interpolation is adaptively
increased (p-type adaptivity).

To check that (12.66) forms a basis for X2
h we must verify that its functions

are linearly independent, i.e.

α0ψ̂0(ξ) + α1ψ̂1(ξ) + α2ψ̂2(ξ) = 0, ∀ξ ∈ [0, 1] ⇔ α0 = α1 = α2 = 0.

In our case this holds true since if

2∑

i=0

αiψ̂i(ξ) = α0 + ξ(α1 − α0 + α2) − α1ξ
2 = 0, ∀ξ ∈ [0, 1],

then necessarily α0 = 0, α1 = 0 and thus α2 = 0.
A procedure analogous to that examined in the sections above can be used in
principle to construct a basis for every subspace Xk

h with k being arbitrary.
However, it is important to remember that an increase in the degree k of the
polynomial approximation gives rise to an increase of the number of degrees of
freedom of the FEM and, as a consequence, of the computational cost required
for the solution of the linear system (12.48).
Let us now examine the structure and the basic properties of the stiffness
matrix associated with system (12.48) in the case of the finite element method
(AG = Afe).

Since the finite element basis functions for Xk
h have a local support, Afe is

sparse. In the particular case k = 1, the support of the shape function ϕi is
the union of the intervals Ii−1 and Ii if 1 ≤ i ≤ n − 1, and it coincides with
the interval I0 (respectively In−1) if i = 0 (resp., i = n). As a consequence,
for a fixed i = 1, . . . , n − 1, only the shape functions ϕi−1 and ϕi+1 have a
nonvanishing support intersection with that of ϕi, which implies that Afe is
tridiagonal since aij = 0 if j �∈ {i − 1, i, i + 1}. In the case k = 2 one concludes
with an analogous argument that Afe is a pentadiagonal matrix.

The condition number of Afe is a function of the grid size h; indeed,

K2(Afe) = ‖Afe‖2‖A−1
fe ‖2 = O(h−2)

(for the proof, see [QV94], Section 6.3.2), which demonstrates that the con-
ditioning of the finite element system (12.48) grows rapidly as h → 0. This
is clearly conflicting with the need of increasing the accuracy of the approxi-
mation and, in multidimensional problems, demands suitable preconditioning
techniques if iterative solvers are used (see Section 4.3.2).

564 12 Two-Point Boundary Value Problems

Remark 12.4 (Elliptic problems of higher order) The Galerkin method
in general, and the finite element method in particular, can also be applied
to other type of elliptic equations, for instance to those of fourth order. In
that case, the numerical solution (as well as the test functions) should be
continuous together with their first derivative. An example has been illustrated
in Section 8.9.1. �

12.4.6 Implementation Issues

In this section we implement the finite element (FE) approximation with
piecewise linear elements (k = 1) of the boundary value problem (12.41)
(shortly, BVP) with non homogeneous Dirichlet boundary conditions.
Here is the list of the input parameters of Program 94: Nx is the number of
grid subintervals; I is the interval [a, b], alpha, beta, gamma and f are the
macros corresponding to the coefficients in the equation, bc=[ua,ub] is a
vector containing the Dirichlet boundary conditions for u at x = a and x = b
and stabfun is an optional string variable. It can assume different values,
allowing the user to select the desired type of artificial viscosity that may be
needed for dealing with the problems addressed in Section 12.5.

Program 94 - ellfem : Linear FE for two-point BVPs

function [uh,x] = ellfem(Nx,I,alpha,beta,gamma,f,bc,stabfun)
%ELLFEM Finite element solver.
% [UH,X]=ELLFEM(NX,I,ALPHA,BETA,GAMMA,F,BC,STABFUN) solves the
% boundary-value problem:
% -ALPHA*U’’+BETA*U’+GAMMA=F in (I(1),I(2))
% U(I(1))=BC(1), U(I(2))=BC(2)
% with linear finite elements. If STABFUN=1, then a stabilized finite element
% method is considered.
a=I(1); b=I(2); h=(b-a)/Nx; x=[a+h/2:h:b-h/2];
alpha=eval(alpha); beta=eval(beta); gamma=eval(gamma);
f=eval(f);
rhs=0.5*h*(f(1:Nx-1)+f(2:Nx));
if nargin == 8

[Afe,rhsbc]=femmatr(Nx,h,alpha,beta,gamma,stabfun);
else

[Afe,rhsbc]=femmatr(Nx,h,alpha,beta,gamma);
end
[L,U,P]=lu(Afe);
rhs(1)=rhs(1)-bc(1)*(-alpha(1)/h-beta(1)/2+h*gamma(1)/3+rhsbc(1));
rhs(Nx-1)=rhs(Nx-1)-bc(2)*(-alpha(Nx)/h+beta(Nx)/2+h*gamma(Nx)/3+rhsbc(2));
rhs=P*rhs’;
z=L\rhs;
w=U\z;
uh=[bc(1), w’, bc(2)]; x=[a:h:b];
return

12.4 The Galerkin Method 565

Program 95 computes the stiffness matrix Afe; with this aim, the coefficients
α, β and γ and the forcing term f are replaced by piecewise constant functions
on each mesh subinterval and the remaining integrals in (12.41), involving the
basis functions and their derivatives, are evaluated exactly.

Program 95 - femmatr : Construction of the stiffness matrix

function [Afe,rhsbc] = femmatr(Nx,h,alpha,beta,gamma,stabfun)
%FEMMATR Stiffness matrix and right-hand side.
for i=2:Nx

dd(i-1)=(alpha(i-1)+alpha(i))/h; dc(i-1)=-(beta(i)-beta(i-1))/2;
dr(i-1)=h*(gamma(i-1)+gamma(i))/3;
if i>2

ld(i-2)=-alpha(i-1)/h; lc(i-2)=-beta(i-1)/2;
lr(i-2)=h*gamma(i-1)/6;

end
if i<Nx

ud(i-1)=-alpha(i)/h;
uc(i-1)=beta(i)/2;
ur(i-1)=h*gamma(i)/6;

end
end
Kd=spdiags([[ld 0]’,dd’,[0 ud]’],-1:1,Nx-1,Nx-1);
Kc=spdiags([[lc 0]’,dc’,[0 uc]’],-1:1,Nx-1,Nx-1);
Kr=spdiags([[lr 0]’,dr’,[0 ur]’],-1:1,Nx-1,Nx-1);
Afe=Kd+Kc+Kr;
if nargin == 6

s=[’[Ks,rhsbc]=’,stabfun,’(Nx,h,alpha,beta);’]; eval(s)
Afe = Afe + Ks;

else
rhsbc = [0, 0];

end
return

The H1-norm of the error can be computed by calling Program 96, which must
be supplied by the macros u and ux containing the expression of the exact
solution u and of u′. The computed numerical solution is stored in the output
vector uh, while the vector coord contains the grid coordinates and h is the
mesh size. The integrals involved in the computation of the H1-norm of the
error are evaluated using the composite Simpson formula (9.17).

Program 96 - H1error : Computation of the H1-norm of the error

function [L2err,H1err]=H1error(coord,h,uh,u,udx)
%H1ERROR Computes the error in the H1-norm.
nvert=max(size(coord)); x=[]; k=0;
for i = 1:nvert-1

xm=(coord(i+1)+coord(i))*0.5;
x=[x, coord(i),xm];

566 12 Two-Point Boundary Value Problems

k=k+2;
end
ndof=k+1; x(ndof)=coord(nvert);
uq=eval(u); uxq=eval(udx);
L2err=0; H1err=0;
for i=1:nvert-1

L2err = L2err + (h/6)*((uh(i)-uq(2*i-1))ˆ2+...
4*(0.5*uh(i)+0.5*uh(i+1)-uq(2*i))ˆ2+(uh(i+1)-uq(2*i+1))ˆ2);

H1err = H1err + (1/(6*h))*((uh(i+1)-uh(i)-h*uxq(2*i-1))ˆ2+...
4*(uh(i+1)-uh(i)-h*uxq(2*i))ˆ2+(uh(i+1)-uh(i)-h*uxq(2*i+1))ˆ2);

end
H1err = sqrt(H1err + L2err); L2err = sqrt(L2err);
return

Example 12.1 We assess the accuracy of the finite element solution of the following
problem. Consider a thin rod of length L whose temperature at x = 0 is fixed to
t0 while the other endpoint x = L is thermally isolated. Assume that the rod has a
cross-section with constant area equal to A and that the perimeter of A is p.

The temperature u of the rod at a generic point x ∈ (0, L) is governed by the
following boundary value problem with mixed Dirichlet-Neumann conditions

{
−µAu′′ + σpu = 0 x ∈ (0, L),

u(0) = u0, u′(L) = 0,
(12.67)

where µ denotes the thermal conductivity and σ is the convective transfer coefficient.
The exact solution of the problem is the (smooth) function

u(x) = u0
cosh[m(L − x)]

cosh(mL)
,

where m =
√

σp/µA. We solve the problem by using linear and quadratic finite
elements (k = 1 and k = 2) on a grid with uniform size. In the numerical computa-
tions we assume that the length of the rod is L = 100[cm] and that the rod has a
circular cross-section of radius 2[cm] (and thus, A = 4π[cm2], p = 4π[cm]). We also
set u0 = 10[◦C], σ = 2 and µ = 200.

Figure 12.6 (left) shows the behavior of the error in the L2 and H1 norms for the
linear and quadratic elements, respectively. Notice the excellent agreement between
the numerical results and the expected theoretical estimates (12.59) and (12.60),
i.e., the orders of convergence in the L2 norm and the H1 norm tend respectively to
k + 1 and k if finite elements of degree k are employed, since the exact solution is
smooth. •

12.4.7 Spectral Methods

It turns out that the spectral collocation method of Section 12.3 can be
regarded as a Galerkin method where the subspace is P

0
n and the integrals

12.4 The Galerkin Method 567

10−1 100 101
10−6

10−5

10−4

10−3

10−2

10−1

100

101

10 20 30 40 50 60
10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

102

Fig. 12.6. Left: error curves for linear and quadratic elements. The dashed and
solid lines denote the H1(0, L) and L2(0, L) norms of the error in the case k = 1,
while the dot-line and dotted line denote the corresponding norms in the case k = 2.
Right: error curves for the spectral collocation method. The dashed and solid lines
denote the H1(0, L) and L2(0, L) norms of the error, respectively

are approximated by the Gauss-Lobatto quadrature formula. As a matter of
fact, the approximation of problem (12.38) is

find un ∈ P
0
n : an(un, vn) = (f, vn)n ∀vn ∈ P

0
n, (12.68)

where an is the bilinear form that is obtained from the bilinear form a by
replacing exact integrals by the Gauss-Lobatto formula (12.37). For problem
(12.41) the associated bilinear form a was introduced in (12.44). We would
therefore obtain

an(un, vn) = (αu′
n, v′

n)n + (βu′
n, vn)n + (γun, vn)n. (12.69)

This is no longer a Galerkin method, but is called a generalized Galerkin
approximation. Its analysis requires more care than for Galerkin methods, as
already seen in Section 12.3 and depends on the Strang lemma (see [QV94]).
However, the same kind of error estimate (12.39) can be proven in this case
as well.

A further generalization combining the finite element approach with piece-
wise polynomials of high degree and Gauss-Lobatto integration on each ele-
ment yields the so-called spectral element method and the h− p version of the
finite element method (here p stands for the polynomial degree that we have
denoted with n). In these cases convergence is achieved letting simultaneously
(or independently) h go to zero and p go to infinity. (See, e.g., [BM92], [Sch98],
[CHQZ06]).

Example 12.2 We consider again the two-point boundary value problem (12.67)
and employ the spectral collocation method for its numerical approximation. We

568 12 Two-Point Boundary Value Problems

show in Figure 12.6 (right) the error curves in the L2(0, L) (solid line) and H1(0, L)
(dashed line) norms as functions of the spectral degree n, with n = 4−k, k = 1, . . . , 5.
Notice the high accuracy that is achieved, even when a small value of n is used, due
to the smoothness of the exact solution. Notice also that for n ≥ 32 the accuracy is
actually bounded by the effect of rounding errors. •

12.5 Advection-Diffusion Equations

Boundary value problems of the form (12.41) are used to describe processes of
diffusion, advection and absorption (or reaction) of a certain quantity which is
identified with u(x). The term −(αu′)′ is responsible for the diffusion, βu′ for
the advection (or transport), γu for the absorption (if γ > 0). In this section
we focus on the case where α is small compared with β (or γ). In these
cases, the Galerkin method that we introduced earlier might be unsuitable for
providing accurate numerical results. A heuristic explanation can be drawn
from the inequality (12.56), noticing that in this case the constant M/α0 can
be very large, hence the error estimate can be meaningless unless h is much
smaller than (M/α0)−1. For instance, if α = ε, γ = 0 and β = const � 1,
then α0 = ε and M = ε + CP β. Similarly, if α = ε, β = 0 and γ = const � 1
then α0 = ε and M = ε + C2

P γ.
To keep our analysis at the simplest possible level, we will consider the

following elementary two-point boundary value problem
{−εu′′ + βu′ = 0, 0 < x < 1,

u(0) = 0, u(1) = 1,
(12.70)

where ε and β are two positive constants such that ε/β � 1. Despite its
simplicity, (12.70) provides an interesting paradigm of an advection-diffusion
problem in which advection dominates diffusion.

We define the global Péclet number as

Pegl =
|β|L
2ε

, (12.71)

where L is the size of the domain (equal to 1 in our case). The global Péclet
number measures the dominance of the advective term over the diffusive one.

Let us first compute the exact solution of problem (12.70). tHE charac-
teristic equation associated to the differential equation is −ελ2 + βλ = 0 and
admits the roots λ1 = 0 and λ2 = β/ε. Then

u(x) = C1e
λ1x + C2e

λ2x = C1 + C2e
β
ε x,

where C1 and C2 are arbitrary constants. Imposing the boundary conditions
yields C1 = −1/(eβ/ε − 1) = −C2, therefore

u(x) = (exp(βx/ε) − 1) / (exp(β/ε) − 1) .

12.5 Advection-Diffusion Equations 569

If β/ε � 1 we can expand the exponentials up to first order obtaining

u(x) = (1 +
β

ε
x + . . . − 1)/(1 +

β

ε
+ . . . − 1) � (β x/ε)/(β/ε) = x,

thus the solution is close to the solution of the limit problem −εu′′ = 0, which
is a straight line interpolating the boundary data.
However, if β/ε � 1 the exponentials attain big values so that

u(x) � exp(β/εx)
exp(β/ε)

= exp
[

−β

ε
(1 − x)

]

.

Since the exponent is big and negative the solution is almost equal to zero
everywhere unless a small neighborhood of the point x = 1 where the term
1−x becomes very small and the solution joins the value 1 with an exponential
behaviour. The width of the neighbourhood is of the order of ε/β and thus it
is quite small: in such an event, we say that the solution exhibits a boundary
layer of width O (ε/β) at x = 1.

12.5.1 Galerkin Finite Element Approximation

Let us discretize problem (12.70) using the Galerkin finite element method
introduced in Section 12.4.5 with k = 1 (piecewise linear finite elements). The
approximation to the problem is: find uh ∈ X1

h such that

⎧
⎨

⎩

a(uh, vh) = 0 ∀vh ∈ X1,0
h ,

uh(0) = 0, uh(1) = 1,
(12.72)

where the finite element spaces X1
h and X1,0

h have been introduced in (8.26)
and (12.57) and the bilinear form a(·, ·) is

a(uh, vh) =
∫ 1

0

(εu′
hv′

h + βu′
hvh) dx. (12.73)

Remark 12.5 (Advection-diffusion problems in conservation form)
Sometimes, the advection-diffusion problem (12.70) is written in the following
conservation form

{−(J(u))′ = 0, 0 < x < 1,

u(0) = 0, u(1) = 1,
(12.74)

where J(u) = εu′ − βu is the flux (already introduced in the finite difference
context in Section 12.2.3), ε and β are given functions with ε(x) ≥ ε0 > 0 for

570 12 Two-Point Boundary Value Problems

all x ∈ [0, 1]. The Galerkin approximation of (12.74) using piecewise linear
finite elements reads: find uh ∈ X1

h such that

b(uh, vh) = 0, ∀vh ∈ X1,0
h ,

where b(uh, vh) =
∫ 1

0
(εu′

h−βuh)v′
h dx. The bilinear form b(·, ·) coincides with

the corresponding one in (12.73) when ε and β are constant. �

Taking vh as a test function the generic basis function ϕi, (12.72) yields

1∫

0

εu′
hϕ′

i dx +

1∫

0

βu′
hϕi dx = 0, i = 1, . . . , n − 1.

Setting uh(x) =
∑n

j=0 ujϕj(x), and noting that supp(ϕi) = [xi−1, xi+1] the
above integral, for i = 1, . . . , n − 1, reduces to

ε

⎡

⎣ui−1

xi∫

xi−1

ϕ′
i−1ϕ

′
i dx + ui

xi+1∫

xi−1

(ϕ′
i)

2
dx + ui+1

xi+1∫

xi

ϕ′
iϕ

′
i+1 dx

⎤

⎦

+β

⎡

⎣ui−1

xi∫

xi−1

ϕ′
i−1ϕi dx + ui

xi+1∫

xi−1

ϕ′
iϕi dx + ui+1

xi+1∫

xi

ϕ′
i+1ϕi dx

⎤

⎦ = 0.

Assuming a uniform partition of [0, 1] with xi = xi−1 + h for i = 1, . . . , n,
h = 1/n, and noting that ϕ′

j(x) = 1
h if xj−1 ≤ x ≤ xj , ϕ′

j(x) = − 1
h if

xj ≤ x ≤ xj+1, we deduce that

ε

h
(−ui−1 + 2ui − ui+1)+

1
2
β (ui+1 − ui−1) = 0, i = 1, . . . , n−1. (12.75)

Multiplying by h/ε and defining the local Péclet number to be

Pe =
|β|h
2ε

,

we finally obtain

(Pe− 1) ui+1 + 2ui − (Pe + 1) ui−1 = 0, i = 1, . . . , n − 1. (12.76)

This is a linear difference equation which admits a solution of the form ui =
A1ρ

i
1 + A2ρ

i
2 for suitable constants A1, A2 (see Section 11.4), where ρ1 and

ρ2 are the two roots of the following characteristic equation

(Pe− 1) ρ2 + 2ρ − (Pe + 1) = 0.

12.5 Advection-Diffusion Equations 571

Thus

ρ1,2 =
−1 ±

√
1 + Pe2 − 1

Pe− 1
=

⎧
⎨

⎩

1 + Pe

1 − Pe
,

1.

Imposing the boundary conditions at x = 0 and x = 1 gives

A1 = 1/(1 −
(

1+Pe
1−Pe

)n

), A2 = −A1,

so that the solution of (12.76) is

ui =

(

1 −
(

1 + Pe

1 − Pe

)i
)

/

(

1 −
(

1 + Pe

1 − Pe

)n)

, i = 0, . . . , n.

We notice that if Pe > 1, a power with a negative base appears at the nu-
merator which gives rise to an oscillating solution. This is clearly visible in
Figure 12.7 where for several values of the local Péclet number, the solution
of (12.76) is compared with the exact solution (sampled at the mesh nodes)
corresponding to a value of the global Péclet equal to 50.

The simplest remedy for preventing the oscillations consists of choosing a
sufficiently small mesh stepsize h in such a way that Pe < 1. However this
approach is often impractical: for example, if β = 1 and ε = 5 · 10−5 one
should take h < 10−4 which amounts to dividing [0, 1] into 10000 subinter-
vals, a strategy that becomes unfeasible when dealing with multidimensional
problems. Other strategies can be pursued, as will be addressed in the next
sections.

0.75 0.8 0.85 0.9 0.95 1

−0.5

0

0.5

1

Fig. 12.7. Finite difference solution of the advection-diffusion problem (12.70) (with
Pegl = 50) for several values of the local Péclet number. Solid line: exact solution,
dot-dashed line: Pe = 2.63, dotted line: Pe = 1.28, dashed line: Pe = 0.63

572 12 Two-Point Boundary Value Problems

12.5.2 The Relationship between Finite Elements and Finite
Differences; the Numerical Viscosity

To examine the behaviour of the finite difference method (FD) when applied
to the solution of advection-diffusion problems and its relationship with the
finite element method (FE), we again consider the one-dimensional problem
(12.70) with a uniform meshsize h.

To ensure that the local discretization error is of second order we approx-
imate u′(xi) and u′′(xi), i = 1, . . . , n − 1, by the centered finite differences
(10.61) and (10.65) respectively (see Section 10.10.1). We obtain the following
FD problem

⎧
⎨

⎩

−ε
ui+1 − 2ui + ui−1

h2
+ β

ui+1 − ui−1

2h
= 0, i = 1, . . . , n − 1,

u0 = 0, un = 1.
(12.77)

If we multiply by h for every i = 1, . . . , n − 1, we obtain exactly the same
equation (12.75) that was obtained using piecewise linear finite elements.

The equivalence between FD and FE can be profitably employed to devise
a cure for the oscillations arising in the approximate solution of (12.75) when
the local Péclet number is larger than 1. The important observation here is
that the instability in the FD solution is due to the fact that the discretization
scheme is a centered one. A possible remedy consists of approximating the
first derivative by a one-sided finite difference according to the direction of
the transport field. Precisely, we use the backward difference if the convective
coefficient β is positive and the forward difference otherwise. The resulting
scheme when β > 0 is

−ε
ui+1 − 2ui + ui−1

h2
+ β

ui − ui−1

h
= 0, i = 1, . . . , n − 1, (12.78)

which, for ε = 0 reduces to ui = ui−1 and therefore yields the desired constant
solution of the limit problem βu′ = 0. This one-side discretization of the first
derivative is called upwind differencing: the price to be paid for the enhanced
stability is a loss of accuracy since the upwind finite difference introduces a
local discretization error of O(h) and not of O(h2) as happens using centered
finite differences.
Noting that

ui − ui−1

h
=

ui+1 − ui−1

2h
− h

2
ui+1 − 2ui + ui−1

h2
,

the upwind finite difference can be interpreted as the sum of a centered finite
difference approximating the first derivative and of a term proportional to the
discretization of the second-order derivative. Consequently, (12.78) is equiva-
lent to

12.5 Advection-Diffusion Equations 573

0.7 0.75 0.8 0.85 0.9 0.95 1

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Fig. 12.8. Finite difference solution of (12.70) (with ε = 1/100) using a centered dis-
cretization (dashed and dotted lines) and the artificial viscosity (12.81) (dot-dashed
and starred lines). The solid line denotes the exact solution. Notice the effect of
eliminating the oscillations when the local Péclet number is large; conversely, notice
also the corresponding loss of accuracy for low values of the local Péclet number

−εh
ui+1 − 2ui + ui−1

h2
+ β

ui+1 − ui−1

2h
= 0 i = 1, . . . , n − 1, (12.79)

where εh = ε(1 + Pe). This amounts to having replaced the differential equa-
tion (12.70) with the perturbed one

−εhu′′ + βu′ = 0, (12.80)

then using centered finite differences to approximate both u′ and u′′. The
perturbation

−ε Peu′′ = −βh

2
u′′ (12.81)

is called the numerical viscosity (or artificial diffusion). In Figure 12.8 a com-
parison between centered and upwinded discretizations of problem (12.72) is
shown.

More generally, we can resort to a centered scheme of the form (12.78)
with the following viscosity

εh = ε(1 + φ(Pe)), (12.82)

where φ is a suitable function of the local Péclet number satisfying

lim
t→0+

φ(t) = 0.

Notice that when φ(t) = 0 for all t, one recovers the centered finite difference
method (12.77), while if φ(t) = t the upwind finite difference scheme (12.78)
(or, equivalently, (12.79)) is obtained. Other choices are admissible as well.
For instance, taking

574 12 Two-Point Boundary Value Problems

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

Fig. 12.9. The functions φUP (dash-dotted line) and φSG (solid line)

φ(t) = t − 1 + B(2t), (12.83)

where B(t) is the inverse of the Bernoulli function defined as B(t) = t/(et−1)
for t �= 0 and B(0) = 1, yields the so called exponential fitting finite difference
scheme which is also well known as the Scharfetter-Gummel (SG) method
[SG69].

