

On chain polynomials of rank uniform posets and geometric **lattices**

Petter Brändén Leonardo Saud

KTH Royal Institute of Technology

June 28th, 2024

Brändén, Saud KTH Royal Institute of Technology

4 D F

Table of Contents

1 [Motivation](#page-2-0)

- 2 [Theory and main results](#page-6-0)
- 3 [Rank uniform posets](#page-16-0)

4 [Other results](#page-22-0)

5 [References](#page-23-0)

Brändén, Saud KTH Royal Institute of Technology

Given a finite poset P, its chain polynomial $c_P(t)$ is defined as

$$
c_P(t) \coloneqq \sum_{k \geq 0} c_k(P) t^k,
$$

where $c_k(P)$ is the number of *k*-element chains in *P*.

Brändén, Saud KTH Royal Institute of Technology

医毛囊 医牙骨

K ロ ▶ K 何 ▶

Question: For which posets is the chain polynomial real-rooted?

Brändén, Saud KTH Royal Institute of Technology

K ロ ▶ K 何 ▶

Question: For which posets is the chain polynomial real-rooted?

Examples

 (i) Boolean lattices (the h-polynomials of the order complexes are the Eulerian polynomials);

(ii) Face lattices of simplicial polytopes (Brenti-Welker, 2008);

 (iii) Posets that do not contain the following as an induced subposet (Stanley, 2009):

 (iv) Subspace lattices and partition lattices of types A and B (Athanasiadis, Kalampogia-Evangelinou, 2023)

 \bullet

∢ □ ▶ ⊣ 何 ▶ ⊣ ∃ ▶

Question: For which posets is the chain polynomial real-rooted?

Examples

 (i) Boolean lattices (the h-polynomials of the order complexes are the Eulerian polynomials);

(ii) Face lattices of simplicial polytopes (Brenti-Welker, 2008);

 (iii) Posets that do not contain the following as an induced subposet (Stanley, 2009):

 (iv) Subspace lattices and partition lattices of types A and B (Athanasiadis, Kalampogia-Evangelinou, 2023)

Counterexample

There exist finite distributive lattices with non real-rooted chain polynomials (Stembridge, 2007).

∢ □ ▶ ∢ _□ ▶ ∢ □ ▶ ∢

Brändén, Saud KTH Royal Institute of Technology

If Δ is a simplicial complex of dimension $n-1$, then the *h-vector* of Δ is defined as the sequence $(h_0(\Delta), h_1(\Delta), \ldots, h_n(\Delta))$ for which

$$
f_{\Delta}(t)=\sum_{k=0}^n h_k(\Delta)t^k(1+t)^{n-k}.
$$

$$
h_0,\ldots,h_n\geq 0\implies c_{\Delta}(t)\text{ is real-rooted}
$$

Idea: Given a complex Γ, find polynomials $R_{n,k}^{\Gamma}(t)$ such that

$$
f_{\Gamma}(t)=\sum_{k=0}^n h_k(\Gamma)R_{n,k}^{\Gamma}(t).
$$

つひへ

-4 B \rightarrow

4 ロト 4 何

UD-generated sequences of polynomials and total nonnegativity

$$
U = (u_{ij})_{i,j=0}^{\infty} = \begin{cases} 1 & \text{if } i \leq j \\ 0 & \text{if } i > j \end{cases}
$$

 $UD = \{U \text{diag}(\lambda_{n,0}, \lambda_{n,1}, \ldots, \lambda_{n,n}, 0, 0, \ldots) : \lambda_{n,k} \geq 0 \text{ for all } 0 \leq k \leq n\}$

Brändén, Saud KTH Royal Institute of Technology

◆ ロ ▶ → 何

UD-generated sequences of polynomials and total nonnegativity

$$
U = (u_{ij})_{i,j=0}^{\infty} = \begin{cases} 1 & \text{if } i \leq j \\ 0 & \text{if } i > j \end{cases}
$$

$$
UD = \{U \text{diag}(\lambda_{n,0}, \lambda_{n,1}, \ldots, \lambda_{n,n}, 0, 0, \ldots) : \lambda_{n,k} \ge 0 \text{ for all } 0 \le k \le n\}
$$

