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Abstract

In this paper we describe the parallel distributed imple-
mentation of a linear solver for large-scale applications
involving real symmetric positive definite or complex sym-
metric non-Hermitian dense systems. The advantage of
this routine is that it performs a Cholesky factorization by
requiring half the storage needed by the standard parallel
libraries ScaLAPACK and PLAPACK. Our solver uses a J-
variant Cholesky algorithm and a one-dimensional block-
cyclic column data distribution but gives similar Gigaflops
performance when applied to problems that can be solved
on moderately parallel computers with up to 32 proces-
sors. Experiments and performance comparisons with
ScaLAPACK and PLAPACK on our target applications are
presented. These applications arise from the Earth’s grav-
ity field recovery and computational electromagnetics.

Key words: Scientific computing, parallel distributed algo-
rithms, symmetric dense linear systems, packed storage
format, Cholesky factorization, ScaLAPACK, PLAPACK

1 Introduction

The solution of large dense linear systems appears in
many engineering and scientific applications of computa-
tional sciences. This is, for instance, the case in geodesy
where the calculation of the gravity field requires the
solution of large linear least-squares problems that are
often solved using the normal equations approach. Such
dense linear systems also arise in electromagnetics appli-
cations when boundary elements are used. In these fields,
the recent developments of the fast multipole method
(FMM) enable us to perform dense matrix–vector prod-
ucts efficiently. This opens the possibility of using itera-
tive Krylov solvers for solving these large systems. In
particular, in electromagnetic computations, the FMMs
are established methods providing reliable solution of
linear systems up to a few tens of millions unknowns
on parallel computers (Sylvand, 2002) for industrial
calculations. In gravity field computations, these tech-
niques are studied in research codes, but further investi-
gations, mainly related to the accuracy of the solution,
are needed to bring them into use in operational codes.
For these latter calculations, dense factorizations are still
the methods of choice and out-of-core implementations
might be an alternative when the matrix does not fit into
the memory (Dongarra and D’Azevedo, 1997; Gunter et
al., 2000). With the advent of distributed memory parallel
platforms, in-core codes are affordable and the wide-
spread parallel libraries ScaLAPACK (Blackford et al.,
1997) and PLAPACK (van de Geijn, 1997) are often
selected to perform this linear algebra calculation. In par-
ticular, these libraries implement the Cholesky factoriza-
tion for symmetric positive definite linear systems but
they do not exploit the symmetry for the storage and the
complete matrix should be allocated while the factoriza-
tion only accesses half of it. This “waste” of memory
cannot be afforded for operational industrial calculations
since the memory of moderate size parallel computers is
often the main bottleneck. This is the main reason why
we develop a parallel distributed dense Cholesky factori-
zation based on message passing interface (MPI; MPI
Forum, 1994) that exploits the symmetry and stores only
half of the matrix.

We choose a factorization algorithm and a data distri-
bution that are different from the libraries ScaLAPACK
and PLAPACK and these choices will be validated as cor-
rect for up to 32 processors. For higher processor counts,
these choices should be reconsidered. Our algorithm imple-
ments:

- a J-variant block Cholesky factorization algo-
rithm;

- a block-cyclic column data distribution where only
the upper part of the matrix is stored, this storage
being implemented in a row-wise format;
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- message passing performed by non-blocking asyn-
chronous MPI routines;

- level 3 BLAS (Dongarra et al., 1990) routines in
order to account for the memory hierarchy on each
processor.

This paper is organized as follows. In Section 2, we
discuss the target applications that motivate the develop-
ment of this solver. The purpose of Section 3 is to com-
pare the features of the Cholesky factorization algorithm
as it is implemented respectively in our solver and in Sca-
LAPACK or PLAPACK. For both implementations we
successively describe the block algorithms in Section 3.1,
the data distributions in Section 3.2, while the expected
performance based on theoretical models is discussed in
Section 3.3. The parallel implementation of our solver is
detailed in Section 3.4. Then, in Section 4.1, we give some
numerical results obtained on the target operational paral-
lel distributed platforms in order to evaluate the parallel
performance of the algorithm. These results are compared
with those obtained with ScaLAPACK and PLAPACK. In
Section 4.2 we present a natural extension to solve dense
complex symmetric linear system arising in electromag-
netics simulations. Finally, some concluding remarks are
given in Section 5.