Remark 12.6 Denoting respectively by φC , φUP and φSG the previous three
functions, i.e. φC = 0, φUP (t) = t and φSG(t) = t−1+B(2t) (see Figure 12.9),
we notice that φSG � φUP as Pe → +∞ while φSG = O(h2) and φUP = O(h)
if Pe → 0+. Therefore, the SG method is second-order accurate with respect
to h and for this reason it is an optimal viscosity upwind method. Actually,
one can show (see [HGR96], pp. 44-45) that if f is piecewise constant over the
grid partition the SG scheme yields a numerical solution uSG

h which is nodally
exact, i.e., uSG

h (xi) = u(xi) for each node xi, irrespectively of h (and, thus, of
the size of the local Péclet number). This is demonstrated in Figure 12.10. �

The new local Péclet number associated with the scheme (12.79)-(12.82) is
defined as

Pe∗ =
|β|h
2εh

=
Pe

(1 + φ(Pe))
.

For both the upwind and the SG schemes we have Pe∗ < 1 for any value of h.
This implies that the matrix associated with these methods is a M-matrix for
any h (see Definition 1.25 and Exercise 13), and, in turn, that the numerical
solution uh satisfies a discrete maximum principle (see Section 12.2.2).

12.5.3 Stabilized Finite Element Methods

In this section we extend the use of numerical viscosity introduced in the pre-
vious section for finite differences to the Galerkin method using finite elements

12.5 Advection-Diffusion Equations 575

0.9 0.95 1

0

0.5

1

Fig. 12.10. Comparison between the numerical solutions of problem (12.70) (with
ε = 1/200) obtained using the artificial viscosity (12.81) (dashed line where the
symbol � denotes the nodal values) and with the optimal viscosity (12.83) (dotted
line where the symbol • denotes the nodal values) in the case where Pe = 1.25. The
solid line denotes the exact solution

of arbitrary degree k ≥ 1. For this purpose we consider the advection-diffusion
problem (12.70) where the viscosity coefficient ε is replaced by (12.82). This
yields the following modification of the original Galerkin problem (12.72):

find
0

uh∈ Xk,0
h =

{
vh ∈ Xk

h : vh(0) = vh(1) = 0
}

such that

ah(
0

uh, vh) = −
1∫

0

βvh dx ∀vh ∈ Xk,0
h , (12.84)

where
ah(u, v) = a(u, v) + b(u, v),

and

b(u, v) = ε φ(Pe)

1∫

0

u′v′ dx

is called the stabilization term. Since ah(v, v) = εh|v|21 for all v ∈ H1
0(0, 1)

and εh/ε = (1 + φ(Pe)) ≥ 1, the modified problem (12.84) enjoys more favor-
able monotonicity properties than the corresponding nonstabilized Galerkin
formulation (12.75).

To prove convergence, it is sufficient to show that
0

uh tends to
0
u as h → 0,

where
0
u (x) = u(x) − x. This is done in the following theorem, where we

assume that
0
u (and henceforth u) has the required regularity.

576 12 Two-Point Boundary Value Problems

Theorem 12.4 If k = 1 then

| 0
u − 0

uh |H1(0,1) ≤ Ch G(
0
u), (12.85)

where C > 0 is a suitable constant independent of h and
0
u, and

G(
0
u) =

⎧
⎪⎨

⎪⎩

| 0
u |H1(0,1) + | 0

u |H2(0,1) for the upwind method,

| 0
u |H2(0,1) for the SG method.

Further, if k = 2 the SG method yields the improved error estimate

| 0
u − 0

uh |H1(0,1) ≤ Ch2(| 0
u |H1(0,1) + | 0

u |H3(0,1)). (12.86)

Proof. From (12.70) we obtain

a(
0
u, vh) = −

1∫

0

βvhdx, ∀vh ∈ Xk,0
h .

By comparison with (12.84) we get

ah(
0
u − 0

uh, vh) = b(
0
u, vh), ∀vh ∈ Xk,0

h . (12.87)

Denote by Eh =
0
u − 0

uh the discretization error and recall that the space H1
0(0, 1) is

endowed with the norm (12.49). Then,

εh|Eh|2H1(0,1) = ah(Eh, Eh) = ah(Eh,
0
u −Πk

h

0
u) + ah(Eh, Πk

h

0
u − 0

uh)

= ah(Eh,
0
u −Πk

h

0
u) + b(

0
u, Πk

h

0
u − 0

uh),

where we have applied (12.87) with vh = Πk
h

0
u − 0

uh. Using the Cauchy-Schwarz
inequality we get

εh|Eh|2H1(0,1) ≤ Mh|Eh|H1(0,1)|
0
u −Πk

h

0
u |H1(0,1)

+εφ(Pe)

1∫

0

(
0
u)′(Πk

h

0
u − 0

uh)′dx,
(12.88)

where Mh = εh + |β|CP is the continuity constant of the bilinear form ah(·, ·) and
CP is the Poincaré constant introduced in (12.16).

Notice that if k = 1 (corresponding to piecewise linear finite elements) and
φ = φSG (SG optimal viscosity) the quantity in the second integral is identically

zero since
0

uh= Π1
h

0
u, as pointed out in Remark 12.6. Then, from (12.88) we get

|Eh|H1(0,1) ≤
(

1 +
|β|CP

εh

)

| 0
u −Π1

h

0
u |H1(0,1).

12.5 Advection-Diffusion Equations 577

Noting that εh > ε, using (12.71) and the interpolation estimate (8.31), we finally
obtain the error bound

|Eh|H1(0,1) ≤ C(1 + 2PeglCP)h| 0
u |H2(0,1).

In the general case the error inequality (12.88) can be further manipulated. Using
the Cauchy-Schwarz and triangular inequalities we obtain

1∫

0

(
0
u)′(Πk

h

0
u − 0

uh)′dx ≤ | 0
u |H1(0,1)(|Πk

h

0
u − 0

u |H1(0,1) + |Eh|H1(0,1))

from which

εh|Eh|2H1(0,1) ≤ |Eh|H1(0,1)

(
Mh|

0
u −Πk

h

0
u |H1(0,1)

+εφ(Pe)| 0
u |H1(0,1)

)
+ εφ(Pe)| 0

u |H1(0,1)|
0
u −Πk

h

0
u |H1(0,1).

Using again the interpolation estimate (8.31) yields

εh|Eh|2H1(0,1) ≤ |Eh|H1(0,1)

(
MhChk| 0

u |Hk+1(0,1) + εφ(Pe)| 0
u |H1(0,1)

)

+Cεφ(Pe)| 0
u |H1(0,1)h

k| 0
u |Hk+1(0,1).

Using Young’s inequality (12.40) gives

εh|Eh|2H1(0,1) ≤
εh|Eh|2H1(0,1)

2

+
3

4εh

[
(MhChk| 0

u |Hk+1(0,1))
2 + (εφ(Pe)| 0

u |H1(0,1))
2
]

,

from which it follows that

|Eh|2H1(0,1) ≤ 3

2

(
Mh

εh

)2

C2h2k| 0
u |2Hk+1(0,1) +

3

2

(
ε

εh

)2

φ(Pe)2| 0
u |2H1(0,1)

+
2ε

εh
φ(Pe)| 0

u |H1(0,1)Chk| 0
u |Hk+1(0,1).

Again using the fact that εh > ε and the definition (12.71) we get (Mh/εh) ≤
(1 + 2CP Pegl) and then

|Eh|2H1(0,1) ≤ 3

2
C2(1 + 2CP Pegl)

2h2k| 0
u |2Hk+1(0,1)

+2φ(Pe)Chk| 0
u |H1(0,1)|

0
u |Hk+1(0,1) +

3

2
φ(Pe)2| 0

u |2H1(0,1),

which can be bounded further as

|Eh|2H1(0,1) ≤ M
[
h2k| 0

u |2Hk+1(0,1)

+ φ(Pe)hk| 0
u |H1(0,1)|

0
u |Hk+1(0,1) + φ(Pe)2| 0

u |2H1(0,1)

] (12.89)

for a suitable positive constant M.

578 12 Two-Point Boundary Value Problems

If φUP = Cεh, where Cε = β/ε, we obtain

|Eh|2H1(0,1) ≤ Ch2
[
h2k−2| 0

u |2Hk+1(0,1)

+hk−1| 0
u |H1(0,1)|

0
u |Hk+1(0,1) + | 0

u |2H1(0,1)

]
,

which shows that using piecewise linear finite elements (i.e., k = 1) plus the upwind
artificial viscosity gives the linear convergence estimate (12.85).
In the case φ = φSG, assuming that for h sufficiently small φSG ≤ Kh2, for a suitable
positive constant K, we get

|Eh|2H1(0,1) ≤ Ch4
[
h2(k−2)| 0

u |2Hk+1(0,1)

+hk−2| 0
u |H1(0,1)|

0
u |Hk+1(0,1) + | 0

u |2H1(0,1)

]
,

which shows that using quadratic finite elements (i.e., k = 2) plus the optimal

artificial viscosity gives the second-order convergence estimate (12.86). �

Programs 97 and 98 implement the computation of the artificial and optimal
artificial viscosities (12.81) and (12.83), respectively. These viscosities can
be selected by the user setting the input parameter stabfun in Program 94
equal to artvisc or sgvisc. The function sgvisc employs the function bern
to evaluate the inverse of the Bernoulli function in (12.83).

Program 97 - artvisc : Artificial viscosity

function [Kupw,rhsbc] = artvisc(Nx,h,nu,beta)
%ARTVISC Artificial viscosity: stiffness matrix and right-hand side.
Peclet=0.5*h*abs(beta);
for i=2:Nx

dd(i-1)=(Peclet(i-1)+Peclet(i))/h;
if i>2

ld(i-2)=-Peclet(i-1)/h;
end
if i<Nx

ud(i-1)=-Peclet(i)/h;
end

end
Kupw=spdiags([[ld 0]’,dd’,[0 ud]’],-1:1,Nx-1,Nx-1);
rhsbc = - [Peclet(1)/h, Peclet(Nx)/h];
return

Program 98 - sgvisc : Optimal artificial viscosity

function [Ksg,rhsbc] = sgvisc(Nx, h, nu, beta)
%SGVISC Optimal artificial viscosity: stiffness matrix and right-hand side.
Peclet=0.5*h*abs(beta)./nu;
[bp, bn]=bern(2*Peclet);

12.5 Advection-Diffusion Equations 579

Peclet=Peclet-1+bp;
for i=2:Nx

dd(i-1)=(nu(i-1)*Peclet(i-1)+nu(i)*Peclet(i))/h;
if i>2

ld(i-2)=-nu(i-1)*Peclet(i-1)/h;
end
if i<Nx

ud(i-1)=-nu(i)*Peclet(i)/h;
end

end
Ksg=spdiags([[ld 0]’,dd’,[0 ud]’],-1:1,Nx-1,Nx-1);
rhsbc = - [nu(1)*Peclet(1)/h, nu(Nx)*Peclet(Nx)/h];
return

Program 99 - bern : Evaluation of the Bernoulli function

function [bp,bn]=bern(x)
%BERN Evaluation of the Bernoulli function
xlim=1e-2; ax=abs(x);
if ax==0,

bp=1; bn=1; return
end
if ax>80

if x>0
bp=0.; bn=x;
return

else
bp=-x; bn=0;
return

end
end
if ax>xlim

bp=x/(exp(x)-1); bn=x+bp; return
else

ii=1; fp=1.;fn=1.; df=1.; s=1.;
while abs(df)>eps

ii=ii+1; s=-s; df=df*x/ii;
fp=fp+df; fn=fn+s*df;
bp=1./fp; bn=1./fn;

end
return

end
return

Example 12.3 We use Program 94 supplied with Programs 97 and 98 for the
numerical approximation of problem (12.70) in the case ε = 10−2. Figure 12.11 shows
the convergence behavior as a function of log(h) of the Galerkin method without
(G) and with numerical viscosity (upwind (UP) and SG methods are employed).

580 12 Two-Point Boundary Value Problems

10−3 10−2 10−1
10−4

10−3

10−2

10−1

100

101

102

||u − uh||L2(0,1)

||u − uh||H1(0,1)

Fig. 12.11. Convergence analysis for an advection-diffusion problem

The figure shows the logarithmic plots of the L2(0, 1) and H1(0, 1)-norms, where
the solid line denotes the UP method and the dashed and dotted lines denote the
G and SG methods, respectively. It is interesting to notice that the UP and SG
schemes exhibit the same (linear) convergence rate as the pure Galerkin method
in the H1-norm, while the accuracy of the UP scheme in the L2-norm deteriorates
dramatically because of the effect of the artificial viscosity which is O(h). Conversely,
the SG converges quadratically since the introduced numerical viscosity is in this
case O(h2) as h tends to zero. •

12.6 A Quick Glance at the Two-Dimensional Case

The game that we want to play is to extend (in a few pages) the basic ideas
illustrated so far to the two-dimensional case. The obvious generalization of
problem (12.1)-(12.2) is the celebrated Poisson problem with homogeneous
Dirichlet boundary condition

{−�u = f in Ω,

u = 0 on ∂Ω,
(12.90)

where �u = ∂2u/∂x2 + ∂2u/∂y2 is the Laplace operator and Ω is a two-
dimensional bounded domain whose boundary is ∂Ω. If we allow Ω to be the
unit square Ω = (0, 1)2, the finite difference approximation of (12.90) that
mimics (12.10) is

{
Lhuh(xi,j) = f(xi,j) for i, j = 1, . . . , N − 1,

uh(xi,j) = 0 if i = 0 or N, j = 0 or N,
(12.91)

12.6 A Quick Glance at the Two-Dimensional Case 581

xij xi,j+1

xi+1,j

xi,j−1

xi−1,j

Fig. 12.12. Left: finite difference grid and stencil for a squared domain. Right: finite
element triangulation of a region around a hole

where xi,j = (ih, jh) (h = 1/N > 0) are the grid points and uh is a grid
function. Finally, Lh denotes any consistent approximation of the operator
L = −�. The classical choice is

Lhuh(xi,j) =
1
h2

(4ui,j − ui+1,j − ui−1,j − ui,j+1 − ui,j−1) , (12.92)

where ui,j = uh(xi,j), which amounts to adopting the second-order centered
discretization of the second derivative (10.65) in both x and y directions (see
Figure 12.12, left).

The resulting scheme is known as the five-point discretization of the Lapla-
cian. It is an easy (and useful) exercise for the reader to check that the asso-
ciated matrix Afd has (N − 1)2 rows and is pentadiagonal, with the i-th row
given by

(afd)ij =
1
h2

⎧
⎪⎪⎨

⎪⎪⎩

4 if j = i,

−1 if j = i − N − 1, i − 1, i + 1, i + N + 1,

0 otherwise.

(12.93)

Moreover, Afd is symmetric positive definite and it is also an M-matrix (see
Exercise 14). As expected, the consistency error associated with (12.92) is
second-order with respect to h, and the same holds for the discretization
error ‖u−uh‖h,∞ of the method. More general boundary conditions than the
one considered in (12.90) can be dealt with by properly extending to the two-
dimensional case the mirror imaging technique described in Section 12.2.3 and
in Exercise 10 (for a thorough discussion of this subject, see, e.g., [Smi85]).

The extension of the Galerkin method is (formally speaking) even more
straightforward and actually is still readable as (12.46) with, however, the
implicit understanding that both the function space Vh and the bilinear form

582 12 Two-Point Boundary Value Problems

a(·, ·) be adapted to the problem at hand. The finite element method corre-
sponds to taking

Vh =
{
vh ∈ C0(Ω) : vh|T ∈ Pk(T)∀T ∈ Th, vh|∂Ω

= 0
}

, (12.94)

where Th denotes here a triangulation of the domain Ω as previously intro-
duced in Section 8.6.2, while Pk (k ≥ 1) is the space of piecewise polynomials
defined in (8.39). Note that Ω needs not to be a rectangular domain (see
Figure 12.12, right).

As of the bilinear form a(·, ·), the same kind of mathematical manipulations
performed in Section 12.4.1 lead to

a(uh, vh) =
∫

Ω

∇uh · ∇vh dxdy,

where we have used the following Green’s formula that generalizes the formula
of integration by parts

∫

Ω

−�u v dxdy =
∫

Ω

∇u · ∇v dxdy −
∫

∂Ω

∇u · n v dγ, (12.95)

for any u, v smooth enough and where n is the outward normal unit vector
on ∂Ω (see Exercise 15).

The error analysis for the two-dimensional finite element approximation of
(12.90) can still be performed through the combined use of Ceà’s lemma and
interpolation error estimates as in Section 12.4.5 and is summarized in the
following result, which is the two-dimensional counterpart of Property 12.1
(for its proof we refer, e.g., to [QV94], Theorem 6.2.1).

Property 12.2 Let u ∈ H1
0(Ω) be the exact weak solution of (12.90) and uh ∈

Vh be its finite element approximation using continuous piecewise polynomials
of degree k ≥ 1. Assume also that u ∈ Hs(Ω) for some s ≥ 2. Then the
following error estimate holds

‖u − uh‖H1
0(Ω) ≤

M

α0
Chl‖u‖Hl+1(Ω), (12.96)

where l = min(k, s−1). Under the same assumptions, one can also prove that

‖u − uh‖L2(Ω) ≤ Chl+1‖u‖Hl+1(Ω). (12.97)

We notice that, for any integer s ≥ 0, the Sobolev space Hs(Ω) introduced
above is defined as the space of functions with the first s partial derivatives
(in the distributional sense) belonging to L2(Ω). Moreover, H1

0(Ω) is the space
of functions of H1(Ω) such that u = 0 on ∂Ω. The precise mathematical mean-
ing of this latter statement has to be carefully addressed since, for instance,

12.7 Applications 583

a function belonging to H1
0(Ω) does not necessarily mean to be continuous

everywhere. For a comprehensive presentation and analysis of Sobolev spaces
we refer to [Ada75] and [LM68].

Following the same procedure as in Section 12.4.3, we can write the finite
element solution uh as

uh(x, y) =
N∑

j=1

ujϕj(x, y),

where {ϕj}N
j=1 is a basis for Vh. An example of such a basis in the case k = 1 is

provided by the so-called hat functions introduced in Section 8.6.2 (see Figure
8.7, right). The Galerkin finite element method leads to the solution of the
linear system Afeu = f , where (afe)ij = a(ϕj , ϕi).

Exactly as happens in the one-dimensional case, the matrix Afe is symmet-
ric positive definite and, in general, sparse, the sparsity pattern being strongly
dependent on the topology of Th and the numbering of its nodes. Moreover,
the spectral condition number of Afe is still O(h−2), which implies that solving
iteratively the linear system demands for the use of a suitable preconditioner
(see Section 4.3.2). If, instead, a direct solver is used, one should resort to a
suitable renumbering procedure, as explained in Section 3.9.

12.7 Applications

In this section we employ the finite element method for the numerical approx-
imation of two problems arising in fluid mechanics and in the simulation of
biological systems.

12.7.1 Lubrication of a Slider

Let us consider a rigid slider moving in the direction x along a physical support
from which it is separated by a thin layer of a viscous fluid (which is the
lubricant). Suppose that the slider, of length L, moves with a velocity U with
respect to the plane support which is supposed to have an infinite length.
The surface of the slider that is faced towards the support is described by the
function s (see Figure 12.13, left).

Denoting by µ the viscosity of the lubricant, the pressure p acting on the
slider can be modeled by the following Dirichlet problem

⎧
⎪⎨

⎪⎩

−
(

s3

6µ
p′
)′

= −(Us)′ x ∈ (0, L),

p(0) = 0, p(L) = 0.

Assume in the numerical computations that we are working with a conver-
gent-divergent slider of unit length, whose surface is s(x) = 1− 3/2x + 9/8x2

with µ = 1.

584 12 Two-Point Boundary Value Problems

L

s(x)

U

x

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Fig. 12.13. Left: geometrical parameters of the slider considered in Section 12.7.1;
right: pressure on a converging-diverging slider. The solid line denotes the solution
obtained using quadratic finite elements, while the symbols ◦ denotes the nodal
values of the solution obtained using linear finite elements

Table 12.2. Condition number of the stiffness matrix for linear and quadratic finite
elements

h K2(A1) p1 K2(A2) p2

0.10000 63.951 – 455.24
0.05000 348.21 2.444 2225.7 2.28
0.02500 1703.7 2.290 10173.3 2.19
0.01250 7744.6 2.184 44329.6 2.12
0.00625 33579 2.116 187195.2 2.07

Figure 12.13 (right) shows the solution obtained using linear and quadratic
finite elements with an uniform grid size h = 0.2. The linear system has been
solved by the nonpreconditioned conjugate gradient method. To reduce the
Euclidean norm of the residual below 10−10, 4 iterations are needed in the case
of linear finite elements while 9 are required for quadratic finite elements.

Table 12.2 reports a numerical study of the condition number K2(Afe) as a
function of h. In the case of linear finite elements we have denoted the matrix
by A1, while A2 is the corresponding matrix for quadratic elements. Here we
assume that the condition number approaches h−p as h tends to zero; the
numbers pi are the estimated values of p. As can be seen, in both cases the
condition number grows like h−2, however, for every fixed h, K2(A2) is much
bigger than K2(A1).

12.7.2 Vertical Distribution of Spore Concentration over Wide
Regions

In this section we are concerned with diffusion and transport processes of
spores in the air, such as the endspores of bacteria and the pollen of flowering

12.7 Applications 585

plants. In particular, we study the vertical concentration distribution of spores
and pollen grains over a wide area. These spores, in addition to settling under
the influence of gravity, diffuse passively in the atmosphere.

The basic model assumes the diffusivity ν and the settling velocity β to
be given constants, the averaging procedure incorporating various physical
processes such as small-scale convection and horizontal advection-diffusion
which can be neglected over a wide horizontal area. Denoting by x ≥ 0 the
vertical direction, the steady-state distribution u(x) of the spore concentration
is the solution of

{
−νu′′ + βu′ = 0 0 < x < H,

u(0) = u0, −νu′(H) + βu(H) = 0,
(12.98)

where H is a fixed height at which we assume a vanishing Neumann condition
for the advective-diffusive flux −νu′ +βu (see Section 12.4.1). Realistic values
of the coefficients are ν = 10 m2s−1 and β = −0.03 ms−1; as for u0, a
reference concentration of 1 pollen grain per m3 has been used in the numerical
experiments, while the height H has been set equal to 10 km. The global Péclet
number is therefore Pegl = 15.

The Galerkin finite element method with piecewise linear finite elements
has been used for the approximation of (12.98). Figure 12.14 (left) shows the
solution computed by running Program 94 on a uniform grid with stepsize h =
H/10. The solution obtained using the (non stabilized) Galerkin formulation
(G) is denoted by the solid line, while the dash-dotted and dashed lines refer to
the Scharfetter-Gummel (SG) and upwind (UP) stabilized methods. Spurious
oscillations can be noticed in the G solution while the one obtained using
UP is clearly overdiffused with respect to the SG solution that is nodally
exact. The local Péclet number is equal to 1.5 in this case. Taking h = H/100

0 2000 4000 6000 8000 10000
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 12.14. Vertical concentration of spores: G, SG and UP solutions with h = H/10
(left) and h = H/100 (right, where only the portion [0, 2000] is shown). The x-axis
represents the vertical coordinate

586 12 Two-Point Boundary Value Problems

yields for the pure Galerkin scheme a stable result as shown in Figure 12.14
(right) where the solutions furnished by G (solid line) and UP (dashed line)
are compared.

12.8 Exercises

1. Consider the boundary value problem (12.1)-(12.2) with f(x) = 1/x. Using
(12.3) prove that u(x) = −x log(x). This shows that u ∈ C2(0, 1) but u(0) is
not defined and u′, u′′ do not exist at x = 0 (⇒: if f ∈ C0(0, 1), but not
f ∈ C0([0, 1]), then u does not belong to C0([0, 1])).

2. Prove that the matrix Afd introduced in (12.8) is an M-matrix.
[Hint: check that Afdx ≥ 0 ⇒ x ≥ 0. To do this, for any α > 0 set Afd,α = Afd +
αIn−1. Then, compute w = Afd,αx and prove that min1≤i≤(n−1) wi ≥ 0. Finally,
since the matrix Afd,α is invertible, being symmetric and positive definite, and
since the entries of A−1

fd,α are continuous functions of α ≥ 0, one concludes that

A−1
fd,α is a nonnegative matrix as α → 0.]

3. Prove that (12.13) defines a norm for V 0
h .

4. Prove (12.15) by induction on m.
5. Prove the estimate (12.23).

[Hint: for each internal node xj , j = 1, . . . , n−1, integrate by parts (12.21) to get

τh(xj)

= −u′′(xj) −
1

h2

⎡

⎢
⎣

xj∫

xj−h

u′′(t)(xj − h − t)2 dt −

xj+h∫

xj

u′′(t)(xj + h − t)2 dt

⎤

⎥
⎦ .

Then, pass to the squares and sum τh(xj)
2 for j = 1, . . . , n− 1. On noting that

(a + b + c)2 ≤ 3(a2 + b2 + c2), for any real numbers a, b, c, and applying the
Cauchy-Schwarz inequality yields the desired result.]

