Arithmetic varieties of numerical semigroups

Manuel B. Branco

29th june 2024, Lisboa Joint work with; Ignacio Ojeda (Universidad de Extremadura) and J. C. Rosales (Universidad de Granada)

Universidade de Évora

Introduction

> [Notable elements](#page-2-0)

 $>$ [The smallest arithmetic variety containing a family of numerical](#page-11-0) [semigroups](#page-11-0)

 $>$ [The tree associated with an arithmetic variety](#page-27-0)

 $>$ [The elements of an arithmetic variety with bounded Frobenius number](#page-32-0)

> [Numerical semigroups with given depth](#page-39-0)

> [Main references](#page-43-0)

> [Notable elements](#page-2-0)

 $>$ [The smallest arithmetic variety containing a family of numerical](#page-11-0) [semigroups](#page-11-0)

 $>$ [The tree associated with an arithmetic variety](#page-27-0)

 $>$ [The elements of an arithmetic variety with bounded Frobenius number](#page-32-0)

> [Numerical semigroups with given depth](#page-39-0)

> [Main references](#page-43-0)

• Let *A* ⊆ N we will denote by ⟨*A*⟩ the submonoid of (N, +) generated by *A*, that is,

 $\langle A \rangle = \{\lambda_1 a_1 + \cdots + \lambda_n a_n \mid n \in \mathbb{N} \setminus \{0\}, a_i \in A, \lambda_i \in \mathbb{N} \text{ for all } i \in \{1, \ldots, n\}\}\.$

• Let *A* ⊆ N we will denote by ⟨*A*⟩ the submonoid of (N, +) generated by *A*, that is,

 $\langle A \rangle = \{\lambda_1 a_1 + \cdots + \lambda_n a_n \mid n \in \mathbb{N} \setminus \{0\}, a_i \in A, \lambda_i \in \mathbb{N} \text{ for all } i \in \{1, \ldots, n\}\}\.$

• A submonoid *S* is a numerical semigroup if gcd $(S) = 1 \iff N \setminus S$ is finite.

• Let *A* ⊆ N we will denote by ⟨*A*⟩ the submonoid of (N, +) generated by *A*, that is,

 $\langle A \rangle = \{\lambda_1 a_1 + \cdots + \lambda_n a_n \mid n \in \mathbb{N} \setminus \{0\}, a_i \in A, \lambda_i \in \mathbb{N} \text{ for all } i \in \{1, \ldots, n\}\}\.$

- A submonoid *S* is a numerical semigroup if gcd $(S) = 1 \iff N\backslash S$ is finite.
- Let *S* a numerical semigroup, $min(S \setminus \{0\}) = m(S)$ is the multiplicity.

• Let *A* ⊆ N we will denote by ⟨*A*⟩ the submonoid of (N, +) generated by *A*, that is,

- A submonoid *S* is a numerical semigroup if gcd $(S) = 1 \iff N\backslash S$ is finite.
- Let *S* a numerical semigroup, $\min(S \setminus \{0\}) = m(S)$ is the multiplicity.
- The greatest integer not in *S* is the Frobenius number, denoted by F(*S*).

• Let *A* ⊆ N we will denote by ⟨*A*⟩ the submonoid of (N, +) generated by *A*, that is,

- A submonoid *S* is a numerical semigroup if gcd $(S) = 1 \iff N\backslash S$ is finite.
- Let *S* a numerical semigroup, $\min(S \setminus \{0\}) = m(S)$ is the multiplicity.
- The greatest integer not in *S* is the Frobenius number, denoted by F(*S*).
- The elements of $\mathbb{N} \setminus S$ are called gaps and $g(S) = \# \mathbb{N} \setminus S$ is the genus of S.

