The commutation classes of a permutation

Ricardo Mamede CMUC - Universidade de Coimbra

The 14th Combinatorics Days

Coxeter groups

- Let W be a Coxeter group with generating set $S = \{s_i : i \in I\}$.
- For $i, j \in I$, let m(i, j) be the order of $s_i s_j$ in W so that $M = [m(i, j)]_{i,j \in I}$ is the Coxeter matrix of W.
- Let I* denote the free monoid formed by all finite words over the alphabet I
- Given $w \in W$, let $\ell(w)$ be the length of (every) reduced (*i.e.* minimal) expression $w = s_{i_1} \cdots s_{i_l}$ with $i_1, \ldots, i_l \in I$. The corresponding index sequence $a = i_1 \cdots i_l \in I^*$ is called a **reduced word** for w.
- Let R(w) denote the set of all reduced word for $w \in W$.

Braid relations

• For integers $m \ge 0$ and $i, j \in I$, define

$$\langle i,j\rangle_m = \underbrace{ijij\cdots}_m \in I^*$$

and let pprox denote the congruence on I^* generated by the braid relation

$$\langle i,j\rangle_{m(i,j)}\approx \langle j,i\rangle_{m(i,j)}$$

for all $i, j \in I$ such that $m(i, j) < \infty$.

• A result of Tits shows that R(w) constitutes a single braid class, *i.e.* any reduced word for w is obtained from any other by means of the braid relations.

Commutation classes

ullet Let \sim denote the congruence class on I^* generated by the relation

$$ij \sim ji$$

for all $i, j \in I$ such that m(i, j) = 2. The equivalence class of $a \in I^*$ with respect to \sim is called the **commutation class** of a, represented by [a].

• For each $w \in W$, there is a decomposition

$$R(w) = C_1 \dot{\cup} \cdots \dot{\cup} C_I,$$

where each C_i is a commutation class.

Symmetric group

• S_n denote the symmetric group on $[n] := \{1, 2, \dots, n\}$

$$w = [w_1 w_2 \cdots w_n] \in \mathcal{S}_n$$

Symmetric group

• S_n denote the symmetric group on $[n] := \{1, 2, ..., n\}$

$$w = [w_1 w_2 \cdots w_n] \in \mathcal{S}_n$$

• S_n is generated by $S = \{s_1, s_2, \dots, s_{n-1}\}$, where $s_i = (i \ i+1)$:

$$s_i^2 = 1$$
, for all i
 $s_i s_j = s_j s_i$, for $|i - j| > 1$, and
 $s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1}$, for all $1 \le i < n-1$.

Symmetric group

• S_n denote the symmetric group on $[n] := \{1, 2, ..., n\}$

$$w = [w_1 w_2 \cdots w_n] \in \mathcal{S}_n$$

• S_n is generated by $S = \{s_1, s_2, \dots, s_{n-1}\}$, where $s_i = (i \ i+1)$:

$$egin{aligned} s_i^2 &= 1, & ext{for all } i \ s_i s_j &= s_j s_i, & ext{for } |i-j| > 1, ext{ and} \ s_i s_{i+1} s_i &= s_{i+1} s_i s_{i+1}, ext{ for all } 1 \leq i < n-1. \end{aligned}$$

• $\ell(\mathbf{w}) = \#\{(w_j, w_i) : i < j \text{ and } \mathbf{w}_i > \mathbf{w}_j\} = \#Inv(\mathbf{w}).$

The graph of reduced words of \boldsymbol{w}

Example

[3241] $\in S_4$ has length 4, $Inv(3241) = \{12, 13, 14, 23\}$, reduced compositions

$$s_2s_1s_2s_3,\ s_1s_2s_1s_3,\ s_1s_2s_3s_1$$

and thus

$$R(3241) = \{2123, 1213, 1231\}.$$

The graph of reduced words of \boldsymbol{w}

Example

 $[3241] \in S_4$ has length 4, $Inv(3241) = \{12, 13, 14, 23\}$, reduced compositions

$$s_2s_1s_2s_3, s_1s_2s_1s_3, s_1s_2s_3s_1$$

and thus

$$R(3241) = \{2123, 1213, 1231\}.$$

Definition

Given $w \in \mathcal{S}_n$, denote by G(w) the graph with vertices R(w) and an edge between two vertices if they differ by a single braid relation.

