Extreme supercharacters of the infinite unitriangular group

Carlos A. M. André

(CMUC, CMAFcIO, ULisboa)

The 14th Combinatorics Days - Almada

(Universidade Nova de Lisboa, June 27-29, 2024.)

(Γ, *κ***)**

consisting of

where the edges only connect vertices from neighbouring levels,

a multiplicity function

 $\kappa \colon \mathcal{A}(\Gamma) \to \mathbb{N}, \qquad (\lambda, \Lambda) \mapsto \kappa(\lambda, \Lambda).$

We assume that there is a single vertex of level 0 and we denote it by \emptyset ; thus, $\Gamma_0 = \{\emptyset\}$.

(Γ, *κ***)**

consisting of

- a graded graph with
 - vertex set: $\Gamma = \bigcup \Gamma_n$
 - edge set: $\mathcal{A}(\Gamma) \subseteq \bigcup_{n \ge 0}^{n \ge 0} (\Gamma_n \times \Gamma_{n+1})$

where the edges only connect vertices from neighbouring levels,

• a multiplicity function

 $\kappa \colon \mathcal{A}(\Gamma) \to \mathbb{N}, \qquad (\lambda, \Lambda) \mapsto \kappa(\lambda, \Lambda).$

We assume that there is a single vertex of level 0 and we denote it by \emptyset ; thus, $\Gamma_0 = \{\emptyset\}$.

(Γ, *κ***)**

consisting of

- a graded graph with
 - vertex set: $\Gamma = \bigcup \Gamma_n$
 - edge set: $\mathcal{A}(\Gamma) \subseteq \bigcup_{n \geq 0} (\Gamma_n \times \Gamma_{n+1})$

n≥0

where the edges only connect vertices from neighbouring levels,

• a multiplicity function

$$\kappa \colon \mathcal{A}(\Gamma) \to \mathbb{N}, \qquad (\lambda, \Lambda) \mapsto \kappa(\lambda, \Lambda).$$

We assume that there is a single vertex of level 0 and we denote it by \emptyset ; thus, $\Gamma_0 = \{\emptyset\}$.

(Γ, *κ***)**

consisting of

- a graded graph with
 - vertex set: $\Gamma = \bigcup \Gamma_n$
 - edge set: $\mathcal{A}(\Gamma) \subseteq \bigcup_{n \ge 0} (\Gamma_n \times \Gamma_{n+1})$

n≥0

where the edges only connect vertices from neighbouring levels,

• a multiplicity function

$$\kappa \colon \mathcal{A}(\Gamma) \to \mathbb{N}, \qquad (\lambda, \Lambda) \mapsto \kappa(\lambda, \Lambda).$$

We assume that there is a single vertex of level 0 and we denote it by $\emptyset;$ thus, $\Gamma_0=\{\emptyset\}.$

< • • • **•**

. . .

< ∃→

æ

- $\Gamma_n = \{ \text{Young diagrams with } n \text{ boxes} \}, \quad n \in \mathbb{N}.$
- There is an edge between the vertices λ ∈ Γ_n and Λ ∈ Γ_{n+1} if Λ is obtained from λ by adjunction of a box.
- All edges have multiplicity 1.

- $\Gamma_n = \{ \text{Young diagrams with } n \text{ boxes} \}, \quad n \in \mathbb{N}.$
- There is an edge between the vertices λ ∈ Γ_n and Λ ∈ Γ_{n+1} if Λ is obtained from λ by adjunction of a box.
- All edges have multiplicity 1.

- $\Gamma_n = \{ \text{Young diagrams with } n \text{ boxes} \}, \quad n \in \mathbb{N}.$
- There is an edge between the vertices λ ∈ Γ_n and Λ ∈ Γ_{n+1} if Λ is obtained from λ by adjunction of a box.
- All edges have multiplicity 1.

- $\Gamma_n = \{ \text{Young diagrams with } n \text{ boxes} \}, \quad n \in \mathbb{N}.$
- There is an edge between the vertices λ ∈ Γ_n and Λ ∈ Γ_{n+1} if Λ is obtained from λ by adjunction of a box.
- All edges have multiplicity 1.

- Each vertex λ ∈ Γ_n corresponds to an irreducible character χ_λ of S_n (and vice versa).
- For $\lambda \in \Gamma_{n-1}$ and $\Lambda \in \Gamma_n$, the multiplicity $\kappa(\lambda), \Lambda$ is determined by restriction

$$\mathsf{Res}_{\mathcal{S}_{n+1}}^{\mathcal{S}_n}(\chi_{\Lambda}) = \sum_{\lambda \in \mathsf{F}_{n+1}} \kappa(\lambda, \Lambda) \chi_{\lambda}.$$

$$\operatorname{Ind}_{S_{n-1}}^{S_n}(\chi_{\lambda}) = \sum_{\Lambda \in \Gamma_n} \kappa(\lambda, \Lambda) \chi_{\Lambda}.$$

- Each vertex λ ∈ Γ_n corresponds to an irreducible character χ_λ of S_n (and vice versa).
- For $\lambda \in \Gamma_{n-1}$ and $\Lambda \in \Gamma_n$, the multiplicity $\kappa(\lambda), \Lambda$ is determined by restriction

$$\mathsf{Res}_{\mathcal{S}_{n-1}}^{\mathcal{S}_n}(\chi_{\Lambda}) = \sum_{\lambda \in \mathsf{\Gamma}_{n-1}} \kappa(\lambda, \Lambda) \chi_{\lambda}.$$

$$\operatorname{Ind}_{S_{n-1}}^{S_n}(\chi_{\lambda}) = \sum_{\Lambda \in \Gamma_n} \kappa(\lambda, \Lambda) \chi_{\Lambda}.$$

- Each vertex λ ∈ Γ_n corresponds to an irreducible character χ_λ of S_n (and vice versa).
- For λ ∈ Γ_{n-1} and Λ ∈ Γ_n, the multiplicity κ(λ), Λ) is determined by restriction

$$\operatorname{\mathsf{Res}}_{\mathcal{S}_{n-1}}^{\mathcal{S}_n}(\chi_{\Lambda}) = \sum_{\lambda \in \Gamma_{n-1}} \kappa(\lambda, \Lambda) \chi_{\lambda}.$$

$$\operatorname{Ind}_{S_{n-1}}^{S_n}(\chi_{\lambda}) = \sum_{\Lambda \in \Gamma_n} \kappa(\lambda, \Lambda) \chi_{\Lambda}.$$

- Each vertex λ ∈ Γ_n corresponds to an irreducible character χ_λ of S_n (and vice versa).
- For λ ∈ Γ_{n-1} and Λ ∈ Γ_n, the multiplicity κ(λ), Λ) is determined by restriction

$$\operatorname{\mathsf{Res}}_{\mathcal{S}_{n-1}}^{\mathcal{S}_n}(\chi_{\Lambda}) = \sum_{\lambda \in \Gamma_{n-1}} \kappa(\lambda, \Lambda) \chi_{\lambda}.$$

$$\operatorname{Ind}_{S_{n-1}}^{S_n}(\chi_{\lambda}) = \sum_{\Lambda \in \Gamma_n} \kappa(\lambda, \Lambda) \chi_{\Lambda}.$$

 $\Gamma_n = \{ \text{partitions of the set } [n] \}$

- If λ is a partition of [n] and 1 ≤ i < j ≤ n, the pair (i, j) is a arc of λ if i and j occur in the same block B of λ and there is no k ∈ B with i < k < j; we denote by D(λ) the set of arcs of λ.
- The standard representation of λ is the graph with vertices 1, 2, ..., n and edges D(λ). For example, λ = 157/3/4/689 has a standard representation

 $\Gamma_n = \{ \text{partitions of the set } [n] \}$

- If λ is a partition of [n] and 1 ≤ i < j ≤ n, the pair (i, j) is a arc of λ if i and j occur in the same block B of λ and there is no k ∈ B with i < k < j; we denote by D(λ) the set of arcs of λ.
- The standard representation of λ is the graph with vertices 1, 2, ..., n and edges D(λ). For example, λ = 157/3/4/689 has a standard representation

 $\Gamma_n = \{ \text{partitions of the set } [n] \}$

- If λ is a partition of [n] and 1 ≤ i < j ≤ n, the pair (i, j) is a arc of λ if i and j occur in the same block B of λ and there is no k ∈ B with i < k < j; we denote by D(λ) the set of arcs of λ.
- The standard representation of λ is the graph with vertices 1, 2, ..., n and edges D(λ). For example, λ = 157/3/4/689 has a standard representation

 $\Gamma_n = \{ \text{partitions of the set } [n] \}$

- If λ is a partition of [n] and 1 ≤ i < j ≤ n, the pair (i, j) is a arc of λ if i and j occur in the same block B of λ and there is no k ∈ B with i < k < j; we denote by D(λ) the set of arcs of λ.
- The standard representation of λ is the graph with vertices 1, 2, ..., n and edges $D(\lambda)$. For example, $\lambda = \frac{157}{3} \frac{4}{689}$ has a standard representation

Let:

- \mathbb{F}_q the finite field with q elements.
- $\mathfrak{u}_n(q)$ the nilpotent \mathbb{F}_q -algebra nilpotente consisting of all (strictly) upper-triangular $n \times n$ matrices with coefficients in \mathbb{F}_q .
- $U_n(q) = 1 + \mathfrak{u}_n(q)$ the UNITRIANGULAR GROUP over \mathbb{F}_q .

To each partition λ of [n] we associate the matrix

$$e_\lambda = \sum_{(i,j)\in D(\lambda)} e_{i_\lambda}$$

where

$$\left\{ e_{i,j} \colon 1 \leq i < j \leq n \right\}$$

is the canonical basis of $\mathfrak{u}_n(q)$.

Let:

- \mathbb{F}_q the finite field with q elements.
- $\mathfrak{u}_n(q)$ the nilpotent \mathbb{F}_q -algebra nilpotente consisting of all (strictly) upper-triangular $n \times n$ matrices with coefficients in \mathbb{F}_q .
- $U_n(q) = 1 + \mathfrak{u}_n(q)$ the UNITRIANGULAR GROUP over \mathbb{F}_q .

To each partition λ of [n] we associate the matrix

$$e_{\lambda} = \sum_{(i,j)\in D(\lambda)} e_{i,j}$$

where

$$\left\{ e_{i,j} \colon 1 \leq i < j \leq n \right\}$$

is the canonical basis of $u_n(q)$.

For example, for $\lambda = 157/23/4/689$,

For each partition λ of [*n*], we define the SUPERCLASS

$$\mathcal{K}_{\lambda} = 1 + B_n(q) e_{\lambda} B_n(q) \subseteq U_n(q)$$

where

 $B_n(q) = \{$ invertible upper-triangular matrices with coefficients in $\mathbb{F}_q \}$.

It is clear that $U_n(q)$ is the disjoint union

 $U_n(q) = \bigcup_{\lambda \vdash [n]} \mathfrak{K}_{\lambda},$

and that each superclass is a union of conjugacy classes of $U_n(q)$.