Define $R_0 = (1, 1, 1, ...)$ ^T, and $R_n = (R_{n,0}(t), R_{n,1}(t), ...)$ ^T recursively by

$$
R_{n+1} = t^{n+1} R_0 + A^{(n)} R_n, \quad 0 \le n \le N-1. \tag{1}
$$

40004

Brändén, Saud KTH Royal Institute of Technology

UD-generated sequences of polynomials and total nonnegativity

$$
U = (u_{ij})_{i,j=0}^{\infty} = \begin{cases} 1 & \text{if } i \leq j \\ 0 & \text{if } i > j \end{cases}
$$

UD = { $U \operatorname{diag}(\lambda_{n,0}, \lambda_{n,1}, \ldots, \lambda_{n,n}, 0, 0, \ldots)$: $\lambda_{n,k} \geq 0$ for all $0 \leq k \leq n$ }
Define $R_0 = (1, 1, 1, \ldots)^T$, and $R_n = (R_{n,0}(t), R_{n,1}(t), \ldots)^T$ recursively by

$$
R_{n+1} = t^{n+1} R_0 + A^{(n)} R_n, \quad 0 \leq n \leq N - 1.
$$
 (1)

Definition (UD-generated sequence)

We say that $\{R_{n,k}(t)\}$ is UD-generated if R_n satisfies the recursion [\(1\)](#page-7-0) where $A^{(n)} \in$ UD for each $0 \le n \le N-1$.

Definition (Totally nonnegative matrix)

A matrix is called totally nonnegative if all its minors are nonnegative.

Brändén, Saud KTH Royal Institute of Technology

イロト イ押 トイヨ トイヨ

Theorem (Brändén-Saud, 2024)

Let $R = (r_{n,k})_{n,k=0}^N$, where $N \in \mathbb{N} \cup \{\infty\}$, be a lower triangular matrix with all diagonal entries equal to one. Let further $R_n(t) = \sum_{k=0}^n r_{n,k} t^k$ be the row generating polynomial of the nth row. The following are equivalent:

(i) ${R_n(t)}_{n=0}^N$ is UD-generated.

(ii) There is a matrix $(\lambda_{n,k})_{n,k=0}^{N-1}$ of nonnegative numbers, and an array of monic polynomials $(R_{n,k}(t))_{0\leq k\leq n\leq N}$ such that $R_{n,0}(t)\;=\;R_n(t),\;t^k\;\mid\;R_{n,k}(t),$ and $R_{n+1,k+1}(t) = R_{n+1,k}(\bar{t}) - \bar{\lambda}_{n,k}R_{n,k}(t)$ for all $0 \le k \le n \le N$.

(iii) There are linear (diagonal) operators $\alpha_i : \mathbb{R}[t] \to \mathbb{R}[t]$, $1 \leq i \leq N$, such that

$$
\alpha_i(t^k) = \alpha_{i,k}t^k, \text{ where } \alpha_{i,k} \geq 0 \text{ for all } i,k,
$$

and

$$
R_n(t)=(t+\alpha_1)(t+\alpha_2)\cdots (t+\alpha_n)1.
$$

 (iv) R is TN.

Moreover if [\(iii\)](#page-10-0) is satisfied, then the polynomials $R_{n,k}(t) = (t+\alpha_1)\cdots (t+\alpha_{n-k})t^k$ satisfy [\(ii\).](#page-10-1)

[On chain polynomials of rank uniform posets and geometric lattices](#page-0-0)

Brändén, Saud KTH Royal Institute of Technology

∢ ロ ▶ -∢ 母 ▶ -∢ ヨ ▶ -∢ ヨ ▶

Interlacing sequences of polynomials

Suppose f and g are real-rooted polynomials with positive leading coefficients, and that $\cdots < \alpha_3 < \alpha_2 < \alpha_1$ and $\cdots < \beta_3 < \beta_2 < \beta_1$ are the zeros of f and g, respectively. We say that f interlaces g ($f \prec g$) if

 $\cdots < \alpha_3 < \beta_3 < \alpha_2 < \beta_2 < \alpha_1 < \beta_1$.