Example

$$G(3241): 2123 - 1213 - 1231$$

The graph $G(\mathbf{w}_0)$:

2013].

- is connected [Tits Theorem, 1969];
- $\#R(w_0) = \frac{\binom{n}{2}!}{1^{n-1}3^{n-2}5^{n-3}\cdots(2n-3)!}$ [R. Stanley, 1984];

 - is bipartite [N. Bergeron, C. Ceballos and J. Labbé, 2015]; • has diameter $\frac{1}{2n}(n-1)n(n+1)(3n-2)$ [V. Reiner and Y. Roichman,

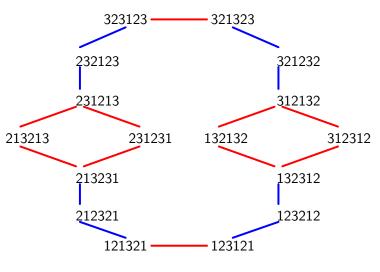


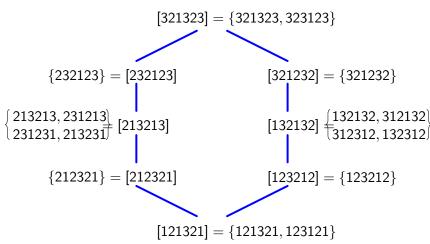
Figure: The graph G(4321).

The commutation graph of w

Contracting the commutation edges of G(w) we obtain the commutation graph C(w), whose vertices are the commutation classes, [a], $a \in R(w)$, and the edges are long braid relations between the classes.

The commutation graph of w

Contracting the commutation edges of G(w) we obtain the commutation graph C(w), whose vertices are the commutation classes, [a], $a \in R(w)$, and the edges are long braid relations between the classes.



The number of commutation classes for w_0

 $c_n = \# C(w_0)$, for $n \ge 1$ is sequence A006245 of The On-Line Encyclopedia of Integer Sequences

n	Cn		
1	1		
2	1		
3	2		
4	8		
5	62		
6	908		
7	24698		
8	1232944		
9	112018190		
10	18410581880		

The current best upper-bounds: $c_n \le 2^{0.6571n^2}$, for sufficiently large n

The diameter of graphs on reduced words

- Let G = (V, E) be a simple connected graph. The **distance** d(a, b) between two vertices $a, b \in V$ is the length of a shortest path joining a and b.
- The **diameter** diam(G) of the graph G is the maximum value of d(a,b) over all $a,b \in V$.
- A subgraph G' = (V', E') of G is called an induced subgraph if it contains all edges of G that join two vertices in V'.
- If a is a reduced word for w, the commutation class [a], that is the set of all reduced words obtained from a by a sequence of commutations, is an induced subgraph of G(w)

Root systems and Weyl groups

- Let $\Phi \subseteq E \cong \mathbb{R}^n$ be a finite crystallographic root system of rank n:
 - Φ is finite and spans E
 - If $\alpha \in \Phi$, then $-\alpha \in \Phi$ and $\pm \alpha$ are the only multiples of α in Φ
 - Φ is invariant under the reflection in the hyperplane orthogonal to any $\alpha \in \Phi$:

$$s_{lpha}(eta)=eta-2$$
proj $_{lpha}eta=eta-2lpharac{(eta,lpha)}{(lpha,lpha)}\in\Phi$

•
$$2\frac{(\beta,\alpha)}{(\alpha,\alpha)} \in \mathbb{Z}$$

Root systems and Weyl groups

- Let $\Phi \subseteq E \cong \mathbb{R}^n$ be a finite crystallographic root system of rank n:
 - Φ is finite and spans E
 - If $\alpha \in \Phi$, then $-\alpha \in \Phi$ and $\pm \alpha$ are the only multiples of α in Φ
 - Φ is invariant under the reflection in the hyperplane orthogonal to any $\alpha \in \Phi$:

$$s_{lpha}(eta)=eta-2$$
proj $_{lpha}eta=eta-2lpharac{(eta,lpha)}{(lpha,lpha)}\in\Phi$

- $2\frac{(\beta,\alpha)}{(\alpha,\alpha)} \in \mathbb{Z}$
- Choose $\Phi^+ \subset \Phi$ to be a set of positive roots, whose corresponding simple roots are $\Delta = \{\alpha_1, \dots, \alpha_n\} \subset \Phi^+$.