A function $\xi \colon U_n(q) \to \mathbb{C}$ is said to be a SUPERCLASS FUNCTION if ξ is constant in each superclass of $U_n(q)$. We define

 $SC_n = \{superclass functions of U_n(q)\}$

For each partition λ of [*n*], we define the SUPERCLASS

 $\mathcal{K}_{\lambda} = 1 + B_n(q) e_{\lambda} B_n(q) \subseteq U_n(q)$

where

 $B_n(q) = \{$ invertible upper-triangular matrices with coefficients in $\mathbb{F}_q \}$.

It is clear that $U_n(q)$ is the disjoint union

 $U_n(q) = \bigcup_{\lambda \vdash [n]} \mathfrak{K}_{\lambda},$

and that each superclass is a union of conjugacy classes of $U_n(q)$.

A function $\xi \colon U_n(q) \to \mathbb{C}$ is said to be a SUPERCLASS FUNCTION if ξ is constant in each superclass of $U_n(q)$. We define

 $SC_n = \{superclass functions of U_n(q)\}$

For each partition λ of [*n*], we define the SUPERCLASS

 $\mathcal{K}_{\lambda} = 1 + B_n(q) e_{\lambda} B_n(q) \subseteq U_n(q)$

where

 $B_n(q) = \{$ invertible upper-triangular matrices with coefficients in $\mathbb{F}_q \}$.

It is clear that $U_n(q)$ is the disjoint union

$$U_n(q) = \bigcup_{\lambda \vdash [n]} \mathcal{K}_{\lambda},$$

and that each superclass is a union of conjugacy classes of $U_n(q)$.

A function $\xi: U_n(q) \to \mathbb{C}$ is said to be a SUPERCLASS FUNCTION if ξ is constant in each superclass of $U_n(q)$. We define

 $SC_n = \{ superclass functions of U_n(q) \}.$

Another base is made up of the supercharacters of $U_n(q)$.

- A function $\xi \in SC_n$ is a SUPERCHARACTER OF $U_n(q)$ if:
 - ξ is supercentral: $\xi(g) = \xi(e_{\lambda})$ whenever $g \in \mathfrak{K}_{\lambda}$ for $\lambda \vdash [n]$.
 - ξ is normalised: $\xi(1) = 1$.
 - ξ is positive definite:
 - $\xi(g^{-1}) = \overline{\xi(g)}$ for all $g \in G$.
 - For any $g_1, \ldots, g_k \in G$, the hermitic matrix

 $\left[\phi(\mathbf{g}_i \mathbf{g}_j^{-1})\right]_{1 \leq i,j \leq k}$

Another base is made up of the supercharacters of $U_n(q)$.

- A function $\xi \in SC_n$ is a SUPERCHARACTER OF $U_n(q)$ if:
 - ξ is supercentral: $\xi(g) = \xi(e_{\lambda})$ whenever $g \in \mathcal{K}_{\lambda}$ for $\lambda \vdash [n]$.
 - ξ is normalised: $\xi(1) = 1$.
 - ξ is positive definite:
 - $\xi(g^{-1}) = \overline{\xi(g)}$ for all $g \in G$.
 - For any $g_1, \ldots, g_k \in G$, the hermitic matrix

 $\left[\phi(\mathbf{g}_i \mathbf{g}_j^{-1})\right]_{1 \leq i,j \leq k}$

Another base is made up of the supercharacters of $U_n(q)$.

- A function $\xi \in SC_n$ is a SUPERCHARACTER OF $U_n(q)$ if:
 - ξ is supercentral: $\xi(g) = \xi(e_{\lambda})$ whenever $g \in \mathcal{K}_{\lambda}$ for $\lambda \vdash [n]$.
 - ξ is normalised: $\xi(1) = 1$.
 - ξ is positive definite:
 - $\xi(g^{-1}) = \overline{\xi(g)}$ for all $g \in G$.
 - For any $g_1, \ldots, g_k \in G$, the hermitic matrix

 $\left[\phi(g_ig_j^{-1})
ight]_{1\leq i,j\leq k}$

Another base is made up of the supercharacters of $U_n(q)$.

- A function $\xi \in SC_n$ is a SUPERCHARACTER OF $U_n(q)$ if:
 - ξ is supercentral: $\xi(g) = \xi(e_{\lambda})$ whenever $g \in \mathcal{K}_{\lambda}$ for $\lambda \vdash [n]$.

```
• \xi is normalised: \xi(1) = 1.
```

```
• \xi is positive definite:
```

```
• \xi(g^{-1}) = \overline{\xi(g)} for all g \in G.
```

• For any $g_1, \ldots, g_k \in G$, the hermitic matrix

 $\left[\phi(oldsymbol{g}_ioldsymbol{g}_j^{-1})
ight]_{1\leq i,j\leq k}$

Another base is made up of the supercharacters of $U_n(q)$.

- A function $\xi \in SC_n$ is a SUPERCHARACTER OF $U_n(q)$ if:
 - ξ is supercentral: $\xi(g) = \xi(e_{\lambda})$ whenever $g \in \mathcal{K}_{\lambda}$ for $\lambda \vdash [n]$.
 - ξ is normalised: $\xi(1) = 1$.
 - ξ is positive definite:

• $\xi(g^{-1}) = \overline{\xi(g)}$ for all $g \in G$.

• For any $g_1, \ldots, g_k \in G$, the hermitic matrix

 $ig[\phi({m g}_i{m g}_j^{-1})ig]_{1\leq i,j\leq k}$

Another base is made up of the supercharacters of $U_n(q)$.

- A function $\xi \in SC_n$ is a SUPERCHARACTER OF $U_n(q)$ if:
 - ξ is supercentral: $\xi(g) = \xi(e_{\lambda})$ whenever $g \in \mathcal{K}_{\lambda}$ for $\lambda \vdash [n]$.
 - ξ is normalised: $\xi(1) = 1$.
 - ξ is positive definite:

• $\xi(g^{-1}) = \overline{\xi(g)}$ for all $g \in G$.

• For any $g_1, \ldots, g_k \in G$, the hermitic matrix

 $\left[\phi(\mathbf{g}_i \mathbf{g}_j^{-1})
ight]_{1\leq i,j\leq k}$

Another base is made up of the supercharacters of $U_n(q)$.

- A function $\xi \in SC_n$ is a SUPERCHARACTER OF $U_n(q)$ if:
 - ξ is supercentral: $\xi(g) = \xi(e_{\lambda})$ whenever $g \in \mathcal{K}_{\lambda}$ for $\lambda \vdash [n]$.
 - ξ is normalised: $\xi(1) = 1$.
 - ξ is positive definite:
 - $\xi(g^{-1}) = \overline{\xi(g)}$ for all $g \in G$.
 - For any $g_1, \ldots, g_k \in G$, the hermitic matrix

 $\left[\phi(g_ig_j^{-1})
ight]_{1\leq i,j\leq k}$

Another base is made up of the supercharacters of $U_n(q)$.

- A function $\xi \in SC_n$ is a SUPERCHARACTER OF $U_n(q)$ if:
 - ξ is supercentral: $\xi(g) = \xi(e_{\lambda})$ whenever $g \in \mathcal{K}_{\lambda}$ for $\lambda \vdash [n]$.
 - ξ is normalised: $\xi(1) = 1$.
 - *ξ* is *positive definite*:
 - $\xi(g^{-1}) = \overline{\xi(g)}$ for all $g \in G$.
 - For any $g_1, \ldots, g_k \in G$, the hermitic matrix

 $\left[\phi(g_ig_j^{-1})\right]_{1\leq i,j\leq k}$

$$U_{n-1}(q)\cong egin{pmatrix} U_{n-1}(q) & 0\ 0 & 1 \end{pmatrix}\leq U_n(q).$$

For each $\Lambda \vdash [n]$, the *restriction*

 $\operatorname{\mathsf{Res}}_{U_{n-1}(q)}^{U_n(q)}(\xi_{\Lambda})$

is a superclass function of $U_{n-1}(q)$.

In fact,

$$\mathsf{Res}^{U_n(q)}_{U_{n-1}(q)}(\xi_{\Lambda}) = \sum_{\lambda \vdash [n-1]} \kappa(\lambda, \Lambda) \xi_{\lambda}, \qquad \kappa(\lambda, \Lambda) \in \mathbb{N}_0.$$

In this way, we obtain the multiplicity function

 $\kappa \colon \Gamma \times \Gamma \to \mathbb{N}_0$

which defines a scheme $(\mathsf{\Gamma},\kappa).$

$$U_{n-1}(q)\cong egin{pmatrix} U_{n-1}(q) & 0\ 0 & 1 \end{pmatrix}\leq U_n(q).$$

For each $\Lambda \vdash [n]$, the *restriction*

 $\mathsf{Res}^{U_n(q)}_{U_{n-1}(q)}(\xi_{\Lambda})$

is a superclass function of $U_{n-1}(q)$.

In fact,

$$\mathsf{Res}_{U_{n-1}(q)}^{U_n(q)}(\xi_{\Lambda}) = \sum_{\lambda \vdash [n-1]} \kappa(\lambda, \Lambda) \xi_{\lambda}, \qquad \kappa(\lambda, \Lambda) \in \mathbb{N}_0.$$

In this way, we obtain the multiplicity function

 $\kappa \colon \Gamma \times \Gamma \to \mathbb{N}_0$

which defines a scheme $(\mathsf{\Gamma},\kappa).$

$$U_{n-1}(q)\cong egin{pmatrix} U_{n-1}(q) & 0\ 0 & 1 \end{pmatrix}\leq U_n(q).$$

For each $\Lambda \vdash [n]$, the *restriction*

 $\mathsf{Res}^{U_n(q)}_{U_{n-1}(q)}(\xi_{\Lambda})$

is a superclass function of $U_{n-1}(q)$.

In fact,

$$\mathsf{Res}^{U_n(q)}_{U_{n-1}(q)}(\xi_{\Lambda}) = \sum_{\lambda \vdash [n-1]} \kappa(\lambda, \Lambda) \xi_{\lambda}, \qquad \kappa(\lambda, \Lambda) \in \mathbb{N}_0.$$

In this way, we obtain the multiplicity function

 $\kappa \colon \Gamma \times \Gamma \to \mathbb{N}_0$

which defines a scheme (Γ, κ) .

$$U_{n-1}(q)\cong egin{pmatrix} U_{n-1}(q) & 0\ 0 & 1 \end{pmatrix}\leq U_n(q).$$

For each $\Lambda \vdash [n]$, the *restriction*

 $\operatorname{\mathsf{Res}}_{U_{n-1}(q)}^{U_n(q)}(\xi_{\Lambda})$

is a superclass function of $U_{n-1}(q)$.

In fact,

$$\mathsf{Res}^{U_n(q)}_{U_{n-1}(q)}(\xi_{\Lambda}) = \sum_{\lambda \vdash [n-1]} \kappa(\lambda, \Lambda) \xi_{\lambda}, \qquad \kappa(\lambda, \Lambda) \in \mathbb{N}_0.$$

In this way, we obtain the multiplicity function

 $\kappa\colon \Gamma\times\Gamma\to\mathbb{N}_0$

which defines a scheme (Γ, κ) .
For $1 \leq i < j \leq n$, we define $\xi_{i,j} \colon U_n(q) \to \mathbb{C}$ as follows.