2 Target Applications

The first target application for our parallel Cholesky
solver arises in the framework of the European Space
Agency’s Gravity field and steady-state Ocean Circula-
tion Explorer (GOCE) mission dedicated to geodesy stud-
ies. This mission strives for a high-precision model of the
Earth’s static gravity field using measurements of the
GPS constellation (Pail and Plank, 2002). The parameters
are estimated using data recovered from daily GPS obser-
vations via a least-squares approach 
where c �

m is the observations vector and B �
m × n  is

a full column rank matrix. Such problems can be solved
either by using unitary transformations or by forming and
then solving the normal equations:

BTBx = BTc.

In this application, m is about 106 and n is slightly less than
105. It is known from Björck (1996) or Golub and van
Loan (1996) that, if the condition number of B is large and
the residual is small, the normal equations may be less
accurate than the QR factorization. However the normal
equations method is often favored by the users in geodesy
because, when m  n, it has half the computational cost of
a QR factorization (mn2 instead of 2mn2). Indeed, for
geodesy problems, the normal equations yield a solution

that is accurate enough for the users because the esti-
mated condition number of B is not too large. The n × n
matrix BTB can be decomposed using a Cholesky factori-
zation as BTB = UTU where U is an upper triangular matrix.
Then the normal equations become UTUx = BTc, and the
unknown vector x can be computed via forward and back-
ward substitutions. The cost in arithmetic operations can
be split as follows.

1. In the construction of the symmetric matrix BTB,
we only compute and store the upper triangular
part of BTB. Hence the cost in operations will be
�(mn2).

2. The Cholesky factorization algorithm involves
n3/3 operations.

3. The final step consists in solving two triangular
systems. Hence it involves 2n2 operations.

We point out that steps 1 and 2 are the most time-con-
suming tasks and need an efficient parallel distributed
implementation. The construction and storage of BTB has
been implemented using MPI and the obtained perform-
ance is close to the peak performance of the computers on
a matrix–matrix multiply (Parallel Algorithms Project,
2002, Section 6.3). The triangular solve, which is less
critical in terms of arithmetic operations, has been imple-
mented in a distributed manner but its performance study
is beyond the scope of this paper.

In recent years, there has been a significant amount of
work on the simulation of electromagnetic wave propaga-
tion phenomena, addressing various topics ranging from
radar cross-section to electromagnetic compatibility, to
absorbing materials, and antenna design. To address these
problems, the Maxwell equations are often solved in the
frequency domain. The discretization by the boundary
element method (BEM) results in linear systems with dense
complex symmetric matrices. With the advent of parallel
processing, solving these equations via direct methods has
become viable for large problems and the typical problem
size in the electromagnetics industry is on the increase.
Nowadays, the usual problem size is a few tens of thou-
sands. We may notice that there is no efficient parallel
solver based on compact storage for symmetric dense com-
plex matrices suited for the modeling of electromagnetic
scattering and running on moderate processor configura-
tions (less than 32 processors).

The numerical simulations we are interested in are
performed in a daily production mode at GRGS/Centre
National d’Etudes Spatiales (CNES) for the geodesy appli-
cation and by the Electromagnetism and Control Project
at CERFACS for the electromagnetism application. For
these projects, the target parallel platforms are moder-
ately parallel computers with up to 32 processors and less
than 2Gbytes memory per processor.

minx �
n∈ Bx c– 2

∈ ∈

»
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3 Parallel Implementation

3.1 BLOCK CHOLESKY FACTORIZATION

There are two main variants used for the block Cholesky
factorization. The variant referred to as J-variant in Ander-
son and Dongarra (1990) and Ortega and Romine (1988)
or left-looking algorithm in Gunter et al. (2000) computes
one block row of U at a time, using previously computed
lines that are located at the top of the block row being
updated. The second variant is referred to as K-variant in
Anderson and Dongarra (1990) or right-looking algo-
rithm in Gunter et al. (2000). This variant performs the
Cholesky decomposition A = UTU by computing a block
row at each step and using it to update the trailing subma-
trix. The K-variant algorithm is implemented in the Sca-
LAPACK routine PDPOTRF (Choi et al., 1996) and the
PLAPACK routine PLA_Chol (Alpatov et al., 1997). The
J-variant and the K-variant are described in Figure 1, where
the shaded part refers to matrix elements being accessed,
the dark shaded part represents the block row being com-
puted (current row), and the hatched part corresponds to
the data being updated. In order to describe the difference
between these two variants, let us consider the following
symmetric block matrix

,

where A22 is the diagonal block to be factored, assuming
that the first block row has been computed and that we
want to obtain the second block row.