6. Prove that Gk(xj) = hG(xj , xk), where G is Green’s function introduced in
(12.4) and Gk is its corresponding discrete counterpart solution of (12.4).
[Solution: we prove the result by verifying that LhG = hek. Indeed, for a fixed
xk the function G(xk, s) is a straight line on the intervals [0, xk] and [xk, 1] so
that LhG = 0 at every node xl with l = 0, . . . , k − 1 and l = k + 1, . . . , n + 1.
Finally, a direct computation shows that (LhG)(xk) = 1/h which concludes the
proof.]

7. Let g = 1 and prove that Thg(xj) = 1
2
xj(1 − xj).

[Solution: use the definition (12.25) with g(xk) = 1, k = 1, . . . , n − 1 and recall
that Gk(xj) = hG(xj , xk) from the exercise above. Then

Thg(xj) = h

[
j∑

k=1

xk(1 − xj) +

n−1∑

k=j+1

xj(1 − xk)

]

from which, after straightforward computations, one gets the desired result.]

12.8 Exercises 587

8. Prove Young’s inequality (12.40).
9. Show that ‖vh‖h ≤ ‖vh‖h,∞ ∀vh ∈ Vh.

10. Consider the two-point boundary value problem (12.29) with the following
boundary conditions

λ0u(0) + µ0u(0) = g0, λ1u(1) + µ1u(1) = g1,

where λj , µj and gj are given data (j = 0, 1). Using the mirror imaging tech-
nique described in Section 12.2.3 write the finite difference discretization of the
equations corresponding to the nodes x0 and xn.
[Solution:

node x0 :

(
α1/2

h2
+

γ0

2
+

α0λ0

µ0h

)

u0 − α1/2
u1

h2
=

α0g0

µ0h
+

f0

2
,

node xn :

(
αn−1/2

h2
+

γn

2
+

αnλ1

µ1h

)

un − αn−1/2
un−1

h2
=

αng1

µ1h
+

fn

2
.]

11. Discretize the fourth-order differential operator Lu(x) = −u(iv)(x) using cen-
tered finite differences.
[Solution: apply twice the second order centered finite difference operator Lh

defined in (12.9).]
12. Consider problem (12.41) with nonhomogeneous Neumann boundary condi-

tions αu′(0) = w0, αu′(1) = w1. Show that the solution satisfies problem
(12.43) where V = H1(0, 1) and the right-hand side is replaced by (f, v) +
w1v(1) − w0v(0). Derive the formulation in the case of mixed boundary condi-
tions αu′(0) = w0, u(1) = u1.

13. Using Property 1.19 prove that the matrices corresponding to the stabilized
finite element method (12.79) using the upwind and SG artificial viscosities
φUP and φSG (see Section 12.5.2) are M-matrices irrespective of h.
[Hint: let us denote respectively by AUP and ASG the two stiffness matrices
corrsponding to φUP and φSG. Take v(x) = 1 + x and set vi = 1 + xi, i =
0, . . . , n, being xi = ih, h = 1/n. Then, by a direct computation check that
(AUP v)i ≥ β > 0. As for the matrix ASG the same result can be proved by
noting that B(−t) = t + B(t) for any t ∈ R.]

14. Prove that the matrix Afd with entries given by (12.93) is symmetric positive
definite and it is also an M-matrix.
[Solution: to show that Afd is positive definite, proceed as in the corresponding
proof in Section 12.2, then proceed as in Exercise 2.]

15. Prove the Green’s formula (12.95).
[Solution: first, notice that for any u, v sufficiently smooth, div(v∇u) = v�u +
∇u · ∇v. Then, integrate this relation over Ω and use the divergence theorem
∫

Ω

div(v∇u) dxdy =

∫

∂Ω

∂u

∂n
v dγ.]

13

Parabolic and Hyperbolic Initial Boundary
Value Problems

The final chapter of this book is devoted to the approximation of time-
dependent partial differential equations. Parabolic and hyperbolic initial-
boundary value problems will be addressed and either finite differences and
finite elements will be considered for their discretization.

13.1 The Heat Equation

The problem we are considering is how to find a function u = u(x, t) for
x ∈ [0, 1] and t > 0 that satisfies the partial differential equation

∂u

∂t
+ Lu = f, 0 < x < 1, t > 0, (13.1)

subject to the boundary conditions

u(0, t) = u(1, t) = 0, t > 0, (13.2)

and the initial condition

u(x, 0) = u0(x) 0 ≤ x ≤ 1. (13.3)

The differential operator L is defined as

Lu = −ν
∂2u

∂x2
. (13.4)

Equation (13.1) is called the heat equation. In fact, u(x, t) describes the tem-
perature at the point x and time t of a metallic bar of unit length that occupies
the interval [0, 1], under the following conditions. Its thermal conductivity is
constant and equal to ν > 0, its extrema are kept at a constant temperature
of zero degrees, at time t = 0 its temperature at point x is described by u0(x),
and f(x, t) represents the heat production per unit length supplied at point x

590 13 Parabolic and Hyperbolic Initial Boundary Value Problems

at time t. Here we are supposing that the volumetric density ρ and the specific
heat per unit mass cp are both constant and unitary. Otherwise, the temporal
derivative ∂u/∂t should be multiplied by the product ρcp in (13.1).

A solution of problem (13.1)-(13.3) is provided by a Fourier series. For
instance, if ν = 1 and f ≡ 0, it is given by

u(x, t) =
∞∑

n=1

cne−(nπ)2t sin(nπx), (13.5)

where the coefficients cn are the Fourier sine coefficients of the initial datum
u0(x), i.e.

cn = 2

1∫

0

u0(x) sin(nπx) dx, n = 1, 2

If instead of (13.2) we consider the Neumann conditions

ux(0, t) = ux(1, t) = 0, t > 0, (13.6)

the corresponding solution (still in the case where ν = 1 and f = 0) would be

u(x, t) =
d0

2
+

∞∑

n=1

dne−(nπ)2t cos(nπx),

where the coefficients dn are the Fourier cosine coefficients of u0(x), i.e.

dn = 2

1∫

0

u0(x) cos(nπx) dx, n = 1, 2

These expressions show that the solution decays exponentially fast in time.
A more general result can be stated concerning the behavior in time of the
energy

E(t) =

1∫

0

u2(x, t) dx.

Indeed, if we multiply (13.1) by u and integrate with respect to x over the
interval [0, 1], we obtain

1∫

0

∂u

∂t
(x, t)u(x, t) dx − ν

1∫

0

∂2u

∂x2
(x, t)u(x, t) dx

=
1
2

1∫

0

∂u2

∂t
(x, t) dx + ν

1∫

0

(
∂u

∂x
(x, t)

)2

dx − ν

[
∂u

∂x
(x, t)u(x, t)

]x=1

x=0

=
1
2
E′(t) + ν

1∫

0

(
∂u

∂x
(x, t)

)2

dx,

13.2 Finite Difference Approximation of the Heat Equation 591

having used integration by parts, the boundary conditions (13.2) or (13.6),
and interchanged differentiation and integration.
Using the Cauchy-Schwarz inequality (8.33) yields

1∫

0

f(x, t)u(x, t) dx ≤
√

F (t)
√

E(t),

where F (t) =
∫ 1

0
f2(x, t) dx. Then

E′(t) + 2ν

1∫

0

(
∂u

∂x
(x, t)

)2

dx ≤ 2
√

F (t)
√

E(t).

Owing to the Poincaré inequality (12.16) with (a, b) = (0, 1) we obtain

E′(t) + 2
ν

(CP)2
E(t) ≤ 2

√
F (t)

√
E(t).

By Young’s inequality (12.40) we have

2
√

F (t)
√

E(t) ≤ γE(t) +
1
γ

F (t),

having set γ = ν/C2
P . Therefore, E′(t) + γE(t) ≤ 1

γ F (t), or, equivalently,
(eγtE(t))′ ≤ 1

γ eγtF (t). Then, integrating from 0 to t we get

E(t) ≤ e−γtE(0) +
1
γ

t∫

0

eγ(s−t)F (s)ds. (13.7)

In particular, when f ≡ 0, (13.7) shows that the energy E(t) decays exponen-
tially fast in time.

13.2 Finite Difference Approximation of the Heat
Equation

To solve the heat equation numerically we have to discretize both the x
and t variables. We can start by dealing with the x-variable, following the
same approach as in Section 12.2. We denote by ui(t) an approximation of
u(xi, t), i = 0, . . . , n, and approximate the Dirichlet problem (13.1)-(13.3) by
the scheme
.
ui (t) − ν

h2
(ui−1(t) − 2ui(t) + ui+1(t)) = fi(t), i = 1, . . . , n − 1,∀t > 0,

u0(t) = un(t) = 0, ∀t > 0,

ui(0) = u0(xi), i = 0, . . . , n,

592 13 Parabolic and Hyperbolic Initial Boundary Value Problems

where the upper dot indicates derivation with respect to time, and fi(t)
= f(xi, t). This is actually a semi-discretization of problem (13.1)-(13.3), and
is a system of ordinary differential equations of the following form

{
u̇(t) = −νAfdu(t) + f(t), ∀t > 0,

u(0) = u0,
(13.8)

where u(t) = [u1(t), . . . , un−1(t)]T is the vector of unknowns, f(t) = [f1(t),
. . . , fn−1(t)]T , u0 = [u0(x1), . . . , u0(xn−1)]T and Afd is the tridiagonal matrix
introduced in (12.8). Note that for the derivation of (13.8) we have assumed
that u0(x0) = u0(xn) = 0, which is coherent with the boundary condition
(13.2).

A popular scheme for the integration of (13.8) with respect to time is the
so-called θ−method. To construct the scheme, we denote by vk the value of
the variable v at time tk = k∆t, for ∆t > 0; then, the θ-method for the
time-integration of (13.8) is

⎧
⎪⎪⎨

⎪⎪⎩

uk+1 − uk

∆t
= −νAfd(θuk+1 + (1 − θ)uk) + θfk+1 + (1 − θ)fk,

k = 0, 1, . . .
u0 = u0,

(13.9)

or, equivalently,

(I + νθ∆tAfd)uk+1 = (I − ν(1 − θ)∆tAfd)uk + gk+1, (13.10)

where gk+1 = ∆t(θfk+1+(1−θ)fk) and I is the identity matrix of order n−1.
For suitable values of the parameter θ, from (13.10) we can recover some

familiar methods that have been introduced in Chapter 11. For example, if
θ = 0 the method (13.10) coincides with the forward Euler scheme and we
can get uk+1 explicitly; otherwise, a linear system (with constant matrix
I + νθ∆tAfd) needs be solved at each time-step.

Regarding stability, assume that f ≡ 0 (henceforth gk = 0 ∀k > 0), so
that from (13.5) the exact solution u(x, t) tends to zero for every x as t → ∞.
Then we would expect the discrete solution to have the same behaviour, in
which case we would call our scheme (13.10) asymptotically stable, this being
coherent with what we did in Chapter 11, Section 11.1 for ordinary differential
equations.

If θ = 0, from (13.10) it follows that

uk = (I − ν∆tAfd)ku0, k = 1, 2,

From the analysis of convergent matrices (see Section 1.11.2) we deduce that
uk → 0 as k → ∞ iff

ρ(I − ν∆tAfd) < 1. (13.11)

13.3 Finite Element Approximation of the Heat Equation 593

On the other hand, the eigenvalues of Afd are given by (see Exercise 3)

µi =
4
h2

sin2(iπh/2), i = 1, . . . , n − 1.

Then (13.11) is satisfied iff

∆t <
1
2ν

h2.

As expected, the forward Euler method is conditionally stable, and the time-
step ∆t should decay as the square of the grid spacing h.

In the case of the backward Euler method (θ = 1), we would have from
(13.10)

uk =
[
(I + ν∆tAfd)−1

]k
u0, k = 1, 2,

Since all the eigenvalues of the matrix (I + ν∆tAfd)−1 are real, positive and
strictly less than 1 for every value of ∆t, this scheme is unconditionally stable.
More generally, the θ-scheme is unconditionally stable for all the values 1/2
≤ θ ≤ 1, and conditionally stable if 0 ≤ θ < 1/2 (see Section 13.3.1).

As far as the accuracy of the θ-method is concerned, its local truncation
error is of the order of ∆t + h2 if θ �= 1

2 , while it is of the order of ∆t2 + h2

if θ = 1
2 . The method corresponding to θ = 1/2 is frequently called the

Crank-Nicolson scheme and is therefore unconditionally stable and second-
order accurate with respect to both ∆t and h.

13.3 Finite Element Approximation of the Heat
Equation

The space discretization of (13.1)-(13.3) can also be accomplished using the
Galerkin finite element method by proceeding as in Chapter 12 in the elliptic
case. First, for all t > 0 we multiply (13.1) by a test function v = v(x) and
integrate over (0, 1). Then, we let V = H1

0(0, 1) and ∀t > 0 we look for a
function t → u(x, t) ∈ V (briefly, u(t) ∈ V) such that

1∫

0

∂u(t)
∂t

vdx + a(u(t), v) = F (v) ∀v ∈ V, (13.12)

with u(0) = u0. Here, a(u(t), v) =
∫ 1

0
ν(∂u(t)/∂x) (∂v/∂x) dx and F (v) =

∫ 1

0
f(t)vdx are the bilinear form and the linear functional respectively, associ-

ated with the elliptic operator L and the right-hand side f . Notice that a(·, ·)
is a special case of (12.44) and that the dependence of u and f on the space
variable x will be understood henceforth.

594 13 Parabolic and Hyperbolic Initial Boundary Value Problems

Let Vh be a suitable finite dimensional subspace of V . We consider the
following Galerkin formulation: ∀t > 0, find uh(t) ∈ Vh such that

1∫

0

∂uh(t)
∂t

vhdx + a(uh(t), vh) = F (vh) ∀vh ∈ Vh, (13.13)

where uh(0) = u0h and u0h ∈ Vh is a convenient approximation of u0. Problem
(13.13) is referred to as a semi-discretization of (13.12) since it is only a space
discretization of the heat equation.

Proceeding in a similar manner to that used to obtain the energy estimate
(13.7), we get the following a priori estimate for the discrete solution uh(t) of
(13.13)

Eh(t) ≤ e−γtEh(0) +
1
γ

t∫

0

eγ(s−t)F (s)ds,

where Eh(t) =
∫ 1

0
u2

h(x, t) dx.
As for the finite element discretization of (13.13), we introduce the finite

element space Vh defined in (12.57) and consequently a basis {ϕj} for Vh as
already done in Section 12.4.5. Then, the solution uh of (13.13) can be sought
under the form

uh(t) =
Nh∑

j=1

uj(t)ϕj ,

where {uj(t)} are the unknown coefficients and Nh is the dimension of Vh.
Then, from (13.13) we obtain

1∫

0

Nh∑

j=1

.
uj (t)ϕjϕidx + a

⎛

⎝
Nh∑

j=1

uj(t)ϕj , ϕi

⎞

⎠ = F (ϕi), i = 1, . . . , Nh

that is,

Nh∑

j=1

.
uj (t)

1∫

0

ϕjϕidx +
Nh∑

j=1

uj(t)a(ϕj , ϕi) = F (ϕi), i = 1, . . . , Nh.

Using the same notation as in (13.8) we obtain

M
.
u(t) + Afeu(t) = ffe(t), (13.14)

where Afe = (a(ϕj , ϕi)), ffe(t) = (F (ϕi)) and M = (mij) = (
∫ 1

0
ϕjϕidx) for

i, j = 1, . . . , Nh. M is called the mass matrix. Since it is nonsingular, the
system of ODEs (13.14) can be written in normal form as

.
u(t) = −M−1Afeu(t) + M−1ffe(t). (13.15)

13.3 Finite Element Approximation of the Heat Equation 595

To solve (13.15) approximately we can still apply the θ-method and obtain

M
uk+1 − uk

∆t
+ Afe

[
θuk+1 + (1 − θ)uk

]
= θfk+1

fe + (1 − θ)fk
fe. (13.16)

As usual, the upper index k means that the quantity at hand is computed at
time tk. As in the finite difference case, for θ = 0, 1 and 1/2 we respectively
obtain the forward Euler, backward Euler and Crank-Nicolson methods, where
the Crank-Nicolson method is the only one which is second-order accurate
with respect to ∆t.
For each k, (13.16) is a linear system whose matrix is

K =
1

∆t
M + θAfe.

Since M and Afe are symmetric and positive definite, the matrix K is also
symmetric and positive definite. Thus, its Cholesky decomposition K = HT H
where H is upper triangular (see Section 3.4.2) can be carried out at t = 0.
Consequently, at each time step the following two linear triangular systems,
each of size equal to Nh, must be solved, with a computational cost of
N2

h/2 flops
⎧
⎨

⎩

HT y =
[

1
∆t

M − (1 − θ)Afe

]

uk + θfk+1
fe + (1 − θ)fk

fe,

Huk+1 = y.

When θ = 0, a suitable diagonalization of M would allow to decouple the
system equations (13.16). The procedure is carried out by the so-called mass-
lumping in which we approximate M by a nonsingular diagonal matrix M̃.
In the case of piecewise linear finite elements M̃ can be obtained using the
composite trapezoidal formula over the nodes {xi} to evaluate the integrals
∫ 1

0
ϕjϕi dx, obtaining m̃ij = hδij , i, j = 1, . . . , Nh (see Exercise 2).

13.3.1 Stability Analysis of the θ-Method

Applying the θ-method to the Galerkin problem (13.13) yields
(

uk+1
h − uk

h

∆t
, vh

)

+ a
(
θuk+1

h + (1 − θ)uk
h, vh

)

= θF k+1(vh) + (1 − θ)F k(vh) ∀vh ∈ Vh

(13.17)

for k ≥ 0 and with u0
h = u0h, F k(vh) =

∫ 1

0
f(tk)vh(x)dx. Since we are inter-

ested in the stability analysis, we can consider the special case where F = 0;
moreover, for the time being, we focus on the case θ = 1 (implicit Euler
scheme), i.e.

596 13 Parabolic and Hyperbolic Initial Boundary Value Problems

(
uk+1

h − uk
h

∆t
, vh

)

+ a
(
uk+1

h , vh

)
= 0 ∀vh ∈ Vh.

Letting vh = uk+1
h , we get
(

uk+1
h − uk

h

∆t
, uk+1

h

)

+ a(uk+1
h , uk+1

h) = 0.

From the definition of a(·, ·), it follows that

a
(
uk+1

h , uk+1
h

)
= ν

∥
∥
∥
∥
∥

∂uk+1
h

∂x

∥
∥
∥
∥
∥

2

L2(0,1)

. (13.18)

Moreover, we remark that (see Exercise 3 for the proof of this result)

‖uk+1
h ‖2

L2(0,1) + 2ν∆t

∥
∥
∥
∥
∥

∂uk+1
h

∂x

∥
∥
∥
∥
∥

2

L2(0,1)

≤ ‖uk
h‖2

L2(0,1). (13.19)

It follows that, ∀n ≥ 1

n−1∑

k=0

‖uk+1
h ‖2

L2(0,1) + 2ν∆t

n−1∑

k=0

∥
∥
∥
∥
∥

∂uk+1
h

∂x

∥
∥
∥
∥
∥

2

L2(0,1)

≤
n−1∑

k=0

‖uk
h‖2

L2(0,1).

Since these are telescopic sums, we get

‖un
h‖2

L2(0,1) + 2ν∆t

n−1∑

k=0

∥
∥
∥
∥
∥

∂uk+1
h

∂x

∥
∥
∥
∥
∥

2

L2(0,1)

≤ ‖u0h‖2
L2(0,1), (13.20)

which shows that the scheme is unconditionally stable. Proceeding similarly
if f �= 0, it can be shown that

‖un
h‖2

L2(0,1) + 2ν∆t
n−1∑

k=0

∥
∥
∥
∥
∥

∂uk+1
h

∂x

∥
∥
∥
∥
∥

2

L2(0,1)

≤ C(n)

(

‖u0h‖2
L2(0,1) +

n∑

k=1

∆t‖fk‖2
L2(0,1)

)

,

(13.21)

where C(n) is a constant independent of both h and ∆t.

Remark 13.1 The same kind of stability inequalities (13.20) and (13.21)
can be obtained if a(·, ·) is a more general bilinear form provided that it is
continuous and coercive (see Exercise 4). �

13.3 Finite Element Approximation of the Heat Equation 597

To carry out the stability analysis of the θ-method for every θ ∈ [0, 1] we need
defining the eigenvalues and eigenvectors of a bilinear form.

Definition 13.1 We say that λ is an eigenvalue and w ∈ V is the associated
eigenvector for the bilinear form a(·, ·) : V × V → R if

a(w, v) = λ(w, v) ∀v ∈ V,

where (·, ·) denotes the usual scalar product in L2(0, 1). �

If the bilinear form a(·, ·) is symmetric and coercive, it has infinitely many real
positive eigenvalues that form an unbounded sequence; moreover, its eigen-
vectors (called also eigenfunctions) form a basis for the space V .

At a discrete level the corresponding pair λh ∈ R, wh ∈ Vh satisfies

a(wh, vh) = λh(wh, vh) ∀vh ∈ Vh. (13.22)

From the algebraic standpoint, problem (13.22) can be formulated as

Afew = λhMw

(where w is the vector of the gridvalues of wh) and can be regarded as a gen-
eralized eigenvalue problem (see Section 5.9). All the eigenvalues λ1

h, . . . , λNh

h

are positive. The corresponding eigenvectors w1
h, . . . , wNh

h form a basis for the
subspace Vh and can be chosen in such a way as to be orthonormal, i.e., such
that (wi

h, wj
h) = δij , ∀i, j = 1, . . . , Nh. In particular, any function vh ∈ Vh can

be represented as

vh(x) =
Nh∑

j=1

vjw
j
h(x).

Let us now assume that θ ∈ [0, 1] and focus on the case where the bilinear
form a(·, ·) is symmetric. Although the final stability result still holds in the
nonsymmetric case, the proof that follows cannot apply since in that case the
eigenvectors would no longer form a basis for Vh. Let

{
wi

h

}
be the eigenvectors

of a(·, ·) whose span forms an orthonormal basis for Vh. Since at each time
step uk

h ∈ Vh, we can express uk
h as

uk
h(x) =

Nh∑

j=1

uk
j wj

h(x).

Letting F = 0 in (13.17) and taking vh = wi
h, we find

1
∆t

Nh∑

j=1

[
uk+1

j − uk
j

] (
wj

h, wi
h

)

+
Nh∑

j=1

[
θuk+1

j + (1 − θ)uk
j

]
a(wj

h, wi
h) = 0, i = 1, . . . , Nh.

598 13 Parabolic and Hyperbolic Initial Boundary Value Problems

Since wj
h are eigenfunctions of a(·, ·) we obtain

a(wj
h, wi

h) = λj
h(wj

h, wi
h) = λj

hδij = λi
h,

so that
uk+1

i − uk
i

∆t
+
[
θuk+1

i + (1 − θ)uk
i

]
λi

h = 0.

Solving this equation with respect to uk+1
i gives

uk+1
i = uk

i

[
1 − (1 − θ)λi

h∆t
]

[
1 + θλi

h∆t
] .

In order for the method to be unconditionally stable we must have (see Chap-
ter 11) ∣

∣
∣
∣
1 − (1 − θ)λi

h∆t

1 + θλi
h∆t

∣
∣
∣
∣ < 1,

that is
2θ − 1 > − 2

λi
h∆t

.

If θ ≥ 1/2, this inequality is satisfied for any value of ∆t. Conversely, if θ < 1/2
we must have

∆t <
2

(1 − 2θ)λi
h

.

Since this relation must hold for all the eigenvalues λi
h of the bilinear form, it

suffices requiring that it is satisfied for the largest of them, which we assume
to be λNh

h .
We therefore conclude that if θ ≥ 1/2 the θ-method is unconditionally

stable (i.e., it is stable ∀∆t), whereas if 0 ≤ θ < 1/2 the θ-method is stable
only if

∆t ≤ 2
(1 − 2θ)λNh

h

.

It can be shown that there exist two positive constants c1 and c2, independent
of h, such that

c1h
−2 ≤ λNh

h = c2h
−2

(see for the proof, [QV94], Section 6.3.2). Accounting for this, we obtain that
if 0 ≤ θ < 1/2 the method is stable only if

∆t ≤ C1(θ)h2, (13.23)

for a suitable constant C1(θ) independent of both h and ∆t.
With an analogous proof, it can be shown that if a pseudo-spectral Galerkin
approximation is used for problem (13.12), the θ−method is unconditionally
stable if θ ≥ 1

2 , while for 0 ≤ θ < 1
2 stability holds only if

∆t ≤ C2(θ)N−4, (13.24)

13.3 Finite Element Approximation of the Heat Equation 599

for a suitable constant C2(θ) independent of both N and ∆t. The difference
between (13.23) and (13.24) is due to the fact that the largest eigenvalue of
the spectral stiffness matrix grows like O(N4) with respect to the degree of
the approximating polynomial.