• Let *A* ⊆ N we will denote by ⟨*A*⟩ the submonoid of (N, +) generated by *A*, that is,

- A submonoid *S* is a numerical semigroup if gcd $(S) = 1 \iff N\backslash S$ is finite.
- Let *S* a numerical semigroup, $\min(S \setminus \{0\}) = m(S)$ is the multiplicity.
- The greatest integer not in *S* is the Frobenius number, denoted by F(*S*).
- The elements of $\mathbb{N} \setminus S$ are called gaps and $g(S) = \# \mathbb{N} \setminus S$ is the genus of S.
- *S* has a unique minimal system of generators and it is denote by $\text{msg}(S) = \{n_1, \cdots, n_p\}.$

• Let *A* ⊆ N we will denote by ⟨*A*⟩ the submonoid of (N, +) generated by *A*, that is,

- A submonoid *S* is a numerical semigroup if gcd $(S) = 1 \iff N\backslash S$ is finite.
- Let *S* a numerical semigroup, $\min(S \setminus \{0\}) = m(S)$ is the multiplicity.
- The greatest integer not in *S* is the Frobenius number, denoted by F(*S*).
- The elements of $\mathbb{N} \setminus S$ are called gaps and $g(S) = \# \mathbb{N} \setminus S$ is the genus of S.
- *S* has a unique minimal system of generators and it is denote by $\text{msg}(S) = \{n_1, \cdots, n_p\}.$
- $\# \text{msg}(S) = e(S)$ is the embedding dimension of S.

Example

With tree coins of denominations 5,7 and 11 one can obtain $S = \langle 5, 7, 11 \rangle = \{0, 5, 7, 10, 11, 12, 14, \rightarrow \}$ is a numerical semigroup with $msg(S) = \{5, 7, 11\}, m(S) = 5, e(S) = 3, F(S) = 13$ and $g(S) = \#\{1, 2, 3, 4, 6, 8, 9, 13\} = 8$

The smallest arithmetic variety containing a family of numerical semigroups

> [Notable elements](#page-2-0)

$>$ [The smallest arithmetic variety containing a family of numerical](#page-11-0) [semigroups](#page-11-0)

 $>$ [The tree associated with an arithmetic variety](#page-27-0)

 $>$ [The elements of an arithmetic variety with bounded Frobenius number](#page-32-0)

> [Numerical semigroups with given depth](#page-39-0)

> [Main references](#page-43-0)

• $\frac{S}{d} = \{x \in \mathbb{N} \mid d \, x \in S\}$ this semigroup is called the *quotient of S by d*.

- $\frac{S}{d} = \{x \in \mathbb{N} \mid d \, x \in S\}$ this semigroup is called the *quotient of S by d*.
- *T* is an *arithmetic extension* of *S* if $\exists \{d_1, \ldots, d_n\} \subset \mathbb{N} \setminus \{0\}$ such that

$$
\mathcal{T}=\left\{x\in\mathbb{N}\mid\left\{d_1x,d_2x,\ldots,d_nx\right\}\subset\mathcal{S}\right\}.
$$

- $\frac{S}{d} = \{x \in \mathbb{N} \mid d \, x \in S\}$ this semigroup is called the *quotient of S by d*.
- *T* is an *arithmetic extension* of *S* if $\exists \{d_1, \ldots, d_n\} \subset \mathbb{N} \setminus \{0\}$ such that

$$
\mathcal{T}=\left\{x\in\mathbb{N}\mid\left\{d_1x,d_2x,\ldots,d_nx\right\}\subset S\right\}.
$$

• *T* is an arithmetic extension of *S* iff $\exists \{d_1, \ldots, d_n\} \subset \mathbb{N} \setminus \{0\}$ such that $\mathcal{T} = \frac{S}{d_1} \cap \ldots \cap \frac{S}{d_n}.$