If $g \in K_{\lambda}$ for $\lambda \vdash [n]$, we put

 $d_{i,j}(\lambda) = \# ig\{ i < k < j \colon (k,l) \in D(\lambda) ext{ for some } i < k < l < j ig\}.$

Then

 $\xi_{i,j}(g) = \begin{cases} 0, & \text{if } \{(i,k), (k,j)\} \cap D(\lambda) \neq \emptyset \text{ for some } i < k < j, \\ -q^{d_{i,j}(\lambda)}, & \text{if } (i,j) \in D(\lambda), \\ q^{d_{i,j}(\lambda)}, & \text{otherwise} \end{cases}$

 $\xi_{i,j}$ is the supercharacter associated with the partition $\lambda \vdash [n]$ such that $D(\lambda) = \{(i,j)\}.$

• = • • = •

3

For $1 \leq i < j \leq n$, we define $\xi_{i,j} \colon U_n(q) \to \mathbb{C}$ as follows.

If $g \in K_{\lambda}$ for $\lambda \vdash [n]$, we put

 $d_{i,j}(\lambda) = \# \{ i < k < j : (k, l) \in D(\lambda) \text{ for some } i < k < l < j \}.$

Then

 $\xi_{i,j}(g) = \begin{cases} 0, & \text{if } \{(i,k), (k,j)\} \cap D(\lambda) \neq \emptyset \text{ for some } i < k < j, \\ -q^{d_{i,j}(\lambda)}, & \text{if } (i,j) \in D(\lambda), \\ q^{d_{i,j}(\lambda)}, & \text{otherwise} \end{cases}$

 $\xi_{i,j}$ is the supercharacter associated with the partition $\lambda \vdash [n]$ such that $D(\lambda) = \{(i,j)\}.$

For $1 \leq i < j \leq n$, we define $\xi_{i,j} \colon U_n(q) \to \mathbb{C}$ as follows.

If $g \in K_{\lambda}$ for $\lambda \vdash [n]$, we put

 $d_{i,j}(\lambda) = \# \{ i < k < j : (k, l) \in D(\lambda) \text{ for some } i < k < l < j \}.$

Then,

 $\xi_{i,j}(g) = \begin{cases} 0, & \text{if } \{(i,k), (k,j)\} \cap D(\lambda) \neq \emptyset \text{ for some } i < k < j, \\ -q^{d_{i,j}(\lambda)}, & \text{if } (i,j) \in D(\lambda), \\ q^{d_{i,j}(\lambda)}, & \text{otherwise} \end{cases}$

 $\xi_{i,j}$ is the supercharacter associated with the partition $\lambda \vdash [n]$ such that $D(\lambda) = \{(i,j)\}.$

For $1 \leq i < j \leq n$, we define $\xi_{i,j} \colon U_n(q) \to \mathbb{C}$ as follows.

If $g \in K_{\lambda}$ for $\lambda \vdash [n]$, we put

 $d_{i,j}(\lambda) = \# \{ i < k < j : (k, l) \in D(\lambda) \text{ for some } i < k < l < j \}.$

Then,

$$\xi_{i,j}(g) = \begin{cases} 0, & \text{if } \{(i,k),(k,j)\} \cap D(\lambda) \neq \emptyset \text{ for some } i < k < j, \\ -q^{d_{i,j}(\lambda)}, & \text{if } (i,j) \in D(\lambda), \\ q^{d_{i,j}(\lambda)}, & \text{otherwise} \end{cases}$$

 $\xi_{i,j}$ is the supercharacter associated with the partition $\lambda \vdash [n]$ such that $D(\lambda) = \{(i,j)\}.$

3

We can prove that

$$\mathsf{Res}_{U_{n-1}(q)}^{U_n(q)}(\xi_{i,j}) = \begin{cases} \xi_{i,j}, & \text{if } j < n, \\ 1_{U_{n-1}(q)} + \xi_{i,i+1} + \dots + \xi_{i,n-1}, & \text{otherwise} \end{cases}$$

Note that the trivial character

$$1_{U_n(q)} = \xi_{1/2/.../n}$$

is the supercharacter that corresponds to the partition $\lambda = 1/2/.../n$ (where $D(\lambda) = \emptyset$).

ъ

э

We can prove that

$$\mathsf{Res}_{U_{n-1}(q)}^{U_n(q)}(\xi_{i,j}) = \begin{cases} \xi_{i,j}, & \text{if } j < n, \\ 1_{U_{n-1}(q)} + \xi_{i,i+1} + \dots + \xi_{i,n-1}, & \text{otherwise} \end{cases}$$

Note that the trivial character

$$1_{U_n(q)} = \xi_{1/2/.../n}$$

is the supercharacter that corresponds to the partition $\lambda = 1/2/.../n$ (where $D(\lambda) = \emptyset$).

$$arphi(\lambda) = \sum_{(\lambda,\Lambda)\in\mathcal{A}(\Gamma)} \kappa(\lambda,\Lambda) arphi(\Lambda) \qquad ext{for all } \lambda\in\Gamma.$$

We denote by

 $\mathcal{H}(\mathsf{\Gamma},\kappa)$

the space of all harmonic functions $\varphi\colon\Gamma\to\mathbb{R}^+_0$ normalised by the condition $\varphi(\emptyset)=1.$

With respect to the topology of pointwise convergence, the space $\mathcal{H}(\Gamma, \kappa)$ is convex, compact and metrizable. We denote by

 $\mathsf{Ex}(\mathcal{H}(\Gamma,\kappa))$

the set consisting of all the extreme points of $\mathcal{H}(\Gamma, \kappa)$.

We call this set the BORDER OF (Γ, κ) and denote it by

$$arphi(\lambda) = \sum_{(\lambda,\Lambda)\in\mathcal{A}(\Gamma)} \kappa(\lambda,\Lambda) arphi(\Lambda) \qquad ext{for all } \lambda\in\Gamma.$$

We denote by

 $\mathcal{H}(\Gamma,\kappa)$

the space of all harmonic functions $\varphi \colon \Gamma \to \mathbb{R}^+_0$ normalised by the condition $\varphi(\emptyset) = 1$.

With respect to the topology of pointwise convergence, the space $\mathcal{H}(\Gamma, \kappa)$ is convex, compact and metrizable. We denote by

 $\mathsf{Ex}(\mathcal{H}(\Gamma,\kappa))$

the set consisting of all the extreme points of $\mathcal{H}(\Gamma, \kappa)$.

We call this set the BORDER OF (Γ, κ) and denote it by

$$arphi(\lambda) = \sum_{(\lambda,\Lambda)\in\mathcal{A}(\Gamma)} \kappa(\lambda,\Lambda) arphi(\Lambda) \qquad ext{for all } \lambda\in\Gamma.$$

We denote by

 $\mathcal{H}(\Gamma,\kappa)$

the space of all harmonic functions $\varphi \colon \Gamma \to \mathbb{R}^+_0$ normalised by the condition $\varphi(\emptyset) = 1$.

With respect to the topology of pointwise convergence, the space $\mathcal{H}(\Gamma, \kappa)$ is convex, compact and metrizable. We denote by

Ex(*H*(Γ, *κ*))

the set consisting of all the extreme points of $\mathcal{H}(\Gamma, \kappa)$.

We call this set the BORDER OF (Γ, κ) and denote it by

$$arphi(\lambda) = \sum_{(\lambda,\Lambda)\in\mathcal{A}(\Gamma)} \kappa(\lambda,\Lambda) arphi(\Lambda) \qquad ext{for all } \lambda\in\Gamma.$$

We denote by

 $\mathcal{H}(\Gamma,\kappa)$

the space of all harmonic functions $\varphi \colon \Gamma \to \mathbb{R}^+_0$ normalised by the condition $\varphi(\emptyset) = 1$.

With respect to the topology of pointwise convergence, the space $\mathcal{H}(\Gamma, \kappa)$ is convex, compact and metrizable. We denote by

Ex(ℋ(Γ, κ))

the set consisting of all the extreme points of $\mathcal{H}(\Gamma, \kappa)$.

We call this set the BORDER OF (Γ, κ) and denote it by

For example,

• The chain

 $S_1 \subseteq S_2 \subseteq \cdots \subseteq S_n \subseteq S_{n+1} \subseteq \cdots$

is associated with the extreme characters of the infinite symmetric group

 $S_{\infty} = \bigcup_{n \in \mathbb{N}} S_n.$

• The chain

 $U_1(q) \subseteq U_2(q) \subseteq \cdots \subseteq U_n(q) \subseteq U_{n+1}(q) \subseteq \cdots$

$$U_\infty(q) = igcup_{n\in\mathbb{N}} U_n(q).$$

For example,

• The chain

 $S_1 \subseteq S_2 \subseteq \cdots \subseteq S_n \subseteq S_{n+1} \subseteq \cdots$

is associated with the extreme characters of the infinite symmetric group

 $S_{\infty} = \bigcup_{n \in \mathbb{N}} S_n.$

• The chain

 $U_1(q) \subseteq U_2(q) \subseteq \cdots \subseteq U_n(q) \subseteq U_{n+1}(q) \subseteq \cdots$

$$U_{\infty}(q) = \bigcup_{n \in \mathbb{N}} U_n(q).$$

For example,

• The chain

 $S_1 \subseteq S_2 \subseteq \cdots \subseteq S_n \subseteq S_{n+1} \subseteq \cdots$

is associated with the extreme characters of the infinite symmetric group

 $S_{\infty} = \bigcup_{n \in \mathbb{N}} S_n.$

• The chain

 $U_1(q)\subseteq U_2(q)\subseteq\cdots\subseteq U_n(q)\subseteq U_{n+1}(q)\subseteq\cdots$

$$U_{\infty}(q) = \bigcup_{n \in \mathbb{N}} U_n(q).$$

For example,

• The chain

 $S_1 \subseteq S_2 \subseteq \cdots \subseteq S_n \subseteq S_{n+1} \subseteq \cdots$

is associated with the extreme characters of the infinite symmetric group

 $S_{\infty} = \bigcup_{n \in \mathbb{N}} S_n.$

The chain

$$U_1(q) \subseteq U_2(q) \subseteq \cdots \subseteq U_n(q) \subseteq U_{n+1}(q) \subseteq \cdots$$

$$U_{\infty}(q) = \bigcup_{n \in \mathbb{N}} U_n(q).$$

• ξ is supercentral: $\xi(g) = \xi(e_{\lambda})$ whenever $g \in \mathcal{K}_{\lambda}$ for $\lambda \vdash [n]$ and $n \in \mathbb{N}$.

• ξ is normalised.

• ξ is positive definite.

The set SCh of supercharacters of ∞ is convex. An extreme point of SCh is called an EXTREME SUPERCHARACTER of $U_{\infty}(q)$.

Goal

Determine the extreme supercharacters of $\mathit{U}_{\infty}(q).$

Similar constructions can be obtained for other discrete algebra groups, for example for $U_n(\mathbf{k})$ where \mathbf{k} is the algebraic closure of a finite field.