Comparing the solution of the globally discretized problem (13.17) with
that of the semi-discrete problem (13.13), by a suitable use of the stability
result (13.21) and of the truncation time discretization error, the following
convergence result can be proved

‖u(tk) − uk
h‖L2(0,1) ≤ C(u0, f, u)(∆tp(θ) + hr+1), ∀k ≥ 1,

where r denotes the piecewise polynomial degree of the finite element space
Vh, p(θ) = 1 if θ �= 1/2 while p(1/2) = 2 and C is a constant that depends on
its arguments (assuming that they are sufficiently smooth) but not on h and
∆t. In particular, if f ≡ 0 on can obtain the following improved estimates

‖u(tk) − uk
h‖L2(0,1) ≤ C

[(
h√
tk

)r+1

+
(

∆t

tk

)p(θ)
]

‖u0‖L2(0,1),

for k ≥ 1, θ = 1 or θ = 1/2. (For the proof of these results, see [QV94], pp.
394-395).
Program 100 provides an implementation of the θ-method for the solution of
the heat equation on the space-time domain (a, b)×(t0, T). The discretization
in space is based on piecewise-linear finite elements. The input parameters
are: the column vector I containing the endpoints of the space interval (a =
I(1), b = I(2)) and of the time interval (t0 = I(3), T = I(4)); the column
vector n containing the number of steps in space and time; the macros u0 and
f containing the functions u0h and f , the constant viscosity nu, the Dirichlet
boundary conditions bc(1) and bc(2), and the value of the parameter theta.

Program 100 - thetameth : θ-method for the heat equation

function [u,x] = thetameth(I,n,u0,f,bc,nu,theta)
%THETAMETH Theta-method.
% [U,X]=THETAMETH(I,N,U0,F,BC,NU,THETA) solves the heat equation
% with the THETA-method.
nx=n(1); h=(I(2)-I(1))/nx; x=[I(1):h:I(2)];
t=I(3);
uold=(eval(u0))’;
nt=n(2); k=(I(4)-I(3))/nt;
e=ones(nx+1,1);
K=spdiags([(h/(6*k)-nu*theta/h)*e, (2*h/(3*k)+2*nu*theta/h)*e, ...

(h/(6*k)-nu*theta/h)*e],-1:1,nx+1,nx+1);
B=spdiags([(h/(6*k)+nu*(1-theta)/h)*e, (2*h/(3*k)-nu*2*(1-theta)/h)*e, ...

(h/(6*k)+nu*(1-theta)/h)*e],-1:1,nx+1,nx+1);
K(1,1)=1; K(1,2)=0; B(1,1)= 0; B(1,2)=0;
K(nx+1,nx+1)=1; K(nx+1,nx)=0; B(nx+1,nx+1)=0; B(nx+1,nx)=0;

600 13 Parabolic and Hyperbolic Initial Boundary Value Problems

[L,U]=lu(K);
t=I(3);
x=[I(1)+h:h:I(2)-h];
fold=(eval(f))’;
fold=h*fold;
fold=[bc(1); fold; bc(2)];
for time=I(3)+k:k:I(4)

t=time;
fnew=(eval(f))’;
fnew=h*fnew;
fnew=[bc(1); fnew; bc(2)];
b=theta*fnew+(1-theta)*fold+B*uold;
y=L\b;
u=U\y;
uold=u;

end
x=[I(1):h:I(2)];
return

Example 13.1 Let us assess the time-accuracy of the θ-method in the solution of
the heat equation (13.1) on the space-time domain (0, 1)×(0, 1), where f is chosen in
such a way that the exact solution is u = sin(2πx) cos(2πt). A fixed spatial grid size
h = 1/500 has been used while the time step ∆t is equal to (10k)−1, k = 1, . . . , 4.
Finally, piecewise finite elements are used for the space discretization. Figure 13.1
shows the convergence behavior in the L2(0, 1) norm (evaluated at time t = 1), as
∆t tends to zero, of the backward Euler method (BE) (θ = 1, solid line) and of the
Crank-Nicolson scheme (CN) (θ = 1/2, dashed line). As expected, the CN method
is far more accurate than the BE method. •

101 102
107

106

105

104

103

102

101

Fig. 13.1. Convergence analysis of the θ-method as a function of the number 1/∆t
of time steps (represented on the x-axis): θ = 1 (solid line) and θ = 0.5 (dashed line)

13.4 Space-Time Finite Element Methods for the HeatEquation 601

13.4 Space-Time Finite Element Methods for the Heat
Equation

An alternative approach for time discretization is based on the use of a
Galerkin method to discretize both space and time variables.

Suppose to solve the heat equation for x ∈ [0, 1] and t ∈ [0, T]. Let us
denote by Ik = [tk−1, tk] the k-th time interval for k = 1, . . . , n with ∆tk

= tk − tk−1; moreover, we let ∆t = maxk ∆tk; the rectangle Sk = [0, 1] × Ik

is the so called space-time slab. At each time level tk, we consider a partition
Thk

of (0, 1) into mk subintervals Kk
j = [xk

j , xk
j+1], j = 0, . . . ,mk − 1. We let

hk
j = xk

j+1 − xk
j and denote by hk = maxj hk

j and by h = maxk hk.
Let us now associate with Sk a space-time partition Sk = ∪mk

j=1R
k
j where

Rk
j = Kk

j × Ik and Kk
j ∈ Thk

. The space-time slab Sk is thus decomposed into
rectangles Rk

j (see Figure 13.2).
For each time slab Sk we introduce the space-time finite element space

Qq(Sk) =
{

v ∈ C0(Sk), v|Rk
j
∈ P1(Kk

j) × Pq(Ik), j = 0, . . . ,mk − 1
}

where, usually, q = 0 or q = 1. Then, the space-time finite element space over
[0, 1] × [0, T] is defined as follows

Vh,∆t =
{
v : [0, 1] × [0, T] → R : v|Sk

∈ Yh,k, k = 1, . . . , n
}

,

where

Yh,k = {v ∈ Qq(Sk) : v(0, t) = v(1, t) = 0 ∀t ∈ Ik} .

The number of degrees of freedom of Vh,∆t is equal to (q + 1)(mk − 1). The
functions in Vh,∆t are linear and continuous in space while they are piecewise

tk−1
Rj

k Sk

t

0 1 x

tk

Fig. 13.2. Space-time finite element discretization

602 13 Parabolic and Hyperbolic Initial Boundary Value Problems

polynomials of degree q in time. These functions are in general discontinuous
across the time levels tk and the partitions T k

h do not match at the interface
between contiguous time levels (see Figure 13.2). For this reason, we adopt
henceforth the following notation

vk
± = lim

τ→0
v(tk ± τ), [vk] = vk

+ − vk
−.

The discretization of problem (13.12) using continuous finite elements in space
of degree 1 and discontinuous finite elements of degree q in time (abbreviated
by cG(1)dG(q) method) is: find U ∈ Vh,∆t such that

n∑

k=1

∫

Ik

[(
∂U

∂t
, V

)

+ a(U, V)
]

dt +
n−1∑

k=1

([Uk], V k
+)

+(U0
+, V 0

+) =

T∫

0

(f, V) dt, ∀V ∈
0

V h,∆t,

where
0

V h,∆t = {v ∈ Vh,∆t : v(0, t) = v(1, t) = 0 ∀t ∈ [0, T]} ,

U0
− = u0h, Uk = U(x, tk) and (u, v) =

∫ 1

0
uv dx denotes the scalar product of

L2(0, 1). The continuity of U at each point tk is therefore imposed only in a
weak sense.

To construct the algebraic equations for the unknown U we need expanding
it over a basis in time and in space. The single space-time basis function
ϕk

jl(x, t) can be written as ϕk
jl(x, t) = ϕk

j (x)ψl(t), j = 1, . . . ,mk − 1, l =
0, . . . , q, where ϕk

j is the usual piecewise linear basis function and ψl is the
l-th basis function of Pq(Ik).

When q = 0 the solution U is piecewise constant in time. In that case

Uk(x, t) =
Nk

h∑

j=1

Uk
j ϕk

j (x), x ∈ [0, 1], t ∈ Ik,

where Uk
j = Uk(xj , t) ∀t ∈ Ik. Let

Ak = (aij) = (a(ϕk
j , ϕk

i)), Mk = (mij) = ((ϕk
j , ϕk

i)),

fk = (fi) =

⎛

⎝
∫

Sk

f(x, t)ϕk
i (x)dx dt

⎞

⎠ , Bk,k−1 = (bij) = ((ϕk
j , ϕk−1

i)),

denote the stiffness matrix, the mass matrix, the data vector and the projec-
tion matrix between V k−1

h and V k
h , respectively, at the time level tk.

Then, letting Uk = (Uk
j), at each k-th time level the cG(1)dG(0) method

requires solving the following linear system

13.4 Space-Time Finite Element Methods for the HeatEquation 603

(
Mk + ∆tkAk

)
Uk = Bk,k−1Uk−1 + fk,

which is nothing else than the Euler backward discretization scheme with a
modified right-hand side.

When q = 1, the solution is piecewise linear in time. For ease of notation
we let Uk(x) = U−(x, tk) and Uk−1(x) = U+(x, tk−1). Moreover, we assume
that the spatial partition Thk

does not change with the time level and we let
mk = m for every k = 0, . . . , n. Then, we can write

U|Sk
= Uk−1(x)

tk − t

∆tk
+ Uk(x)

t − tk−1

∆tk
.

Thus the cG(1)dG(1) method leads to the solution of the following 2×2 block-
system in the unknowns Uk = (Uk

i) and Uk−1 = (Uk−1
i), i = 1, . . . ,m − 1,

⎧
⎪⎪⎨

⎪⎪⎩

(

−1
2
Mk +

∆tk

3
Ak

)

Uk−1 +
(

1
2
Mk +

∆tk

6
Ak

)

Uk = fk−1 + Bk,k−1Uk−1
− ,

(
1
2
Mk +

∆tk

6
Ak

)

Uk−1 +
(

1
2
Mk +

∆tk

3
Ak

)

Uk = fk,

where

fk−1 =
∫

Sk

f(x, t)ϕk
i (x)ψk

1 (t)dx dt, fk =
∫

Sk

f(x, t)ϕk
i (x)ψk

2 (t)dx dt

and ψk
1 (t) = (tk − t)/∆tk, ψk

2 (t)(t − tk−1)/∆tk are the two basis functions of
P1(Ik).

Assuming that Vh,k−1 �⊂ Vh,k, it is possible to prove that (see for the proof
[EEHJ96])

‖u(tn) − Un‖L2(0,1) ≤ C(u0h, f, u, n)(∆t2 + h2), (13.25)

where C is a constant that depends on its arguments (assuming that they are
sufficiently smooth) but not on h and ∆t.

An advantage in using space-time finite elements is the possibility to per-
form a space-time grid adaptivity on each time-slab based on a posteriori error
estimates (the interested reader is referred to [EEHJ96] where the analysis of
this method is carried out in detail).
Program 101 provides an implementation of the dG(1)cG(1) method for the
solution of the heat equation on the space-time domain (a, b) × (t0, T). The
input parameters are the same as in Program 100.

Program 101 - pardg1cg1 : dG(1)cG(1) method for the heat equation

function [u,x]=pardg1cg1(I,n,u0,f,nu,bc)
%PARDG1CG1 dG(1)cG(1) scheme for the heat equation.
nx=n(1); h=(I(2)-I(1))/nx; x=[I(1):h:I(2)];

604 13 Parabolic and Hyperbolic Initial Boundary Value Problems

t=I(3); um=(eval(u0))’;
nt=n(2); k=(I(4)-I(3))/nt;
e=ones(nx+1,1);
Add=spdiags([(h/12-k*nu/(3*h))*e, (h/3+2*k*nu/(3*h))*e, ...

(h/12-k*nu/(3*h))*e],-1:1,nx+1,nx+1);
Aud=spdiags([(h/12-k*nu/(6*h))*e, (h/3+k*nu/(3*h))*e, ...

(h/12-k*nu/(6*h))*e],-1:1,nx+1,nx+1);
Ald=spdiags([(-h/12-k*nu/(6*h))*e, (-h/3+k*nu/(3*h))*e, ...

(-h/12-k*nu/(6*h))*e],-1:1,nx+1,nx+1);
B=spdiags([h*e/6, 2*h*e/3, h*e/6],-1:1,nx+1,nx+1);
Add(1,1)=1; Add(1,2)=0; B(1,1)=0; B(1,2)=0;
Aud(1,1)=0; Aud(1,2)=0; Ald(1,1)=0; Ald(1,2)=0;
Add(nx+1,nx+1)=1; Add(nx+1,nx)=0;
B(nx+1,nx+1)=0; B(nx+1,nx)=0;
Ald(nx+1,nx+1)=0; Ald(nx+1,nx)=0;
Aud(nx+1,nx+1)=0; Aud(nx+1,nx)=0;
[L,U]=lu([Add Aud; Ald Add]);
x=[I(1)+h:h:I(2)-h]; xx=[I(1),x,I(2)];
for time=I(3)+k:k:I(4)

t=time; fq1=0.5*k*h*eval(f);
t=time-k; fq0=0.5*k*h*eval(f);
rhs0=[bc(1), fq0, bc(2)];
rhs1=[bc(1), fq1, bc(2)];
b=[rhs0’; rhs1’] + [B*um; zeros(nx+1,1)];
y=L\b;
u=U\y;
um=u(nx+2:2*nx+2,1);

end
x=[I(1):h:I(2)]; u=um;
return

Example 13.2 We assess the accuracy of the dG(1)cG(1) method on the same
test problem considered in Example 13.1. In order to neatly identify both spatial
and temporal contributions in the error estimate (13.25) we have performed the
numerical computations using Program 101 by varying either the time step or the
space discretization step only, having chosen in each case the discretization step in
the other variable sufficiently small that the corresponding error can be neglected.
The convergence behavior in Figure 13.3 shows perfect agreement with the theoret-
ical results (second-order accuracy in both space and time). •

13.5 Hyperbolic Equations: A Scalar Transport Problem

Let us consider the following scalar hyperbolic problem
⎧
⎨

⎩

∂u

∂t
+ a

∂u

∂x
= 0, x ∈ R, t > 0,

u(x, 0) = u0(x), x ∈ R,

(13.26)

13.5 Hyperbolic Equations: A Scalar Transport Problem 605

101 102 103
10−5

10−4

10−3

10−2

10−1

Fig. 13.3. Convergence analysis for the dG(1)cG(1) method. The solid line is the
time discretization error while the dashed line is the space discretization error. In
the first case the x-axis denotes the number of time steps while in second case it
represents the number of space subintervals

where a is a positive real number. Its solution is given by

u(x, t) = u0(x − at), t ≥ 0,

and represents a travelling wave with velocity a. The curves (x(t), t) in the
plane (x, t), that satisfy the following scalar ordinary differential equation

⎧
⎨

⎩

dx(t)
dt

= a, t > 0,

x(0) = x0,

(13.27)

are called characteristic curves. They are the straight lines x(t) = x0 + at,
t > 0. The solution of (13.26) remains constant along them since

du

dt
=

∂u

∂t
+

∂u

∂x

dx

dt
= 0 on (x(t), t).

For the more general problem
⎧
⎨

⎩

∂u

∂t
+ a

∂u

∂x
+ a0u = f, x ∈ R, t > 0,

u(x, 0) = u0(x), x ∈ R,

(13.28)

where a, a0 and f are given functions of the variables (x, t), the characteristic
curves are still defined as in (13.27). In this case, the solutions of (13.28)
satisfy along the characteristics the following differential equation

du

dt
= f − a0u on (x(t), t).

606 13 Parabolic and Hyperbolic Initial Boundary Value Problems

xba

t

P
0

P

Q

t

10 x

t=1

Fig. 13.4. Left: examples of characteristics which are straight lines issuing from the
points P and Q. Right: characteristic straight lines for the Burgers equation

Let us now consider problem (13.26) on a bounded interval. For example,
assume that x ∈ [α, β] and a > 0. Since u is constant along the characteristics,
from Figure 13.4 (left) we deduce that the value of the solution at P attains
the value of u0 at P0, the foot of the characteristic issuing from P . On the other
hand, the characteristic issuing from Q intersects the straight line x(t) = α
at a certain time t = t̄ > 0. Thus, the point x = α is an inflow point and it is
necessary to assign a boundary value for u at x = α for every t > 0. Notice
that if a < 0 then the inflow point is x = β.

Referring to problem (13.26) it is worth noting that if u0 is discontinuous
at a point x0, then such a discontinuity propagates along the characteristics
issuing from x0. This process can be rigorously formalized by introducing the
concept of weak solutions of hyperbolic problems, see e.g. [GR96]. Another
reason for introducing weak solutions is that in the case of nonlinear hyperbolic
problems the characteristic lines can intersect: in this case the solution cannot
be continuous and no classical solution does exist.

Example 13.3 (Burgers equation) Let us consider the Burgers equation

∂u

∂t
+ u

∂u

∂x
= 0, x ∈ R, (13.29)

which is perhaps the simplest nontrivial example of a nonlinear hyperbolic equation.
Taking as initial condition

u(x, 0) = u0(x) =

{
1, x ≤ 0,
1 − x, 0 ≤ x ≤ 1,
0, x ≥ 1,

the characteristic line issuing from the point (x0, 0) is given by

x(t) = x0 + tu0(x0) =

{
x0 + t, x0 ≤ 0,
x0 + t(1 − x0), 0 ≤ x0 ≤ 1,
x0, x0 ≥ 1.

Notice that the characteristic lines do not intersect only if t < 1 (see Figure
13.4, right). •

13.6 Systems of Linear Hyperbolic Equations 607

13.6 Systems of Linear Hyperbolic Equations

Consider the linear hyperbolic systems of the form

∂u
∂t

+ A
∂u
∂x

= 0, x ∈ R, t > 0, (13.30)

where u : R×[0,∞) → R
p and A ∈ R

p×p is a matrix with constant coefficients.
This system is said hyperbolic if A is diagonalizable and has real eigenval-

ues, that is, if there exists a nonsingular matrix T ∈ R
p×p such that

A = TΛT−1,

where Λ = diag(λ1, ..., λp) is the diagonal matrix of the real eigenvalues of A,
while T = [ω1,ω2, . . . ,ωp] is the matrix whose column vectors are the right
eigenvectors of A (see Section 1.7). The system is said to be strictly hyperbolic
if it is hyperbolic with distinct eigenvalues. Thus

Aωk = λkωk, k = 1, . . . , p.

Introducing the characteristic variables w = T−1u, system (13.30) becomes

∂w
∂t

+ Λ
∂w
∂x

= 0.

This is a system of p independent scalar equations of the form

∂wk

∂t
+ λk

∂wk

∂x
= 0, k = 1, . . . , p.

Proceeding as in Section 13.5 we obtain wk(x, t) = wk(x − λkt, 0), and thus
the solution u = Tw of problem (13.30) can be written as

u(x, t) =
p∑

k=1

wk(x − λkt, 0)ωk.

The curve (xk(t), t) in the plane (x, t) that satisfies x′
k(t) = λk is the k-th

characteristic curve and wk is constant along it. A strictly hyperbolic system
enjoys the property that p distinct characteristic curves pass through any
point of the plane (x, t), for any fixed x and t. Then u(x, t) depends only on
the initial datum at the points x − λkt. For this reason, the set of p points
that form the feet of the characteristics issuing from the point (x, t)

D(t, x) =
{
x ∈ R : x = x − λkt , k = 1, ..., p

}
, (13.31)

is called the domain of dependence of the solution u(x, t).
If (13.30) is set on a bounded interval (α, β) instead of on the whole real

line, the inflow point for each characteristic variable wk is determined by
the sign of λk. Correspondingly, the number of positive eigenvalues determines
the number of boundary conditions that can be assigned at x = α, whereas
at x = β it is admissible to assign a number of conditions which equals the
number of negative eigenvalues. An example is discussed in Section 13.6.1.

608 13 Parabolic and Hyperbolic Initial Boundary Value Problems

Remark 13.2 (The nonlinear case) Let us consider the following nonlin-
ear system of first-order equations

∂u
∂t

+
∂

∂x
g(u) = 0, (13.32)

where g = [g1, . . . , gp]T is called the flux function. The system is hyperbolic if
the jacobian matrix A(u) whose elements are aij = ∂gi(u)/∂uj , i, j = 1, . . . , p,
is diagonalizable and has p real eigenvalues. �

13.6.1 The Wave Equation

Consider the second-order hyperbolic equation

∂2u

∂t2
− γ2 ∂2u

∂x2
= f x ∈ (α, β), t > 0, (13.33)

with initial data

u(x, 0) = u0(x) and
∂u

∂t
(x, 0) = v0(x), x ∈ (α, β),

and boundary data

u(α, t) = 0 and u(β, t) = 0, t > 0. (13.34)

In this case, u may represent the transverse displacement of an elastic
vibrating string of length β−α, fixed at the endpoints, and γ is a coefficient
depending on the specific mass of the string and on its tension. The string is
subject to a vertical force of density f .

The functions u0(x) and v0(x) denote respectively the initial displacement
and the initial velocity of the string.
The change of variables

ω1 =
∂u

∂x
, ω2 =

∂u

∂t
,

transforms (13.33) into the following first-order system

∂ω

∂t
+ A

∂ω

∂x
= f , x ∈ (α, β), t > 0, (13.35)

where

ω =
[

ω1

ω2

]

, A =
[

0 −1
−γ2 0

]

, f =
[

0
f

]

,

and the initial conditions are ω1(x, 0) = u′
0(x) and ω2(x, 0) = v0(x).

Since the eigenvalues of A are the two distinct real numbers ±γ (represent-
ing the propagation velocities of the wave) we conclude that system (13.35)
is hyperbolic. Moreover, one boundary condition needs to be prescribed at
every end-point, as in (13.34). Notice that, also in this case, smooth solutions

13.7 The Finite Difference Method for Hyperbolic Equations 609

correspond to smooth initial data, while any discontinuity that is present in
the initial data will propagate along the characteristics.

Remark 13.3 Notice that replacing ∂2u
∂t2 by t2, ∂2u

∂x2 by x2 and f by 1, the
wave equation becomes

t2 − γ2x2 = 1,

which represents an hyperbola in the (x, t) plane. Proceeding analogously in
the case of the heat equation (13.1), we end up with

t − νx2 = 1,

which represents a parabola in the (x, t) plane. Finally, for the Poisson equa-
tion (12.90), replacing ∂2u

∂x2 by x2, ∂2u
∂y2 by y2 and f by 1, we get

x2 + y2 = 1,

which represents an ellipse in the (x, y) plane.
Due to the geometric interpretation above, the corresponding differential

operators are classified as hyperbolic, parabolic and elliptic. �

13.7 The Finite Difference Method for Hyperbolic
Equations

Let us discretize the hyperbolic problem (13.26) by space-time finite differ-
ences. With this aim, the half-plane {(x, t) : −∞ < x < ∞, t > 0} is dis-
cretized by choosing a spatial grid size ∆x, a temporal step ∆t and the grid
points (xj , t

n) as follows

xj = j∆x, j ∈ Z, tn = n∆t, n ∈ N.

Let us set
λ = ∆t/∆x,

and define xj+1/2 = xj + ∆x/2. We look for discrete solutions un
j which

approximate the values u(xj , t
n) of the exact solution for any j, n.

Quite often, explicit methods are employed for advancing in time in
hyperbolic initial-value problems, even though they require restrictions on
the value of λ, unlike what typically happens with implicit methods.
Let us focus our attention on problem (13.26). Any explicit finite-difference
method can be written in the form

un+1
j = un

j − λ(hn
j+1/2 − hn

j−1/2), (13.36)

where hn
j+1/2 = h(un

j , un
j+1) for every j and h(·, ·) is a particular function that

is called the numerical flux.

610 13 Parabolic and Hyperbolic Initial Boundary Value Problems

13.7.1 Discretization of the Scalar Equation

We illustrate several instances of explicit methods, and provide the corre-
sponding numerical flux.

