Motivation	Theory and main results	Rank uniform posets	Other results	References
	00000000	00000	O	00

On chain polynomials of rank uniform posets and geometric lattices

Petter Brändén Leonardo Saud

KTH Royal Institute of Technology

June 28th, 2024

KTH Royal Institute of Technology

Motivation	Theory and main results	Rank uniform posets	Other results	References

Table of Contents

1 Motivation

- 2 Theory and main results
- 3 Rank uniform posets

4 Other results

5 References

Brändén, Saud

KTH Royal Institute of Technology

Motivation	Theory and main results	Rank uniform posets	Other results	References
●0	00000000	00000	O	00
Motivation				

Given a finite poset P, its chain polynomial $c_P(t)$ is defined as

$$c_P(t) \coloneqq \sum_{k \ge 0} c_k(P) t^k,$$

where $c_k(P)$ is the number of k-element chains in P.

A ≥ A ≥ A ≥ A ≥ O Q (
 KTH Royal Institute of Technology

< □ > < 円</td>

On chain polynomials of rank uniform posets and geometric lattices

Motivation	Theory and main results	Rank uniform posets	Other results	References
00				

Question: For which posets is the chain polynomial real-rooted?

KTH Royal Institute of Technology

Motivation	Theory and main results	Rank uniform posets	Other results	References
00				

Question: For which posets is the chain polynomial real-rooted?

Examples

Brändén, Saud

(*i*) Boolean lattices (the h-polynomials of the order complexes are the Eulerian polynomials);

(ii) Face lattices of simplicial polytopes (Brenti-Welker, 2008);

(iii) Posets that do not contain the following as an induced subposet (Stanley, 2009):

(*iv*) Subspace lattices and partition lattices of types A and B (Athanasiadis, Kalampogia-Evangelinou, 2023)

Motivation	Theory and main results	Rank uniform posets	Other results	References
00				

Question: For which posets is the chain polynomial real-rooted?

Examples

(*i*) Boolean lattices (the h-polynomials of the order complexes are the Eulerian polynomials);

(*ii*) Face lattices of simplicial polytopes (Brenti-Welker, 2008);

(iii) Posets that do not contain the following as an induced subposet (Stanley, 2009):

(*iv*) Subspace lattices and partition lattices of types A and B (Athanasiadis, Kalampogia-Evangelinou, 2023)

Counterexample

There exist finite distributive lattices with non real-rooted chain polynomials (Stembridge, 2007).

Motivation	Theory and main results	Rank uniform posets	Other results	References
00	●0000000	00000	O	00
Main idea				

If Δ is a simplicial complex of dimension n-1, then the *h*-vector of Δ is defined as the sequence $(h_0(\Delta), h_1(\Delta), \dots, h_n(\Delta))$ for which

$$f_{\Delta}(t) = \sum_{k=0}^n h_k(\Delta) t^k (1+t)^{n-k}.$$

$$h_0, \ldots, h_n \geq 0 \implies c_\Delta(t)$$
 is real-rooted

Idea: Given a complex Γ , find polynomials $R_{n,k}^{\Gamma}(t)$ such that

$$f_{\Gamma}(t) = \sum_{k=0}^{n} h_k(\Gamma) R_{n,k}^{\Gamma}(t).$$

KTH VETERGRAP OCH KONST

< □ > < 凸

On chain polynomials of rank uniform posets and geometric lattices

Motivation	Theory and main results	Rank uniform posets	Other results	References
00	0000000	00000		00

UD-generated sequences of polynomials and total nonnegativity

$$U = (u_{ij})_{i,j=0}^{\infty} = \begin{cases} 1 & \text{if } i \leq j \\ 0 & \text{if } i > j \end{cases}$$

 $UD = \{U \operatorname{diag}(\lambda_{n,0}, \lambda_{n,1}, \dots, \lambda_{n,n}, 0, 0, \dots) \colon \lambda_{n,k} \ge 0 \text{ for all } 0 \le k \le n\}$