< □ > < □ > < □ > < □ > < □ > < □ >

- ξ is supercentral: $\xi(g) = \xi(e_{\lambda})$ whenever $g \in \mathcal{K}_{\lambda}$ for $\lambda \vdash [n]$ and $n \in \mathbb{N}$.
- ξ is normalised.
- ξ is positive definite.

The set SCh of supercharacters of ∞ is convex. An extreme point of SCh is called an EXTREME SUPERCHARACTER of $U_{\infty}(q)$.

Goal

Determine the extreme supercharacters of $U_\infty(q)$.

Similar constructions can be obtained for other discrete algebra groups, for example for *U_n*(**k**) where **k** is the algebraic closure of a finite field.

4 E 6 4 E 6

- ξ is supercentral: $\xi(g) = \xi(e_{\lambda})$ whenever $g \in \mathcal{K}_{\lambda}$ for $\lambda \vdash [n]$ and $n \in \mathbb{N}$.
- ξ is normalised.
- ξ is positive definite.

The set SCh of supercharacters of ∞ is convex. An extreme point of SCh is called an EXTREME SUPERCHARACTER of $U_{\infty}(q)$.

Goal

Determine the extreme supercharacters of $U_{\infty}(q)$.

Similar constructions can be obtained for other discrete algebra groups, for example for *U_n*(**k**) where **k** is the algebraic closure of a finite field.

- ξ is supercentral: $\xi(g) = \xi(e_{\lambda})$ whenever $g \in \mathcal{K}_{\lambda}$ for $\lambda \vdash [n]$ and $n \in \mathbb{N}$.
- ξ is normalised.
- ξ is positive definite.

The set SCh of supercharacters of ∞ is convex. An extreme point of SCh is called an EXTREME SUPERCHARACTER of $U_{\infty}(q)$.

Goal

Determine the extreme supercharacters of $U_{\infty}(q)$.

Similar constructions can be obtained for other discrete algebra groups, for example for $U_n(\mathbf{k})$ where \mathbf{k} is the algebraic closure of a finite field.

- ξ is supercentral: $\xi(g) = \xi(e_{\lambda})$ whenever $g \in \mathcal{K}_{\lambda}$ for $\lambda \vdash [n]$ and $n \in \mathbb{N}$.
- ξ is normalised.
- ξ is positive definite.

The set SCh of supercharacters of ∞ is convex. An extreme point of SCh is called an EXTREME SUPERCHARACTER of $U_{\infty}(q)$.

Goal

Determine the extreme supercharacters of $U_{\infty}(q)$.

Similar constructions can be obtained for other discrete algebra groups, for example for $U_n(\Bbbk)$ where \Bbbk is the algebraic closure of a finite field.

- ξ is supercentral: $\xi(g) = \xi(e_{\lambda})$ whenever $g \in \mathcal{K}_{\lambda}$ for $\lambda \vdash [n]$ and $n \in \mathbb{N}$.
- ξ is normalised.
- ξ is positive definite.

The set SCh of supercharacters of ∞ is convex. An extreme point of SCh is called an EXTREME SUPERCHARACTER of $U_{\infty}(q)$.

Goal

Determine the extreme supercharacters of $U_{\infty}(q)$.

Similar constructions can be obtained for other discrete algebra groups, for example for $U_n(\Bbbk)$ where \Bbbk is the algebraic closure of a finite field.

- ξ is supercentral: $\xi(g) = \xi(e_{\lambda})$ whenever $g \in \mathcal{K}_{\lambda}$ for $\lambda \vdash [n]$ and $n \in \mathbb{N}$.
- ξ is normalised.
- ξ is positive definite.

The set SCh of supercharacters of ∞ is convex. An extreme point of SCh is called an EXTREME SUPERCHARACTER of $U_{\infty}(q)$.

Goal

Determine the extreme supercharacters of $U_{\infty}(q)$.

Similar constructions can be obtained for other discrete algebra groups, for example for $U_n(\Bbbk)$ where \Bbbk is the algebraic closure of a finite field.

For $1 \leq i \leq n$, we define $\xi_i \colon U_{\infty}(q) \to \mathbb{C}$ as follows.

If $g \in U_{\infty}(q)$, we choose $n \in \mathbb{N}$ such that $g \in U_n(q)$. Then, $g \in \mathcal{K}_{\lambda}$ for some $\lambda \vdash [n]$.

Setting

$$d(\lambda) = \#\{i < j \le n \colon (j,k) \in D(\lambda) \text{ for some } j < k \le n\},$$

we define

$$\xi_i(g) = \xi_i(1 + e_\lambda) = egin{cases} 0, & ext{if } (i,k) \in D(\lambda) ext{ for some } i < k \leq n, \ q^{d(\lambda)}, & ext{otherwise} \end{cases}$$

We have

 $\xi_i(g) = \lim_{n \to \infty} \xi_{i,n}(g).$

э

< ∃ →

For $1 \leq i \leq n$, we define $\xi_i \colon U_{\infty}(q) \to \mathbb{C}$ as follows.

If $g \in U_{\infty}(q)$, we choose $n \in \mathbb{N}$ such that $g \in U_n(q)$. Then, $g \in \mathcal{K}_{\lambda}$ for some $\lambda \vdash [n]$.

Setting

$$d(\lambda) = \# \{ i < j \le n \colon (j,k) \in D(\lambda) \text{ for some } j < k \le n \},$$

we define

$$\xi_i(g) = \xi_i(1 + e_\lambda) = egin{cases} 0, & ext{if } (i,k) \in D(\lambda) ext{ for some } i < k \leq n, \ q^{d(\lambda)}, & ext{otherwise} \end{cases}$$

We have

 $\xi_i(g) = \lim_{n \to \infty} \xi_{i,n}(g).$

∃ ▶

For $1 \leq i \leq n$, we define $\xi_i \colon U_{\infty}(q) \to \mathbb{C}$ as follows.

If $g \in U_{\infty}(q)$, we choose $n \in \mathbb{N}$ such that $g \in U_n(q)$. Then, $g \in \mathcal{K}_{\lambda}$ for some $\lambda \vdash [n]$.

Setting

$$d(\lambda) = \#\{i < j \le n \colon (j,k) \in D(\lambda) \text{ for some } j < k \le n\},\$$

we define

$$\xi_i(g) = \xi_i(1+e_\lambda) = egin{cases} 0, & ext{if } (i,k) \in D(\lambda) ext{ for some } i < k \leq n, \ q^{d(\lambda)}, & ext{otherwise} \end{cases}$$

We have

 $\xi_i(g) = \lim_{n\to\infty} \xi_{i,n}(g).$

For $1 \leq i \leq n$, we define $\xi_i \colon U_{\infty}(q) \to \mathbb{C}$ as follows.

If $g \in U_{\infty}(q)$, we choose $n \in \mathbb{N}$ such that $g \in U_n(q)$. Then, $g \in \mathcal{K}_{\lambda}$ for some $\lambda \vdash [n]$.

Setting

$$d(\lambda) = \#\{i < j \le n \colon (j,k) \in D(\lambda) \text{ for some } j < k \le n\},\$$

we define

$$\xi_i(g) = \xi_i(1+e_\lambda) = egin{cases} 0, & ext{if } (i,k) \in D(\lambda) ext{ for some } i < k \leq n, \ q^{d(\lambda)}, & ext{otherwise} \end{cases}$$

We have

$$\xi_i(g) = \lim_{n\to\infty} \xi_{i,n}(g).$$

Indeed:

Theorem

For any extreme supercharacter ξ of $U_{\infty}(q)$, there exists a sequence

 $\xi_1, \xi_2, \xi_3, \ldots, \xi_n, \ldots$

of supercharacters of $U_1(q), U_2(q), U_3(q), \ldots, U_n(q), \ldots$ such that

$$\xi(g) = \lim_{n \to \infty} \xi_n(g), \qquad g \in U_{\infty}(q).$$

[The proof depends on analysing certain harmonic functions defined in the scheme (Γ, κ) .]

Indeed:

Theorem

For any extreme supercharacter ξ of $U_{\infty}(q)$, there exists a sequence

 $\xi_1, \xi_2, \xi_3, \ldots, \xi_n, \ldots$

of supercharacters of $U_1(q), U_2(q), U_3(q), \ldots, U_n(q), \ldots$ such that

$$\xi(g) = \lim_{n \to \infty} \xi_n(g), \qquad g \in U_{\infty}(q).$$

[The proof depends on analysing certain harmonic functions defined in the scheme (Γ, κ) .]

$$\mathsf{Res}_{U_n(q)}^{U_\infty(q)}(\xi) = \sum_{\Lambda \in \Gamma_n} \varphi(\Lambda) \xi_{\Lambda} \qquad \text{and} \qquad \mathsf{Res}_{U_{n-1}(q)}^{U_\infty(q)}(\xi) = \sum_{\lambda \in \Gamma_n}$$

Therefore, the coefficients $arphi(\lambda)$ satisfy

$$\varphi(\lambda) = \sum_{\Lambda \in \Gamma_n} \kappa(\lambda, \Lambda) \varphi(\Lambda), \quad \lambda \in \Gamma_{n-1},$$

that is, the function $\varphi \colon \Gamma \to \mathbb{C}$ is harmonic.

Theorem

For any harmonic function $\varphi \in \mathfrak{H}(\Gamma, \kappa)$, there is one and only one supercharacter $\xi \colon U_{\infty}(q) \to \mathbb{C}$ such that

$$\xi(g) = \sum_{\lambda \in \Gamma_n} arphi(\lambda) \xi_\lambda(g), \qquad g \in U_n(q), \,\, n \in \mathbb{N}_0.$$

Moreover, the restriction $\operatorname{Res}_{U_n(q)}^{\cup_{\infty}(q)}(\xi)$ determines a bijective homeomorphism SCh $\xrightarrow{\sim} \mathcal{H}(\Gamma, \kappa)$.

 $\varphi(\lambda)\xi_{\lambda}$.

$$\operatorname{\mathsf{Res}}_{U_n(q)}^{U_\infty(q)}(\xi) = \sum_{\Lambda \in \Gamma_n} \varphi(\Lambda) \xi_{\Lambda} \qquad \text{and} \qquad \operatorname{\mathsf{Res}}_{U_{n-1}(q)}^{U_\infty(q)}(\xi) = \sum_{\lambda \in \Gamma_{n-1}} \varphi(\lambda) \xi_{\lambda}.$$

Therefore, the coefficients $\varphi(\lambda)$ satisfy

$$arphi(\lambda) = \sum_{\Lambda \in \Gamma_n} \kappa(\lambda, \Lambda) arphi(\Lambda), \quad \lambda \in \Gamma_{n-1},$$

that is, the function $\varphi \colon \Gamma \to \mathbb{C}$ is *harmonic*.