The J-variant algorithm allows to advance the factori-
zation as described below

  ,

where the second block row is computed with the follow-
ing steps:

1. U22  Chol(A22–UT
12U12),

2. U23 U–T
22(A23  –UT

12U13).

The block A22 is first updated by using a matrix–matrix
product and then factored. Each block belonging to the
rest of the block row is updated by a matrix–matrix mul-
tiply followed by a triangular solve with multiple right-
hand sides.

According to the K-variant algorithm, we advance the
factorization as follows

 ,

Fig. 1 Memory access patterns for two variants of the Cholesky factorization.
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Ã33 
 
 
 
  U11 U12 U13

0 U22 U23

0 0 Ã33 
 
 
 
 

→



356 COMPUTING APPLICATIONS

where the second block row is computed with the follow-
ing steps:

1. U22  Chol( 22),
2. U23 U–T

22 23,
3.  33 33–UT

23U23.

The block 22 is first factored then U23 is computed by
using a triangular solve with multiple right-hand sides.
Finally, the trailing submatrix 33  is updated.

We notice that in both algorithms, the computational
work is contained in three routines: the matrix–matrix mul-
tiply, the triangular solve with multiple right-hand sides,
and the Cholesky factorization. These numerical kernels
can be respectively implemented using the Level 3 BLAS
and LAPACK (Anderson et al., 1999) routines: DGEMM,
DTRSM and DPOTRF. As explained in Anderson and
Dongarra (1990), similar performance can be expected
from both algorithms when the three dominant routines
are implemented equally well. Table 1 shows for two sam-
ple matrices that the operations involved in the DGEMM
routine represent the major part of the operations for
matrices involved in our applications and that this per-

centage increases with the size of the matrix (b corre-
sponds to the block size chosen in our algorithm).

We point out that our J-variant Cholesky algorithm that
is sometimes called left-looking has to be distinguished
from the algorithm referred to as left-looking LU in Don-
garra et al. (1998), which performs more DTRSM trian-
gular solves than the two other LU variants considered in
that book.

3.2 DATA DISTRIBUTION

The data layout used in our solver is the one-dimensional
block-cyclic column distribution. According to this lay-
out, we choose a block size b and we divide the columns
into groups of size b. Then we distribute these groups
among processors in a cyclic manner column by column.
Figure 2 shows an example of such a distribution for
an 8 × 8 block matrix when we have four processors
numbered 0, 1, 2, and 3. In this figure, each block is
labeled with the number of the processor that stores it.
The K-variant Cholesky algorithm implemented in Sca-
LAPACK or PLAPACK is based on a two-dimensional
block-cyclic data distribution. In this type of distribution,
the processors are arranged in a p × q rectangular array of
processors. According to this choice of grid, the matrix
blocks are assigned in a cyclic manner to different proc-
essors. Figure 2 shows an example of such a distribution
for an 8 × 8 block matrix if we have four processors with
p = 2 and q = 2. Note that a one-dimensional column dis-
tribution is a particular choice of two-dimensional distri-
bution if q = 1. We refer to Blackford et al. (1997) for a
more detailed description of these two types of data dis-
tribution.

Table 1
Breakdown of floating-point operations for 
block Cholesky algorithm.