- $\frac{S}{d} = \{x \in \mathbb{N} \mid d \, x \in S\}$ this semigroup is called the *quotient of S by d*.
- *T* is an *arithmetic extension* of *S* if $\exists \{d_1, \ldots, d_n\} \subset \mathbb{N} \setminus \{0\}$ such that

$$
\mathcal{T}=\left\{x\in\mathbb{N}\mid\left\{d_1x,d_2x,\ldots,d_nx\right\}\subset\mathcal{S}\right\}.
$$

• *T* is an arithmetic extension of *S* iff $\exists \{d_1, \ldots, d_n\} \subset \mathbb{N} \setminus \{0\}$ such that $\mathcal{T} = \frac{S}{d_1} \cap \ldots \cap \frac{S}{d_n}.$

Definition

An *arithmetic variety* is a non-empty family $\mathscr A$ of numerical semigroups such that

(a) if $\{S, T\} \subseteq \mathcal{A}$, then $S \cap T \in \mathcal{A}$;

(b) if $S \in \mathcal{A}$ and *T* is an arithmetic extension of *S*, then $T \in \mathcal{A}$.

In this case, we say that $\mathscr A$ is a *finite arithmetic variety* when $\mathscr A$ has finite cardinality.

Proposition

Let $\mathscr A$ be a non-empty family of numerical semigroups. Then $\mathscr A$ is a *arithmetic variety if and only if the following holds*

- (a) *if* $\{S, T\} \subset \mathcal{A}$, then $S \cap T \in \mathcal{A}$;
- (b) if $S \in \mathcal{A}$ and $d \in \mathbb{N} \setminus \{0\}$, then $\frac{S}{d} \in \mathcal{A}$.

Proposition

Let $\mathscr A$ *be a non-empty family of numerical semigroups. Then* $\mathscr A$ *is a arithmetic variety if and only if the following holds*

- (a) *if* $\{S, T\} \subset \mathcal{A}$, then $S \cap T \in \mathcal{A}$;
- (b) if $S \in \mathcal{A}$ and $d \in \mathbb{N} \setminus \{0\}$, then $\frac{S}{d} \in \mathcal{A}$.

Proposition

The intersection of arithmetic varieties is an arithmetic variety.

Proposition

Let $\mathscr A$ *be a non-empty family of numerical semigroups. Then* $\mathscr A$ *is a arithmetic variety if and only if the following holds*

- (a) *if* $\{S, T\} \subset \mathcal{A}$, then $S \cap T \in \mathcal{A}$;
- (b) if $S \in \mathcal{A}$ and $d \in \mathbb{N} \setminus \{0\}$, then $\frac{S}{d} \in \mathcal{A}$.

Proposition

The intersection of arithmetic varieties is an arithmetic variety.

 \bullet $\mathscr{A}(F)$ the intersection of all varieties containing a family F of numerical sem.

Proposition

Let $\mathscr A$ be a non-empty family of numerical semigroups. Then $\mathscr A$ is a *arithmetic variety if and only if the following holds*

- (a) *if* $\{S, T\} \subset \mathcal{A}$, then $S \cap T \in \mathcal{A}$;
- (b) if $S \in \mathcal{A}$ and $d \in \mathbb{N} \setminus \{0\}$, then $\frac{S}{d} \in \mathcal{A}$.

Proposition

The intersection of arithmetic varieties is an arithmetic variety.

• $\mathscr{A}(F)$ the intersection of all varieties containing a family F of numerical sem.

Proposition

If F *is a family of numerical semigroups, then* $\mathscr{A}(F)$ *is the smallest arithmetic variety containing* F*.*

Proposition

If S is a numerical semigroup, then

$$
\mathscr{A}(\{S\}) = \left\{\bigcap_{i=1}^n \frac{S}{d_i} \mid n \in \mathbb{N} \setminus \{0\} \text{ and } \{d_1,\ldots,d_n\} \subset \mathbb{N} \setminus S\right\} \cup \{\mathbb{N}\}.
$$