KTH Royal Institute of Technology

On chain polynomials of rank uniform posets and geometric lattices

Motivation	Theory and main results	Rank uniform posets	Other results	References
	0000000			

UD-generated sequences of polynomials and total nonnegativity

$$U = (u_{ij})_{i,j=0}^{\infty} = \begin{cases} 1 & \text{if } i \leq j \\ 0 & \text{if } i > j \end{cases}$$

$$UD = \{U \operatorname{diag}(\lambda_{n,0}, \lambda_{n,1}, \dots, \lambda_{n,n}, 0, 0, \dots) \colon \lambda_{n,k} \ge 0 \text{ for all } 0 \le k \le n\}$$

Define $\mathsf{R}_0 = (1, 1, 1, \dots)^T$, and $\mathsf{R}_n = (R_{n,0}(t), R_{n,1}(t), \dots)^T$ recursively by

$$\mathsf{R}_{n+1} = t^{n+1} \mathsf{R}_0 + \mathsf{A}^{(n)} \mathsf{R}_n, \ \ 0 \le n \le N - 1. \tag{1}$$

KTH Royal Institute of Technology

On chain polynomials of rank uniform posets and geometric lattices

Motivation	Theory and main results	Rank uniform posets	Other results	References
	0000000			

UD-generated sequences of polynomials and total nonnegativity

$$U = (u_{ij})_{i,j=0}^{\infty} = \begin{cases} 1 & \text{if } i \leq j \\ 0 & \text{if } i > j \end{cases}$$

$$\mathrm{UD} = \{ U \operatorname{diag}(\lambda_{n,0}, \lambda_{n,1}, \dots, \lambda_{n,n}, 0, 0, \dots) \colon \lambda_{n,k} \ge 0 \text{ for all } 0 \le k \le n \}$$

Define $R_0 = (1, 1, 1, ...)^T$, and $R_n = (R_{n,0}(t), R_{n,1}(t), ...)^T$ recursively by

$$R_{n+1} = t^{n+1}R_0 + A^{(n)}R_n, \quad 0 \le n \le N - 1.$$
(1)

Definition (UD-generated sequence)

We say that $\{R_{n,k}(t)\}$ is UD-generated if R_n satisfies the recursion (1) where $A^{(n)} \in UD$ for each $0 \le n \le N - 1$.

Definition (Totally nonnegative matrix)

A matrix is called *totally nonnegative* if all its minors are nonnegative.

KTH Royal Institute of Technology

4 D N 4 B N 4 B N 4

On chain polynomials of rank uniform posets and geometric lattices

Motivation	Theory and main results	Rank uniform posets	Other results	References
	00●00000	00000	O	00

Theorem (Brändén-Saud, 2024)

Let $R = (r_{n,k})_{n,k=0}^{N}$, where $N \in \mathbb{N} \cup \{\infty\}$, be a lower triangular matrix with all diagonal entries equal to one. Let further $R_n(t) = \sum_{k=0}^{n} r_{n,k} t^k$ be the row generating polynomial of the nth row. The following are equivalent:

(i) $\{R_n(t)\}_{n=0}^N$ is UD-generated.

(ii) There is a matrix $(\lambda_{n,k})_{n,k=0}^{N-1}$ of nonnegative numbers, and an array of monic polynomials $(R_{n,k}(t))_{0 \le k \le n \le N}$ such that $R_{n,0}(t) = R_n(t)$, $t^k \mid R_{n,k}(t)$, and $R_{n+1,k+1}(t) = R_{n+1,k}(t) - \lambda_{n,k}R_{n,k}(t)$ for all $0 \le k \le n < N$.

(iii) There are linear (diagonal) operators $\alpha_i : \mathbb{R}[t] \to \mathbb{R}[t], 1 \leq i \leq N$, such that

$$\alpha_i(t^k) = \alpha_{i,k}t^k$$
, where $\alpha_{i,k} \ge 0$ for all i, k ,

and

$$R_n(t) = (t + \alpha_1)(t + \alpha_2) \cdots (t + \alpha_n) \mathbf{1}.$$

(iv) R is TN.