A sequence $\{f_i\}_{i=0}^n$ of real-rooted polynomials with nonnegative coefficients is said to be *interlacing* if $f_i \prec f_j$ for all $i < j$.

◂**◻▸ ◂⁄** ▸

Subdivision operators on rank uniform posets

Definition (Rank uniform poset)

A poset P with a least element $\hat{0}$ is rank uniform if

- (i) P is locally finite and ranked, with a rank function $\rho : P \to \mathbb{N}$, i.e., $\rho(\hat{0}) = 0$ and $\rho(y) = \rho(x) + 1$ whenever y covers x in P, and
- (ii) for any $x, y \in P$ with $\rho(x) = \rho(y)$,

 $|\{z \in [\hat{0}, x] : \rho(z) = k\}| = |\{z \in [\hat{0}, y] : \rho(z) = k\}|$, for all $k > 0$.

The rank of P is $\rho(P) = \sup\{\rho(x) : x \in P\} \in \mathbb{N} \cup \{\infty\}.$

Examples $(B_3, \Pi_4^{\text{op}}$ and C^2)

[On chain polynomials of rank uniform posets and geometric lattices](#page-0-0)

Brändén, Saud KTH Royal Institute of Technology

Definition (Subdivision operator)

Suppose $\{R_n(t)\}_{n=0}^N$, where $N \in \mathbb{N} \cup \{\infty\}$, is a sequence of monic polynomials in $\mathbb{R}[t]$, where the degree of $R_n(t)$ is n for each n. The subdivision operator associated to $\{R_n(t)\}_{n=0}^N$ is the linear operator $\mathcal{E}:\mathbb{R}_N[t]\to\mathbb{R}[t]$ defined recursively by $\mathcal{E}(1)=1$, and

$$
\mathcal{E}(t^n)=t\mathcal{E}(R_n(t)-t^n),\quad \text{ if } 0
$$

If $\{R_n(t)\}_{n=0}^N$ are the rank generating polynomials of a rank uniform poset P , we say that $\mathcal E$ is the subdivision operator of P .

Proposition (Brändén-Saud, 2024)

Let P be a rank uniform poset with rank generating polynomials $\{R_n(t)\}_{n=0}^N$. If $\rho(x)$ = $n > 0$, then

$$
\mathcal{E}(t^n) = \sum_{j\geq 1} |\{ \hat{0} < x_1 < \cdots < x_j = x \}| \cdot t^j. \tag{3}
$$

(□) (母) (ヨ) (ヨ

Moreover if I is a nonempty and finite order ideal of P, then

 $C_1(t) = (1 + t)\mathcal{E}(f_1(t)).$

Brändén, Saud KTH Royal Institute of Technology

Theorem (Brändén-Saud, 2024)

If $\{R_{n,k}\}_{n,k=0}^{\infty}$ is $\mathrm{UD}\textrm{-}generated,$ then $\{\mathcal{E}(R_{n,k})\}_{k\geq 0}$ is an interlacing sequence of polynomials whose zeros all lie in the interval $[-1, 0]$, for each $n \ge 0$.

э

Brändén, Saud KTH Royal Institute of Technology [On chain polynomials of rank uniform posets and geometric lattices](#page-0-0)

イロト イ母 ト イヨ ト イヨ ト

R-positive posets

Definition (R-positive poset)

Let P be a rank uniform poset of rank r , and let

$$
\mathsf{R}=\{R_{n,k}(t)\}_{n,k=0}^N
$$

be an array of polynomials. We say that P is R-positive if

(i) for each $y \in P$,

$$
\sum_{x \le y} t^{\rho(x)} = R_{\rho(y),0} \quad \text{and,}
$$

(ii) the rank generating polynomial $f_P(t)$ has a nonnegative expansion in the polynomials $\{R_{r,k}(t)\}_{k=0}^{N}$.

Theorem (Brändén-Saud, 2024)

Let R be a UD-generated array. If P is an R -positive poset, then the chain polynomial of P is real-rooted.

