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Motivation

Given a finite poset P, its chain polynomial cP(t) is defined as

cP(t) :=
∑
k≥0

ck (P)tk ,

where ck (P) is the number of k-element chains in P.

P

cP(t) = 1 + 5t + 7t2 + 3t3
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Question: For which posets is the chain polynomial real-rooted?

Examples

(i) Boolean lattices (the h-polynomials of the order complexes are the Eulerian polyno-
mials);
(ii) Face lattices of simplicial polytopes (Brenti-Welker, 2008);
(iii) Posets that do not contain the following as an induced subposet (Stanley, 2009):

(iv) Subspace lattices and partition lattices of types A and B (Athanasiadis, Kalampogia-
Evangelinou, 2023)

Counterexample

There exist finite distributive lattices with non real-rooted chain polynomials (Stem-
bridge, 2007).
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Main idea

If ∆ is a simplicial complex of dimension n − 1, then the h-vector of ∆ is defined as
the sequence (h0(∆), h1(∆), . . . , hn(∆)) for which

f∆(t) =
n∑

k=0

hk (∆)tk (1 + t)n−k .

h0, . . . , hn ≥ 0 =⇒ c∆(t) is real-rooted

Idea: Given a complex Γ, find polynomials RΓ
n,k (t) such that

fΓ(t) =
n∑

k=0

hk (Γ)R
Γ
n,k (t).
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UD-generated sequences of polynomials and total nonnegativity

U = (uij )
∞
i,j=0 =

{
1 if i ≤ j

0 if i > j

UD = {U diag(λn,0, λn,1, . . . , λn,n, 0, 0, . . .) : λn,k ≥ 0 for all 0 ≤ k ≤ n}

Define R0 = (1, 1, 1, . . .)T , and Rn = (Rn,0(t),Rn,1(t), . . .)T recursively by

Rn+1 = tn+1R0 + A(n)Rn, 0 ≤ n ≤ N − 1. (1)

Definition (UD-generated sequence)

We say that {Rn,k (t)} is UD-generated if Rn satisfies the recursion (1) where A(n) ∈ UD
for each 0 ≤ n ≤ N − 1.

Definition (Totally nonnegative matrix)

A matrix is called totally nonnegative if all its minors are nonnegative.
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Theorem (Brändén-Saud, 2024)

Let R = (rn,k )
N
n,k=0, where N ∈ N∪{∞}, be a lower triangular matrix with all diagonal

entries equal to one. Let further Rn(t) =
∑n

k=0 rn,k t
k be the row generating polynomial

of the nth row. The following are equivalent:

(i) {Rn(t)}Nn=0 is UD-generated.

(ii) There is a matrix (λn,k )
N−1
n,k=0 of nonnegative numbers, and an array of monic

polynomials (Rn,k (t))0≤k≤n≤N such that Rn,0(t) = Rn(t), tk | Rn,k (t), and
Rn+1,k+1(t) = Rn+1,k (t)− λn,kRn,k (t) for all 0 ≤ k ≤ n < N.

(iii) There are linear (diagonal) operators αi : R[t] → R[t], 1 ≤ i ≤ N, such that

αi (t
k ) = αi,k t

k , where αi,k ≥ 0 for all i , k,

and
Rn(t) = (t + α1)(t + α2) · · · (t + αn)1.

(iv) R is TN.

Moreover if (iii) is satisfied, then the polynomials Rn,k (t) = (t + α1) · · · (t + αn−k )t
k

satisfy (ii).
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Interlacing sequences of polynomials

Suppose f and g are real-rooted polynomials with positive leading coefficients, and that
· · · ≤ α3 ≤ α2 ≤ α1 and · · · ≤ β3 ≤ β2 ≤ β1 are the zeros of f and g , respectively.
We say that f interlaces g (f ≺ g) if

· · · ≤ α3 ≤ β3 ≤ α2 ≤ β2 ≤ α1 ≤ β1.