Routine n = 500 – b = 64 n = 40,000 – b = 128

DGEMM 84.6 99.5

DTRSM 14.1 0.5

DPOTRF 1.3 0.001

← Ã
← Ã

Ã ← Ã

Ã

Ã

Fig. 2 Block-cyclic data distributions.
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3.3 PERFORMANCE PREDICTION

As we have chosen an algorithm and a data distribution
that are different from the standard libraries, we may see
the consequence of this choice on the expected factoriza-
tion times. We model the theoretical performance by
evaluating the elapsed computational time and assuming
that the communication is perfectly overlapped by the com-
putation. The model parameters are the problem size n,
the block size b, the number of processors p × q, and the
peak performance γ of a matrix–matrix product DGEMM
of size b on the target machine. The parameter b is usu-
ally tuned in order to obtain the best value for γ. In the
following, we will consider a peak performance γ ~3.3
Gflops obtained with a block size b = 128, this choice
being consistent with the performance of current parallel
platforms. We denote nb the number of columns of the
block matrix.

As shown in Table 1, the major part of computation for
both algorithms consists in performing the matrix–matrix
multiply DGEMM. Hence, if s is the total number of
arithmetic operations involved the Cholesky factoriza-
tion, then the elapsed factorization time can be accurately
approximated by s/γ.

For the J-variant algorithm using a one-dimensional
block column distribution, we have

,

where nc is the maximum number of block columns
treated per processor at step i.

For the K-variant algorithm and a two-dimensional
block cyclic distribution for a p × q processors grid, we
have

,

where ns and nu are the maximum number of blocks
treated per processor involved respectively in the triangu-
lar solve and in the update of the trailing submatrix. We
noticed experimentally that the choice of grid correspond-
ing to 1/2  p/q  1 ensures the best time (or close to).

The efficiency of the algorithm can be evaluated by
measuring how the performance degrades as the number
of processors p increases while each processor uses the
same amount of memory. This measures what we define
as isomemory scalability. This type of performance meas-
urement is suitable for our target applications since we
aim to use most of the memory available for each proces-
sor of the parallel machine. Using the above formula of s,
we obtain a theoretical factorization time and the result-
ing plots evaluate what we define as theoretical iso-
memory scalability of the algorithm. The problem size np
is such that each processor uses about the same amount of

memory σ. In particular, σ is the memory size required to
solve a problem of order n1 on one processor. We first
choose a value of n1 that is compatible with the minimal
memory capacity of current parallel machines. We take
n1 = 10,000, which corresponds to a σ = 800 Mbytes for
solvers storing the whole matrix and 400 Mbytes memory
storage for our symmetric solver. Then we measure the
factorization time for problem of size np that has to be
solved on p processors. The invariance of storage per
processor can be written

and then approximated by . In Figure 3(a), we
obtain the theoretical factorization times when the
number of processors increases from 1 to 256 and the cor-
responding matrix size increases from 10,000 to 160,000.
We see in Figure 3(a) that a discrepancy between the two
curves occurs for 32 processors (corresponding to a prob-
lem size of 56,569), due to difference of load-balance
resulting from the choice of data distribution. When more
than 64 processors are used, figures given by the model
confirm the well-known result that a two-dimensional
block cyclic distribution is better than a one-dimensional
block cyclic column distribution. However, as we can see
in Figure 3(b), the scalability properties of both layouts
are very similar for processor counts lower than 32.

3.4 PARALLEL IMPLEMENTATION OF 
THE J-VARIANT CHOLESKY ALGORITHM

3.4.1 Choice of a Data Structure As explained in Sec-
tion 1, one of the main objectives of our implementation is
to exploit the symmetry of the matrix by storing only
about half of it. This implies that the memory of each
processor will only contain the blocks assigned to this
processor that belong to the upper triangular part of the
symmetric matrix A. An appropriate choice for the struc-
ture containing these data must notably comply with the
memory hierarchy constraints (level 1, 2 or 3 cache or
TLB). More precisely, the fact that blocks are stored row-
wise or column-wise in a local array might have a signif-
icant influence on performance in terms of Mflops. This
will be illustrated in this paragraph by some experiments
performed on IBM pSeries 690 (using the essl scientific
library).