Moreover if (iii) is satisfied, then the polynomials $R_{n,k}(t) = (t + \alpha_1) \cdots (t + \alpha_{n-k}) t^k$ satisfy (ii).

Brändén, Saud

On chain polynomials of rank uniform posets and geometric lattices

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Motivation	Theory and main results	Rank uniform posets	Other results	References
	0000000			

Interlacing sequences of polynomials

Suppose f and g are real-rooted polynomials with positive leading coefficients, and that $\cdots \leq \alpha_3 \leq \alpha_2 \leq \alpha_1$ and $\cdots \leq \beta_3 \leq \beta_2 \leq \beta_1$ are the zeros of f and g, respectively. We say that f interlaces g ($f \prec g$) if

 $\cdots \leq \alpha_3 \leq \beta_3 \leq \alpha_2 \leq \beta_2 \leq \alpha_1 \leq \beta_1.$

A sequence $\{f_i\}_{i=0}^n$ of real-rooted polynomials with nonnegative coefficients is said to be *interlacing* if $f_i \prec f_i$ for all i < j.

Motivation	Theory and main results	Rank uniform posets	Other results	References
	0000000			

Subdivision operators on rank uniform posets

Definition (Rank uniform poset)

A poset *P* with a least element $\hat{0}$ is rank uniform if

- (i) *P* is locally finite and ranked, with a rank function $\rho : P \to \mathbb{N}$, i.e., $\rho(\hat{0}) = 0$ and $\rho(y) = \rho(x) + 1$ whenever *y* covers *x* in *P*, and
- (ii) for any $x, y \in P$ with $\rho(x) = \rho(y)$,

$$|\{z \in [\hat{0}, x] : \rho(z) = k\}| = |\{z \in [\hat{0}, y] : \rho(z) = k\}|, \text{ for all } k \ge 0.$$

The rank of P is $\rho(P) = \sup\{\rho(x) : x \in P\} \in \mathbb{N} \cup \{\infty\}.$

Examples $(B_3, \Pi_4^{op} \text{ and } C^2)$

Brändén, Saud

On chain polynomials of rank uniform posets and geometric lattices

KTH Royal Institute of Technology

Motivation	Theory and main results	Rank uniform posets	Other results	References
	00000●00	00000	O	00

Definition (Subdivision operator)

Suppose $\{R_n(t)\}_{n=0}^N$, where $N \in \mathbb{N} \cup \{\infty\}$, is a sequence of monic polynomials in $\mathbb{R}[t]$, where the degree of $R_n(t)$ is *n* for each *n*. The subdivision operator associated to $\{R_n(t)\}_{n=0}^N$ is the linear operator $\mathcal{E} : \mathbb{R}_N[t] \to \mathbb{R}[t]$ defined recursively by $\mathcal{E}(1) = 1$, and

$$\mathcal{E}(t^n) = t\mathcal{E}(R_n(t) - t^n), \quad \text{if } 0 < n \le N.$$
(2)

If $\{R_n(t)\}_{n=0}^N$ are the rank generating polynomials of a rank uniform poset P, we say that \mathcal{E} is the subdivision operator of P.

Proposition (Brändén-Saud, 2024)

Let P be a rank uniform poset with rank generating polynomials $\{R_n(t)\}_{n=0}^N$. If $\rho(x) = n > 0$, then

$$\mathcal{E}(t^n) = \sum_{j \ge 1} |\{\hat{0} < x_1 < \dots < x_j = x\}| \cdot t^j.$$
(3)

KTH Roval Institute of Technology

Moreover if I is a nonempty and finite order ideal of P, then

$$C_I(t) = (1+t)\mathcal{E}(f_I(t)).$$

Brändén, Saud

Motivation	Theory and main results	Rank uniform posets	Other results	References
	00000000			

Theorem (Brändén-Saud, 2024)

If $\{R_{n,k}\}_{n,k=0}^{\infty}$ is UD-generated, then $\{\mathcal{E}(R_{n,k})\}_{k\geq 0}$ is an interlacing sequence of polynomials whose zeros all lie in the interval [-1,0], for each $n \geq 0$.