Theorem

For any harmonic function $\varphi \in \mathfrak{H}(\Gamma, \kappa)$, there is one and only one supercharacter $\xi \colon U_{\infty}(q) \to \mathbb{C}$ such that

$$\xi(g) = \sum_{\lambda \in \Gamma_n} arphi(\lambda) \xi_\lambda(g), \qquad g \in U_n(q), \,\, n \in \mathbb{N}_0.$$

Moreover, the restriction $\operatorname{Res}_{U_n(q)}^{U_\infty(q)}(\xi)$ determines a bijective homeomorphism SCh $\xrightarrow{\sim} \mathcal{H}(\Gamma, \kappa)$.

$$\operatorname{\mathsf{Res}}_{U_n(q)}^{U_\infty(q)}(\xi) = \sum_{\Lambda \in \Gamma_n} \varphi(\Lambda) \xi_{\Lambda}$$
 and R

$$\mathsf{Res}_{U_{n-1}(q)}^{U_{\infty}(q)}(\xi) = \sum_{\lambda \in \Gamma_{n-1}} \varphi(\lambda) \xi_{\lambda}.$$

Therefore, the coefficients $\varphi(\lambda)$ satisfy

$$arphi(\lambda) = \sum_{\Lambda \in \Gamma_n} \kappa(\lambda, \Lambda) arphi(\Lambda), \quad \lambda \in \Gamma_{n-1},$$

that is, the function $\varphi \colon \Gamma \to \mathbb{C}$ is *harmonic*.

Theorem

For any harmonic function $\varphi \in \mathcal{H}(\Gamma, \kappa)$, there is one and only one supercharacter $\xi \colon U_{\infty}(q) \to \mathbb{C}$ such that

$$\xi(g) = \sum_{\lambda \in \Gamma_n} \varphi(\lambda) \xi_{\lambda}(g), \qquad g \in U_n(q), \ n \in \mathbb{N}_0.$$

Moreover, the restriction $\operatorname{Res}_{U_n(q)}^{U_\infty(q)}(\xi)$ determines a bijective homeomorphism SCh $\xrightarrow{\sim} \mathcal{H}(\Gamma, \kappa)$.

$$\operatorname{\mathsf{Res}}_{U_n(q)}^{U_\infty(q)}(\xi) = \sum_{\Lambda \in \Gamma_n} \varphi(\Lambda) \xi_{\Lambda}$$
 and $\operatorname{\mathsf{Res}}_{U_n(q)}^{U_\infty(q)}(\xi) = \sum_{\Lambda \in \Gamma_n} \varphi(\Lambda) \xi_{\Lambda}$

$$\mathsf{Res}_{U_{n-1}(q)}^{U_{\infty}(q)}(\xi) = \sum_{\lambda \in \Gamma_{n-1}} \varphi(\lambda) \xi_{\lambda}.$$

Therefore, the coefficients $\varphi(\lambda)$ satisfy

$$arphi(\lambda) = \sum_{\Lambda \in \Gamma_n} \kappa(\lambda, \Lambda) arphi(\Lambda), \quad \lambda \in \Gamma_{n-1},$$

that is, the function $\varphi \colon \Gamma \to \mathbb{C}$ is *harmonic*.

Theorem

For any harmonic function $\varphi \in \mathcal{H}(\Gamma, \kappa)$, there is one and only one supercharacter $\xi \colon U_{\infty}(q) \to \mathbb{C}$ such that

$$\xi(g) = \sum_{\lambda \in \Gamma_n} \varphi(\lambda) \xi_{\lambda}(g), \qquad g \in U_n(q), \ n \in \mathbb{N}_0.$$

Moreover, the restriction $\operatorname{Res}_{U_n(q)}^{U_\infty(q)}(\xi)$ determines a bijective homeomorphism SCh $\xrightarrow{\sim} \mathfrak{H}(\Gamma, \kappa)$.

$$\psi(\Lambda) = \sum_{(\lambda,\Lambda)\in\mathcal{A}(\Gamma)} \psi(\lambda)\kappa(\lambda,\Lambda), \quad \text{ for almost all } \Lambda\in\Gamma.$$

For any functions of dimension $\psi, \psi' \colon \mathsf{\Gamma} o \mathbb{Z}$, we define

 $\psi \sim \psi' \quad \iff \quad \left(\psi(\Lambda) = \psi'(\Lambda) \text{ for almost all } \Lambda \in \Gamma\right)$

 \sim is an equivalence relation; we denote by

 $D(\Gamma,\kappa)$

the group consisting of all equivalence classes of \sim .

$$\psi(\Lambda) = \sum_{(\lambda,\Lambda)\in\mathcal{A}(\Gamma)} \psi(\lambda)\kappa(\lambda,\Lambda), \quad \text{ for almost all } \Lambda\in\Gamma.$$

For any functions of dimension $\psi, \psi' \colon \Gamma \to \mathbb{Z}$, we define

 $\psi \sim \psi' \quad \Longleftrightarrow \quad (\psi(\Lambda) = \psi'(\Lambda) \text{ for almost all } \Lambda \in \Gamma).$

 \sim is an equivalence relation; we denote by

 $D(\Gamma,\kappa)$

the group consisting of all equivalence classes of \sim .

$$\psi(\Lambda) = \sum_{(\lambda,\Lambda)\in\mathcal{A}(\Gamma)} \psi(\lambda)\kappa(\lambda,\Lambda), \quad \text{ for almost all } \Lambda\in\Gamma.$$

For any functions of dimension $\psi, \psi' \colon \Gamma \to \mathbb{Z}$, we define

 $\psi \sim \psi' \quad \Longleftrightarrow \quad (\psi(\Lambda) = \psi'(\Lambda) \text{ for almost all } \Lambda \in \Gamma).$

 \sim is an equivalence relation; we denote by

 $D(\Gamma,\kappa)$

the group consisting of all equivalence classes of \sim .

$$\psi(\Lambda) = \sum_{(\lambda,\Lambda)\in\mathcal{A}(\Gamma)} \psi(\lambda)\kappa(\lambda,\Lambda), \quad \text{ for almost all } \Lambda\in\Gamma.$$

For any functions of dimension $\psi, \psi' \colon \Gamma \to \mathbb{Z}$, we define

 $\psi \sim \psi' \quad \Longleftrightarrow \quad (\psi(\Lambda) = \psi'(\Lambda) \text{ for almost all } \Lambda \in \Gamma).$

 \sim is an equivalence relation; we denote by

 $D(\Gamma,\kappa)$

the group consisting of all equivalence classes of \sim .

We define the cone

$D^+(\Gamma,\kappa)\subseteq D(\Gamma,\kappa)$

to be the set of non-negative functions in $D(\Gamma, \kappa)$.

The following properties hold:

- If $\psi \in D^+(\Gamma, \kappa)$, then $n\psi \in D^+(\Gamma, \kappa)$ for all $n \in \mathbb{N}$.
- $(-D^+(\Gamma,\kappa)) \cap D^+(\Gamma,\kappa) = \{0\}.$
- If ψ ∈ D(Γ, κ) is such that nψ ∈ D⁺(Γ, κ) for some n ∈ N, then ψ ∈ D⁺(Γ, κ).

In particular, $D(\Gamma,\kappa)$ is an *ordered group* with respect to the order \leq defined by

 $\psi \leq \psi' \quad \iff \quad \psi' - \psi \in D^+(\Gamma,\kappa), \qquad ext{for all } \psi, \psi' \in D(\Gamma,\kappa).$
$D^+(\Gamma,\kappa)\subseteq D(\Gamma,\kappa)$

to be the set of non-negative functions in $D(\Gamma, \kappa)$.

The following properties hold:

• If $\psi \in D^+(\Gamma, \kappa)$, then $n\psi \in D^+(\Gamma, \kappa)$ for all $n \in \mathbb{N}$.

• $(-D^+(\Gamma,\kappa)) \cap D^+(\Gamma,\kappa) = \{0\}.$

• If $\psi \in D(\Gamma, \kappa)$ is such that $n\psi \in D^+(\Gamma, \kappa)$ for some $n \in \mathbb{N}$, then $\psi \in D^+(\Gamma, \kappa)$.

In particular, $D(\Gamma,\kappa)$ is an *ordered group* with respect to the order \leq defined by

 $\psi \leq \psi' \quad \Longleftrightarrow \quad \psi' - \psi \in D^+(\Gamma,\kappa), \qquad ext{for all } \psi, \psi' \in D(\Gamma,\kappa).$

$D^+(\Gamma,\kappa)\subseteq D(\Gamma,\kappa)$

to be the set of non-negative functions in $D(\Gamma, \kappa)$.

The following properties hold:

• If $\psi \in D^+(\Gamma, \kappa)$, then $n\psi \in D^+(\Gamma, \kappa)$ for all $n \in \mathbb{N}$.

• $(-D^+(\Gamma,\kappa)) \cap D^+(\Gamma,\kappa) = \{0\}.$

• If $\psi \in D(\Gamma, \kappa)$ is such that $n\psi \in D^+(\Gamma, \kappa)$ for some $n \in \mathbb{N}$, then $\psi \in D^+(\Gamma, \kappa)$.

In particular, $D(\Gamma,\kappa)$ is an *ordered group* with respect to the order \leq defined by

 $\psi \leq \psi' \quad \iff \quad \psi' - \psi \in D^+(\Gamma,\kappa), \qquad ext{for all } \psi, \psi' \in D(\Gamma,\kappa).$

$D^+(\Gamma,\kappa)\subseteq D(\Gamma,\kappa)$

to be the set of non-negative functions in $D(\Gamma, \kappa)$.

The following properties hold:

- If $\psi \in D^+(\Gamma, \kappa)$, then $n\psi \in D^+(\Gamma, \kappa)$ for all $n \in \mathbb{N}$.
- $(-D^+(\Gamma,\kappa)) \cap D^+(\Gamma,\kappa) = \{0\}.$
- If $\psi \in D(\Gamma, \kappa)$ is such that $n\psi \in D^+(\Gamma, \kappa)$ for some $n \in \mathbb{N}$, then $\psi \in D^+(\Gamma, \kappa)$.

In particular, $D(\Gamma,\kappa)$ is an *ordered group* with respect to the order \leq defined by

 $\psi \leq \psi' \quad \iff \quad \psi' - \psi \in D^+(\Gamma, \kappa), \qquad \text{for all } \psi, \psi' \in D(\Gamma, \kappa).$

$D^+(\Gamma,\kappa)\subseteq D(\Gamma,\kappa)$

to be the set of non-negative functions in $D(\Gamma, \kappa)$.

The following properties hold:

- If $\psi \in D^+(\Gamma, \kappa)$, then $n\psi \in D^+(\Gamma, \kappa)$ for all $n \in \mathbb{N}$.
- $(-D^+(\Gamma,\kappa)) \cap D^+(\Gamma,\kappa) = \{0\}.$
- If $\psi \in D(\Gamma, \kappa)$ is such that $n\psi \in D^+(\Gamma, \kappa)$ for some $n \in \mathbb{N}$, then $\psi \in D^+(\Gamma, \kappa)$.

In particular, $D(\Gamma,\kappa)$ is an *ordered group* with respect to the order \leq defined by

 $\psi \leq \psi' \quad \iff \quad \psi' - \psi \in D^+(\Gamma, \kappa), \qquad \text{for all } \psi, \psi' \in D(\Gamma, \kappa).$

$D^+(\Gamma,\kappa)\subseteq D(\Gamma,\kappa)$

to be the set of non-negative functions in $D(\Gamma, \kappa)$.