We saw in Section 3.1 that the calls to the BLAS 3 rou-
tine DGEMM and among them, the outer product between
two different block columns represent the major part of
the operations performed in a Cholesky factorization. If we
denote (Aij) the block triangular array corresponding to A,
then this outer product consists in computing the operation
on blocks Aij  Aij – Σi – 1

k =1  Akj where  i  is  the cur-
rent row and Aij(j > i) is the element of column j to

s nb
b3

3
----- nc i 1–( )2b3 b3+( )

i 1=

nb

∑+=

s nb
b3

3
----- nsb3 nu2b3+( )

i 1=

nb

∑+=

≤ ≤

n1 n1 1+( )
2

------------------------
np np 1+( )

2p
------------------------=

np n1 p≈

← Aki
T
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update. If nmax is the maximum number of blocks owned
by a given processor and b is the block size defined in
Section 3.3 then data blocks can be arranged in a Fortran
array according to either a block-row storage or a block-
column storage by using respectively an array of leading
dimension b and nmax × b columns or an array of leading
dimension nmax × b and b columns. As an example, the
matrix sample given in Figure 2 leads for processor 0 to a
local array that can be represented using a block-row
storage by

whereas it will be represented using a block-column stor-
age by

In order to evaluate the memory effect generated by
each data structure, we plot in Figure 4 the perform-
ance obtained on the IBM pSeries 690 for the instruc-
tion Aij Aij – Σnmax

k = 1 Akj   where the block columns
and  are stored either row-wise or

column-wise in a Fortran array. In our experiments we

set b = 128 and nmax = 50 but we obtained similar curves
for nmax > 50. Figure 4(a) is related to a block-row data
storage and the number of columns varies from nmax × b
to 3 × nmax × b. Figure 4(b) is related to a block-column
data storage and the leading dimension varies from nmax ×
b to 3 × nmax × b. Since the IBM pSeries 690 has a L1
cache two-way associative of 32 KB, we obtain the worst
performance when we successively access to data that
are distant from a multiple of 16 KB (because they are
stored in the same set of the cache memory). In a Fortran
array, the distance between two consecutive data of the
same line is the leading dimension of the array. Hence,
cache misses are expected when we access to two con-
secutive double-precision real in a line of an array whose
leading dimension is a multiple of 2048 (2048 = 16K/8).
We notice in Figure 4(b) that these spikes appear exactly
with the same period when performing the outer product
instruction and varying the leading dimension. We also
observe the secondary spikes appearing at fraction of
2048 (Goedecker and Hoisie, 2001). On the contrary, in a
block-row structure, the distance between two consecu-
tive entries in a line is b and performance obtained by
computing the outer product is more stable with much
less cache misses. Furthermore, if we use a block-row
storage, the blocks belonging to the same block column
will be contiguous in memory and then will map better to
the highest levels of cache. This data contiguity is also an
advantage when performing MPI operations. Taking
these results into consideration, we chose the row-wise
way of storing data blocks in the local memory of each
processor.

Fig. 3 Theoretical isomemory scalability (peak = 3.3 Gflops): (a) number of processors varying from 1 to 256; (b)
number of processors varying from 1 to 32.

A11 A15 A25 A35 A45 A55

A11
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A25

A35 .
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← Aki
T

Aki( )k 1 nmax,= Akj( )k 1 nmax,=
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3.4.2 Parallel Algorithm To begin with, half of the
symmetric matrix A is loaded into memory distributed in
a block upper triangular array (Aij)j > 1 according to the
layout described in Section 3.2 and stored into memory
according to the data storage described in Section 3.4.1.
We recall that nb is the number of columns of the block

matrix (Aij) and we denote by p the id of the current proc-
essor, (proc(i))i = 1, nb

 the array containing the processor id
for each block column i, and nprocs the total number of
processors involved in the parallel calculation. Then the
following parallel block algorithm is executed simultane-
ously by all processors:

Fig. 4 Cache misses on IBM pSeries 690 for variable size arrays: (a) block-row data storage; (b) block-column data
storage.
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As can be seen in instructions 1 and 4 of Algorithm 1,
data are sent as soon as they are available by a non-
blocking instruction MPI_Isend. This allows the overlap-
ping of the communications by the computations. The
update of the rest of the block row can be performed
by all the processors while the communications are still
ongoing. When these data are necessary for further use
by the sending processor at steps 6 and 8, the communi-
cation must be completed by using MPI_Wait instruction
(respectively in 5 and 7). In the same manner, messages
are received as soon as possible using the non-blocking
instruction MPI_Irecv in 9 and 11 and then completed by
MPI_Wait just before the received data are used in the
computations involved in instructions 12 and 14. These
non-blocking message exchanges save about 10% of the
factorization times on a matrix of dimension 24,000 on
16 processors of the IBM platform, compared with an
implementation using blocking instructions MPI_Send
and MPI_Recv.