イロト イポト イヨト イヨト

Motivation	Theory and main results	Rank uniform posets	Other results	References
	0000000			

R-positive posets

Definition (R-positive poset)

Let P be a rank uniform poset of rank r, and let

$$\mathsf{R} = \{R_{n,k}(t)\}_{n,k=0}^{N}$$

be an array of polynomials. We say that P is R-positive if

(i) for each $y \in P$,

$$\sum_{x\leq y} t^{
ho(x)} = {\sf R}_{
ho(y), {\sf 0}}$$
 and,

(ii) the rank generating polynomial f_P(t) has a nonnegative expansion in the polynomials {R_{r,k}(t)}^N_{k=0}.

Theorem (Brändén-Saud, 2024)

Let R be a UD-generated array. If P is an R-positive poset, then the chain polynomial of P is real-rooted.

Brändén, Saud

On chain polynomials of rank uniform posets and geometric lattices

KTH Royal Institute of Technology

Image: A matrix and a matrix

Motivation	Theory and main results	Rank uniform posets ●0000	Other results 0	References 00

Boolean algebras

 $\begin{array}{l} B_n = \text{Boolean lattice on } n \text{ elements} \\ \text{Rank polynomial: } R_n^B(t) = (1+t)^n \\ R_{n,k}(t) \coloneqq \left\{ \begin{array}{l} t^k (1+t)^{n-k} \text{ if } 0 \leq k \leq n \\ t^n \text{ if } k > n \end{array} \right. \end{array}$

KTH Royal Institute of Technology

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Motivation	Theory and main results 00000000	Rank uniform posets 00000	Other results O	References

Boolean algebras

 $\begin{array}{l} B_n = \text{Boolean lattice on } n \text{ elements} \\ \text{Rank polynomial: } R_n^B(t) = (1+t)^n \\ R_{n,k}(t) \coloneqq \left\{ \begin{array}{l} t^k (1+t)^{n-k} \text{ if } 0 \leq k \leq n \\ t^n \text{ if } k > n \end{array} \right. \end{array}$

$$A_{B}^{(n)} = U \operatorname{diag}(\underbrace{1, \dots, 1}_{n+1 \text{ times}}, 0, \dots) = \begin{pmatrix} 1 & 1 & 1 & \cdots & 1 & 1 & 0 \cdots \\ 0 & 1 & 1 & \cdots & 1 & 1 & 0 \cdots \\ 0 & 0 & 1 & \cdots & 1 & 1 & 0 \cdots \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots \\ 0 & 0 & 0 & \cdots & 0 & 1 & 0 \cdots \\ 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \cdots \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots \end{pmatrix}$$

KTH VETEMAKAP OCH KORST

KTH Royal Institute of Technology

(日) (同) (日) (日)

Brändén, Saud

Motivation	Theory and main results	Rank uniform posets 0●000	Other results O	References 00

q-partition lattices

Brändén, Saud

 $Q_n = q$ -partition Dowling lattice on \mathbb{F}_q^n (Dowling, 1973) Rank polynomial: $R_n^{Q^{op}}(t) = \sum_{i=0}^n T(n, i)t^i$, where

$$T(n,i) = T(n-1,i-1) + [1 + (q-1)i]T(n-1,i)$$

 $R_{n,k}^{Q^{op}}(t) = R_{n,k-1}^{Q^{op}}(t) - [1 + (q-1)(k-1)]R_{n-1,k-1}^{Q^{op}}(t)$

$$A_{Q^{OP}}^{(n)} = U \operatorname{diag}(1, q, 2q - 1, \dots, nq - (n - 1), 0, \dots)$$