Proposition

If S is a numerical semigroup, then

$$
\mathscr{A}(\{S\}) = \left\{\bigcap_{i=1}^n \frac{S}{d_i} \mid n \in \mathbb{N} \setminus \{0\} \text{ and } \{d_1,\ldots,d_n\} \subset \mathbb{N} \setminus S\right\} \cup \{\mathbb{N}\}.
$$

Theorem

If F *is a non-empty family of numerical semigroups, then*

$$
\mathscr{A}(F) = \left\{ \bigcap_{i=1}^{n} T_i \mid n \in \mathbb{N} \setminus \{0\} \text{ and } T_i \in \mathscr{A}(\{S_i\}) \text{ for some } S_i \in F, i = 1, \ldots, n \right\}
$$

Algorithm

Computation of $\mathscr{A}(F)$ *.* INPUT: A finite set $F = \{S_1, \ldots, S_n\}$ of numerical *semigroups.* OUTPUT: $\mathscr{A}(F)$ *.*

- 1. *Set* $\mathscr{A}(F) = \{ \mathbb{N} \}.$
- 2. For each $i \in \{1, \ldots, n\}$, set $\mathcal{A}_i = \mathcal{A}(\{S_i\})$.
- 3. For each $(T_1, \ldots, T_n) \in \mathscr{A}_1 \times \cdots \times \mathscr{A}_n$, do

$$
\mathscr{A}(\mathcal{F}) = \mathscr{A}(\mathcal{F}) \cup \{T_1 \cap \ldots \cap T_n\}.
$$

4. *Return* $\mathscr{A}(F)$.

Algorithm

Computation of $\mathscr{A}(F)$. INPUT: A finite set $F = \{S_1, \ldots, S_n\}$ of numerical *semigroups.* OUTPUT: $\mathscr{A}(F)$.

- 1. *Set* $\mathscr{A}(F) = \{ \mathbb{N} \}.$
- 2. For each $i \in \{1, \ldots, n\}$, set $\mathcal{A}_i = \mathcal{A}(\{S_i\})$.
- 3. For each $(T_1, \ldots, T_n) \in \mathscr{A}_1 \times \cdots \times \mathscr{A}_n$, do

$$
\mathscr{A}(\mathcal{F}) = \mathscr{A}(\mathcal{F}) \cup \{T_1 \cap \ldots \cap T_n\}.
$$

4. *Return* $\mathscr{A}(F)$.

Example

Let $\mathcal{F} = \{ \langle 2, 5 \rangle, \langle 3, 5, 7 \rangle \}$. By Algorithm AE, we have that

 $\mathscr{A}(\{\langle 2, 5\rangle\} = \{\mathbb{N}, \langle 2, 3\rangle, \langle 2, 5\rangle\}; \mathscr{A}(\{\langle 3, 5, 7\rangle\} = \{\mathbb{N}, \langle 2, 3\rangle, \langle 3, 4, 5\rangle, \langle 3, 5, 7\rangle\}.$

Therefore, by previous Algorithm, we conclude that

 $\mathscr{A}(F) = \{ \mathbb{N}, \langle 2, 3 \rangle, \langle 2, 5 \rangle, \langle 3, 4, 5 \rangle, \langle 3, 5, 7 \rangle, \langle 4, 5, 6, 7 \rangle, \langle 5, 6, 7, 8, 9 \rangle \}.$ 29th june 2024, Lisboa Joint Work With;

A −system of generators

The set $\{x \in \mathbb{N} \mid ax \mod b \leq cx\}$ is a *proportionally modular numerical semigroup*. $ED(e) = \{ S \in \mathcal{L} \mid e(S) = e \}.$

A −system of generators

The set $\{x \in \mathbb{N} \mid ax \mod b \leq cx\}$ is a *proportionally modular numerical semigroup*. $ED(e) = \{ S \in \mathcal{L} \mid e(S) = e \}.$

Proposition

The arithmetic variety $\mathcal{A}(ED(2))$ *is equal to the set of intersections of finitely many proportionally modular numerical semigroups.*