1. Forward Euler/centered

un+1
j = un

j − λ

2
a(un

j+1 − un
j−1) (13.37)

which can be cast in the form (13.36) by setting

hn
j+1/2 =

1
2
a(un

j+1 + un
j). (13.38)

2. Lax-Friedrichs

un+1
j =

1
2
(un

j+1 + un
j−1) −

λ

2
a(un

j+1 − un
j−1) (13.39)

which is of the form (13.36) with

hn
j+1/2 =

1
2
[a(un

j+1 + un
j) − λ−1(un

j+1 − un
j)].

3. Lax-Wendroff

un+1
j = un

j − λ

2
a(un

j+1 − un
j−1) +

λ2

2
a2(un

j+1 − 2un
j + un

j−1) (13.40)

which can be written in the form (13.36) provided that

hn
j+1/2 =

1
2
[a(un

j+1 + un
j) − λa2(un

j+1 − un
j)].

4. Upwind (or forward Euler/uncentered)

un+1
j = un

j − λ

2
a(un

j+1 − un
j−1) +

λ

2
|a|(un

j+1 − 2un
j + un

j−1) (13.41)

which fits the form (13.36) when the numerical flux is defined to be

hn
j+1/2 =

1
2
[a(un

j+1 + un
j) − |a|(un

j+1 − un
j)].

The last three methods can be obtained from the forward Euler/centered
method by adding a term proportional to a numerical diffusion, so that they
can be written in the equivalent form

un+1
j = un

j − λ

2
a(un

j+1 − un
j−1) +

1
2
k

un
j+1 − 2un

j + un
j−1

(∆x)2
, (13.42)

where the artificial viscosity k is given for the three cases in Table 13.1.

13.8 Analysis of Finite Difference Methods 611

Table 13.1. Artificial viscosity, artificial flux and truncation error for Lax-
Friedrichs, Lax-Wendroff and Upwind methods

methods k hdiff
j+1/2 τ(∆t, ∆x)

Lax-Friedrichs ∆x2 − 1

2λ
(uj+1 − uj) O

(
∆x2

∆t
+ ∆t + ∆x

)

Lax-Wendroff a2∆t2 −λa2

2
(uj+1 − uj) O

(
∆t2 + ∆x2

)

Upwind |a|∆x∆t −|a|
2

(uj+1 − uj) O(∆t + ∆x)

As a consequence, the numerical flux for each scheme can be written equiva-
lently as

hj+1/2 = hFE
j+1/2 + hdiff

j+1/2,

where hFE
j+1/2 is the numerical flux of the forward Euler/centered scheme

(which is given in (13.38)) and the artificial diffusion flux hdiff
j+1/2 is given

for the three cases in Table 13.1.
An example of an implicit method is the backward Euler/centered scheme

un+1
j +

λ

2
a(un+1

j+1 − un+1
j−1) = un

j . (13.43)

It can still be written in the form (13.36) provided that hn is replaced by hn+1.
In the example at hand, the numerical flux is the same as for the Forward
Euler/centered method, and so is the artificial viscosity.
Finally, we report the following schemes for the approximation of the second-
order wave equation (13.33):

1. Leap-Frog

un+1
j − 2un

j + un−1
j = (γλ)2(un

j+1 − 2un
j + un

j−1); (13.44)

2. Newmark

un+1
j − un

j = ∆tvn
j + (γλ)2

[
βwn+1

j +
(

1
2 − β

)
wn

j

]
,

vn+1
j − vn

j =
(γλ)2

∆t

[
θwn+1

j + (1 − θ)wn
j

]
,

(13.45)

with wj = uj+1 − 2uj + uj−1 and where the parameters β and θ satisfy
0 ≤ β ≤ 1

2 , 0 ≤ θ ≤ 1.

13.8 Analysis of Finite Difference Methods

Let us analyze the properties of consistency, stability and convergence, as
well as those of dissipation and dispersion, of the finite difference methods
introduced above.

612 13 Parabolic and Hyperbolic Initial Boundary Value Problems

13.8.1 Consistency

As illustrated in Section 11.3, the local truncation error of a numerical scheme
is the residual that is generated by pretending the exact solution to satisfy
the numerical method itself.

Denoting by u the solution of the exact problem (13.26), in the case of
method (13.37) the local truncation error at (xj , t

n) is defined as follows

τn
j =

u(xj , t
n+1) − u(xj , t

n)
∆t

− a
u(xj+1, t

n) − u(xj−1, t
n)

2∆x
.

The truncation error is

τ(∆t,∆x) = max
j,n

|τn
j |.

When τ(∆t,∆x) goes to zero as ∆t and ∆x tend to zero independently, the
numerical scheme is said to be consistent.

Moreover, we say that it is of order p in time and of order q in space (for
suitable integers p and q), if, for a sufficiently smooth solution of the exact
problem, we have

τ(∆t,∆x) = O(∆tp + ∆xq).

Using Taylor’s expansion conveniently we can characterize the truncation error
of the methods previously introduced as indicated in Table 13.1. The Leap-frog
and Newmark methods are both second order accurate if ∆t = ∆x, while the
forward (or backward) Euler centered method is O(∆t + ∆x2).

Finally, we say that a numerical scheme is convergent if

lim
∆t,∆x→0

max
j,n

|u(xj , t
n) − un

j | = 0.

13.8.2 Stability

A numerical method for a hyperbolic problem (linear or nonlinear) is said
to be stable if, for any time T , there exist two constants CT > 0 (possibly
depending on T) and δ0 > 0, such that

‖un‖∆ ≤ CT ‖u0‖∆, (13.46)

for any n such that n∆t ≤ T and for any ∆t, ∆x such that 0 < ∆t ≤ δ0,
0 < ∆x ≤ δ0. We have denoted by ‖ · ‖∆ a suitable discrete norm, for instance
one of those indicated below

‖v‖∆,p =

⎛

⎝∆x

∞∑

j=−∞
|vj |p

⎞

⎠

1
p

for p = 1, 2, ‖v‖∆,∞ = sup
j
|vj |. (13.47)

Note that ‖ · ‖∆,p is an approximation of the norm of Lp(R). For instance,
the implicit Backward Euler/centered scheme (13.43) is unconditionally stable
with respect to the norm ‖ · ‖∆,2 (see Exercise 7).

13.8 Analysis of Finite Difference Methods 613

13.8.3 The CFL Condition

Courant, Friedrichs and Lewy [CFL28] have shown that a necessary and suffi-
cient condition for any explicit scheme of the form (13.36) to be stable is that
the time and space discretization steps must obey the following condition

|aλ| =
∣
∣
∣
∣a

∆t

∆x

∣
∣
∣
∣ ≤ 1, (13.48)

which is known as the CFL condition. The number aλ, which is an adimen-
sional number since a is a velocity, is commonly referred to as the CFL number.
If a is not constant the CFL condition becomes

∆t ≤ ∆x

sup
x∈R, t>0

|a(x, t)| ,

while, in the case of the hyperbolic system (13.30), the stability condition
becomes

∣
∣
∣
∣λk

∆t

∆x

∣
∣
∣
∣ ≤ 1 k = 1, . . . , p,

where {λk, k = 1 . . . , p} are the eigenvalues of A.
The CFL stability condition has the following geometric interpretation. In

a finite difference scheme the value un+1
j depends, in general, on the values

of un at the three points xj+i, i = −1, 0, 1. Thus, at the time t = 0 the
solution un+1

j will depend only on the initial data at the points xj+i, for
i = −(n + 1), . . . , (n + 1) (see Figure 13.5).

Let us define numerical domain of dependence D∆t(xj , t
n) to be the set of

values at time t = 0 the numerical solution un
j depends on, that is

D∆t(xj , t
n) ⊂

{

x ∈ R : |x − xj | ≤ n∆x =
tn

λ

}

.

xj+(n+1)

t

tn+1

tn

xj−1xj−(n+1) xj xj+1

x

t1

t0

Fig. 13.5. The numerical domain of dependence D∆t(xj , t
n+1)

614 13 Parabolic and Hyperbolic Initial Boundary Value Problems

Consequently, for any fixed point (x, t) we have

D∆t(x, t) ⊂
{

x ∈ R : |x − x| ≤ t

λ

}

.

In particular, taking the limit as ∆t → 0 for a fixed λ, the numerical domain
of dependence becomes

D0(x, t) =
{

x ∈ R : |x − x| ≤ t

λ

}

.

The condition (13.48) is thus equivalent to the inclusion

D(x, t) ⊂ D0(x, t), (13.49)

where D(x, t) is the domain of dependence defined in (13.31).
In the case of an hyperbolic system, thanks to (13.49), we can conclude

that the CFL condition requires that any straight line x = x − λk(t − t),
k = 1, . . . , p, must intersect the temporal straight line t = t − ∆t at some
point x belonging to the domain of dependence (see Figure 13.6).

Let us analyze the stability properties of some of the methods introduced
in the previous section.
Assuming that a > 0, the upwind scheme (13.41) can be reformulated as

un+1
j = un

j − λa(un
j − un

j−1). (13.50)

Therefore

‖un+1‖∆,1 ≤ ∆x
∑

j

|(1 − λa)un
j | + ∆x

∑

j

|λaun
j−1|.

Both λa and 1 − λa are nonnegative if (13.48) holds. Thus

‖un+1‖∆,1 ≤ ∆x(1 − λa)
∑

j

|un
j | + ∆xλa

∑

j

|un
j−1| = ‖un‖∆,1.

Inequality (13.46) is therefore satisfied by taking CT = 1 and ‖ · ‖∆ = ‖ · ‖∆,1.

x̄ + ∆x

t̄

(x̄, t̄)

x̄ − ∆x x̄ x̄ + ∆x

(x̄, t̄)

r1 r2

r2r1

t̄

t̄ − ∆t
x̄ − ∆x x̄

Fig. 13.6. Geometric interpretation of the CFL condition for a system with p = 2,
where ri = x̄ − λi(t − t̄) i = 1, 2. The CFL condition is satisfied for the left-hand
case, while it is violated for the right-hand case

13.8 Analysis of Finite Difference Methods 615

The Lax-Friedrichs scheme is also stable, upon assuming (13.48). Indeed,
from (13.39) we get

un+1
j =

1
2
(1 − λa)un

j+1 +
1
2
(1 + λa)un

j−1.

Therefore,

‖un+1‖∆,1 ≤ 1
2
∆x

⎡

⎣
∑

j

|(1 − λa)un
j+1| +

∑

j

|(1 + λa)un
j−1|

⎤

⎦

≤ 1
2
(1 − λa)‖un‖∆,1 +

1
2
(1 + λa)‖un‖∆,1 = ‖un‖∆,1.

Also the Lax-Wendroff scheme is stable under the usual assumption (13.48)
on ∆t (for the proof see, e.g., [QV94] Chapter 14).

13.8.4 Von Neumann Stability Analysis

Let us now show that the condition (13.48) is not sufficient to ensure that
the forward Euler/centered scheme (13.37) is stable. For this purpose, we
make the assumption that the function u0(x) is 2π-periodic so that it can be
expanded in a Fourier series as

u0(x) =
∞∑

k=−∞
αkeikx, (13.51)

where

αk =
1
2π

2π∫

0

u0(x) e−ikx dx

is the k-th Fourier coefficient of u0 (see Section 10.9). Therefore,

u0
j = u0(xj) =

∞∑

k=−∞
αkeikjh j = 0, ±1, ±2, . . . ,

where we have set h = ∆x for ease of notation. Applying (13.37) with n = 0
we get

u1
j =

∞∑

k=−∞
αkeikjh

(

1 − a∆t

2h
(eikh − e−ikh)

)

=
∞∑

k=−∞
αkeikjh

(

1 − a∆t

h
i sin(kh)

)

.

Setting

γk = 1 − a∆t

h
i sin(kh),

616 13 Parabolic and Hyperbolic Initial Boundary Value Problems

and proceeding recursively on n yields

un
j =

∞∑

k=−∞
αkeikjhγn

k j = 0,±1,±2, . . . , n ≥ 1. (13.52)

The number γk ∈ C is said to be the amplification coefficient of the k-th
frequency (or harmonic) at each time step. Since

|γk| =

{

1 +
(

a∆t

h
sin(kh)

)2
} 1

2

,

we deduce that

|γk| > 1 if a �= 0 and k �= mπ

h
, m = 0,±1,±2,

Correspondingly, the nodal values |un
j | continue to grow as n → ∞ and the

numerical solution ”blows-up” whereas the exact solution satisfies

|u(x, t)| = |u0(x − at)| ≤ max
s∈R

|u0(s)| ∀x ∈ R, ∀t > 0.

The centered discretization scheme (13.37) is thus unconditionally unstable,
i.e., it is unstable for any choice of the parameters ∆t and ∆x.

The previous analysis is based on the Fourier series expansion and is called
von Neumann analysis. It can be applied to studying the stability of any
numerical scheme with respect to the norm ‖ · ‖∆,2 and for establishing the
dissipation and dispersion of the method.

Any explicit finite difference numerical scheme for problem (13.26) satisfies
a recursive relation analogous to (13.52), where γk depends a priori on ∆t and
h and is called the k-th amplification coefficient of the numerical scheme at
hand.

Theorem 13.1 Assume that for a suitable choice of ∆t and h, |γk| ≤ 1 ∀k;
then, the numerical scheme is stable with respect to the ‖ · ‖∆,2 norm.
Proof. Take an initial datum with a finite Fourier expansion

u0(x) =

N
2 −1∑

k=− N
2

αkeikx

where N is a positive integer. Without loss of generality we can assume that problem
(13.26) is well-posed on [0, 2π] since u0 is a 2π-periodic function. Take in this interval
N equally spaced nodes

xj = jh, j = 0, . . . , N − 1, with h =
2π

N
,

at which the numerical scheme (13.36) is applied. We get

u0
j = u0(xj) =

N
2 −1∑

k=− N
2

αkeikjh, un
j =

N
2 −1∑

k=− N
2

αkγn
k eikjh.

13.8 Analysis of Finite Difference Methods 617

Notice that

‖un‖2
∆,2 = h

N−1∑

j=0

N
2 −1∑

k,m=− N
2

αkαm(γkγm)nei(k−m)jh.

Recalling Lemma 10.2 we have

h

N−1∑

j=0

ei(k−m)jh = 2πδkm, −N

2
≤ k, m ≤ N

2
− 1,

which yields

‖un‖2
∆,2 = 2π

N
2 −1∑

k=− N
2

|αk|2|γk|2n.

As a consequence, since |γk| ≤ 1 ∀k, it turns out that

‖un‖2
∆,2 ≤ 2π

N
2 −1∑

k=− N
2

|αk|2 = ‖u0‖2
∆,2, ∀n ≥ 0,

which proves that the scheme is stable with respect to the ‖ · ‖∆,2 norm. �

In the case of the upwind scheme (13.41), proceeding as was done for
the centered scheme, we find the following amplification coefficients (see
Exercise 6)

γk =

⎧
⎪⎨

⎪⎩

1 − a
∆t

h
(1 − e−ikh) if a > 0,

1 − a
∆t

h
(e−ikh − 1) if a < 0.

Therefore
∀k, |γk| ≤ 1 if ∆t ≤ h

|a| ,

which is nothing but the CFL condition.
Thanks to Theorem 13.1, if the CFL condition is satisfied, the upwind

scheme is stable with respect to the ‖ · ‖∆,2 norm.
We conclude by noting that the upwind scheme (13.50) satisfies

un+1
j = (1 − λa)un

j + λaun
j−1.

Owing to (13.48), either λa or 1 − λa are nonnegative, thus

min(un
j , un

j−1) ≤ un+1
j ≤ max(un

j , un
j−1).

It follows that

inf
l∈Z

{
u0

l

}
≤ un

j ≤ sup
l∈Z

{
u0

l

}
∀j ∈ Z, ∀n ≥ 0,

618 13 Parabolic and Hyperbolic Initial Boundary Value Problems

that is,
‖un‖∆,∞ ≤ ‖u0‖∆,∞ ∀n ≥ 0, (13.53)

which proves that if (13.48) is satisfied, the upwind scheme is stable in the
norm ‖ · ‖∆,∞. The relation (13.53) is called the discrete maximum principle
(see also Section 12.2.2).

Remark 13.4 For the approximation of the wave equation (13.33) the Leap-
Frog method (13.44) is stable under the CFL restriction ∆t ≤ ∆x/|γ|, while
the Newmark method (13.45) is unconditionally stable if 2β ≥ θ ≥ 1

2 (see
[Joh90]). �

13.9 Dissipation and Dispersion

The von Neumann analysis on the amplification coefficients enlightens the
study of the stability and dissipation of a numerical scheme.

Consider the exact solution to problem (13.26); the following relation holds

u(x, tn) = u0(x − an∆t), ∀n ≥ 0, ∀x ∈ R.

In particular, from applying (13.51) it follows that

u(xj , t
n) =

∞∑

k=−∞
αkeikjhgn

k , where gk = e−iak∆t. (13.54)

Letting
ϕk = k∆x,

we have k∆t = λϕk and thus

gk = e−iaλϕk . (13.55)

The real number ϕk, here expressed in radians, is called the phase angle of
the k-th harmonic. Comparing (13.54) with (13.52) we can see that γk is
the counterpart of gk which is generated by the specific numerical method at
hand. Moreover, |gk| = 1, whereas |γk| ≤ 1, in order to ensure stability.

Thus, γk is a dissipation coefficient; the smaller |γk|, the higher the
reduction of the amplitude αk, and, as a consequence, the higher the numerical
dissipation.
The ratio εa(k) = |γk|

|gk| is called the amplification error of the k-th har-
monic associated with the numerical scheme (in our case it coincides with
the amplification coefficient). On the other hand, writing

γk = |γk|e−iω∆t = |γk|e
−i

ω

k
λϕk

,

13.9 Dissipation and Dispersion 619

and comparing this relation with (13.55), we can identify the velocity of prop-
agation of the numerical solution, relative to its k-th harmonic, as being ω

k .
The ratio between this velocity and the velocity a of the exact solution is
called the dispersion error εd relative to the k-th harmonic

εd(k) =
ω

ka
=

ω∆x

ϕka
.

The amplification and dispersion errors for the numerical schemes exam-
ined so far are functions of the phase angle ϕk and the CFL number aλ. This
is shown in Figure 13.7 where we have only considered the interval 0 ≤ ϕk ≤ π
and we have used degrees instead of radians to denote the values of ϕk.

In Figure 13.8 the numerical solutions of equation (13.26) with a = 1
and the initial datum u0 given by a packet of two sinusoidal waves of equal
wavelength l and centered at the origin x = 0 are shown. The three plots from
the top of the figure refer to the case l = 10∆x while from the bottom we
have l = 4∆x. Since k = (2π)/l we get ϕk = ((2π)/l)∆x, so that ϕk = π/10
in the left-side pictures and ϕk = π/4 in the right-side ones. All numerical
solutions have been computed for a CFL number equal to 0.75, using the
schemes introduced above. Notice that the dissipation effect is quite relevant
at high frequencies (ϕk = π/4), especially for first-order methods (such as the
upwind and the Lax-Friedrichs methods).

In order to highlight the effects of the dispersion, the same computations
have been repeated for ϕk = π/3 and different values of the CFL number.
The numerical solutions after 5 time steps are shown in Figure 13.9. The
Lax-Wendroff method is the least dissipative for all the considered CFL num-
bers. Moreover, a comparison of the positions of the peaks of the numerical
solutions with respect to the corresponding ones in the exact solution shows
that the Lax-Friedrichs scheme is affected by a positive dispersion error, since
the ”numerical” wave advances faster than the exact one. Also, the upwind
scheme exhibits a slight dispersion error for a CFL number of 0.75 which is
absent for a CFL number of 0.5. The peaks are well aligned with those of
the numerical solution, although they have been reduced in amplitude due
to numerical dissipation. Finally, the Lax-Wendroff method exhibits a small
negative dispersion error; the numerical solution is indeed slightly late with
respect to the exact one.

13.9.1 Equivalent Equations

Using Taylor’s expansion to the third order to represent the truncation error,
it is possible to associate with any of the numerical schemes introduced so far
an equivalent differential equation of the form

vt + avx = µvxx + νvxxx, (13.56)

where the terms µvxx and νvxxx represent dissipation and dispersion, respec-
tively. Table 13.2 shows the values of µ and ν for the various methods.

620 13 Parabolic and Hyperbolic Initial Boundary Value Problems

0 20 40 60 80 100 120 140 160 180

0.2

0.4

0.6

0.8

1

Amplification error for Lax−Friedrichs

φ

ε a

0 20 40 60 80 100 120 140 160 180

1

2

3

4

5

Dispersion error for Lax−Friedrichs

φ

ε φ

CFL= 0.25
CFL= 0.50
CFL= 0.75
CFL= 1.00

CFL= 0.25
CFL= 0.50
CFL= 0.75
CFL= 1.00

0 20 40 60 80 100 120 140 160 180
0

0.2
0.4
0.6
0.8

1
1.2

Amplification error for Lax−Wendroff

φ

ε a

0 20 40 60 80 100 120 140 160 180

0
0.2
0.4
0.6
0.8

1
1.2
1.4

Dispersion error for Lax−Wendroff

φ

ε φ

CFL= 0.25
CFL= 0.50
CFL= 0.75
CFL= 1.00

CFL= 0.25
CFL= 0.50
CFL= 0.75
CFL= 1.00

0 20 40 60 80 100 120 140 160 180

Amplification error for Upwind

φ

0 20 40 60 80 100 120 140 160 180

Dispersion error for Upwind

φ

CFL= 0.25
CFL= 0.50
CFL= 0.75
CFL= 1.00

CFL= 0.25
CFL= 0.50
CFL= 0.75
CFL= 1.00

0
0.2
0.4
0.6
0.8

1
1.2
1.4

ε φ

0
−0.2

0.2
0.4
0.6
0.8

1
1.2

ε a

Fig. 13.7. Amplification and dispersion errors for several numerical schemes

13.9 Dissipation and Dispersion 621

−4 −3 −2 −1 0 1 2 3 4

4

4

−1
−0.5

0
0.5

1

u

Lax−Wendroff CFL= 0.75 φ=π/10

Computed at t=1
Exact

−4 −3 −2 −1 0 1 2 3
−1

−0.5
0

0.5
1

u

Lax−Friedrichs CFL= 0.75 φ=π/10

Computed at t=1
Exact

−4 −3 −2 −1 0 1 2 3
−1

−0.5
0

0.5
1

x

x

x

u

Upwind CFL= 0.75 φ=π/10

Computed at t=1
Exact

−4 −3 −2 −1 0 1 2 3 4

4

4

−1
−0.5

0
0.5

1

u

Lax−Wendroff CFL= 0.75 φ=π/4

Computed at t=1
Exact

−4 −3 −2 −1 0 1 2 3
−1

−0.5
0

0.5
1

u

Lax−Friedrichs CFL= 0.75 φ=π/4

Computed at t=1
Exact

−4 −3 −2 −1 0
x

x

x

1 2 3
−1

−0.5
0

0.5
1

u

Upwind CFL= 0.75 φ=π/4

Computed at t=1
Exact

Fig. 13.8. Numerical solutions corresponding to the transport of a sinusoidal wave
packet with different wavelengths

Let us give a proof of this procedure in the case of the upwind scheme.
Let v(x, t) be a smooth function which satisfies the difference equation (13.41);
then, assuming that a > 0, we have

v(x, t + ∆t) − v(x, t)
∆t

+ a
v(x, t) − v(x − ∆x, t)

∆x
= 0.

Truncating the Taylor expansions of v around (x, t) at the first and second
order, respectively, we obtain

622 13 Parabolic and Hyperbolic Initial Boundary Value Problems

Computed
Exact

−1 −0.5 0 0.5 1 1.5 2

−1 −0.5 0 0.5 1 1.5 2

−1

−0.5

0

0.5

1

u

−1

−0.5

0

0.5

1

u

Lax−Wendroff CFL=0.50 φ=π/3, t=4∆t

Computed
Exact

Lax−Wendroff CFL=0.75 φ=π/3, t=4∆t

Computed
Exact

Computed
Exact

Lax−Friedrichs CFL=0.75 φ=π/3, t=5∆t

Lax−Friedrichs CFL=0.50 φ=π/3, t=5∆t

−1 −0.5 0 0.5 1 1.5 2

−1 −0.5 0 0.5 1 1.5 2

−1

−0.5

0

0.5

1

u

−1

−0.5

0

0.5

1

u

−1 −0.5 0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

u

Upwind CFL=0.50 φ=π/3, t=4∆ t

Computed
Exact

−1 −0.5 0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

u

Upwind CFL=0.75 φ=π/3, t=4∆ t

Computed
Exact

Fig. 13.9. Numerical solutions corresponding to the transport of a sinusoidal wave
packet, for different CFL numbers

13.9 Dissipation and Dispersion 623

Table 13.2. Values of dissipation and dispersion coefficients for several numerical
methods

Method µ ν

Upwind
a∆x

2
− a2∆t

2
−a

6

(
∆x2 − 3a∆x∆t + 2a2∆t2

)

Lax-Friedrichs
∆x2

2∆t

(
1 − (aλ)2

) a∆x2

3

(
1 − (aλ)2

)

Lax-Wendroff 0
a∆x2

6

(
(aλ)2 − 1

)

vt + O(∆t) + avx + O(∆x) = 0 (13.57)

and

vt +
∆t

2
vtt + O(∆t2) + a

(

vx +
∆x

2
vxx + O(∆x2)

)

= 0, (13.58)

where vt = ∂v
∂t and vx = ∂v

∂x .
Differentiating (13.57) with respect to t and then with respect to x, we get

vtt + avxt = O(∆x + ∆t),

and
vtx + avxx = O(∆x + ∆t).