$$= \begin{pmatrix} 1 & q & 2q - 1 & \cdots & nq - (n - 1) & 0 & \cdots \\ 0 & q & 2q - 1 & \cdots & nq - (n - 1) & 0 & \cdots \\ 0 & 0 & 2q - 1 & \cdots & nq - (n - 1) & 0 & \cdots \\ \vdots & \vdots & \vdots & \ddots & \vdots & \ddots \\ 0 & 0 & 0 & \cdots & nq - (n - 1) & 0 & \cdots \\ 0 & 0 & 0 & \cdots & 0 & 0 & \cdots \\ \vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots \end{pmatrix}$$

KTH VETERBARA

Motivation	Theory and main results	Rank uniform posets	Other results	References
		00000		

Partition lattices of types A and B

 $(\mathbf{q} = \mathbf{2}) \prod_{n=1}^{n} = |$ attice of all partitions of the set [n] $(\mathbf{q} = \mathbf{3}) \prod_{n=1}^{n} = |$ attice of all partitions π of the set $\{n, n-1, \ldots, -n\}$ ordered by reverse refinement such that

(i)
$$B \in \pi \implies (-B) \in \pi$$
,
(ii) if $\{k, -k\} \subseteq B$ for some $k \in [n]$ and some block $B \in \pi$, then $0 \in B$.

$$A_{(\Pi_{n}^{A})^{\mathsf{op}}}^{(n)} = \begin{pmatrix} 1 & 2 & 3 & \cdots & n+1 & 0 \cdots \\ 0 & 2 & 3 & \cdots & n+1 & 0 \cdots \\ 0 & 0 & 3 & \cdots & n+1 & 0 \cdots \\ \vdots & \vdots & \vdots & \ddots & \vdots & \ddots \\ 0 & 0 & 0 & \cdots & n+1 & 0 \cdots \\ 0 & 0 & 0 & \cdots & 0 & 0 \cdots \\ \vdots & \vdots & \vdots & \ddots & \vdots & \ddots \end{pmatrix} A_{(\Pi_{n}^{B})^{\mathsf{op}}}^{(n)} = \begin{pmatrix} 1 & 3 & 5 & \cdots & 2n+1 & 0 \cdots \\ 0 & 3 & 5 & \cdots & 2n+1 & 0 \cdots \\ 0 & 0 & 5 & \cdots & 2n+1 & 0 \cdots \\ \vdots & \vdots & \vdots & \ddots & \vdots & \ddots \\ 0 & 0 & 0 & \cdots & 0 & 0 \cdots \\ \vdots & \vdots & \vdots & \ddots & \vdots & \ddots \\ 0 & 0 & 0 & \cdots & 0 & 0 \cdots \\ \vdots & \vdots & \vdots & \ddots & \vdots & \ddots \end{pmatrix}$$

KTH Royal Institute of Technology

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

On chain polynomials of rank uniform posets and geometric lattices

Motivation	Theory and main results 0000000	Rank uniform posets 000●0	Other results O	References

$$\begin{aligned} C_{n-1}^r &= (n-1) \text{-dimensional } r \text{-cubical lattice} \\ \text{Rank polynomial: } & R_n^r(t) = 1 + t(r+t)^{n-1} \\ R_{n,k}^r(t) &\coloneqq \begin{cases} & R_n^r(t) \text{ if } k = 0 \\ & (r-1+t)t^k(r+t)^{n-k-1} \text{ if } 0 < k < n \\ & t^n \text{ if } k \ge n \end{cases} \end{aligned}$$

$$A_r^{(n)} = U \operatorname{diag}(1, \underbrace{r, \dots, r}_{n-1 \text{ times}}, r-1, 0, \dots)$$

$$= \begin{pmatrix} 1 & r & r & \cdots & r & r-1 & 0 \cdots \\ 0 & r & r & \cdots & r & r-1 & 0 \cdots \\ 0 & 0 & r & \cdots & r & r-1 & 0 \cdots \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots \\ 0 & 0 & 0 & \cdots & 0 & r-1 & 0 \cdots \\ 0 & 0 & 0 & \cdots & 0 & 0 & 0 \cdots \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots \end{pmatrix}$$