A −system of generators

The set $\{x \in \mathbb{N} \mid ax \mod b \leq cx\}$ is a *proportionally modular numerical semigroup*. $ED(e) = {S \in \mathcal{L} \mid e(S) = e}.$

Proposition

The arithmetic variety $\mathcal{A}(ED(2))$ *is equal to the set of intersections of finitely many proportionally modular numerical semigroups.*

Some open problems

By this results, one can deduce an algorithm to decide whether a numerical semigroup belongs to $\mathscr{A}(ED(2))$. We propose as an open problem to formulate the corresponding algorithm for $\mathscr{A}(ED(3))$ and, being optimistic, for $\mathscr{A}(\text{ED}(e)), e > 4.$

 $11/22$

29th june 2024, Lisboa Joint work with; I

> [Notable elements](#page-2-0)

 $>$ [The smallest arithmetic variety containing a family of numerical](#page-11-0) [semigroups](#page-11-0)

$>$ [The tree associated with an arithmetic variety](#page-27-0)

 $>$ [The elements of an arithmetic variety with bounded Frobenius number](#page-32-0)

> [Numerical semigroups with given depth](#page-39-0)

> [Main references](#page-43-0)

Graph $\mathcal{G}_{\mathscr{A}}$, vertex set is \mathscr{A} and $(S, T) \in \mathscr{A} \times \mathscr{A}$ iff $S = \frac{1}{2}$ \Leftrightarrow the set of children of $S \in \mathscr{A} \setminus \{ \mathbb{N} \}$ is $\mathcal{D}_2(S) \cap \mathscr{A}$, with $\mathcal{D}_2(S) = \{T \in \mathcal{L} \mid S = \frac{T}{2}\}.$

Graph $\mathcal{G}_{\mathscr{A}}$, vertex set is \mathscr{A} and $(S, T) \in \mathscr{A} \times \mathscr{A}$ iff $S = \frac{1}{2}$ \Leftrightarrow the set of children of $S \in \mathscr{A} \setminus \{ \mathbb{N} \}$ is $\mathcal{D}_2(S) \cap \mathscr{A}$, with $\mathcal{D}_2(S) = \{T \in \mathcal{L} \mid S = \frac{T}{2}\}.$

Theorem

If A is an arithmetic variety, then \mathcal{G}_{α} is a directed rooted tree with root N.

Graph $\mathcal{G}_{\mathscr{A}}$, vertex set is \mathscr{A} and $(S, T) \in \mathscr{A} \times \mathscr{A}$ iff $S = \frac{1}{2}$ \Leftrightarrow the set of children of *S* ∈ $\mathscr{A} \setminus \{ \mathbb{N} \}$ is $\mathcal{D}_2(S) \cap \mathscr{A}$, with $\mathcal{D}_2(S) = \{T \in \mathcal{L} \mid S = \frac{T}{2}\}.$

Theorem

If A is an arithmetic variety, then \mathcal{G}_{α} is a directed rooted tree with root N.

Remark

If *H* is upper *m*−set of *S* and *m* ∈ *S* is odd *S*(*m*, *H*) = {2*s* | *s* ∈ *S*} ∪ {2*s* + *m* | *s* ∈ *S*} ∪ {2*h* + *m* | *h* ∈ *H*}. Thus, if $msg(S) = \{a_1, \ldots, a_e\}$, then msg(*S*(*m*, *H*)) = {2*a*₁, . . . , 2*a*_{*e*}} ∪ {*m*} ∪ {2*h* + *m* | *h* ∈ *H*}.