4 Experiments

4.1 PERFORMANCE COMPARISONS

Experiments were conducted on the following platforms:

1. one node of an IBM pSeries 690 (32 proces-
sors Power-4/1.3 GHz and 64 Gbytes memory per
node),

2. a HP-COMPAQ Alpha Server (10 SMP nodes
with four processors EV68 1 GHz and 4 Gbytes
memory per node) installed at CERFACS.

Computations with ScaLAPACK were performed using
the pessl library on the IBM pSeries 690 and the COM-
PAQ ScaLAPACK V1.0.0 library on the HP-COMPAQ
Alpha Server. On both machines, we used PLAPACK
release 3.0.

We compare performance obtained by our J-variant Cho-
lesky algorithm and that of the Cholesky factorization
routines PDPOTRF and PLA_Chol. In Figure 5, we plot
the isomemory scalability defined in Section 3.3 (i.e. con-
stant memory allocation per processor). On this curve, the
problem size varies from 10,000 (for one processor and
corresponding to a memory storage per processor of about
800 Mbytes compatible with our target platforms) to
56,569 (for 32 processors). Figure 5 shows that, for up to
16 processors, our solver provides factorization times that
are close to those obtained by ScaLAPACK and PLA-
PACK. For 32 processors, performance of the libraries
using a two-dimensional block cyclic distribution are, as
expected, better and this is consistent with the theoretical
model described in Section 3.3.

Table 2 measures the scalability in floating-point oper-
ations of both algorithms, that we name isoflop scalability.
It shows how the performance per processor (in Gflops)
of the algorithms behaves when the number of processors
increases and while each processor performs the same
number of floating-point operations. Measuring a per-
formance per processor enables us to compare easily
with the peak performance of the machine. In the ideal
case, i.e. when the communication is perfectly over-
lapped by the computation, we expect this performance
being constant. This implies that, with the same notations
as in Section 3.3, np

3 = pn1
3,  i.e. np = n1 . In our experi-

Fig. 5 Isomemory scalability of the Cholesky factorization: (a) IBM pSeries 690; (b) HP-COMPAQ Alpha Server.

p3
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ments, we chose n1 = 9449 and this corresponds to a
memory storage per processor of about 700 Mbytes for
ScaLAPACK and PLAPACK (350 Mbytes for our solver)
and a fixed number of about 2.8 × 1011 floating-point
operations per processor. It can be seen in Table 2 that
the performance of the three routines is similar up to 16
processors and that, for 32 processors, our solver is slightly
less efficient than ScaLAPACK and PLAPACK. For all
routines, we notice that performance decreases signifi-
cantly with the number of processors, due to the cost of the
communications.

Now if we compare factorization times obtained on
each machine for a given problem size, we notice that the
IBM pSeries 690 is about twice as fast as the HP-COM-
PAQ Alpha, as it was expected since the Power 4 and the
EV68 processors have a peak computation rate of respec-
tively 5.2 Gflops and 2 Gflops.

4.2 APPLICATION TO 
ELECTROMAGNETISM

Contrary to the previous section, the problems we con-
sider in this section use complex arithmetic. Large, dense
and symmetric linear systems in complex arithmetic can
be found in the area of electromagnetism. They result
from boundary-element formulations for the solution of
the three-dimensional Maxwell’s equations. Many of
these applications are still exploiting direct methods like
LU (or sometimes LDLT) factorization (Alléon et al.,
1997; Bendali and Fares, 1999).

We propose to extend the factorization technique that
we developed in real arithmetic and thereby to save 50%
of the storage compared with standard software consid-
ered in Alléon et al. (1997) and Bendali and Fares (1999).
Moreover, the computational cost of a UTU factorization
is half that of an LU factorization (n3/3 instead of 2n3/3
and with complex operations). Note that a LDLT factori-
zation with Bunch–Kauffman diagonal pivoting could
have also be used but, as shown in Béreux (2003), pro-

vided there is no need for pivoting, a UTU factorization is
as accurate and faster. Since we do not perform any piv-
oting in our software, similarly to Li and Demmel (2003),
we implemented an iterative refinement functionality
(Higham, 2002, p. 232) to improve the accuracy and sta-
bility of our solver.