Thus, it follows that

vtt = a2vxx + O(∆x + ∆t),

which, after substituting into (13.58), yields the following equation

vt + avx = µvxx (13.59)

where

µ =
a∆x

2
− a2∆t

2
,

and having neglected the term O(∆x2+∆t2). Relation (13.59) is the equivalent
differential equation up to second order of the upwind scheme.

Following the same procedure and truncating the Taylor expansion at third
order, yields

vt + avx = µvxx + νvxxx (13.60)

where
ν = −a

6
(
∆x2 − 3a∆x∆t + 2a2∆t2

)
.

We can give a heuristic explanation of the meaning of the dissipative and
dispersive terms in the equivalent equation (13.56) by studying the following
problem

624 13 Parabolic and Hyperbolic Initial Boundary Value Problems

{
vt + avx = µvxx + νvxxx x ∈ R, t > 0

v(x, 0) = eikx, (k ∈ Z)
(13.61)

Applying the Fourier transform yields, if µ = ν = 0,

v(x, t) = eik(x−at), (13.62)

while if µ and ν are arbitrary real numbers (with µ > 0) we get

v(x, t) = e−µk2teik[x−(a+νk2)t]. (13.63)

Comparing (13.62) with (13.63) we can see that the module of the solution
diminishes as µ grows and this becomes more relevant if the frequency k gets
larger. Therefore, the term µvxx in (13.61) has a dissipative effect on the
solution. A further comparison between (13.62) and (13.63) shows that the
presence of the term ν modifies the velocity of the propagation of the solution;
the velocity is increased if ν > 0 whereas it is diminuished if ν < 0. Even in
this case the effect is amplified at high frequencies. Therefore, the third-order
differential term νvxxx introduces a dispersive effect.

Generally speaking, even-order derivatives in the equivalent equation rep-
resent diffusive terms, while odd-order derivatives mean dispersive effects. In
the case of first-order schemes (like the upwind method) the dispersive effect
is often only slightly visible since it is hidden by the dissipative one. Actu-
ally, taking ∆t and ∆x of the same order, we have that ν � µ as ∆x → 0,
since ν = O(∆x2) and µ = O(∆x). In particular, for a CFL number of 1

2 , the
equivalent equation of the upwind method exhibits null dispersion, truncated
at second order, according to the results of the previous section.

On the other hand, the dispersive effect is strikingly visible in the
Lax-Friedrichs and in the Lax-Wendroff schemes; the latter, being second-order
accurate, does not exhibit a dissipative term of the form µvxx. However, it
ought to be dissipative in order to be stable; actually, the equivalent equation
(truncated at fourth order) for the Lax-Wendroff scheme reads

vt + avx =
a∆x2

6
[(aλ)2 − 1]vxxx − a∆x3

6
aλ[1 − (aλ)2]vxxxx,

where the last term is dissipative if |aλ| < 1. We thus recover the CFL condi-
tion for the Lax-Wendroff method.

13.10 Finite Element Approximation of Hyperbolic
Equations

Let us consider the following first-order linear, scalar hyperbolic problem in
the interval (α, β) ⊂ R

13.10 Finite Element Approximation of Hyperbolic Equations 625

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂u

∂t
+ a

∂u

∂x
+ a0u = f in QT = (α, β) × (0, T),

u(α, t) = ϕ(t), t ∈ (0, T),

u(x, 0) = u0(x), x ∈ Ω,

(13.64)

where a = a(x), a0 = a0(x, t), f = f(x, t), ϕ = ϕ(t) and u0 = u0(x) are given
functions.

We assume that a(x) > 0 ∀x ∈ [α, β]. In particular, this implies that
the point x = α is the inflow boundary, and the boundary value has to be
specified there.

13.10.1 Space Discretization with Continuous and Discontinuous
Finite Elements

A semi-discrete approximation of problem (13.64) can be carried out by means
of the Galerkin method (see Section 12.4). Define the spaces

Vh = Xr
h =

{
vh ∈ C0([α, β]) : vh|Ij

∈ Pr(Ij), ∀ Ij ∈ Th

}

and
V in

h = {vh ∈ Vh : vh(α) = 0} ,

where Th is a partition of Ω (see Section 12.4.5) into n ≥ 2 subintervals
Ij = [xj , xj+1], for j = 0, . . . , n − 1.

Let u0,h be a suitable finite element approximation of u0 and consider the
problem: for any t ∈ (0, T) find uh(t) ∈ Vh such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

β∫

α

∂uh(t)
∂t

vh dx +

β∫

α

(

a
∂uh(t)

∂x
+ a0(t)uh(t)

)

vh dx

=

β∫

α

f(t)vh dx ∀ vh ∈ V in
h ,

uh(t) = ϕh(t) at x = α,

(13.65)

with uh(0) = u0,h ∈ Vh.
If ϕ is equal to zero, uh(t) ∈ V in

h , and we are allowed to taking vh = uh(t)
and get the following inequality

‖uh(t)‖2
L2(α,β) +

t∫

0

µ0‖uh(τ)‖2
L2(α,β) dτ + a(β)

t∫

0

u2
h(τ, β) dτ

≤ ‖u0,h‖2
L2(α,β) +

t∫

0

1
µ0

‖f(τ)‖2
L2(α,β)dτ ,

626 13 Parabolic and Hyperbolic Initial Boundary Value Problems

for any t ∈ [0, T], where we have assumed that

0 < µ0 ≤ a0(x, t) − 1
2
a′(x). (13.66)

Notice that in the special case in which both f and a0 are identically zero, we
obtain

‖uh(t)‖L2(α,β) ≤ ‖u0,h‖L2(α,β),

which expresses the conservation of the energy of the system. When (13.66)
does not hold (for example, if a is a constant convective term and a0 = 0),
then an application of Gronwall’s lemma 11.1 yields

‖uh(t)‖2
L2(α,β) + a(β)

t∫

0

u2
h(τ, β) dτ

≤

⎛

⎝‖u0,h‖2
L2(α,β) +

t∫

0

‖f(τ)‖2
L2(α,β) dτ

⎞

⎠ exp

t∫

0

[1 + 2µ∗(τ)] dτ,

(13.67)

where µ∗(t) = max
x∈[α,β]

|µ(x, t)|.
An alternative approach to the semi-discrete approximation of problem

(13.64) is based on the use of discontinuous finite elements. This choice is
motivated by the fact that, as previously pointed out, the solutions of hyper-
bolic problems (even in the linear case) may exhibit discontinuities.

The finite element space can be defined as follows

Wh = Y r
h =

{
vh ∈ L2(α, β) : vh|Ij

∈ Pr(Ij), ∀ Ij ∈ Th

}
,

i.e., the space of piecewise polynomials of degree less than or equal to r, which
are not necessarily continuous at the finite element nodes.

Then, the Galerkin discontinuous finite element space discretization reads:
for any t ∈ (0, T) find uh(t) ∈ Wh such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β∫

α

∂uh(t)

∂t
vh dx

+

n−1∑

i=0

⎧
⎨

⎩

xi+1∫

xi

(

a
∂uh(t)

∂x
+ a0(x)uh(t)

)

vh dx + a(u+
h − U−

h)(xi, t)v
+
h (xi)

⎫
⎬

⎭

=

β∫

α

f(t)vh dx ∀vh ∈ Wh,

(13.68)

where {xi} are the nodes of Th with x0 = α and xn = β, and for each node xi,
v+

h (xi) denotes the right-value of vh at xi while v−
h (xi) is its left-value. Finally,

U−
h (xi, t) = u−

h (xi, t) if i = 1, . . . , n − 1, while U−
h (x0, t) = ϕ(t) ∀t > 0.

13.10 Finite Element Approximation of Hyperbolic Equations 627

If a is positive, xj is the inflow boundary of Ij for every j and we set

[u]j = u+(xj) − u−(xj), u±(xj) = lim
s→0=

u(xj + sa), j = 1, . . . , n − 1.

Then, for any t ∈ [0, T] the stability estimate for problem (13.68) reads

‖uh(t)‖2
L2(α,β) +

t∫

0

⎛

⎝‖uh(τ)‖2
L2(α,β) +

n−1∑

j=0

a(xj)[uh(τ)]2j

⎞

⎠ dτ

≤ C

⎡

⎣‖u0,h‖2
L2(α,β) +

t∫

0

(
‖f(τ)‖2

L2(α,β) + aϕ2(τ)
)

dτ

⎤

⎦ .

(13.69)

As for the convergence analysis, the following error estimate can be proved
for continuous finite elements of degree r, r ≥ 1 (see [QV94], Section 14.3.1)

max
t∈[0,T]

‖u(t) − uh(t)‖L2(α,β) +

⎛

⎝

T∫

0

a|u(α, τ) − uh(α, τ)|2 dτ

⎞

⎠

1/2

= O(‖u0 − u0,h‖L2(α,β) + hr),

If, instead, discontinuous finite elements of degree r are used, r ≥ 0, the
convergence estimate becomes (see [QV94], Section 14.3.3 and the references
therein)

max
t∈[0,T]

‖u(t) − uh(t)‖L2(α,β)

+

⎛

⎝

T∫

0

‖u(t) − uh(t)‖2
L2(α,β) dt +

T∫

0

n−1∑

j=0

a(xj) [u(t) − uh(t)]2j dt

⎞

⎠

1/2

= O(‖u0 − u0,h‖L2(α,β) + hr+1/2).

13.10.2 Time Discretization

The time discretization of the finite element schemes introduced in the pre-
vious section can be carried out by resorting either to finite differences or
finite elements. If an implicit finite difference scheme is adopted, both method
(13.65) and (13.68) are unconditionally stable.

As an example, let us use the backward Euler method for the time dis-
cretization of problem (13.65). We obtain for each n ≥ 0: find un+1

h ∈ Vh

such that

1
∆t

β∫

α

(un+1
h − un

h)vh dx +

β∫

α

a
∂un+1

h

∂x
vh dx

+

β∫

α

an+1
0 un+1

h vh dx =

β∫

α

fn+1vh dx ∀vh ∈ V in
h ,

(13.70)

628 13 Parabolic and Hyperbolic Initial Boundary Value Problems

with un+1
h (α) = ϕn+1 and u0

h = u0h. If f ≡ 0 and ϕ ≡ 0, taking vh = un+1
h in

(13.70) we can obtain

1
2∆t

(
‖un+1

h ‖2
L2(α,β) − ‖un

h‖2
L2(α,β)

)
+ a(β)(un+1

h (β))2 + µ0‖un+1
h ‖2

L2(α,β) ≤ 0

∀n ≥ 0. Summing for n from 0 to m − 1 yields, for m ≥ 1,

‖um
h ‖2

L2(α,β) + 2∆t

⎛

⎝
m∑

j=1

‖uj
h‖2

L2(α,β) +
m∑

j=1

a(β)(uj+1
h (β))2

⎞

⎠ ≤ ‖u0
h‖2

L2(α,β).

In particular, we conclude that

‖um
h ‖L2(α,β) ≤ ‖u0

h‖L2(α,β) ∀m ≥ 0.

On the other hand, explicit schemes for the hyperbolic equations are sub-
ject to a stability condition: for example, in the case of the forward Euler
method the stability condition is ∆t = O(∆x). In practice, this restriction is
not as severe as happens in the case of parabolic equations and for this reason
explicit schemes are often used in the approximation of hyperbolic equations.

Programs 102 and 103 provide an implementation of the discontinous
Galerkin-finite element method of degree 0 (dG(0)) and 1 (dG(1)) in space
coupled with the backward Euler method in time for the solution of (13.26)
on the space-time domain (α, β) × (t0, T).

Program 102 - ipeidg0 : dG(0) implicit Euler

function [u,x]=ipeidg0(I,n,a,u0,bc)
%IPEIDG0 dG(0) implicit Euler for a scalar transport equation.
% [U,X]=IPEIDG0(I,N,A,U0,BC) solves the equation
% DU/DT+A+DU/DX=0 X in (I(1),I(2)), T in (I(3),I(4))
% with a space-time finite element approximation.
nx=n(1); h=(I(2)-I(1))/nx; x=[I(1)+h/2:h:I(2)];
t=I(3); u=(eval(u0))’;
nt=n(2); k=(I(4)-I(3))/nt;
lambda=k/h;
e=ones(nx,1);
A=spdiags([-a*lambda*e, (1+a*lambda)*e],-1:0,nx,nx);
[L,U]=lu(A);
for t = I(3)+k:k:I(4)

f = u;
if a > 0

f(1) = a*bc(1)+f(1);
elseif a <= 0

f(nx) = a*bc(2)+f(nx);
end

13.10 Finite Element Approximation of Hyperbolic Equations 629

y = L \ f; u = U \ y;
end
return

Program 103 - ipeidg1 : dG(1) implicit Euler

function [u,x]=ipeidg1(I,n,a,u0,bc)
%IPEIDG0 dG(1) implicit Euler for a scalar transport equation.
% [U,X]=IPEIDG1(I,N,A,U0,BC) solves the equation
% DU/DT+A+DU/DX=0 X in (I(1),I(2)), T in (I(3),I(4))
% with a space-time finite element approximation.
nx=n(1); h=(I(2)-I(1))/nx; x=[I(1):h:I(2)];
t=I(3); um=(eval(u0))’;
u=[]; xx=[];
for i=1:nx+1

u=[u, um(i), um(i)];
xx=[xx, x(i), x(i)];

end
u=u’; nt=n(2); k=(I(4)-I(3))/nt;
lambda=k/h;
e=ones(2*nx+2,1);
B=spdiags([1/6*e,1/3*e,1/6*e],-1:1,2*nx+2,2*nx+2);
dd=1/3+0.5*a*lambda;
du=1/6+0.5*a*lambda;
dl=1/6-0.5*a*lambda;
A=sparse([]);
A(1,1)=dd; A(1,2)=du; A(2,1)=dl; A(2,2)=dd;
for i=3:2:2*nx+2

A(i,i-1)=-a*lambda;
A(i,i)=dd;
A(i,i+1)=du;
A(i+1,i)= dl;
A(i+1,i+1)=A(i,i);

end
[L,U]=lu(A);
for t = I(3)+k:k:I(4)

f = B*u;
if a>0

f(1)=a*bc(1)+f(1);
elseif a<=0

f(nx)=a*bc(2)+f(nx);
end
y=L\f;
u=U\y;

end
x=xx;
return

630 13 Parabolic and Hyperbolic Initial Boundary Value Problems

13.11 Applications

13.11.1 Heat Conduction in a Bar

Consider a homogeneous bar of unit length with thermal conductivity ν, which
is connected at the endpoints to an external thermal source at a fixed temper-
ature, say u = 0. Let u0(x) be the temperature distribution along the bar at
time t = 0 and f = f(x, t) be a given heat production term. Then, the initial-
boundary value problem (13.1)-(13.4) provides a model of the time evolution
of the temperature u = u(x, t) throughout the bar.
In the following, we study the case where f ≡ 0 and the temperature of the
bar is suddenly raised at the points around 1/2. A rough mathematical model
for this situation is provided, for instance, by taking u0 = K in a certain
subinterval [a, b] ⊆ [0, 1] and equal to 0 outside, where K is a given positive
constant. The initial condition is therefore a discontinuous function.

We have used the θ-method with θ = 0.5 (Crank-Nicolson method, CN)
and θ = 1 (Backward Euler method, BE). Program 100 has been run with h =
1/20, ∆t = 1/40 and the obtained solutions at time t = 2 are shown in Figure
13.10. The results show that the CN method suffers a clear instability due to
the low smoothness of the initial datum (about this point, see also [QV94],
Chapter 11). On the contrary, the BE method provides a stable solution which
decays correctly to zero as t grows since the source term f is null.

13.11.2 A Hyperbolic Model for Blood Flow Interaction
with Arterial Walls

Let us consider again the problem of the fluid-structure interaction in a cylin-
drical artery considered in Section 11.11.2, where the simple independent rings
model (11.88) was adopted.

0
0.5

1

0
0.5

1
1.5

2

−0.2

0

0.2

0.4

0.6

0.8

00.20.40.60.81

0
0.5

1

1.5

2

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Fig. 13.10. Solutions for a parabolic problem with discontinuous initial datum: CN
method (left) and BE method (right)

13.11 Applications 631

If the axial action due to the tension between the different rings is no
longer neglected, denoting by z the longitudinal coordinate, equation (11.88)
modifies into

ρwH
∂2η

∂t2
− σz

∂2η

∂z2
+

HE

R2
0

η = P − P0, t > 0, 0 < z < L, (13.71)

where σz is the radial component of the axial stress and L is the length
of the cylindrical arterial district which is considered. In particular,
neglecting the third term on the left-hand side and letting γ2 = σz/(ρwH),
f = (P − P0)/(ρwH), we recover the wave equation (13.33).

We have performed two sets of numerical experiments using the Leap-Frog
(LF) and Newmark (NW) methods. In the first example the space-time
domain of integration is the cylinder (0, 1) × (0, 1) and the source term
is f = (1 + π2γ2)e−t sin(πx) in such a way that the exact solution is
u(x, t) = e−t sin(πx). Table 13.3 shows the estimated orders of convergence of
the two methods, denoted by pLF and pNW respectively.

To compute these quantities we have first solved the wave equation on
four grids with sizes ∆x = ∆t = 1/(2k · 10), k = 0, . . . , 3. Let u

(k)
h denote the

numerical solution corresponding to the space-time grid at the k-th refining
level. Moreover, for j = 1, . . . , 10, let t

(0)
j = j/10 be the time discretization

nodes of the grid at the coarsest level k = 0. Then, for each level k, the
maximum nodal errors ek

j on the k-th spatial grid have been evaluated at each

time t
(0)
j in such a way that the convergence order p

(k)
j can be estimated as

p
(k)
j =

log(e0
j/ek

j)
log(2k)

, k = 1, 2, 3.

The results clearly show second-order convergence for both the methods, as
theoretically expected.

Table 13.3. Estimated orders of convergence for the Leap-Frog (LF) and Newmark
(NW) methods

t
(0)
j p

(1)
LF p

(2)
LF p

(3)
LF

0.1 2.0344 2.0215 2.0151
0.2 2.0223 2.0139 2.0097
0.3 2.0170 2.0106 2.0074
0.4 2.0139 2.0087 2.0061
0.5 2.0117 2.0073 2.0051
0.6 2.0101 2.0063 2.0044
0.7 2.0086 2.0054 2.0038
0.8 2.0073 2.0046 2.0032
0.9 2.0059 2.0037 2.0026
1.0 2.0044 2.0028 2.0019

t
(0)
j p

(1)
NW p

(2)
NW p

(3)
NW

0.1 1.9549 1.9718 1.9803
0.2 1.9701 1.9813 1.9869
0.3 1.9754 1.9846 1.9892
0.4 1.9791 1.9869 1.9909
0.5 1.9827 1.9892 1.9924
0.6 1.9865 1.9916 1.9941
0.7 1.9910 1.9944 1.9961
0.8 1.9965 1.9979 1.9985
0.9 2.0034 2.0022 2.0015
1.0 2.0125 2.0079 2.0055

632 13 Parabolic and Hyperbolic Initial Boundary Value Problems

0 0.01
0.02 0.03

0.04

00.20.40.60.81
-3

-2

-1

0

1

2

3
� 10-4

0
0.02

0.04
0.06

00.20.40.60.81
−3

−2

−1

0

1

2

3
� 10−4

Fig. 13.11. Computed solutions using the NM method on a space-time grid with
∆t = T/100 and ∆x = L/10 (left) and the LF scheme on a space-time grid with the
same value of ∆x but with ∆t = T/400 (right)

In the second example we have taken the following expressions for the
coefficient and source term: γ2 = σz/(ρwH), with σz = 1 [Kgs−2], f = (x∆p ·
sin(ω0t))/(ρwH). The parameters ρw, H and the length L of the vessel are
as in Section 11.11.2. The space-time computational domain is (0, L)× (0, T),
with T = 1 [s].

The Newmark method has been first used with ∆x = L/10 and ∆t =
T/100; the corresponding value of γλ is 3.6515, where λ = ∆t/∆x. Since the
Newmark method is unconditionally stable, no spurious oscillations arise as is
confirmed by Figure 13.11, left. Notice the correct periodical behaviour of the
solution with a period corresponding to one heart beat; notice also that with
the present values of ∆t and ∆x the Leap-Frog method cannot be employed
since the CFL condition is not satisfied. To overcome this problem, we have
therefore chosen a much smaller time-step ∆t = T/400, in such a way that
γλ � 0.9129 and the Leap-Frog scheme can be applied. The obtained result is
shown in Figure 13.11, right; a similar solution has been computed by using
the Newmark method with the same values of the discretization parameters.

13.12 Exercises

1. Apply the θ-method (13.9) to the approximate solution of the scalar Cauchy
problem (11.1) and using the analysis of Section 11.3 prove that the local trun-
cation error is of the order of ∆t+h2 if θ �= 1

2
while it is of the order of ∆t2 +h2

if θ = 1
2
.

2. Prove that in the case of piecewise linear finite elements, the mass-lumping
process described in Section 13.3 is equivalent to computing the integrals mij =∫ 1

0
ϕjϕi dx by the trapezoidal quadrature formula (9.11). This, in particular,

shows that the diagonal matrix M̃ is nonsingular.

13.12 Exercises 633

[Hint: first, verify that exact integration yields

mij =
h

6

⎧
⎨

⎩

1

2
i �= j,

1 i = j.

Then, apply the trapezoidal rule to compute mij recalling that ϕi(xj) = δij .]
3. Prove inequality (13.19).

[Hint: using the Cauchy-Schwarz and Young inequalities, prove first that

1∫

0

(u − v)u dx ≥ 1

2

(
‖u‖2

L2(0,1) − ‖v‖2
L2(0,1)

)
, ∀ u, v ∈ L2(0, 1).

Then, use (13.18).]
4. Assume that the bilinear form a(·, ·) in problem (13.12) is continuous and coer-

cive over the function space V (see (12.54)-(12.55)) with continuity and coerciv-
ity constants M and α, respectively. Then, prove that the stability inequalities
(13.20) and (13.21) still hold provided that ν is replaced by α.

5. Show that the methods (13.39), (13.40) and (13.41) can be written in the form
(13.42). Then, show that the corresponding expressions of the artificial viscosity
K and artificial diffusion flux hdiff

j+1/2 are as in Table (13.1).
6. Determine the CFL condition for the upwind scheme.
7. Show that for the scheme (13.43) one has ‖un+1‖∆,2 ≤ ‖un‖∆,2 for all n ≥ 0.

[Hint: multiply equation (13.43) by un+1
j , and notice that

(un+1
j − un

j)un+1
j ≥ 1

2

(
|un+1

j |2 − |un
j |2

)
.

Then, sum on j the resulting inequalities, and note that

λa

2

∞∑

j=−∞

(
un+1

j+1 − un+1
j−1

)
un+1

j = 0

since this sum is telescopic.]
8. Show how to find the values µ and ν in Table 13.2 for Lax-Friedrichs and

Lax-Wendroff methods.
9. Prove (13.67).

10. Prove (13.69) when f = 0.
[Hint: take ∀t > 0, vh = uh(t) in (13.68).]

References

[Aas71] Aasen J. (1971) On the Reduction of a Symmetric Matrix to Tridiagonal
Form. BIT 11: 233–242

[ABB+92] Anderson E., Bai Z., Bischof C., Demmel J., Dongarra J., Croz J. D.,
Greenbaum A., Hammarling S., McKenney A., Oustrouchov S., and
Sorensen D. (1992) LAPACK User’s Guide, Release 1.0. SIAM,
Philadelphia

[Ada75] Adams D. (1975) Sobolev Spaces. Academic Press, New York
[ADR92] Arioli M., Duff I., and Ruiz D. (1992) Stopping Criteria for Iterative

Solvers. SIAM J. Matrix Anal. Appl. 1(13)
[AF83] Alonso M. and Finn E. (1983) Fundamental University Physics,

volume 3. Addison-Wesley, Reading, Massachusetts
[Arm66] Armijo L. (1966) Minimization of Functions Having Continuous Partial

Derivatives. Pacific Jour. Math. 16: 1–3
[Arn73] Arnold V. I. (1973) Ordinary Differential Equations. The MIT Press,

Cambridge, Massachusetts
[Atk89] Atkinson K. E. (1989) An Introduction to Numerical Analysis. John

Wiley, New York
[Avr76] Avriel M. (1976) Non Linear Programming: Analysis and Methods.