Graph $\mathcal{G}_{\mathscr{A}}$, vertex set is \mathscr{A} and $(S, T) \in \mathscr{A} \times \mathscr{A}$ iff $S = \frac{1}{2}$ \Leftrightarrow the set of children of $S \in \mathscr{A} \setminus \{ \mathbb{N} \}$ is $\mathcal{D}_2(S) \cap \mathscr{A}$, with $\mathcal{D}_2(S) = \{T \in \mathcal{L} \mid S = \frac{T}{2}\}.$

Theorem

If A is an arithmetic variety, then \mathcal{G}_{α} is a directed rooted tree with root N.

Remark

If *H* is upper *m*−set of *S* and *m* ∈ *S* is odd *S*(*m*, *H*) = {2*s* | *s* ∈ *S*} ∪ {2*s* + *m* | *s* ∈ *S*} ∪ {2*h* + *m* | *h* ∈ *H*}. Thus, if $msg(S) = \{a_1, \ldots, a_e\}$, then msg(*S*(*m*, *H*)) = {2*a*₁, . . . , 2*a*_{*e*}} ∪ {*m*} ∪ {2*h* + *m* | *h* ∈ *H*}.

Theorem

If S ⊆ ℕ *is a numerical semigroup, then*

D2(*S*) = {*S*(*m*, *H*) | *m is an odd element of S and H is an upper m*−*set of S*}.

The elements of an arithmetic variety with bounded Frobenius number

> [Notable elements](#page-2-0)

 $>$ [The smallest arithmetic variety containing a family of numerical](#page-11-0) [semigroups](#page-11-0)

 $>$ [The tree associated with an arithmetic variety](#page-27-0)

$>$ [The elements of an arithmetic variety with bounded Frobenius number](#page-32-0)

> [Numerical semigroups with given depth](#page-39-0)

> [Main references](#page-43-0)

If $\mathscr A$ is an arithmetic variety and F is a positive integer, we define

$$
\mathscr{A}_F := \{S \in \mathscr{A} \mid F(S) \leq F\}.
$$

If $\mathscr A$ is an arithmetic variety and F is a positive integer, we define

$$
\mathscr{A}_F := \{ S \in \mathscr{A} \mid F(S) \leq F \}.
$$

Proposition

If $\mathscr A$ *is a arithmetic variety and F is a positive integer, then* $\mathscr A_F$ *is an finite arithmetic variety.*

If $\mathscr A$ is an arithmetic variety and F is a positive integer, we define

 $\mathscr{A}_F := \{ S \in \mathscr{A} \mid F(S) \leq F \}.$

Proposition

If $\mathscr A$ *is a arithmetic variety and F is a positive integer, then* $\mathscr A_F$ *is an finite arithmetic variety.*

Proposition

Let $\mathscr A$ *be a arithmetic variety and let* F *be a positive integer. If* $S \in \mathscr A_F$, then $\mathcal{D}_2(S) \cap \mathscr{A}_F = \{T \in \mathcal{D}_2(S) \mid F(T) \leq F\} \cap \mathscr{A}.$

Proposition

Let $S \neq \mathbb{N}$ be a numerical semigroup. If m is an odd element of S and H is an *upper m*−*set of S, then*

$$
\mathsf{F}(\mathcal{S}(m,\mathsf{H})) = \left\{ \begin{array}{ll} \max(2\,\mathsf{F}(\mathcal{S}), m-2) & \text{if } \mathsf{H} = \mathbb{N} \setminus \mathcal{S}; \\ \max(2\,\mathsf{F}(\mathcal{S}), 2\max(\mathbb{N} \setminus \mathcal{S} \cup \mathsf{H}) + m)) & \text{if } \mathsf{H} \neq \mathbb{N} \setminus \mathcal{S} \end{array} \right.
$$

Theorem

Let S be a numerical semigroup and let F be a positive number. If $2 F(S) < F$, *then* ${T \in \mathcal{D}_2(S) | F(T) \leq F}$ *is equal to the union of*