[On chain polynomials of rank uniform posets and geometric lattices](#page-0-0)

K ロ ▶ K 御 ▶ K 경 ▶ K 경

Boolean algebras

 $B_n =$ Boolean lattice on *n* elements Rank polynomial: $R_n^B(t) = (1+t)^n$ $R_{n,k}(t) := \begin{cases} t^k(1+t)^{n-k} & \text{if } 0 \leq k \leq n \\ t^n & \text{if } k > n \end{cases}$ t^n if $k > n$

Brändén, Saud KTH Royal Institute of Technology

 4 ロ } 4 4 $\overline{7}$ } 4 $\overline{2}$ } 4 $\overline{2}$

Boolean algebras

 $B_n =$ Boolean lattice on *n* elements Rank polynomial: $R_n^B(t) = (1+t)^n$ n $R_{n,k}(t) := \begin{cases} t^k(1+t)^{n-k} & \text{if } 0 \leq k \leq n \\ t^n & \text{if } k > n \end{cases}$ t^n if $k > n$

4 D F

q-partition lattices

 $Q_n = q$ -partition Dowling lattice on \mathbb{F}_q^n (Dowling, 1973) Rank polynomial: $R_n^{Q^{\mathsf{op}}}(t) = \sum_{i=0}^n \mathcal{T}(n,i)t^i$, where

$$
T(n,i) = T(n-1,i-1) + [1 + (q-1)i]T(n-1,i)
$$

 $R_{n,k}^{Q^{\rm op}}$ $R_{n,k}^{\mathsf{Q^{op}}}(t) = R_{n,k}^{\mathsf{Q^{op}}}$ $h_{n,k-1}^{Q^{\mathsf{op}}}(t) - [1+(q-1)(k-1)]R_{n-1}^{Q^{\mathsf{op}}}$ $n-1,k-1$ ^(t)

$$
A_{Q^{op}}^{(n)} = U \operatorname{diag}(1, q, 2q - 1, ..., nq - (n - 1), 0, ...)
$$

\n
$$
= \begin{pmatrix}\n1 & q & 2q - 1 & \cdots & nq - (n - 1) & 0 & \cdots \\
0 & q & 2q - 1 & \cdots & nq - (n - 1) & 0 & \cdots \\
0 & 0 & 2q - 1 & \cdots & nq - (n - 1) & 0 & \cdots \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots \\
0 & 0 & 0 & \cdots & nq - (n - 1) & 0 & \cdots \\
0 & 0 & 0 & \cdots & 0 & 0 & \cdots\n\end{pmatrix}
$$

つひつ

Brändén, Saud KTH Royal Institute of Technology

◂**◻▸ ◂⁄** ▸

Partition lattices of types A and B

 $(\mathsf{q}=2)\ \mathsf{\Pi}^A_n=\mathsf{lattice}$ of all partitions of the set $[n]\ (\mathsf{q}=3)\ \mathsf{\Pi}^B_n=\mathsf{lattice}$ of all partitions π of the set $\{n,n-1,\ldots,-n\}$ ordered by reverse refinement such that

\n- (i)
$$
B \in \pi \implies (-B) \in \pi
$$
,
\n- (ii) if $\{k, -k\} \subseteq B$ for some $k \in [n]$ and some block $B \in \pi$, then $0 \in B$.
\n

$$
A_{(\Pi_n^A)\circ P}^{(n)} = \begin{pmatrix} 1 & 2 & 3 & \cdots & n+1 & 0 & \cdots \\ 0 & 2 & 3 & \cdots & n+1 & 0 & \cdots \\ 0 & 0 & 3 & \cdots & n+1 & 0 & \cdots \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots \\ 0 & 0 & 0 & \cdots & n+1 & 0 & \cdots \\ 0 & 0 & 0 & \cdots & 0 & 0 & \cdots \end{pmatrix} \quad A_{(\Pi_n^B)\circ P}^{(n)} = \begin{pmatrix} 1 & 3 & 5 & \cdots & 2n+1 & 0 & \cdots \\ 0 & 3 & 5 & \cdots & 2n+1 & 0 & \cdots \\ 0 & 0 & 5 & \cdots & 2n+1 & 0 & \cdots \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots \\ 0 & 0 & 0 & \cdots & 2n+1 & 0 & \cdots \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots \end{pmatrix}
$$