KTH VETENSKAP OCH KORST

KTH Royal Institute of Technology

3

・ロト ・ 四ト ・ ヨト ・ ヨト

Brändén, Saud

Motivation	Theory and main results	Rank uniform posets	Other results	References
	00000000	0000●	O	00

Subspace lattices

Brändén, Saud

 $\begin{array}{l} \mathcal{L}_{q}^{d} = \text{lattice of all subspaces of a } d\text{-dimensional vector space over } \mathbb{F}_{q} \\ \text{Rank polynomial: } \mathcal{R}_{n}^{q}(t) = \sum_{k=0}^{n} \binom{n}{k_{q}} t^{k} \\ \mathcal{R}_{n,k}^{q}(t) = \mathcal{R}_{n,k-1}^{q}(t) - q^{k} \mathcal{R}_{n-1,k-1}^{q}(t) \end{array}$

$$A_q^{(n)} = U \operatorname{diag}(1, q, q^2, \dots, q^n, 0, \dots)$$
$$= \begin{pmatrix} 1 & q & q^2 & \cdots & q^n & 0 \cdots \\ 0 & q & q^2 & \cdots & q^n & 0 \cdots \\ 0 & 0 & q^2 & \cdots & q^n & 0 \cdots \\ \vdots & \vdots & \vdots & \ddots & \vdots & \ddots \\ 0 & 0 & 0 & \cdots & q^n & 0 \cdots \\ 0 & 0 & 0 & \cdots & 0 & 0 \cdots \\ \vdots & \vdots & \vdots & \ddots & \vdots & \ddots \end{pmatrix}$$

KTH VETERBARAP VETERBARAP

Motivation	Theory and main results	Rank uniform posets	Other results	References
	00000000	00000	•	00

What else?

Brändén, Saud

Conjecture (Athanasiadis, Kalampogia-Evangelinou, 2023)

The chain polynomial $c_{\mathcal{L}}(t)$ is real-rooted for every geometric lattice (lattice of flats of a matroid) \mathcal{L} .

• Prove this conjecture for paving matroids (**Conjecture**: almost all matroids are paving matroids (Mayhew-Newman-Welsh-Whittle, 2011)).

• Generalize the idea of paving matroids and prove the conjecture for other matroids (still not all of them).

• Prove the conjecture for some matroids obtained by single-element extension.

Motivation	Theory and main results	Rank uniform posets	Other results	References
				•0

Thank you very much!

Muito obrigado!

Tack så mycket!

KTH Royal Institute of Technology

On chain polynomials of rank uniform posets and geometric lattices

Motivation	Theory and main results 00000000	Rank uniform posets 00000	Other results O	References ○●

References

Christos A Athanasiadis and Katerina Kalampogia-Evangelinou. Chain enumeration, partition lattices and polynomials with only real roots. *Combinatorial Theory, 3 (1)*, 2023.

Petter Brändén. Unimodality, log-concavity, real-rootedness and beyond. *Handbook of enumerative combinatorics*, 87:437, 2015.

Thomas A Dowling. A q-analog of the partition lattice. In *A survey of combinatorial theory*, pages 101–115. Elsevier, 1973.

Richard Ehrenborg and Margaret Readdy. The r-cubical lattice and a generalization of the cd-index. *European Journal of Combinatorics*, 17(8):709–725, 1996.

Steve Fisk. Polynomials, roots, and interlacing. *arXiv Mathematics e-prints*, pages math–0612833, 2006.

James G Oxley. Matroid theory, volume 3. Oxford University Press, USA, 2006.

Richard P Stanley. Enumerative combinatorics volume 1 second edition. *Cambridge studies in advanced mathematics*, 2011.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A