 ${S(m, N \setminus S) \mid m \text{ is an odd element of } {F(S) + 1, \ldots, F + 2}}$ and

$$
\left\{S(m,H) \middle| \begin{array}{l} m \text{ is an odd element of } S \text{ and } \\ H \neq \mathbb{N} \setminus S \text{ is an upper } m \text{ - set} \\ \text{with } 2\max(\mathbb{N} \setminus S \cup H) + m \leq F \end{array} \right\}
$$

The algorithm to compute ${T \in \mathcal{D}_2(S) | F(T) \leq F}$ for given $S \in \mathcal{L}$ and $F \in \mathbb{N} \setminus \{0\}.$

Algorithm

Computation of ${T \in \mathcal{D}_2(S) | F(T) \leq F}.$ INPUT: *A numerical semigroup S and a positive integer F.* OUTPUT: ${T \in \mathcal{D}_2(S) | F(T) \leq F}.$

- 1. *If* $2F(S) > F$, then return \emptyset .
- 2. *Set* $A = \{m \in \mathbb{N} \mid m \text{ is odd and } F(S) + 1 \le m \le F + 2\}$.
- 3. *Set* $B = \{m \in S | m$ *is odd and* $m < F 2\}$.
- 4. *For each m* ∈ *B define*

$$
H(m) = \left\{ H \middle| \begin{array}{c} H \neq \mathbb{N} \setminus S \text{ is an upper } m\text{--set} \\ \text{such that } \max(\mathbb{N} \setminus S \cup H) \leq \frac{F-m}{2} \end{array} \right\}.
$$

5. *Return* {*S*(*m*, N \ *S*) | *m* ∈ *A*} ∪ {*S*(*m*, *H*) | *m* ∈ *B and H* ∈ *H*(*m*)}*.*

Example

Let $S = \langle 4, 5, 11 \rangle$ and $F = 15$. Using the GAP function above, we can verify, as follows, that ${T \in \mathcal{D}_2(S) | F(T) \leq 15}$ is equal to

{*S*(9, {1, 2, 3, 6, 7}), *S*(11, {1, 2, 3, 6, 7}), *S*(13, {1, 2, 3, 6, 7}), *S*(15, {1, 2, 3, 6, 7}), *S*(17, {1, 2, 3, 6, 7}), *S*(5, {3, 6, 7}), *S*(5, {6, 7}), *S*(9, {1, 2, 6, 7}), *S*(9, {1, 3, 6, 7}), *S*(9, {1, 6, 7}), *S*(9, {2, 3, 6, 7}), *S*(9, {2, 6, 7}), *S*(9, {3, 6, 7}), *S*(9, {6, 7}), *S*(11, {1, 3, 6, 7}), *S*(11, {2, 3, 6, 7}), *S*(11, {3, 6, 7}), *S*(13, {2, 3, 6, 7})}.

Now, using the GAP function *UpperMSetToNumericalSemigroup* := *function*(*S*, *m*, *H*) we obtain that the above set is equal to

 $\{$ $\langle 8, 9, 10, 11, 13, 15 \rangle$, $\langle 8, 10, 11, 13, 15, 17 \rangle$, $\langle 8, 10, 13, 15, 17, 19, 22 \rangle$, ⟨8, 10, 15, 17, 19, 21, 22⟩,⟨8, 10, 17, 19, 21, 22, 23⟩,⟨5, 8, 11, 17⟩,⟨5, 8, 17, 19⟩, ⟨8, 9, 10, 11, 13⟩,⟨8, 9, 10, 11, 15⟩,⟨8, 9, 10, 11, 23⟩,⟨8, 9, 10, 13, 15⟩, ⟨8, 9, 10, 13⟩,⟨8, 9, 10, 15, 21, 22⟩,⟨8, 9, 10, 21, 22, 23⟩,⟨8, 10, 11, 13, 17⟩, ⟨8, 10, 11, 15, 17⟩,⟨8, 10, 11, 17, 23⟩,⟨8, 10, 13, 17, 19, 22⟩}.