Prentice-Hall, Englewood Cliffs, New Jersey
[Axe94] Axelsson O. (1994) Iterative Solution Methods. Cambridge University

Press, New York
[Bar89] Barnett S. (1989) Leverrier’s Algorithm: A New Proof and Extensions.

Numer. Math. 7: 338–352
[Bat90] Batterson S. (1990) Convergence of the Shifted QR Algorithm on 3 by

3 Normal Matrices. Numer. Math. 58: 341–352
[BBC+94] Barrett R., Berry M., Chan T., Demmel J., Donato J., Dongarra J.,

Eijkhout V., Pozo V., Romine C., and van der Vorst H. (1994) Tem-
plates for the Solution of Linear Systems: Building Blocks for Iterative
Methods. SIAM, Philadelphia

[BD74] Björck A. and Dahlquist G. (1974) Numerical Methods. Prentice-Hall,
Englewood Cliffs, N.J.

[BDMS79] Bunch J., Dongarra J., Moler C., and Stewart G. (1979) LINPACK
User’s Guide. SIAM, Philadelphia

636 References

[Ber82] Bertsekas D. P. (1982) Constrained Optimization and Lagrange Multi-
plier Methods. Academic Press. Inc., San Diego, California

[Bjö88] Björck A. (1988) Least Squares Methods: Handbook of Numerical Analy-
sis Vol. 1 Solution of Equations in R

N . Elsevier North Holland
[BM92] Bernardi C. and Maday Y. (1992) Approximations Spectrales des

Problémes aux Limites Elliptiques. Springer-Verlag, Paris
[BM97] Berrut J. and Mittelmann H. (1997) Lebesgue constant minimizing

linear rational interpolation of continuous functions over the interval.
Comput. Math. 33: 77–86

[BMW67] Barth W., Martin R. S., and Wilkinson J. H. (1967) Calculation of
the Eigenvalues of a Symmetric Tridiagonal Matrix by the Method of
Bisection. Numer. Math. 9: 386–393

[BO78] Bender C. M. and Orszag S. A. (1978) Advanced Mathematical Methods
for Scientists and Engineers. McGraw-Hill, New York

[Boe80] Boehm W. (1980) Inserting New Knots into B-spline Curves. Computer
Aided Design 12: 199–201

[Bos93] Bossavit A. (1993) Electromagnetisme, en vue de la modelisation.
Springer-Verlag, Paris

[BR81] Bank R. E. and Rose D. J. (1981) Global Approximate Newton Meth-
ods. Numer. Math. 37: 279–295

[Bra75] Bradley G. (1975) A Primer of Linear Algebra. Prentice-Hall, Engle-
wood Cliffs, New York

[Bre73] Brent R. (1973) Algorithms for Minimization Without Derivatives.
Prentice-Hall, Englewood Cliffs, New York

[Bri74] Brigham E. O. (1974) The Fast Fourier Transform. Prentice-Hall, En-
glewood Cliffs, New York

[BS90] Brown P. and Saad Y. (1990) Hybrid Krylov Methods for Nonlinear
Systems of equations. SIAM J. Sci. and Stat. Comput. 11(3): 450–481

[BSG96] B. Smith P. B. and Gropp P. (1996) Domain Decomposition, Parallel
Multilevel Methods for Elliptic Partial Differential Equations. Univ.
Cambridge Press, Cambridge

[BT04] Berrut J. and Trefethen L. (2004) Barycentric Lagrange Interpolation.
SIAM Review 46(3): 501–517

[But64] Butcher J. C. (1964) Implicit Runge-Kutta Processes. Math. Comp. 18:
233–244

[But66] Butcher J. C. (1966) On the Convergence of Numerical Solutions to
Ordinary Differential Equations. Math. Comp. 20: 1–10

[But87] Butcher J. (1987) The Numerical Analysis of Ordinary Differential
Equations: Runge-Kutta and General Linear Methods. Wiley, Chichester

[CCP70] Cannon M., Cullum C., and Polak E. (1970) Theory and Optimal
Control and Mathematical Programming. McGraw-Hill, New York

[CFL28] Courant R., Friedrichs K., and Lewy H. (1928) Über die partiellen dif-
ferenzengleichungen der mathematischen physik. Math. Ann. 100: 32–74

[CHQZ06] Canuto C., Hussaini M. Y., Quarteroni A., and Zang T. A. (2006) Spec-
tral Methods: Fundamentals in Single Domains. Springer-Verlag, Berlin
Heidelberg

[CI95] Chandrasekaren S. and Ipsen I. (1995) On the Sensitivity of Solution
Components in Linear Systems of equations. SIAM J. Matrix Anal.
Appl. 16: 93–112

References 637

[CL91] Ciarlet P. G. and Lions J. L. (1991) Handbook of Numerical Analysis:
Finite Element Methods (Part 1). North-Holland, Amsterdam

[CM94] Chan T. and Mathew T. (1994) Domain Decomposition Algorithms.
Acta Numerica pages 61–143

[CMSW79] Cline A., Moler C., Stewart G., and Wilkinson J. (1979) An Estimate
for the Condition Number of a Matrix. SIAM J. Sci. and Stat. Comput.
16: 368–375

[Col66] Collin R. E. (1966) Foundations for Microwave Engineering. McGraw-
Hill Book Co., Singapore

[Com95] Comincioli V. (1995) Analisi Numerica Metodi Modelli Applicazioni.
McGraw-Hill Libri Italia, Milano

[Cox72] Cox M. (1972) The Numerical Evaluation of B-splines. Journal of the
Inst. of Mathematics and its Applications 10: 134–149

[Cry73] Cryer C. W. (1973) On the Instability of High Order Backward-
Difference Multistep Methods. BIT 13: 153–159

[CT65] Cooley J. and Tukey J. (1965) An Algorithm for the Machine Calcula-
tion of Complex Fourier Series. Math. Comp. 19: 297–301

[Dah56] Dahlquist G. (1956) Convergence and Stability in the Numerical Inte-
gration of Ordinary Differential Equations. Math. Scand. 4: 33–53

[Dah63] Dahlquist G. (1963) A Special Stability Problem for Linear Multistep
Methods. BIT 3: 27–43

[Dat95] Datta B. (1995) Numerical Linear Algebra and Applications.
Brooks/Cole Publishing, Pacific Grove, CA

[Dau88] Daubechies I. (1988) Orthonormal bases of compactly supported
wavelets. Commun. on Pure and Appl. Math. XLI

[Dav63] Davis P. (1963) Interpolation and Approximation. Blaisdell Pub., New
York

[Day96] Day D. (1996) How the QR algorithm Fails to Converge and How to
Fix It. Technical Report 96-0913J, Sandia National Laboratory, Albu-
querque

[dB72] de Boor C. (1972) On Calculating with B-splines. Journal of Approxi-
mation Theory 6: 50–62

[dB83] de Boor C. (1983) A Practical Guide to Splines. In Applied Mathematical
Sciences. (27), Springer-Verlag, New York

[dB90] de Boor C. (1990) SPLINE TOOLBOX for use with MATLAB. The
Math Works, Inc., South Natick

[DD95] Davis T. and Duff I. (1995) A combined unifrontal/multifrontal method
for unsymmetric sparse matrices. Technical Report TR-95-020, Com-
puter and Information Sciences Department, University of Florida

[Dek69] Dekker T. (1969) Finding a Zero by means of Successive Linear Inter-
polation. In Dejon B. and Henrici P. (eds) Constructive Aspects of the
Fundamental Theorem of Algebra, pages 37–51. Wiley, New York

[Dek71] Dekker T. (1971) A Floating-Point Technique for Extending the Avail-
able Precision. Numer. Math. 18: 224–242

[Dem97] Demmel J. (1997) Applied Numerical Linear Algebra. SIAM,
Philadelphia

[Deu04] Deuflhard P. (2004) Newton methods for nonlinear problems. Affine in-
variance and adaptive algorithms, volume 35 of Springer Series in Com-
putational Mathematics. Springer-Verlag, Berlin

638 References

[DGK84] Dongarra J., Gustavson F., and Karp A. (1984) Implementing Linear
Algebra Algorithms for Dense Matrices on a Vector Pipeline Machine.
SIAM Review 26(1): 91–112

[Die87a] Dierckx P. (1987) FITPACK User Guide part 1: Curve Fitting Rou-
tines. TW Report, Dept. of Computer Science, Katholieke Universiteit,
Leuven, Belgium

[Die87b] Dierckx P. (1987) FITPACK User Guide part 2: Surface Fitting Rou-
tines. TW Report, Dept. of Computer Science, Katholieke Universiteit,
Leuven, Belgium

[Die93] Dierckx P. (1993) Curve and Surface Fitting with Splines. Claredon
Press, New York

[DL92] DeVore R. and Lucier J. (1992) Wavelets. Acta Numerica pages 1–56
[DR75] Davis P. and Rabinowitz P. (1975) Methods of Numerical Integration.

Academic Press, New York
[DS83] Dennis J. and Schnabel R. (1983) Numerical Methods for Unconstrained

Optimization and Nonlinear Equations. Prentice-Hall, Englewood Cliffs,
New York

[Dun85] Dunavant D. (1985) High Degree Efficient Symmetrical Gaussian
Quadrature Rules for the Triangle. Internat. J. Numer. Meth. Engrg.
21: 1129–1148

[Dun86] Dunavant D. (1986) Efficient Symmetrical Cubature Rules for Complete
Polynomials of High Degree over the Unit Cube. Internat. J. Numer.
Meth. Engrg. 23: 397–407

[DV84] Dekker K. and Verwer J. (1984) Stability of Runge-Kutta Methods for
Stiff Nonlinear Differential Equations. North-Holland, Amsterdam

[dV89] der Vorst H. V. (1989) High Performance Preconditioning. SIAM J.
Sci. Stat. Comput. 10: 1174–1185

[EEHJ96] Eriksson K., Estep D., Hansbo P., and Johnson C. (1996) Computational
Differential Equations. Cambridge Univ. Press, Cambridge

[Elm86] Elman H. (1986) A Stability Analisys of Incomplete LU Factorization.
Math. Comp. 47: 191–218

[Erd61] Erdös P. (1961) Problems and Results on the Theory of Interpolation.
Acta Math. Acad. Sci. Hungar. 44: 235–244

[Erh97] Erhel J. (1997) About Newton-Krylov Methods. In Periaux J. and
al. (eds) Computational Science for 21st Century, pages 53–61. Wiley,
New York

[Fab14] Faber G. (1914) Über die interpolatorische Darstellung stetiger Funk-
tionem. Jber. Deutsch. Math. Verein. 23: 192–210

[FF63] Faddeev D. K. and Faddeeva V. N. (1963) Computational Methods of
Linear Algebra. Freeman, San Francisco and London

[Fle75] Fletcher R. (1975) Conjugate gradient methods for indefinite systems.
In Springer-Verlag (ed) Numerical Analysis, pages 73–89. New York

[FM67] Forsythe G. E. and Moler C. B. (1967) Computer Solution of Linear
Algebraic Systems. Prentice-Hall, Englewood Cliffs, New York

[Fra61] Francis J. G. F. (1961) The QR Transformation: A Unitary Analogue
to the LR Transformation. Parts I and II. Comp. J. pages 265–272,
332–334

[FRL55] F. Richtmyer E. K. and Lauritsen T. (1955) Introduction to Modern
Physics. McGraw-Hill, New York

References 639

[Gas83] Gastinel N. (1983) Linear Numerical Analysis. Kershaw Publishing,
London

[Gau94] Gautschi W. (1994) Algorithm 726: ORTHPOL - A Package of Rou-
tines for Generating Orthogonal Polynomials and Gauss-type Quadra-
ture Rules. ACM Trans. Math. Software 20: 21–62

[Gau96] Gautschi W. (1996) Orthogonal Polynomials: Applications and Compu-
tation. Acta Numerica pages 45–119

[Gau97] Gautschi W. (1997) Numerical Analysis. An Introduction. Birkhäuser,
Berlin

[Geo73] George A. (1973) Nested Dissection of a Regular Finite Element Mesh.
SIAM J. Num. Anal. 10: 345–363

[Giv54] Givens W. (1954) Numerical Computation of the Characteristic Values
of a Real Symmetric Matrix. Oak Ridge National Laboratory ORNL-
1574

[GL81] George A. and Liu J. (1981) Computer Solution of Large Sparse Positive
Definite Systems. Prentice-Hall, Englewood Cliffs, New York

[GL89] Golub G. and Loan C. V. (1989) Matrix Computations. The John Hop-
kins Univ. Press, Baltimore and London

[GM83] Golub G. and Meurant G. (1983) Resolution Numerique des Grands
Systemes Lineaires. Eyrolles, Paris

[GMW81] Gill P., Murray W., and Wright M. (1981) Practical Optimization. Aca-
demic Press, London

[God66] Godeman R. (1966) Algebra. Kershaw, London
[Gol91] Goldberg D. (1991) What Every Computer Scientist Should Know

about Floating-point Arithmetic. ACM Computing Surveys 23(1): 5–48
[GP67] Goldstein A. A. and Price J. B. (1967) An Effective Algorithm for Min-

imization. Numer. Math 10: 184–189
[GR96] Godlewski E. and Raviart P. (1996) Numerical Approximation of Hyper-

bolic System of Conservation Laws, volume 118 of Applied Mathematical
Sciences. Springer-Verlag, New York

[Hac94] Hackbush W. (1994) Iterative Solution of Large Sparse Systems of Equa-
tions. Springer-Verlag, New York

[Hah67] Hahn W. (1967) Stability of Motion. Springer-Verlag, Berlin
[Hal58] Halmos P. (1958) Finite-Dimensional Vector Spaces. Van Nostrand,

Princeton, New York
[Hen62] Henrici P. (1962) Discrete Variable Methods in Ordinary Differential

Equations. Wiley, New York
[Hen74] Henrici P. (1974) Applied and Computational Complex Analysis, vol-

ume 1. Wiley, New York
[Hen79] Henrici P. (1979) Barycentric formulas for interpolating trigonometric

polynomials and their conjugates. Numer. Math. 33: 225–234
[HGR96] H-G. Roos M. Stynes L. T. (1996) Numerical Methods for Singularly

Perturbed Differential Equations. Springer-Verlag, Berlin Heidelberg
[Hig88] Higham N. (1988) The Accuracy of Solutions to Triangular Systems.

University of Manchester, Dep. of Mathematics 158: 91–112
[Hig89] Higham N. (1989) The Accuracy of Solutions to Triangular Systems.

SIAM J. Numer. Anal. 26(5): 1252–1265
[Hig96] Higham N. (1996) Accuracy and Stability of Numerical Algorithms.

SIAM Publications, Philadelphia, PA

640 References

[Hil87] Hildebrand F. (1987) Introduction to Numerical Analysis. McGraw-Hill,
New York

[Hou75] Householder A. (1975) The Theory of Matrices in Numerical Analysis.
Dover Publications, New York

[HP94] Hennessy J. and Patterson D. (1994) Computer Organization and De-
sign - The Hardware/Software Interface. Morgan Kaufmann, San Mateo

[HW76] Hammarling S. and Wilkinson J. (1976) The Practical Behaviour of
Linear Iterative Methods with Particular Reference to S.O.R. Technical
Report Report NAC 69, National Physical Laboratory, Teddington, UK

[IK66] Isaacson E. and Keller H. (1966) Analysis of Numerical Methods. Wiley,
New York

[Inm94] Inman D. (1994) Engineering Vibration. Prentice-Hall, Englewood
Cliffs, NJ

[Iro70] Irons B. (1970) A Frontal Solution Program for Finite Element Analysis.
Int. J. for Numer. Meth. in Engng. 2: 5–32

[Jac26] Jacobi C. (1826) Uber Gauβ neue Methode, die Werthe der Integrale
näherungsweise zu finden. J. Reine Angew. Math. 30: 127–156

[Jer96] Jerome J. J. (1996) Analysis of Charge Transport. A Mathematical Study
of Semiconductor Devices. Springer, Berlin Heidelberg

[Jia95] Jia Z. (1995) The Convergence of Generalized Lanczos Methods for
Large Unsymmetric Eigenproblems. SIAM J. Matrix Anal. Applic. 16:
543–562

[JM92] Jennings A. and McKeown J. (1992) Matrix Computation. Wiley, Chich-
ester

[Joh90] Johnson C. (1990) Numerical Solution of Partial Differential Equations
by the Finite Element Method. Cambridge Univ. Press

[JW77] Jankowski M. and Wozniakowski M. (1977) Iterative Refinement Implies
Numerical Stability. BIT 17: 303–311

[Kah66] Kahan W. (1966) Numerical Linear Algebra. Canadian Math. Bull. 9:
757–801

[Kan66] Kaniel S. (1966) Estimates for Some Computational Techniques in Lin-
ear Algebra. Math. Comp. 20: 369–378

[Kea86] Keast P. (1986) Moderate-Degree Tetrahedral Quadrature Formulas.
Comp. Meth. Appl. Mech. Engrg. 55: 339–348

[Kel99] Kelley C. (1999) Iterative Methods for Optimization, volume 18 of Fron-
tiers in Applied Mathematics. SIAM, Philadelphia

[KT51] Kuhn H. and Tucker A. (1951) Nonlinear Programming. In Second
Berkeley Symposium on Mathematical Statistics and Probability, pages
481–492. Univ. of California Press, Berkeley and Los Angeles

[Lam91] Lambert J. (1991) Numerical Methods for Ordinary Differential Sys-
tems. John Wiley and Sons, Chichester

[Lan50] Lanczos C. (1950) An Iteration Method for the Solution of the Eigen-
value Problem of Linear Differential and Integral Operator. J. Res. Nat.
Bur. Stand. 45: 255–282

[Lax65] Lax P. (1965) Numerical Solution of Partial Differential Equations.
Amer. Math. Monthly 72(2): 74–84

[Lel92] Lele S. (1992) Compact Finite Difference Schemes with Spectral-like
Resolution. Journ. of Comp. Physics 103(1): 16–42

References 641

[Lem89] Lemarechal C. (1989) Nondifferentiable Optimization. In Nemhauser
G., Kan A. R., and Todd M. (eds) Handbooks Oper. Res. Management
Sci., volume 1. Optimization, pages 529–572. North-Holland, Amster-
dam

[LH74] Lawson C. and Hanson R. (1974) Solving Least Squares Problems.
Prentice-Hall, Englewood Cliffs, New York

[LM68] Lions J. L. and Magenes E. (1968) Problemes aux limitès non-homogènes
et applications. Dunod, Paris

[LS96] Lehoucq R. and Sorensen D. (1996) Deflation Techniques for an Implic-
itly Restarted Iteration. SIAM J. Matrix Anal. Applic. 17(4): 789–821

[Lue73] Luenberger D. (1973) Introduction to Linear and Non Linear Program-
ming. Addison-Wesley, Reading, Massachusetts

[Man69] Mangasarian O. (1969) Non Linear Programming. Prentice-Hall, En-
glewood Cliffs, New Jersey

[Man80] Manteuffel T. (1980) An Incomplete Factorization Technique for Posi-
tive Definite Linear Systems. Math. Comp. 150(34): 473–497

[Mar86] Markowich P. (1986) The Stationary Semiconductor Device Equations.
Springer-Verlag, Wien and New York

[McK62] McKeeman W. (1962) Crout with Equilibration and Iteration. Comm.
ACM 5: 553–555

[MdV77] Meijerink J. and der Vorst H. V. (1977) An Iterative Solution Method
for Linear Systems of Which the Coefficient Matrix is a Symmetric M-
matrix. Math. Comp. 137(31): 148–162

[MM71] Maxfield J. and Maxfield M. (1971) Abstract Algebra and Solution by
Radicals. Saunders, Philadelphia

[MMG87] Martinet R., Morlet J., and Grossmann A. (1987) Analysis of sound
patterns through wavelet transforms. Int. J. of Pattern Recogn. and
Artificial Intellig. 1(2): 273–302

[MNS74] Mäkela M., Nevanlinna O., and Sipilä A. (1974) On the Concept of Con-
vergence, Consistency and Stability in Connection with Some Numerical
Methods. Numer. Math. 22: 261–274

[Mor84] Morozov V. (1984) Methods for Solving Incorrectly Posed Problems.
Springer-Verlag, New York

[Mul56] Muller D. (1956) A Method for Solving Algebraic Equations using an
Automatic Computer. Math. Tables Aids Comput. 10: 208–215

[NAG95] NAG (1995) NAG Fortran Library Manual - Mark 17. NAG Ltd.,
Oxford

[Nat65] Natanson I. (1965) Constructive Function Theory, volume III. Ungar,
New York

[NM65] Nelder J. and Mead R. (1965) A simplex method for function minimiza-
tion. The Computer Journal 7: 308–313

[Nob69] Noble B. (1969) Applied Linear Algebra. Prentice-Hall, Englewood
Cliffs, New York

[OR70] Ortega J. and Rheinboldt W. (1970) Iterative Solution of Nonlinear
Equations in Several Variables. Academic Press, New York and London

[Pap62] Papoulis A. (1962) The Fourier Integral and its Application. McGraw-
Hill, New York

[Pap87] Papoulis A. (1987) Probability, Random Variables, and Stochastic
Processes. McGraw-Hill, New York

642 References

[Par80] Parlett B. (1980) The Symmetric Eigenvalue Problem. Prentice-Hall,
Englewood Cliffs, NJ

[PdKÜK83] Piessens R., deDoncker Kapenga E., Überhuber C. W., and Kahaner
D. K. (1983) QUADPACK: A Subroutine Package for Automatic Inte-
gration. Springer-Verlag, Berlin and Heidelberg

[PJ55] Peaceman D. and Jr. H. R. (1955) The numerical solution of parabolic
and elliptic differential equations. J. Soc. Ind. Appl. Math. 3: 28–41

[Pou96] Poularikas A. (1996) The Transforms and Applications Handbook. CRC
Press, Inc., Boca Raton, Florida

[PR70] Parlett B. and Reid J. (1970) On the Solution of a System of Linear
Equations Whose Matrix is Symmetric but not Definite. BIT 10: 386–
397

[PW79] Peters G. and Wilkinson J. (1979) Inverse iteration, ill-conditioned
equations, and newton’s method. SIAM Review 21: 339–360

[QS06] Quarteroni A. and Saleri F. (2006) Scientific Computing with Matlab
and Octave. Springer-Verlag, Berlin Heidelberg

[QV94] Quarteroni A. and Valli A. (1994) Numerical Approximation of Partial
Differential Equations. Springer, Berlin and Heidelberg

[QV99] Quarteroni A. and Valli A. (1999) Domain Decomposition Methods for
Partial Differential Equations. Oxford Science Publications, New York

[Ral65] Ralston A. (1965) A First Course in Numerical Analysis. McGraw-Hill,
New York

[Red86] Reddy B. D. (1986) Applied Functional Analysis and Variational Meth-
ods in Engineering. McGraw-Hill, New York

[Ric81] Rice J. (1981) Matrix Computations and Mathematical Software.
McGraw-Hill, New York

[Riv74] Rivlin T. (1974) The Chebyshev Polynomials. John Wiley and Sons,
New York

[RM67] Richtmyer R. and Morton K. (1967) Difference Methods for Initial Value
Problems. Wiley, New York

[RR78] Ralston A. and Rabinowitz P. (1978) A First Course in Numerical
Analysis. McGraw-Hill, New York

[Rud83] Rudin W. (1983) Real and Complex Analysis. Tata McGraw-Hill, New
Delhi

[Rut58] Rutishauser H. (1958) Solution of Eigenvalue Problems with the LR
Transformation. Nat. Bur. Stand. Appl. Math. Ser. 49: 47–81

[Rut90] Rutishauser H. (1990) Lectures on Numerical Mathematics. Birkh auser,
Boston

[Saa90] Saad Y. (1990) Sparskit: A basic tool kit for sparse matrix computa-
tions. Technical Report 90-20, Research Institute for Advanced Com-
puter Science, NASA Ames Research Center, Moffet Field, CA

[Saa92] Saad Y. (1992) Numerical Methods for Large Eigenvalue Problems. Hal-
stead Press, New York

[Saa96] Saad Y. (1996) Iterative Methods for Sparse Linear Systems. PWS
Publishing Company, Boston

[Sch67] Schoenberg I. (1967) On Spline functions. In Shisha O. (ed) Inequalities,
pages 255–291. Academic Press, New York

[Sch81] Schumaker L. (1981) Splines Functions: Basic Theory. Wiley, New York

References 643

[Sch98] Schwab C. (1998) p- and hp-finite element methods. Theory and ap-
plications in solid and fluid mechanics. Numerical Mathematics and
Scientific Computation. The Clarendon Press, Oxford University Press

[Sel84] Selberherr S. (1984) Analysis and Simulation of Semiconductor Devices.
Springer-Verlag, Wien and New York

[SG69] Scharfetter D. and Gummel H. (1969) Large-signal analysis of a silicon
Read diode oscillator. IEEE Trans. on Electr. Dev. 16: 64–77

[Ske79] Skeel R. (1979) Scaling for Numerical Stability in Gaussian Elimination.
J. Assoc. Comput. Mach. 26: 494–526

[Ske80] Skeel R. (1980) Iterative Refinement Implies Numerical Stability for
Gaussian Elimination. Math. Comp. 35: 817–832

[SL89] Su B. and Liu D. (1989) Computational Geometry: Curve and Surface
Modeling. Academic Press, New York

[Sla63] Slater J. (1963) Introduction to Chemical Physics. McGraw-Hill Book
Co

[SM03] Suli E. and Mayers D. (2003) An Introduction to Numerical Analysis.
Cambridge University Press, Cambridge

[Smi85] Smith G. (1985) Numerical Solution of Partial Differential Equations:
Finite Difference Methods. Oxford University Press, Oxford

[Son89] Sonneveld P. (1989) Cgs, a fast lanczos-type solver for nonsymmetric
linear systems. SIAM Journal on Scientific and Statistical Computing
10(1): 36–52

[SR97] Shampine L. F. and Reichelt M. W. (1997) The MATLAB ODE Suite.
SIAM J. Sci. Comput. 18: 1–22

[SS90] Stewart G. and Sun J. (1990) Matrix Perturbation Theory. Academic
Press, New York

[Ste71] Stetter H. (1971) Stability of discretization on infinite intervals. In
Morris J. (ed) Conf. on Applications of Numerical Analysis, pages 207–
222. Springer-Verlag, Berlin

[Ste73] Stewart G. (1973) Introduction to Matrix Computations. Academic
Press, New York

[Str69] Strassen V. (1969) Gaussian Elimination is Not Optimal. Numer. Math.
13: 727–764

[Str80] Strang G. (1980) Linear Algebra and Its Applications. Academic Press,
New York

[Str89] Strikwerda J. (1989) Finite Difference Schemes and Partial Differential
Equations. Wadsworth and Brooks/Cole, Pacific Grove

[Sze67] Szegö G. (1967) Orthogonal Polynomials. AMS, Providence, R.I.
[Tit37] Titchmarsh E. (1937) Introduction to the Theory of Fourier Integrals.