Root systems and Weyl groups

- Let $\Phi \subseteq E \cong \mathbb{R}^n$ be a finite crystallographic root system of rank n:
 - Φ is finite and spans E
 - If $\alpha \in \Phi$, then $-\alpha \in \Phi$ and $\pm \alpha$ are the only multiples of α in Φ
 - Φ is invariant under the reflection in the hyperplane orthogonal to any $\alpha \in \Phi$:

$$s_{\alpha}(\beta) = \beta - 2 \operatorname{proj}_{\alpha} \beta = \beta - 2 \alpha \frac{(\beta, \alpha)}{(\alpha, \alpha)} \in \Phi$$

- $2\frac{(\beta,\alpha)}{(\alpha,\alpha)} \in \mathbb{Z}$
- Choose $\Phi^+ \subset \Phi$ to be a set of positive roots, whose corresponding simple roots are $\Delta = \{\alpha_1, \dots, \alpha_n\} \subset \Phi^+$.
- For each $\alpha \in \Phi^+$, s_{α} is the reflection across the hyperplane orthogonal to α . Then, $W = W(\Phi)$ is the Weyl group associated to Φ generated by $s_{\alpha_1}, \ldots, s_{\alpha_n}$.
- The inversion set of $w \in W(\Phi)$ is $I_{\Phi}(w) = \{\alpha \in \Phi^+ : w\alpha \notin \phi^+\}$

Root systems of type A_{n-1}

We adopt the following conventions for root systems of type A_{n-1} , where e_i denotes the ith standard basis vector in \mathbb{R}^n :

- $\Phi = \{e_i e_j : 1 \le i \ne j \le n\}$
- $\Phi^+ = \{e_j e_i : 1 \le i < j \le n\}$
- $\Delta = \{\alpha_1 = e_2 e_1, \alpha_2 = e_3 e_2, \dots, \alpha_n = e_n e_{n-1}\}$

 $W(\Phi)\cong \mathcal{S}_n$ the Symmetric Group and $I_{\Phi}(w)\cong Inv(w)$

$$(e_j - e_i \equiv ij)$$

Root orderings

• The **root ordering** $(I_{\Phi}(w), <_a)$ associated with a reduced word $a = i_1 \cdots i_l \in R(w)$ is an ordering $ro(a) = \beta_l, \dots, \beta_1$ of $I_{\Phi}(w)$, where

$$\beta_j = s_{i_1} \cdots s_{i_{j-1}} \alpha_j \in \Phi^+.$$

Root orderings

• The **root ordering** $(I_{\Phi}(w), <_a)$ associated with a reduced word $a = i_1 \cdots i_l \in R(w)$ is an ordering $ro(a) = \beta_l, \dots, \beta_1$ of $I_{\Phi}(w)$, where

$$\beta_j = s_{i_1} \cdots s_{i_{j-1}} \alpha_j \in \Phi^+.$$

- Let $w^{(j)} = s_{i_1} \cdots s_{i_j}$, with $w^{(0)} = id$ and $w^{(l)} = w$
- Then, β_j is the unique positive root $\beta \in \Phi^+$ such that

$$s_{\beta}w^{(j)}=w^{(j-1)}$$

Root orderings

• The **root ordering** $(I_{\Phi}(w), <_a)$ associated with a reduced word $a = i_1 \cdots i_l \in R(w)$ is an ordering $ro(a) = \beta_l, \ldots, \beta_1$ of $I_{\Phi}(w)$, where

$$\beta_i = s_{i_1} \cdots s_{i_{i-1}} \alpha_i \in \Phi^+$$
.

- Let $w^{(j)} = s_{i_1} \cdots s_{i_i}$, with $w^{(0)} = id$ and $w^{(l)} = w$
- Then, β_i is the unique positive root $\beta \in \Phi^+$ such that

$$s_{\beta}w^{(j)}=w^{(j-1)}$$

Example

Let $w = [3412] \in W(A_3)$ and $a = 2132 \in R(w)$. Then, the root ordering is $ro(a) = e_3 - e_2$, $e_4 - e_2$, $e_3 - e_1$, $e_4 - e_1$.