> [Notable elements](#page-2-0)

 $>$ [The smallest arithmetic variety containing a family of numerical](#page-11-0) [semigroups](#page-11-0)

 $>$ [The tree associated with an arithmetic variety](#page-27-0)

 $>$ [The elements of an arithmetic variety with bounded Frobenius number](#page-32-0)

> [Numerical semigroups with given depth](#page-39-0)

> [Main references](#page-43-0)

Definition

The *depth* of *S*, denoted depth(*S*), is the integer number *q* such that $F(S) + 1 = q m(S) - r$ for some integer $0 \le r \le m(S)$.

$$
\textit{or }\operatorname{\mathsf{depth}}(S)=\left\lfloor\frac{\mathsf{F}(S)}{\mathsf{m}(S)}\right\rfloor+1\ \text{ and denote }\mathscr{C}_q=\{S\in\mathscr{L}\mid\operatorname{\mathsf{depth}}(S)\leq q\}.
$$

Definition

The *depth* of *S*, denoted depth(*S*), is the integer number *q* such that $F(S) + 1 = q m(S) - r$ for some integer $0 \le r < m(S)$.

$$
\textit{or }\operatorname{\mathsf{depth}}(\mathcal{S})=\left\lfloor\frac{\mathsf{F}(\mathcal{S})}{\mathsf{m}(\mathcal{S})}\right\rfloor+1\ \text{ and denote }\mathscr{C}_q=\{ \mathcal{S}\in\mathscr{L}\mid \operatorname{\mathsf{depth}}(\mathcal{S})\leq q\}.
$$

Theorem

The set \mathscr{C}_q *is an arithmetic variety for every q* \in N.

Definition

The *depth* of *S*, denoted depth(*S*), is the integer number *q* such that $F(S) + 1 = q m(S) - r$ for some integer $0 \le r < m(S)$.

$$
\textit{or }\operatorname{\mathsf{depth}}(\mathcal{S})=\left\lfloor\frac{\mathsf{F}(\mathcal{S})}{\mathsf{m}(\mathcal{S})}\right\rfloor+1\ \text{ and denote }\mathscr{C}_q=\{ \mathcal{S}\in\mathscr{L}\mid \operatorname{\mathsf{depth}}(\mathcal{S})\leq q\}.
$$

Theorem

The set \mathscr{C}_q *is an arithmetic variety for every q* \in N.

We have that $\mathcal{G}_{(\mathscr{C}_q)_{\mathcal{F}}}$ is a finite rooted tree with root N such that the set of children of $\mathcal{S} \in (\mathscr{C}_q)_F$ is equal to

$$
\{ \, \mathcal{T} \in \mathcal{D}_2(S) \mid F(\mathcal{T}) \leq \mathcal{F} \text{ and } \text{depth}(\mathcal{T}) \leq q \}.
$$

Therefore, we can formulate an algorithm for the computation of $(\mathscr{C}_q)_{F}$. 29th june 2024, Lisboa Joint work with;

Main references

> [Notable elements](#page-2-0)

 $>$ [The smallest arithmetic variety containing a family of numerical](#page-11-0) [semigroups](#page-11-0)

 $>$ [The tree associated with an arithmetic variety](#page-27-0)

 $>$ [The elements of an arithmetic variety with bounded Frobenius number](#page-32-0)

> [Numerical semigroups with given depth](#page-39-0)

> [Main references](#page-43-0)

Main references

- Manuel B. Branco, Ignacio Ojeda and José Carlos Rosales, Arithmetic varieties of numerical semigroups- submited
- I. Ojeda and J.C. Rosales, The arithmetic extensions of a numerical semigroup. Comm. Algebra **48** (2020), no. 9, 3707–3715.
- -A.M. Robles-Pérez, J.C. Rosales, P. Vasco, The doubles of a numerical semigroup. J. Pure Appl. Algebra **213** (2009), no. 3, 387–396.