Oxford
[Var62] Varga R. (1962) Matrix Iterative Analysis. Prentice-Hall, Englewood

Cliffs, New York
[vdV92] van der Vorst H. (1992) Bi-cgstab: a fast and smoothly converging vari-

ant of bi-cg for the solution of non-symmetric linear systems. SIAM
Jour. on Sci. and Stat. Comp. 12: 631–644

[vdV03] van der Vorst H. (2003) Iterative Krylov Methods for Large Linear sys-
tems. Cambridge University Press, Cambridge

[Ver96] Verfürth R. (1996) A Review of a Posteriori Error Estimation and
Adaptive Mesh Refinement Techniques. Wiley, Teubner, Germany

644 References

[Wac66] Wachspress E. (1966) Iterative Solutions of Elliptic Systems. Prentice-
Hall, Englewood Cliffs, New York

[Wal75] Walsh G. (1975) Methods of Optimization. Wiley
[Wal91] Walker J. (1991) Fast Fourier Transforms. CRC Press, Boca Raton
[Wen66] Wendroff B. (1966) Theoretical Numerical Analysis. Academic Press,

New York
[Wid67] Widlund O. (1967) A Note on Unconditionally Stable Linear Multistep

Methods. BIT 7: 65–70
[Wil62] Wilkinson J. (1962) Note on the Quadratic Convergence of the Cyclic

Jacobi Process. Numer. Math. 6: 296–300
[Wil63] Wilkinson J. (1963) Rounding Errors in Algebraic Processes. Prentice-

Hall, Englewood Cliffs, New York
[Wil65] Wilkinson J. (1965) The Algebraic Eigenvalue Problem. Clarendon

Press, Oxford
[Wil68] Wilkinson J. (1968) A priori Error Analysis of Algebraic Processes. In

Intern. Congress Math., volume 19, pages 629–639. Izdat. Mir, Moscow
[Wol69] Wolfe P. (1969) Convergence Conditions for Ascent Methods. SIAM

Review 11: 226–235
[Wol71] Wolfe P. (1971) Convergence Conditions for Ascent Methods. II: Some

Corrections. SIAM Review 13: 185–188
[Wol78] Wolfe M. (1978) Numerical Methods for Unconstrained Optimization.

Van Nostrand Reinhold Company, New York
[You71] Young D. (1971) Iterative Solution of Large Linear Systems. Academic

Press, New York
[Zie77] Zienkiewicz O. C. (1977) The Finite Element Method (Third Edition).

McGraw Hill, London

Index of MATLAB Programs

forwardrow Forward substitution: row-oriented version. 67
forwardcol Forward substitution: column-oriented version . . 68
backwardcol Backward substitution: column-oriented version . 68
lukji LU factorization of matrix A: kji version 79
lujki LU factorization of matrix A: jki version 79
luijk LU factorization of the matrix A: ijk version . . . 81
chol2 Cholesky factorization . 84
modgrams Modified Gram-Schmidt method 87
LUpivtot LU factorization with complete pivoting 90
luband LU factorization for a banded matrix 94
forwband Forward substitution for a banded matrix L 95
backband Backward substitution for a banded matrix U . . . 95
modthomas Thomas algorithm, modified version 96
condest2 Algorithm for the approximation of K1(A) 111
jor JOR method . 137
sor SOR method . 137
basicILU Incomplete LU factorization 142
ilup ILU(p) factorization . 144
gradient Preconditioned gradient method. 151
conjgrad Preconditioned conjugate gradient method 158
arnoldialg The Arnoldi algorithm . 162
arnoldimet The Arnoldi method for linear systems 165
gmres The GMRES method for linear systems 167
lanczos The Lanczos algorithm . 169
lanczosnosym The Lanczos method for unsymmetric systems . . 171
powerm Power method . 197
invpower Inverse power method. 198
basicqr Basic QR iteration . 203
houshess Hessenberg-Householder method 208
hessqr Hessenberg-QR method . 210
qrgivens QR factorization with Givens rotations 210

646 Index of MATLAB Programs

vhouse Construction of the Householder vector 213
givcos Computation of Givens cosine and sine 213
garow Product G(i, k, θ)T M . 214
gacol Product MG(i, k, θ) . 214
qrshift QR iteration with single shift 217
qr2shift QR iteration with double shift 219
psinorm Evaluation of Ψ(A) . 228
symschur Evaluation of c and s . 228
cycjacobi Cyclic Jacobi method for symmetric matrices . . . 229
sturm Sturm sequence evaluation 231
givsturm Givens method using the Sturm sequence 232
chcksign Sign changes in the Sturm sequence 232
bound Calculation of the interval J = [α, β] 233
eiglancz Extremal eigenvalues of a symmetric matrix 235
bisect BISECT method . 252
chord The chord method . 256
secant The secant method . 257
regfalsi The Regula Falsi method . 257
newton Newton’s method . 258
fixpoint Fixed-point method . 263
horner Synthetic division algorithm 265
newthorn Newton-Horner method with refinement 268
mulldefl Muller’s method with refinement 271
aitken Aitken’s extrapolation . 277
adptnewt Adaptive Newton’s method 279
newtonsys Newton’s method for nonlinear systems 289
broyden Broyden’s method for nonlinear systems 294
fixposys Fixed-point method for nonlinear systems 298
hookejeeves The method of Hooke and Jeeves (HJ) 301
explore Exploration step in the HJ method 302
backtrackr Backtraking for line search 308
lagrpen Penalty method . 320
lagrmult Method of Lagrange multipliers 323
interpol Lagrange polynomial using Newton’s formula . . . 340
dividif Newton divided differences 342
hermpol Osculating polynomial . 350
parspline Parametric splines . 366
bernstein Bernstein polynomials . 369
bezier Bézier curves . 369
midpntc Composite midpoint formula 383
trapezc Composite trapezoidal formula 384
simpsonc Composite Cavalieri-Simpson formula 385
newtcot Closed Newton-Cotes formulae 391
trapmodc Composite corrected trapezoidal formula 396
romberg Romberg integration . 399

Index of MATLAB Programs 647

simpadpt Adaptive Cavalieri-Simpson formula 405
redmidpt Midpoint reduction formula 412
redtrap Trapezoidal reduction formula 413
midptr2d Midpoint rule on a triangle 415
traptr2d Trapezoidal rule on a triangle 415
coeflege Coefficients of Legendre polynomials 439
coeflagu Coefficients of Laguerre polynomials 440
coefherm Coefficients of Hermite polynomials 440
zplege Coefficients of Gauss-Legendre formulae 440
zplagu Coefficients of Gauss-Laguerre formulae 440
zpherm Coefficients of Gauss-Hermite formulae 441
dft Discrete Fourier transform. 449
idft Inverse discrete Fourier transform 449
fftrec FFT algorithm in the recursive version 451
compdiff Compact difference schemes 456
multistep Linear multistep methods . 499
predcor Predictor-corrector scheme 516
ellfem Linear FE for two-point BVPs 564
femmatr Construction of the stiffness matrix 565
H1error Computation of the H1-norm of the error 565
artvisc Artificial viscosity . 578
sgvisc Optimal artificial viscosity . 578
bern Evaluation of the Bernoulli function 579
thetameth θ-method for the heat equation 599
pardg1cg1 dG(1)cG(1) method for the heat equation 603
ipeidg0 dG(0) implicit Euler . 628
ipeidg1 dG(1) implicit Euler . 629

Index

A-stability, 492
absolute value notation, 64
adaptive error control, 43
adaptivity, 43

Newton’s method, 278
Runge-Kutta methods, 521

algorithm
Arnoldi, 162, 165
Cuthill-McKee, 102
Dekker-Brent, 259
Remes, 445
synthetic division, 265
Thomas, 93

amplification
coefficient, 616
error, 618

analysis
a posteriori, 42
a priori, 42

for an iterative method, 133
backward, 42
forward, 42

B-splines, 361
parametric, 369

backward substitution, 67
bandwidth, 462
barycentric

interpolation formula, 344
Lagrange interpolation, 344
weigths, 344

Bernoulli
function, 574

numbers, 398
bi-orthogonal bases, 170
binary digits, 46
boundary condition

Dirichlet, 549
Neumann, 549, 590
Robin, 587

breakdown, 162, 167
Bézier curve, 368
Bézier polygon, 367

CFL
condition, 613
number, 613

characteristic
curves, 605
variables, 607

characteristic polygon, 367
chopping, 51
cofactor, 10
condition number, 34

asymptotic, 39
interpolation, 338
of a matrix, 36, 60
of a nonlinear equation, 248
of an eigenvalue, 189
of an eigenvector, 190
Skeel, 113
spectral, 61

consistency, 37, 126, 484, 503, 519
convex function, 299, 326

strongly, 316
convex hull, 100
critical point, 299

650 Index

Dahlquist
first barrier, 509
second barrier, 510

decomposition
real Schur, 201, 209, 211

generalized, 225
Schur, 15
singular value, 17

computation of the, 222
spectral, 16

deflation, 207, 216, 266
degree

of exactness, 389
of a vector, 161
of exactness, 380, 388, 414, 429
of freedom, 560

determinant of a matrix, 10
discrete

truncation of Fourier series, 426
Chebyshev transform, 436
Fourier transform, 448
Laplace transform, 467
Legendre transform, 438
maximum principle, 574, 618
scalar product, 435

dispersion, 458, 619
dissipation, 618
distribution, 554

derivative of a, 555
divided difference, 270, 340
domain of dependence, 607

numerical, 613

eigenfunctions, 597
eigenvalue, 13

algebraic multiplicity of an, 14
geometric multiplicity of an, 14

eigenvector, 13
elliptic

operator, 609
equation

characteristic, 13
difference, 492, 509
heat, 589, 599

error
absolute, 40
cancellation, 39
global truncation, 483
interpolation, 335

local truncation, 483, 612
quadrature, 379
rounding, 45

estimate
a posteriori, 66, 194, 196, 390, 401,

403
a priori, 62, 390, 401, 403

exponential fitting, 574

factor
asymptotic convergence, 127
convergence, 127, 247, 261
growth, 107

factorization
block LU, 97
Cholesky, 83
compact forms, 80
Crout, 80
Doolittle, 80
incomplete, 142
LDMT , 81
LU, 70
QR, 84, 209

fill-in, 100, 143
level, 144

finite differences, 120, 178, 237, 541
backward, 453
centered, 453, 454
compact, 454
forward, 452

finite elements, 120, 355
discontinuous, 602, 626

fixed-point iterations, 260
flop, 53
FOM, 164, 165
form

divided difference, 340
Lagrange, 334

formula
Armijo’s, 308
Goldstein’s, 308
Sherman-Morrison, 98

forward substitution, 67
Fourier coefficients, 446

discrete, 447
function

gamma, 537
Green’s, 540
Haar, 469

Index 651

stability, 526

weight, 425

Galerkin

finite element method, 373, 558

stabilized, 575

generalized method, 567

method, 552

pseudo-spectral approximation, 598

Gauss elimination

method, 70

multipliers in the, 71

GAXPY, 79

generalized inverse, 18

Gershgorin circles, 184

Gibbs phenomenon, 449

gradient, 299

graph, 100

oriented, 100, 185

Gronwall lemma, 481, 486

hyperbolic

operator, 609

hypernorms, 64

ILU, 142

inequality

Cauchy-Schwarz, 348, 576

Hölder, 20

Kantorovich, 310

Poincaré, 544, 576

triangular, 577

Young’s, 552

integration

adaptive, 400

automatic, 400

multidimensional, 411

nonadaptive, 400

interpolation

Hermite, 349

in two dimensions, 351

osculatory, 350

piecewise, 346

Taylor, 377

interpolation nodes, 333

piecewise, 353

IOM, 165

Jordan
block, 16
canonical form, 16

kernel of a matrix, 11
Krylov

method, 161
subspace, 161

Lagrange
interpolation, 333
multiplier, 317, 322

Lagrangian function, 316
augmented, 321
penalized, 319

Laplace operator, 580
least-squares, 427

discrete, 442
Lebesgue

constant, 336, 338
linear map, 8
linear regression, 443
linearly independent vectors, 4
LU factorization, 73

M-matrix, 29, 146
machine epsilon, 49
machine precision, 51
mass-lumping, 595
matrix, 5

block, 6
companion, 242, 243
convergent, 26
defective, 14
diagonalizable, 16
diagonally dominant, 29, 146
Gaussian transformation, 75
Givens, 205
Hessenberg, 13, 203, 211
Hilbert, 72
Householder, 204
interpolation, 336
irreducible, 185
iteration, 126
mass, 594
norm, 22
normal, 8
orthogonal, 8
permutation, 7

652 Index

matrix (Continued)
preconditioning, 128
reducible, 185
rotation, 9
similar, 15
stiffness, 556
transformation, 203
trapezoidal, 12
triangular, 12
unitary, 8
Vandermonde, 376

matrix balancing, 113
maximum principle, 541, 542

discrete, 29
method

θ−, 592
Regula Falsi, 254
Aitken, 275
alternating-direction, 160
backward Euler, 482
backward Euler/centered, 611
BiCG, 173
BiCGSTab, 173
bisection, 250
Broyden’s, 293
CGS, 173
chord, 253, 263
conjugate gradient, 154, 169

with restart, 157
CR, 170
Crank-Nicolson, 483, 600
cyclic Jacobi, 227
damped Newton, 326
damped Newton’s, 312
finite element, 582
fixed-point, 295
Fletcher-Reeves, 311
forward Euler, 482
forward Euler/centered, 610
forward Euler/uncentered, 610
frontal, 105
Gauss Seidel

symmetric, 135
Gauss-Jordan, 123
Gauss-Seidel, 129

nonlinear, 329
Givens, 229
GMRES, 168

with restart, 168

gradient, 305
Gram-Schmidt, 85
Heun, 483
Horner, 265
Householder, 207
inverse power, 195
Jacobi, 129
JOR, 129
Lanczos, 168, 233
Lax-Friedrichs, 610, 615
Lax-Wendroff, 610, 615
Leap-Frog, 611, 618
Merson, 538
modified Euler, 538
modified Newton’s, 288
Monte Carlo, 416
Muller, 269
Newmark, 611, 618
Newton’s, 255, 263, 286
Newton-Horner, 266, 267
Nystron, 538
ORTHOMIN, 170
Polak-Ribiére, 311
Powell-Broyden

symmetric, 315
power, 192
QMR, 173
QR, 200

with double shift, 218
with single shift, 215, 216

quasi-Newton, 292
reduction formula, 411
Richardson, 138
Richardson extrapolation, 396
Romberg integration, 397
Rutishauser, 202
secant, 254, 259, 292
secant-like, 313
Simplex, 304
SSOR, 136
steepest descent, 310
Steffensen, 283
successive over-relaxation, 130
upwind, 610, 614

minimax
property, 428

minimizer
global, 298, 315
local, 298, 315

Index 653

model
computational, 43

module of continuity, 394

nodes
Gauss, 436
Gauss-Lobatto, 433, 436

norm
absolute, 31
compatible, 22
consistent, 22
energy, 29
equivalent, 21
essentially strict, 442
Frobenius, 23
Hölder, 19
matrix, 22
maximum, 20, 336
spectral, 24

normal equations, 114
numbers

de-normalized, 48
fixed-point, 46
floating-point, 47

numerical flux, 609
numerical method, 37

adaptive, 43
consistent, 37
convergent, 40
efficiency, 44
ill conditioned, 38
reliability, 44
stable, 38
well posed, 38

numerical stability, 34

orbit, 532
overflow, 51

Péclet number, 568
local, 570

Padé approximation, 377
parabolic

operator, 609
pattern of a matrix, 99, 583
penalty parameter, 319
phase angle, 618
pivoting, 88

complete, 88
partial, 88

Poisson equation, 580
polyalgorithm, 281
polynomial

Bernstein, 367
best approximation, 336, 443
characteristic, 13, 334
Fourier, 445
Hermite, 439
interpolating, 333
Lagrange piecewise, 354
Laguerre, 438
nodal, 334
orthogonal, 425

preconditioner, 128
block, 141
diagonal, 142
ILU, 144
least-squares, 147
MILU, 146
point, 141
polynomial, 147

principal root of unity, 447
problem

Cauchy, 479
generalized eigenvalue, 148, 223, 238,

597
ill posed, 33, 35
ill-conditioned, 35
stiff, 529
well conditioned, 34
well posed, 33

programming
linear, 286
nonlinear, 285, 318

pseudo-inverse, 18, 116
pseudo-spectral

derivative, 459
differentiation matrix, 459

quadrature formula, 379
Cavalieri-Simpson, 385, 393, 409
composite Cavalieri-Simpson, 385
composite midpoint, 382
composite Newton-Cotes, 392
composite trapezoidal, 384
corrected trapezoidal, 395
Gauss, 431

on triangles, 415
Gauss-Kronrod, 402

654 Index

quadrature formula (Continued)
Gauss-Lobatto, 432, 435
Gauss-Radau

on triangles, 415
Hermite, 380, 394
Lagrange, 380
midpoint, 381, 393

on triangles, 414
Newton-Cotes, 386
on triangles, 413
pseudo-random, 417
trapezoidal, 383, 393, 448

on triangles, 414
quotient

Rayleigh, 13
generalized, 148

QZ iteration, 225

rank of a matrix, 11
rate

asymptotic convergence, 127
convergence, 261

reduction formula
midpoint, 412
trapezoidal, 412

reference triangle, 352
regularization, 33
representation

floating-point, 47
positional, 45

residual, 248
resolvent, 35
restart, 165
round digit, 53
rounding, 51
roundoff unit, 51
rule

Cramer’s, 59
Descartes, 265
Laplace, 10

Runge’s counterexample, 337, 352, 361

SAXPY, 79
saxpy, 78
scalar product, 18
scaling, 112

by rows, 113
Schur

complement, 105

decomposition, 15

semi-discretization, 592, 594

series

Chebyshev, 428

Fourier, 426, 590

Legendre, 429

set

bi-orthogonal, 188

similarity transformation, 15

singular integrals, 406

singular values, 17

space

normed, 19

phase, 532

Sobolev, 551

vector, 3

spectral radius, 14

spectrum of a matrix, 13

spline

cardinal, 359

interpolatory cubic, 357

natural, 357

not-a-knot, 358

one-dimensional, 355

parametric, 366

periodic, 357

splitting, 128

stability

absolute, 489, 509, 511

region of, 489

asymptotic, 481

factors, 42

Liapunov, 480

of interpolation, 337

relative, 511

zero, 486, 505, 511

standard deviation, 303

statistic mean value, 416

stencil, 455

stopping tests, 173, 273

strong formulation, 555

Sturm sequences, 229

subspace

generated, 4

invariant, 15

vector, 4

substructures, 103

Sylvester criterion, 29

Index 655

system
hyperbolic, 607

strictly, 607
overdetermined, 114
underdetermined, 117

theorem
Abel, 264
Bauer-Fike, 187
Cauchy, 265
Cayley-Hamilton, 14
Courant-Fisher, 148, 233
de la Vallée-Poussin, 444
equioscillation, 444
Gershgorin, 184
Ostrowski, 262
polynomial division, 266

Schur, 15
trace of a matrix, 10
transform

fast Fourier, 436
Fourier, 460
Laplace, 465
Zeta, 467

triangulation, 352, 582

underflow, 51
upwind finite difference, 572

weak
formulation, 553
solution, 553, 606

wobbling precision, 49

Texts in Applied Mathematics

(continued from page ii)

29. Tveito/Winther: Introduction to Partial Differential Equations:
A Computational Approach

30. Gasquet/Witomski: Fourier Analysis and Applications: Filtering,
Numerical Computation, Wavelets

31. Brémaud: Markov Chains: Gibbs Fields, Monte Carlo Simulation,
and Queues

32. Durran: Numerical Methods for Fluid Dynamics with Applications
in Geophysics

33. Thomas: Numerical Partial Differential Equations: Conservation
Laws and Elliptic Equations

34. Chicone: Ordinary Differential Equations with Applications, 2nd ed.
35. Kevorkian: Partial Differential Equations: Analytical Solution

Techniques, 2nd ed.
36. Dullerud/Paganini: A Course in Robust Control Theory:

A Convex Approach
37. Quarteroni/Sacco/Saleri: Numerical Mathematics, 2nd ed.
38. Gallier: Geometric Methods and Applications: For Computer Science

and Engineering
39. Atkinson/Han: Theoretical Numerical Analysis: A Functional Analysis

Framework, 2nd ed.
40. Brauer/Castillo-Chávez: Mathematical Models in Population Biology

and Epidemiology
41. Davies: Integral Transforms and Their Applications, 3rd ed.
42. Deuflhard/Bornemann: Scientific Computing with Ordinary

Differential Equations
43. Deuflhard/Hohmann: Numerical Analysis in Modern Scientific

Computing: An Introduction, 2nd ed.
44. Knabner/Angerman: Numerical Methods for Elliptic and Parabolic Partial

Differential Equations
45. Larsson/Thomée: Partial Differential Equations with Numerical Methods
46. Pedregal: Introduction to Optimization
47. Ockendon/Ockendon: Waves and Compressible Flow
48. Hinrichsen/Pritchard: Mathematical Systems Theory I: Modelling,

State Space Analysis, Stability and Robustness
49. Bullo/Lewis: Geometric Control of Mechanical Systems: Modeling,

Analysis, and Design for Simple Mechanical Control Systems
50. Verhulst: Methods and Applications of Singular Perturbations:

Boundary Layers and Multiple Timescale Dynamics
51. Bondeson/Rylander/Ingelström: Computational Electromagnetics
52. Holmes: Introduction to Numerical Methods in Differential Equations