Brändén, Saud KTH Royal Institute of Technology

 Ω

イロト イ部 トイモト イモト

$$
C'_{n-1} = (n-1)\text{-dimensional } r\text{-cubical lattice}
$$
\nRank polynomial:
$$
R'_n(t) = 1 + t(r+t)^{n-1}
$$
\n
$$
R'_{n,k}(t) := \begin{cases} R'_n(t) & \text{if } k = 0\\ (r-1+t)t^k(r+t)^{n-k-1} & \text{if } 0 < k < n\\ t^n & \text{if } k \ge n \end{cases}
$$

$$
A_r^{(n)} = U \operatorname{diag}(1, \underbrace{r, \dots, r}_{n-1 \text{ times}}, r-1, 0, \dots)
$$
\n
$$
= \begin{pmatrix}\n1 & r & r & \cdots & r & r-1 & 0 & \cdots \\
0 & r & r & \cdots & r & r-1 & 0 & \cdots \\
0 & 0 & r & \cdots & r & r-1 & 0 & \cdots \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots \\
0 & 0 & 0 & \cdots & 0 & r-1 & 0 & \cdots \\
0 & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots\n\end{pmatrix}
$$

 $0 \quad 0 \quad 0 \quad \cdots \quad 0 \quad 0 \quad 0 \cdots$.

> KTH
Etenskai
Ich konst 298

Brändén, Saud KTH Royal Institute of Technology

重

 \setminus

 $\overline{}$

イロト イ部 トメ ヨ トメ ヨト

Subspace lattices

 $\mathcal{L}_q^d=$ lattice of all subspaces of a d -dimensional vector space over \mathbb{F}_q Rank polynomial: $R_n^q(t) = \sum_{k=0}^n {n \choose k q} t^k$ $R_{n,k}^q(t) = R_{n,k-1}^q(t) - q^k R_{n-1,k-1}^q(t)$

$$
A_q^{(n)} = U \operatorname{diag}(1, q, q^2, \dots, q^n, 0, \dots)
$$

\n
$$
= \begin{pmatrix}\n1 & q & q^2 & \cdots & q^n & 0 & \cdots \\
0 & q & q^2 & \cdots & q^n & 0 & \cdots \\
0 & 0 & q^2 & \cdots & q^n & 0 & \cdots \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & q^n & 0 & \cdots \\
0 & 0 & 0 & \cdots & 0 & 0 & \cdots\n\end{pmatrix}
$$

 Ω

◂**◻▸ ◂⁄** ▸

What else?

Conjecture (Athanasiadis, Kalampogia-Evangelinou, 2023)

The chain polynomial $c_{\mathcal{L}}(t)$ is real-rooted for every geometric lattice (lattice of flats of a matroid) L.

• Prove this conjecture for paving matroids (Conjecture: almost all matroids are paving matroids (Mayhew-Newman-Welsh-Whittle, 2011)).

• Generalize the idea of paving matroids and prove the conjecture for other matroids (still not all of them).

• Prove the conjecture for some matroids obtained by single-element extension.

Brändén, Saud KTH Royal Institute of Technology

K ロ ▶ K 何 ▶ K 日

Thank you very much!

Muito obrigado!

Tack så mycket!

Brändén, Saud KTH Royal Institute of Technology

4 D F

References

Christos A Athanasiadis and Katerina Kalampogia-Evangelinou. Chain enumeration, partition lattices and polynomials with only real roots. Combinatorial Theory, 3 (1), 2023.

Petter Brändén. Unimodality, log-concavity, real-rootedness and beyond. Handbook of enumerative combinatorics, 87:437, 2015.

Thomas A Dowling. A g-analog of the partition lattice. In A survey of combinatorial theory, pages 101–115. Elsevier, 1973.

Richard Ehrenborg and Margaret Readdy. The r-cubical lattice and a generalization of the cd-index. European Journal of Combinatorics, 17(8):709–725, 1996.

Steve Fisk. Polynomials, roots, and interlacing. arXiv Mathematics e-prints, pages math–0612833, 2006.

James G Oxley. Matroid theory, volume 3. Oxford University Press, USA, 2006.

Richard P Stanley. Enumerative combinatorics volume 1 second edition. Cambridge studies in advanced mathematics, 2011.

K ロ ト K 何 ト K ヨ ト K