The following properties hold:

- If $\psi \in D^+(\Gamma, \kappa)$, then $n\psi \in D^+(\Gamma, \kappa)$ for all $n \in \mathbb{N}$.
- $(-D^+(\Gamma,\kappa)) \cap D^+(\Gamma,\kappa) = \{0\}.$
- If $\psi \in D(\Gamma, \kappa)$ is such that $n\psi \in D^+(\Gamma, \kappa)$ for some $n \in \mathbb{N}$, then $\psi \in D^+(\Gamma, \kappa)$.

In particular, $D(\Gamma, \kappa)$ is an ordered group with respect to the order \leq defined by

 $\psi \leq \psi' \quad \iff \quad \psi' - \psi \in D^+(\Gamma, \kappa), \qquad \text{for all } \psi, \psi' \in D(\Gamma, \kappa).$

$$\kappa(p) = \prod_{1 \le k \le n} \kappa(\lambda_{k-1}, \lambda_k)$$

and define the DIMENSION OF A VERTEX $\lambda \in \Lambda$ by

$$\dim(\lambda) = \sum_{\text{paths } p \text{ from } \emptyset \text{ to } \lambda} \kappa(p).$$

The correspondence $\lambda \mapsto \dim(\lambda)$ defines a special element $e \in D^+(\Gamma, \kappa)$ that satisfies the *archimedean property*:

• For every $\psi \in D^+(\Gamma, \kappa)$, there exists $n \in \mathbb{N}$ such that $\psi \leq ne$.

[e is an order identity of $D(\Gamma, \kappa)$].

$$\kappa(p) = \prod_{1 \le k \le n} \kappa(\lambda_{k-1}, \lambda_k)$$

and define the DIMENSION OF A VERTEX $\lambda \in \Lambda$ by

$$\dim(\lambda) = \sum_{\text{paths } p \text{ from } \emptyset \text{ to } \lambda} \kappa(p).$$

The correspondence $\lambda \mapsto \dim(\lambda)$ defines a special element $e \in D^+(\Gamma, \kappa)$ that satisfies the *archimedean property*:

• For every $\psi \in D^+(\Gamma, \kappa)$, there exists $n \in \mathbb{N}$ such that $\psi \leq ne$.

[e is an order identity of $D(\Gamma, \kappa)$].

$$\kappa(\pmb{
ho}) = \prod_{1 \leq k \leq n} \kappa(\lambda_{k-1}, \lambda_k)$$

and define the DIMENSION OF A VERTEX $\lambda \in \Lambda$ by

$$\dim(\lambda) = \sum_{\text{paths } p \text{ from } \emptyset \text{ to } \lambda} \kappa(p).$$

The correspondence $\lambda \mapsto \dim(\lambda)$ defines a special element $e \in D^+(\Gamma, \kappa)$ that satisfies the *archimedean property*:

• For every $\psi \in D^+(\Gamma, \kappa)$, there exists $n \in \mathbb{N}$ such that $\psi \leq ne$.

[e is an order identity of $D(\Gamma, \kappa)$].

$$\kappa(p) = \prod_{1 \le k \le n} \kappa(\lambda_{k-1}, \lambda_k)$$

and define the DIMENSION OF A VERTEX $\lambda \in \Lambda$ by

$$\dim(\lambda) = \sum_{\text{paths } p \text{ from } \emptyset \text{ to } \lambda} \kappa(p).$$

The correspondence $\lambda \mapsto \dim(\lambda)$ defines a special element $e \in D^+(\Gamma, \kappa)$ that satisfies the *archimedean property*:

• For every $\psi \in D^+(\Gamma, \kappa)$, there exists $n \in \mathbb{N}$ such that $\psi \leq ne$.

[e is an order identity of $D(\Gamma, \kappa)$].

$$\kappa(p) = \prod_{1 \le k \le n} \kappa(\lambda_{k-1}, \lambda_k)$$

and define the DIMENSION OF A VERTEX $\lambda \in \Lambda$ by

$$\dim(\lambda) = \sum_{\text{paths } p \text{ from } \emptyset \text{ to } \lambda} \kappa(p).$$

The correspondence $\lambda \mapsto \dim(\lambda)$ defines a special element $e \in D^+(\Gamma, \kappa)$ that satisfies the *archimedean property*:

• For every $\psi \in D^+(\Gamma, \kappa)$, there exists $n \in \mathbb{N}$ such that $\psi \leq ne$.

[e is an order identity of $D(\Gamma, \kappa)$].

$$\kappa(p) = \prod_{1 \le k \le n} \kappa(\lambda_{k-1}, \lambda_k)$$

and define the DIMENSION OF A VERTEX $\lambda \in \Lambda$ by

$$\dim(\lambda) = \sum_{\text{paths } p \text{ from } \emptyset \text{ to } \lambda} \kappa(p).$$

The correspondence $\lambda \mapsto \dim(\lambda)$ defines a special element $e \in D^+(\Gamma, \kappa)$ that satisfies the *archimedean property*:

• For every $\psi \in D^+(\Gamma, \kappa)$, there exists $n \in \mathbb{N}$ such that $\psi \leq ne$.

[e is an order identity of $D(\Gamma, \kappa)$].

In fact, the study of the space $\mathcal{H}(\Gamma, \kappa)$ reduces to the study of the space $\mathcal{F}_{e}(\Gamma, \kappa)$ consisting of all homomorphisms of ordered groups $\vartheta : D(\Gamma, \kappa) \to \mathbb{R}$. In particular, the space SCh also reduces to the study of $\mathcal{F}_{e}(\Gamma, \kappa)$.

For some branching schemes, the group $D(\Gamma, \kappa)$ has a structure of *Riesz ring*, and this guarantees (for example) that the boundary $\partial(\Gamma, \kappa)$ is a closed subset of $\mathcal{H}(\Gamma, \kappa)$.

In fact, the study of the space $\mathcal{H}(\Gamma, \kappa)$ reduces to the study of the space $\mathcal{F}_{e}(\Gamma, \kappa)$ consisting of all homomorphisms of ordered groups $\vartheta : D(\Gamma, \kappa) \to \mathbb{R}$. In particular, the space SCh also reduces to the study of $\mathcal{F}_{e}(\Gamma, \kappa)$.

For some branching schemes, the group $D(\Gamma, \kappa)$ has a structure of *Riesz ring*, and this guarantees (for example) that the boundary $\partial(\Gamma, \kappa)$ is a closed subset of $\mathfrak{H}(\Gamma, \kappa)$.

In fact, the study of the space $\mathcal{H}(\Gamma, \kappa)$ reduces to the study of the space $\mathcal{F}_{e}(\Gamma, \kappa)$ consisting of all homomorphisms of ordered groups $\vartheta : D(\Gamma, \kappa) \to \mathbb{R}$. In particular, the space SCh also reduces to the study of $\mathcal{F}_{e}(\Gamma, \kappa)$.

For some branching schemes, the group $D(\Gamma, \kappa)$ has a structure of *Riesz ring*, and this guarantees (for example) that the boundary $\partial(\Gamma, \kappa)$ is a closed subset of $\mathfrak{H}(\Gamma, \kappa)$.

In fact, the study of the space $\mathcal{H}(\Gamma, \kappa)$ reduces to the study of the space $\mathcal{F}_{e}(\Gamma, \kappa)$ consisting of all homomorphisms of ordered groups $\vartheta : D(\Gamma, \kappa) \to \mathbb{R}$. In particular, the space SCh also reduces to the study of $\mathcal{F}_{e}(\Gamma, \kappa)$.

For some branching schemes, the group $D(\Gamma, \kappa)$ has a structure of *Riesz ring*, and this guarantees (for example) that the boundary $\partial(\Gamma, \kappa)$ is a closed subset of $\mathcal{H}(\Gamma, \kappa)$.

$$R=\bigoplus_{n\in\mathbb{N}_0}R_n$$

satisfying:

- There exists a basis {a_λ: λ ∈ Γ} consisting of homogeneous elements such that for all n ∈ N₀, {a_λ: λ ∈ Γ_n} is a basis of R_n.
- There is an element $a_1 \in R_1$ such that:

• $a_1 = \sum_{\lambda \in \Gamma_1} m_\lambda a_\lambda, \qquad m_\lambda \ge 0 \text{ to } \lambda \in \Gamma_1,$ • $a_1 a_\lambda = \sum_{\Lambda \in \Gamma_{n+1}} \kappa(\lambda, \Lambda) a_\Lambda, \qquad \lambda \in \Gamma_n, \ n \in \mathbb{N}$

$$R=\bigoplus_{n\in\mathbb{N}_0}R_n$$

satisfying:

There exists a basis {a_λ: λ ∈ Γ} consisting of homogeneous elements such that for all n ∈ N₀, {a_λ: λ ∈ Γ_n} is a basis of R_n.

• There is an element $a_1 \in R_1$ such that:

• $a_1 = \sum_{\lambda \in \Gamma_1} m_\lambda a_\lambda, \qquad m_\lambda \ge 0 \text{ to } \lambda \in \Gamma_1,$ • $a_1 a_2 = \sum_{\lambda \in \Gamma_2} \kappa(\lambda | \lambda) a_\lambda, \qquad \lambda \in \Gamma_2, \quad n \in \Gamma_2$

$$R=\bigoplus_{n\in\mathbb{N}_0}R_n$$

satisfying:

- There exists a basis {a_λ: λ ∈ Γ} consisting of homogeneous elements such that for all n ∈ N₀, {a_λ: λ ∈ Γ_n} is a basis of R_n.
- There is an element $a_1 \in R_1$ such that:

•
$$a_1 = \sum_{\lambda \in \Gamma_1} m_\lambda a_\lambda, \qquad m_\lambda \ge 0 \text{ to } \lambda \in \Gamma_1,$$

• $a_1 a_\lambda = \sum_{\Lambda \in \Gamma_{n+1}} \kappa(\lambda, \Lambda) a_\Lambda, \qquad \lambda \in \Gamma_n, \ n \in \mathbb{N}$

$$R=\bigoplus_{n\in\mathbb{N}_0}R_n$$

satisfying:

- There exists a basis {a_λ: λ ∈ Γ} consisting of homogeneous elements such that for all n ∈ N₀, {a_λ: λ ∈ Γ_n} is a basis of R_n.
- There is an element $a_1 \in R_1$ such that:

•
$$a_1 = \sum_{\lambda \in \Gamma_1} m_\lambda a_\lambda, \qquad m_\lambda \ge 0 \text{ to } \lambda \in \Gamma_1,$$

• $a_1 a_\lambda = \sum_{\Lambda \in \Gamma_{n+1}} \kappa(\lambda, \Lambda) a_\Lambda, \qquad \lambda \in \Gamma_n, \ n \in \mathbb{N}$

$$R=\bigoplus_{n\in\mathbb{N}_0}R_n$$

satisfying:

- There exists a basis {a_λ: λ ∈ Γ} consisting of homogeneous elements such that for all n ∈ N₀, {a_λ: λ ∈ Γ_n} is a basis of R_n.
- There is an element $a_1 \in R_1$ such that:

•
$$a_1 = \sum_{\lambda \in \Gamma_1} m_\lambda a_\lambda, \qquad m_\lambda \ge 0 \text{ to } \lambda \in \Gamma_1,$$