The reduced word a describes how w is reduced to id (as $ws_2s_1s_3s_2 = id$):

$$w = 3412 \xrightarrow{e_4 - e_1} 3142 \xrightarrow{e_3 - e_1} 1342 \xrightarrow{e_4 - e_2} 1324 \xrightarrow{e_3 - e_2} 1234$$

A metric for G(w)

Define

$$\begin{split} I_2(\mathbf{w}) &= \{(e_j - e_i, e_l - e_k) \in I_{\Phi}(w)^2 : i < k, \ \{i, j\} \cap \{k, l\} = \emptyset\}, \\ I_3(\mathbf{w}) &= \{(e_j - e_i, e_l - e_k) \in I_{\Phi}(w)^2 : i < j = k < l\}, \\ \text{and } L_2(\mathbf{w}) &= I_2(\mathbf{w}) \cup I_3(\mathbf{w}). \text{ For simplicity, we often write} \\ (e_j - e_i, e_l - e_k) &= (ij, kl) \text{ and a pair } (ij, jl) \in I_3(w) \text{ as a triple } ijl. \end{split}$$

A metric for G(w)

Define

$$\begin{split} I_2(\mathbf{w}) &= \{(e_j - e_i, e_l - e_k) \in I_{\Phi}(w)^2 : i < k, \ \{i, j\} \cap \{k, l\} = \emptyset\}, \\ I_3(\mathbf{w}) &= \{(e_j - e_i, e_l - e_k) \in I_{\Phi}(w)^2 : i < j = k < l\}, \\ \text{and } L_2(\mathbf{w}) &= I_2(\mathbf{w}) \cup I_3(\mathbf{w}). \text{ For simplicity, we often write} \\ (e_j - e_i, e_l - e_k) &= (ij, kl) \text{ and a pair } (ij, jl) \in I_3(w) \text{ as a triple } ijl. \end{split}$$

Note: If $ij\ell \in I_3(w)$, then $ij, i\ell, j\ell \in Inv(w)$

Example

For the permutation [4321] $\in S_4$ we have $I_{\Phi}(4321) = \{e_2 - e_1, e_3 - e_1, e_4 - e_1, e_3 - e_2, e_4 - e_2, e_4 - e_3\}$ and

$$I_2(4321) = \{(12,34), (13,24), (14,23)\},\$$

$$I_3(4321)=\{123,\,124,\,134,\,234\}.$$

Definition

Given a permutation $w \in \mathcal{S}_n$, define the family of maps $(\Gamma_a)_{a \in R(w)}$ on the set $L_2(w)$ by setting

$$\Gamma_{a}(ij,k\ell) = egin{cases} 1, & ext{if } ij >_{a} k\ell \ 0, & ext{if } ij <_{a} k\ell \end{cases},$$

where $(I_{\Phi}(w), \leq_a)$ is the root ordering induced by a.

Definition

Given a permutation $w \in \mathcal{S}_n$, define the family of maps $(\Gamma_a)_{a \in R(w)}$ on the set $L_2(w)$ by setting

$$\Gamma_a(ij, k\ell) = \begin{cases} 1, & \text{if } ij >_a k\ell \\ 0, & \text{if } ij <_a k\ell \end{cases}$$

where $(I_{\Phi}(\mathbf{w}), \leq_a)$ is the root ordering induced by a.

Example

Let w = [4321] and consider the reduced words a = 132132 and b = 231231. The root orderings of $I_{\Phi}(4321)$ induced by a and b are:

 $23 <_{h} 24 <_{h} 13 <_{h} 14 <_{h} 12 <_{h} 34$.

$$12 <_a 34 <_a 14 <_a 24 <_a 13 <_a 23;$$

We have $\Gamma_a(12,34) = \Gamma_b(12,34) = 0$ while $\Gamma_a(13,34) = 1$ and $\Gamma_b(13,34) = 0$.

Let $w_{min}, w_{max} \in R(w)$ defined as follows:

• w_{min} is the reduced word which first swaps the value 1 leftward as

 w_{min} is the reduced word which first swaps the value 1 leitward as many times as possible to move it to the first position, and then does the same to move the value 2 to the second position, and so on.