A sequence {fi}ni=0 of real-rooted polynomials with nonnegative coefficients is said to
be interlacing if fi ≺ fj for all i < j .
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Subdivision operators on rank uniform posets

Definition (Rank uniform poset)

A poset P with a least element 0̂ is rank uniform if

(i) P is locally finite and ranked, with a rank function ρ : P → N, i.e., ρ(0̂) = 0 and
ρ(y) = ρ(x) + 1 whenever y covers x in P, and

(ii) for any x , y ∈ P with ρ(x) = ρ(y),

|{z ∈ [0̂, x] : ρ(z) = k}| = |{z ∈ [0̂, y ] : ρ(z) = k}|, for all k ≥ 0.

The rank of P is ρ(P) = sup{ρ(x) : x ∈ P} ∈ N ∪ {∞}.

Examples (B3, Π
op
4 and C2)
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Definition (Subdivision operator)

Suppose {Rn(t)}Nn=0, where N ∈ N∪ {∞}, is a sequence of monic polynomials in R[t],
where the degree of Rn(t) is n for each n. The subdivision operator associated to
{Rn(t)}Nn=0 is the linear operator E : RN [t] → R[t] defined recursively by E(1) = 1, and

E(tn) = tE(Rn(t)− tn), if 0 < n ≤ N. (2)

If {Rn(t)}Nn=0 are the rank generating polynomials of a rank uniform poset P, we say
that E is the subdivision operator of P.

Proposition (Brändén-Saud, 2024)

Let P be a rank uniform poset with rank generating polynomials {Rn(t)}Nn=0. If ρ(x) =
n > 0, then

E(tn) =
∑
j≥1

|{0̂ < x1 < · · · < xj = x}| · t j . (3)

Moreover if I is a nonempty and finite order ideal of P, then

CI (t) = (1 + t)E(fI (t)).
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Theorem (Brändén-Saud, 2024)

If {Rn,k}∞n,k=0 is UD-generated, then {E(Rn,k )}k≥0 is an interlacing sequence of
polynomials whose zeros all lie in the interval [−1, 0], for each n ≥ 0.
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R-positive posets

Definition (R-positive poset)

Let P be a rank uniform poset of rank r , and let

R = {Rn,k (t)}Nn,k=0

be an array of polynomials. We say that P is R-positive if

(i) for each y ∈ P, ∑
x≤y

tρ(x) = Rρ(y),0 and,

(ii) the rank generating polynomial fP(t) has a nonnegative expansion in the polyno-
mials {Rr,k (t)}Nk=0.

Theorem (Brändén-Saud, 2024)

Let R be a UD-generated array. If P is an R-positive poset, then the chain polynomial
of P is real-rooted.
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Boolean algebras

Bn = Boolean lattice on n elements
Rank polynomial: RB

n (t) = (1 + t)n

Rn,k (t) :=

{
tk (1 + t)n−k if 0 ≤ k ≤ n
tn if k > n

A(n)
B = U diag(1, . . . , 1︸ ︷︷ ︸

n+1 times

, 0, . . .) =



1 1 1 · · · 1 1 0 · · ·
0 1 1 · · · 1 1 0 · · ·
0 0 1 · · · 1 1 0 · · ·
...

...
...

. . .
...

...
. . .

0 0 0 · · · 0 1 0 · · ·
0 0 0 · · · 0 0 0 · · ·
...

...
...

. . .
...

...
. . .
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q-partition lattices

Qn = q-partition Dowling lattice on Fn
q (Dowling, 1973)

Rank polynomial: RQop
n (t) =

∑n
i=0 T (n, i)t i , where

T (n, i) = T (n − 1, i − 1) + [1 + (q − 1)i ]T (n − 1, i)

RQop

n,k (t) = RQop

n,k−1(t)− [1 + (q − 1)(k − 1)]RQop

n−1,k−1(t)

A(n)
Qop = U diag(1, q, 2q − 1, . . . , nq − (n − 1), 0, . . .)