• $a_1 a_\lambda = \sum_{\Lambda \in \Gamma_{n+1}} \kappa(\lambda, \Lambda) a_\Lambda, \qquad \lambda \in \Gamma_n, \ n \in \mathbb{N}$

- For R = ⊕_{n∈ℕ0} R_n, we consider the ring of symmetric functions in commutative indeterminates X₁, X₂,..., X_n,...,
- The base {a_λ: λ ∈ Γ} consists of all Schur's functions: Pieri's rule guarantees that

$$a_{(1)}a_{\lambda} = \sum_{\Lambda \in \Gamma_{n+1}} a_{\Lambda}, \qquad \lambda \in \Gamma_n, \ n \in \mathbb{N}.$$

- For R = ⊕_{n∈ℕ0} R_n, we consider the ring of symmetric functions in commutative indeterminates X₁, X₂,..., X_n,...,
- The base {a_λ: λ ∈ Γ} consists of all Schur's functions: Pieri's rule guarantees that

$$a_{(1)}a_{\lambda} = \sum_{\Lambda \in \Gamma_{n+1}} a_{\Lambda}, \qquad \lambda \in \Gamma_n, \ n \in \mathbb{N}.$$

- For R = ⊕_{n∈ℕ0} R_n, we consider the ring of symmetric functions in commutative indeterminates X₁, X₂,..., X_n,...,
- The base {a_λ: λ ∈ Γ} consists of all Schur's functions: Pieri's rule guarantees that

$$a_{(1)}a_{\lambda} = \sum_{\Lambda \in \Gamma_{n+1}} a_{\Lambda}, \qquad \lambda \in \Gamma_n, \ n \in \mathbb{N}.$$

- For R = ⊕_{n∈ℕ0} R_n, we consider the ring of symmetric functions in commutative indeterminates X₁, X₂,..., X_n,...,
- The base {a_λ: λ ∈ Γ} consists of all Schur's functions: Pieri's rule guarantees that

$$a_{(1)}a_{\lambda} = \sum_{\Lambda \in \Gamma_{n+1}} a_{\Lambda}, \qquad \lambda \in \Gamma_n, \ n \in \mathbb{N}.$$

In general, we have

Theorem

If (Γ, κ) is a multiplicative branching scheme and $\varphi \in \mathcal{H}(\Gamma, \kappa)$, we define $\psi \colon R \to \mathbb{R}$ by

$$\psi(a_{\lambda})=arphi(\lambda), \qquad \lambda\in {\sf \Gamma}.$$

Then φ is an extreme harmonic function if and only if ψ is a ring homomorphism.

Corollary

If (Γ, κ) is a multiplicative branching scheme, then the boundary $\partial(\Gamma, \kappa)$ is closed under $\mathcal{H}(\Gamma, \kappa)$.

In general, we have

Theorem

If (Γ, κ) is a multiplicative branching scheme and $\varphi \in \mathcal{H}(\Gamma, \kappa)$, we define $\psi \colon R \to \mathbb{R}$ by

$$\psi(\mathsf{a}_{\lambda}) = \varphi(\lambda), \qquad \lambda \in \mathsf{\Gamma}.$$

Then φ is an extreme harmonic function if and only if ψ is a ring homomorphism.

Corollary

If (Γ, κ) is a multiplicative branching scheme, then the boundary $\partial(\Gamma, \kappa)$ is closed under $\mathcal{H}(\Gamma, \kappa)$.

In general, we have

Theorem

If (Γ, κ) is a multiplicative branching scheme and $\varphi \in \mathcal{H}(\Gamma, \kappa)$, we define $\psi \colon R \to \mathbb{R}$ by

$$\psi(a_{\lambda}) = \varphi(\lambda), \qquad \lambda \in \Gamma.$$

Then φ is an extreme harmonic function if and only if ψ is a ring homomorphism.

Corollary

If (Γ, κ) is a multiplicative branching scheme, then the boundary $\partial(\Gamma, \kappa)$ is closed under $\mathcal{H}(\Gamma, \kappa)$.

In the case of the group $U_{\infty}(q)$, the \mathbb{Z} -module

$$\mathsf{SC} = \bigoplus_{n \in \mathbb{N}} \mathsf{SC}_n$$

has a graded ring structure with respect to multiplication defined by

 $\xi \cdot \xi' = \mathsf{SInd}_{U_m(q) \times U_n(q)}^{U_{m+n}(q)}(\xi \times \xi'), \qquad \xi \in \mathsf{SC}_m, \ \zeta \in \mathsf{SC}_n.$

Here, the direct product $U_m(q) imes U_n(q)$ is identified with the subgroup

$$egin{pmatrix} U_m(q) & 0 \ 0 & U_n(q) \end{pmatrix} \subseteq U_{m+n}(q).$$

In the case of the group $U_{\infty}(q)$, the \mathbb{Z} -module

$$\mathsf{SC} = \bigoplus_{n \in \mathbb{N}} \mathsf{SC}_n$$

has a graded ring structure with respect to multiplication defined by

 $\xi \cdot \xi' = \mathsf{SInd}_{U_m(q) \times U_n(q)}^{U_{m+n}(q)}(\xi \times \xi'), \qquad \xi \in \mathsf{SC}_m, \ \zeta \in \mathsf{SC}_n.$

Here, the direct product $U_m(q) \times U_n(q)$ is identified with the subgroup

$$egin{pmatrix} U_m(q) & 0 \ 0 & U_n(q) \end{pmatrix} \subseteq U_{m+n}(q).$$

SUPERINDUCTION SInd $U_{m+n}^{U_{m+n}(q)} (\xi \times \xi')$ is uniquely determined by the formula $\left\langle \operatorname{SInd}_{U_m(q) \times U_n(q)}^{U_{m+n}(q)}(\xi \times \xi'), \zeta \right\rangle = \left\langle \xi \times \xi', \operatorname{Res}_{U_m(q) \times U_n(q)}^{U_{m+n}(q)}(\zeta) \right\rangle, \quad \zeta \in \operatorname{SC}_{m+n},$ where $\langle \cdot, \cdot \rangle$ is the usual Frobenius product.

In particular, if ξ_1 is the unique supercharacter of $U_1(q)$, then

$$\xi_1 \cdot \xi_\lambda = \sum_{\Lambda \in \Gamma_{n+1}} \kappa(\lambda, \Lambda) \xi_\Lambda, \qquad \lambda \in \Gamma_n, \ n \in \mathbb{N}$$

Thus, the base of the supercharacters $\{\xi_{\lambda} \colon \lambda \in \Gamma\}$ satisfies the conditions required for (Γ, κ) to be a multiplicative scheme.

However, SC is a **non-commutative** ring.

SUPERINDUCTION SInd $U_{m+n}^{U_{m+n}(q)} (\xi \times \xi')$ is uniquely determined by the formula $\left\langle \operatorname{SInd}_{U_m(q) \times U_n(q)}^{U_{m+n}(q)}(\xi \times \xi'), \zeta \right\rangle = \left\langle \xi \times \xi', \operatorname{Res}_{U_m(q) \times U_n(q)}^{U_{m+n}(q)}(\zeta) \right\rangle, \quad \zeta \in \operatorname{SC}_{m+n},$ where $\langle \cdot, \cdot \rangle$ is the usual Frobenius product.

In particular, if ξ_1 is the unique supercharacter of $U_1(q)$, then

$$\xi_1 \cdot \xi_\lambda = \sum_{\Lambda \in \Gamma_{n+1}} \kappa(\lambda, \Lambda) \xi_\Lambda, \qquad \lambda \in \Gamma_n, \ n \in \mathbb{N}.$$

Thus, the base of the supercharacters $\{\xi_{\lambda} \colon \lambda \in \mathsf{\Gamma}\}$ satisfies the conditions required for $(\mathsf{\Gamma}, \kappa)$ to be a multiplicative scheme.

However, SC is a **non-commutative** ring.

SUPERINDUCTION SInd $U_{m+n}^{U_{m+n}(q)}(\xi \times \xi')$ is uniquely determined by the formula $\left\langle \operatorname{SInd}_{U_m(q) \times U_n(q)}^{U_{m+n}(q)}(\xi \times \xi'), \zeta \right\rangle = \left\langle \xi \times \xi', \operatorname{Res}_{U_m(q) \times U_n(q)}^{U_{m+n}(q)}(\zeta) \right\rangle, \quad \zeta \in \operatorname{SC}_{m+n},$ where $\langle \cdot, \cdot \rangle$ is the usual Frobenius product.

In particular, if ξ_1 is the unique supercharacter of $U_1(q)$, then

$$\xi_1 \cdot \xi_\lambda = \sum_{\Lambda \in \Gamma_{n+1}} \kappa(\lambda, \Lambda) \xi_\Lambda, \qquad \lambda \in \Gamma_n, \ n \in \mathbb{N}.$$

Thus, the base of the supercharacters $\{\xi_{\lambda} : \lambda \in \Gamma\}$ satisfies the conditions required for (Γ, κ) to be a multiplicative scheme.

However, SC is a **non-commutative** ring.

SUPERINDUCTION SInd $U_{m+n}^{U_{m+n}(q)}(\xi \times \xi')$ is uniquely determined by the formula $\left\langle \operatorname{SInd}_{U_m(q) \times U_n(q)}^{U_{m+n}(q)}(\xi \times \xi'), \zeta \right\rangle = \left\langle \xi \times \xi', \operatorname{Res}_{U_m(q) \times U_n(q)}^{U_{m+n}(q)}(\zeta) \right\rangle, \quad \zeta \in \operatorname{SC}_{m+n},$ where $\langle \cdot, \cdot \rangle$ is the usual Frobenius product.

In particular, if ξ_1 is the unique supercharacter of $U_1(q)$, then

$$\xi_1 \cdot \xi_\lambda = \sum_{\Lambda \in \Gamma_{n+1}} \kappa(\lambda, \Lambda) \xi_\Lambda, \qquad \lambda \in \Gamma_n, \ n \in \mathbb{N}.$$

Thus, the base of the supercharacters $\{\xi_{\lambda} : \lambda \in \Gamma\}$ satisfies the conditions required for (Γ, κ) to be a multiplicative scheme.

However, SC is a non-commutative ring.

SUPERINDUCTION SInd $U_{m+n}^{U_{m+n}(q)}(\xi \times \xi')$ is uniquely determined by the formula $\left\langle \operatorname{SInd}_{U_m(q) \times U_n(q)}^{U_{m+n}(q)}(\xi \times \xi'), \zeta \right\rangle = \left\langle \xi \times \xi', \operatorname{Res}_{U_m(q) \times U_n(q)}^{U_{m+n}(q)}(\zeta) \right\rangle, \quad \zeta \in \operatorname{SC}_{m+n},$ where $\langle \cdot, \cdot \rangle$ is the usual Frobenius product.

In particular, if ξ_1 is the unique supercharacter of $U_1(q)$, then

$$\xi_1 \cdot \xi_\lambda = \sum_{\Lambda \in \Gamma_{n+1}} \kappa(\lambda, \Lambda) \xi_\Lambda, \qquad \lambda \in \Gamma_n, \ n \in \mathbb{N}.$$

Thus, the base of the supercharacters $\{\xi_{\lambda} : \lambda \in \Gamma\}$ satisfies the conditions required for (Γ, κ) to be a multiplicative scheme.