Our solver enables us to switch easily the data type and
to replace the LAPACK routine DPOTRF (that factors
diagonal blocks) by a routine performing unblocked com-
plex UTU factorization. Even if this routine is less effi-
cient than the corresponding LAPACK routine ZPOTRF
(which cannot be used here because it provides a UHU
factorization), this has no significant effect on the factor-
ization time since the operations involved in factoring the
diagonal blocks represent a very small part of total opera-
tions. Experiments were conducted on eight processors of
the HP-COMPAQ Alpha Server from CERFACS. The
selected geometry is an aircraft with a mesh size of
18,264 represented in Figure 6. The observed elapsed
times were 762 s for our UTU factorization and 1310 s for
the ScaLAPACK LU factorization used in the code CESC

Table 2
 Isoflop scalability for the Cholesky factorization (Gflops).

IBM pSeries 690 HP-COMPAQ Alpha Server

nb procs size our solver PDPOTRF PLA_Chol our solver PDPOTRF PLA_Chol

1 9449 3.3 2.9 2.9 1.5 1.5 1.5

2 11906 3.2 2.9 2.9 1.5 1.4 1.5

4 15000 2.9 2.9 2.9 1.4 1.3 1.4

8 18899 2.7 2.7 2.7 1.3 1.2 1.3

16 23811 2.5 2.5 2.5 1.1 1.1 1.2

32 30000 2 2.2 2.2 0.7 0.8 1

Fig. 6 Mesh of aircraft test example for electromag-
netism calculation.
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(Bendali and Fares, 1999) from the CERFACS EMC
Project. We computed the corresponding scaled residual

and we obtained 2.75 × 10–14 (for 64-bit double precision
calculation). Since the physicists require a scaled residual
of order 10–6, the iterative refinement was not activated.

Even if our algorithm involves half the number of oper-
ations needed for an LU factorization, we do not obtain
exactly a factorization time that is half that of an LU. This
relatively poor performance of a Cholesky factorization
compared to an LU factorization can be explained by the
fact that the ScaLAPACK LU factorization does not
involve a number of message exchanges that is twice as
much as our Cholesky factorization. In fact, at each step
of the algorithm, the Cholesky factorization performed
either by ScaLAPACK or our symmetric solver involves
two communications as opposed to three for the ScaLA-
PACK LU. To illustrate this, we give in Table 3 the ratio
between factorization times obtained by ScaLAPACK LU
and our solver for other sizes of matrices arising from
electromagnetism problems. We notice that the perform-
ance ratio is decreasing when the number of processors
grows and thus when the impact of the communication on
the global performance is more sensible. We obtain simi-
lar ratios when we compare performance of ScaLAPACK
LU and that of ScaLAPACK Cholesky. Similar behavior
has been observed in Choi et al. (1996).

5 Conclusion

We have described an implementation of a parallel
symmetric solver involving algorithmic and distribution
choices that are different from that of ScaLAPACK and
PLAPACK. The behavior that one can expect from the
theoretical model has been confirmed by experiments up
to 32 processors. The obtained solution complies with the
experimental operational constraints and we can solve
problems of size corresponding to the target applications.

For instance, problems of size 100,000 were solved on an
IBM pSeries 690 in 1 h 20 min using 32 processors. We
also solved problems of size 100,000 on HP-COMPAQ
Alpha in 2 h 40 min using 32 processors on nodes that
have 2 Gbytes memory per processor. Our parallel dis-
tributed symmetric solver is efficient to solve geodesy
least-squares problems by a normal equations method
and also to solve complex linear systems encountered in
electromagnetism. From a numerical point of view, some
additional work can be developed. In this respect, we are
planning to add to our implementation a condition number
estimate to fully assess the normal equations approach
for the geodesy application. Furthermore, other approaches
to design parallel linear solvers might consist in using
high-level parallel routines in PLAPACK or PBLAS/
ScaLAPACK. They deserve to be investigated and will
be the topic of further studies.
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