=



1 q 2q − 1 · · · nq − (n − 1) 0 · · ·
0 q 2q − 1 · · · nq − (n − 1) 0 · · ·
0 0 2q − 1 · · · nq − (n − 1) 0 · · ·
...

...
...

. . .
...

. . .
0 0 0 · · · nq − (n − 1) 0 · · ·
0 0 0 · · · 0 0 · · ·
...

...
...

. . .
...

. . .
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Partition lattices of types A and B

(q = 2) ΠA
n = lattice of all partitions of the set [n]

(q = 3) ΠB
n = lattice of all partitions π of the set {n, n−1, . . . ,−n} ordered by reverse

refinement such that

(i) B ∈ π =⇒ (−B) ∈ π,

(ii) if {k,−k} ⊆ B for some k ∈ [n] and some block B ∈ π, then 0 ∈ B.

A(n)

(ΠA
n )

op =



1 2 3 · · · n + 1 0 · · ·
0 2 3 · · · n + 1 0 · · ·
0 0 3 · · · n + 1 0 · · ·
...

...
...

. . .
...

. . .
0 0 0 · · · n + 1 0 · · ·
0 0 0 · · · 0 0 · · ·
...

...
...

. . .
...

. . .


A(n)

(ΠB
n )op =



1 3 5 · · · 2n + 1 0 · · ·
0 3 5 · · · 2n + 1 0 · · ·
0 0 5 · · · 2n + 1 0 · · ·
...

...
...

. . .
...

. . .
0 0 0 · · · 2n + 1 0 · · ·
0 0 0 · · · 0 0 · · ·
...

...
...

. . .
...

. . .
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C r
n−1 = (n − 1)-dimensional r -cubical lattice

Rank polynomial: Rr
n(t) = 1 + t(r + t)n−1

Rr
n,k (t) :=


Rr
n(t) if k = 0

(r − 1 + t)tk (r + t)n−k−1 if 0 < k < n
tn if k ≥ n

.

A(n)
r = U diag(1, r , . . . , r︸ ︷︷ ︸

n−1 times

, r − 1, 0, . . .)

=



1 r r · · · r r − 1 0 · · ·
0 r r · · · r r − 1 0 · · ·
0 0 r · · · r r − 1 0 · · ·
...

...
...

. . .
...

...
. . .

0 0 0 · · · 0 r − 1 0 · · ·
0 0 0 · · · 0 0 0 · · ·
...

...
...

. . .
...

...
. . .
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Subspace lattices

Ld
q = lattice of all subspaces of a d-dimensional vector space over Fq

Rank polynomial: Rq
n (t) =

∑n
k=0

(n
k

)
q
tk

Rq
n,k (t) = Rq

n,k−1(t)− qkRq
n−1,k−1(t)

A(n)
q = U diag(1, q, q2, . . . , qn, 0, . . .)

=



1 q q2 · · · qn 0 · · ·
0 q q2 · · · qn 0 · · ·
0 0 q2 · · · qn 0 · · ·
...

...
...

. . .
...

. . .
0 0 0 · · · qn 0 · · ·
0 0 0 · · · 0 0 · · ·
...

...
...

. . .
...

. . .
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What else?

Conjecture (Athanasiadis, Kalampogia-Evangelinou, 2023)

The chain polynomial cL(t) is real-rooted for every geometric lattice (lattice of flats of
a matroid) L.

• Prove this conjecture for paving matroids (Conjecture: almost all matroids are
paving matroids (Mayhew-Newman-Welsh-Whittle, 2011)).

• Generalize the idea of paving matroids and prove the conjecture for other matroids
(still not all of them).

• Prove the conjecture for some matroids obtained by single-element extension.
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Thank you very much!

Muito obrigado!

Tack så mycket!
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