However, SC is a non-commutative ring.

For each $J \subseteq [n]$, let $U_J(q)$ be the subgroup of $U_n(q)$ consisting of all matrices whose entries (i,j), for $1 \le i < j \le n$ with $i,j \notin J$, are zero. Of course, if |J| = m, then there is an isomorphism

 $\mathrm{st}_J\colon U_J(q)\to U_m(q).$

For example, for $J = \{2, 4, 6\} \subseteq [6]$, we have

For each $J \subseteq [n]$, let $U_J(q)$ be the subgroup of $U_n(q)$ consisting of all matrices whose entries (i,j), for $1 \le i < j \le n$ with $i,j \notin J$, are zero. Of course, if |J| = m, then there is an isomorphism

 $\mathrm{st}_J \colon U_J(q) \to U_m(q).$

For example, for $J = \{2, 4, 6\} \subseteq [6]$, we have

$$U_J(q) = egin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \ 0 & 1 & 0 & * & 0 & * \ 0 & 0 & 1 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 & 0 & 1 \ \end{bmatrix} \cong U_3(q).$$
For $J \subseteq [n]$ with |J| = m and $\xi \in SC_n$, we define the *J*-restriction

$${}^{J}\operatorname{\mathsf{Res}}_{U_m(q)\times U_{n-m}(q)}^{U_n(q)}(\xi) = \operatorname{\mathsf{Res}}_{U_{J/J^c}(q)}^{U_n(q)}(\xi) \circ \operatorname{st}_{J/J^c}^{-1}$$

where $J^c = [n] \setminus J$, $U_{J/J^c}(q) = U_J(q)U_{J^c}(q)$ and

$$\mathrm{st}_{J/J^c}(gg')=egin{pmatrix}g&0\0&g'\end{pmatrix},\qquad g\in U_J(q),\;g'\in U_{J^c}(q)$$

For $J = \{2, 4, 6\} \subseteq [6]$, we have

$$U_{J/J^c}(q) = egin{bmatrix} 1 & 0 & * & 0 & * & 0 \ 0 & 1 & 0 & * & 0 & * \ 0 & 0 & 1 & 0 & * & 0 \ 0 & 0 & 0 & 1 & 0 & * \ 0 & 0 & 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \cong egin{bmatrix} U_3(q) & 0 \ 0 & U_3(q) \ 0 & U_3(q) \end{bmatrix}.$$

For $J \subseteq [n]$ with |J| = m and $\xi \in SC_n$, we define the *J*-restriction

$${}^{J}\operatorname{\mathsf{Res}}_{U_m(q)\times U_{n-m}(q)}^{U_n(q)}(\xi) = \operatorname{\mathsf{Res}}_{U_{J/J^c}(q)}^{U_n(q)}(\xi) \circ \operatorname{st}_{J/J^c}^{-1}$$

where $J^c = [n] \setminus J$, $U_{J/J^c}(q) = U_J(q)U_{J^c}(q)$ and

$$\mathrm{st}_{J/J^c}(gg') = egin{pmatrix} g & 0 \ 0 & g' \end{pmatrix}, \qquad g \in U_J(q), \; g' \in U_{J^c}(q)$$

For $J = \{2, 4, 6\} \subseteq [6]$, we have

$$U_{J/J^c}(q) = egin{bmatrix} 1 & 0 & * & 0 & * & 0 \ 0 & 1 & 0 & * & 0 & * \ 0 & 0 & 1 & 0 & * & 0 \ 0 & 0 & 0 & 1 & 0 & * \ 0 & 0 & 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \cong egin{bmatrix} U_3(q) & 0 \ 0 & U_3(q) \ 0 & U_3(q) \end{bmatrix}.$$

In particular, we obtain a map $\operatorname{Res}'_{U_n(q)}^{U_n(q)}$: $\operatorname{SC}_n \to \operatorname{SC}_{n-1}$ defined by

$$\operatorname{\mathsf{Res}}'_{U_{n-1}(q)}^{U_{n}(q)}(\xi) = \sum_{J \subseteq [n], \ |J| = n-1} {}^{J} \operatorname{\mathsf{Res}}_{U_{n-1}(q) \times U_{1}(q)}^{U_{n}(q)}(\xi).$$

We define a new *branching scheme* (Γ, κ') in which the multiplicity function is defined by the decomposition

$$\operatorname{\mathsf{Res}}^{U_n(q)}_{U_{n-1}(q)}(\xi_\Lambda) = \sum_{\lambda \in \Gamma_{n-1}} \kappa'(\lambda, \Lambda) \xi_\lambda, \qquad \Lambda \in \Gamma_n.$$

On the other hand, if $J \subseteq [n]$ and |J| = m, we define the *J*-superinduction by

$$\int \operatorname{\mathsf{SInd}}_{U_m(q) imes U_n(q)}^{U_{m+n}(q)}(\xi imes \xi') = \operatorname{\mathsf{SInd}}_{U_{J/J^c}(q)}^{U_{n+m}(q)}((\xi imes \xi') \circ \operatorname{st}_{J/J^c}).$$

In particular, we obtain a map $\operatorname{Res}^{\prime U_n(q)}_{U_{n-1}(q)}$: $\operatorname{SC}_n \to \operatorname{SC}_{n-1}$ defined by

$$\operatorname{\mathsf{Res}}^{\prime \, U_n(q)}_{U_{n-1}(q)}(\xi) = \sum_{J \subseteq [n], \ |J| = n-1} {}^J \operatorname{\mathsf{Res}}^{U_n(q)}_{U_{n-1}(q) \times U_1(q)}(\xi).$$

We define a new *branching scheme* (Γ, κ') in which the multiplicity function is defined by the decomposition

$$\operatorname{\mathsf{Res}}^{\prime U_n(q)}_{U_{n-1}(q)}(\xi_\Lambda) = \sum_{\lambda \in \Gamma_{n-1}} \kappa'(\lambda, \Lambda) \xi_\lambda, \qquad \Lambda \in \Gamma_n.$$

On the other hand, if $J \subseteq [n]$ and |J| = m, we define the *J*-superinduction by

 $\int \operatorname{\mathsf{SInd}}_{U_m(q) imes U_n(q)}^{U_{m+n}(q)}(\xi imes \xi') = \operatorname{\mathsf{SInd}}_{U_{J/J^c}(q)}^{U_{n+m}(q)}((\xi imes \xi') \circ \operatorname{st}_{J/J^c}).$

In particular, we obtain a map $\operatorname{Res}^{\prime U_n(q)}_{U_{n-1}(q)}$: $\operatorname{SC}_n \to \operatorname{SC}_{n-1}$ defined by

$$\operatorname{\mathsf{Res}}^{\prime \, U_n(q)}_{U_{n-1}(q)}(\xi) = \sum_{J \subseteq [n], \ |J| = n-1} {}^J \operatorname{\mathsf{Res}}^{U_n(q)}_{U_{n-1}(q) \times U_1(q)}(\xi).$$

We define a new *branching scheme* (Γ , κ') in which the multiplicity function is defined by the decomposition

$$\mathsf{Res}'^{U_n(q)}_{U_{n-1}(q)}(\xi_\Lambda) = \sum_{\lambda \in \Gamma_{n-1}} \kappa'(\lambda, \Lambda) \xi_\lambda, \qquad \Lambda \in \Gamma_n.$$

On the other hand, if $J \subseteq [n]$ and |J| = m, we define the *J*-superinduction by

$$\int \operatorname{\mathsf{SInd}}_{U_m(q) imes U_n(q)}^{U_{m+n}(q)}(\xi imes \xi') = \operatorname{\mathsf{SInd}}_{U_{J/J^c}(q)}^{U_{n+m}(q)}((\xi imes \xi') \circ \operatorname{st}_{J/J^c}).$$

We thus obtain a commutative multiplication in $SC = \bigoplus_{n \in \mathbb{N}} SC_n$ by setting

$$\xi \cdot \xi' = \sum_{J \subseteq m+n, \ |J|=m} {}^J \operatorname{SInd}_{U_m(q) \times U_n(q)}^{U_{m+n}(q)}(\xi \times \xi').$$

For this multiplication, we have

$$\xi_1 \cdot \xi_\lambda = \sum_{\Lambda \in \Gamma_{n+1}} \kappa'(\lambda, \Lambda) \xi_\Lambda, \qquad \lambda \in \Gamma_n, \ n \in \mathbb{N},$$

and thus

Theorem

 (Γ, κ') is a multiplicative scheme.

3

Э

We thus obtain a commutative multiplication in $SC = \bigoplus_{n \in \mathbb{N}} SC_n$ by setting

$$\xi \cdot \xi' = \sum_{J \subseteq m+n, \ |J|=m} {}^J \operatorname{SInd}_{U_m(q) \times U_n(q)}^{U_{m+n}(q)}(\xi \times \xi').$$

For this multiplication, we have

$$\xi_1 \cdot \xi_\lambda = \sum_{\Lambda \in \Gamma_{n+1}} \kappa'(\lambda, \Lambda) \xi_\Lambda, \qquad \lambda \in \Gamma_n, \ n \in \mathbb{N},$$

and thus

Theorem

 $(\mathsf{\Gamma},\kappa')$ is a multiplicative scheme.

э

We thus obtain a commutative multiplication in $SC = \bigoplus_{n \in \mathbb{N}} SC_n$ by setting

$$\xi \cdot \xi' = \sum_{J \subseteq m+n, \ |J|=m} {}^J \operatorname{SInd}_{U_m(q) \times U_n(q)}^{U_{m+n}(q)}(\xi \times \xi').$$

For this multiplication, we have

$$\xi_1 \cdot \xi_\lambda = \sum_{\Lambda \in \Gamma_{n+1}} \kappa'(\lambda, \Lambda) \xi_\Lambda, \qquad \lambda \in \Gamma_n, \ n \in \mathbb{N},$$

and thus

Theorem

 (Γ, κ') is a multiplicative scheme.

Э

Therefore,

Theorem

For each $n \in \mathbb{N}$, let ξ_n be a supercharacter of $U_n(q)$ and suppose that the sequence $(\xi_n(g))_{n \in \mathbb{N}}$ is convergent for all $g \in U_{\infty}(q)$. Then, the function $\xi \colon U_{\infty}(q) \to \mathbb{C}$, defined by

$$\xi(g) = \lim_{n \to \infty} \xi_n(g), \qquad g \in U_\infty(q),$$

is an extreme supercharacter of $U_{\infty}(q)$.

Therefore,

Theorem

For each $n \in \mathbb{N}$, let ξ_n be a supercharacter of $U_n(q)$ and suppose that the sequence $(\xi_n(g))_{n \in \mathbb{N}}$ is convergent for all $g \in U_{\infty}(q)$. Then, the function $\xi \colon U_{\infty}(q) \to \mathbb{C}$, defined by

$$\xi(g) = \lim_{n \to \infty} \xi_n(g), \qquad g \in U_\infty(q),$$

is an extreme supercharacter of $U_{\infty}(q)$.

Thank you!!!

≣ **)** ≣