• w_{max} is the reduced word which first swaps the value n rightward as many times as possible to move it to the last position, and then does the same to move the value n-1 to the penultimate position, and so on.

Let $w_{\textit{min}}, w_{\textit{max}} \in \textit{R}(w)$ defined as follows:

- w_{min} is the reduced word which first swaps the value 1 leftward as many times as possible to move it to the first position, and then does the same to move the value 2 to the second position, and so on.
- w_{max} is the reduced word which first swaps the value n rightward as many times as possible to move it to the last position, and then does the same to move the value n-1 to the penultimate position, and so on.

Lemma

Let $w \in \mathcal{S}_n$. Then, the words w_{min} and w_{max} are reduced words for w. Moreover, $\Gamma_{w_{min}}(ijk) = 0$ and $\Gamma_{w_{max}}(ijk) = 1$ for any triple $ijk \in I_3(w)$.

Proposition

Given a commutation class [a], $\Gamma_a(ijk) = \Gamma_b(ijk)$ for all $ijk \in I_3(w)$ if and only if $b \in [a]$.

Definition

Given $a, b \in Red(w)$, let

$$T_{a,b} = \{(ij,k\ell) \in L_2(w) : \Gamma_a(ij,k\ell) \neq \Gamma_b(ij,k\ell)\}$$

and $T_{[a]} = \bigcup_{b,c \in [a]} T_{b,c}$.

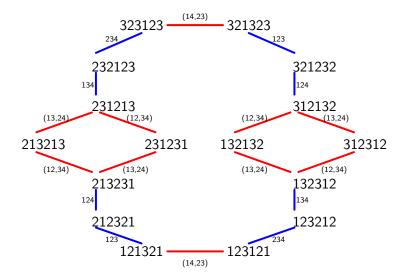
Definition

Given $a, b \in Red(w)$, let

$$t(a,b) = |T_{a,b}| = \sum_{(ij,k\ell) \in L_2(w)} \Gamma_a(ij,k\ell) \oplus_2 \Gamma_b(ij,k\ell),$$

where \oplus_2 represents the sum modulo 2.

It is not difficult to check that t is a metric on R(w).



If a = 231231 and b = 231213 then $T_{a,b} = \{(12,34)\}$ and $t_{a,b} = 1$. If c = 132132 then $T_{a,c} = \{134,234,(14,23),123,124\}$ and $t_{a,c} = 5$.

The diameter of C(w)

The commutation classes of w_{min} and w_{max} are the furthest classes in the graph C(w) and thus $diam(C(w)) = d([w_{min}], [w_{max}]) = |I_3(w)|$.

Theorem

Let $w \in \mathcal{S}_n$. The partial order defined on the commutation classes of C(w) given by the transitive closure of covering relations

[a]
$$<$$
 [b] if [a] \sim [b] and $t(w_{min}, b) = t(w_{min}, a) + 1$,

makes C(w) into a ranked partially ordered set with a unique minimal element $[w_{min}]$ and a unique maximal element $[w_{max}]$. Moreover, the diameter of C(w) is equal to the cardinality of $I_3(w)$.

321-avoiding permutations

Let $\mathbf{w} = w_1 \cdots w_n \in \mathcal{S}_n$ and let $p \in \mathcal{S}_r$, for $r \leq n$. We say that \mathbf{w} contains the pattern p if there exists a subsequence $w_{i_1} \cdots w_{i_r}$ whose elements are in the same relative order as the elements in p. If w does not contain p, then we say that w avoids p, or that w is p-avoiding.

Example

The permutation [241563] is 321-avoiding but it contains the pattern 132 (241563)

Theorem (Billey, Jockusch, and Stanley, 1993)

A permutation $w \in \mathcal{S}_n$ is fully commutative if and only if it is 321-avoiding.

Proposition

Given $a, b \in Red(w)$, we have $t(a, b) \leq d(a, b)$.

Note: The diameter of the metric space (R(w), t) is a lower bound for the diameter of the graph G(w)

Proposition

Given $a, b \in Red(w)$, we have $t(a, b) \leq d(a, b)$.

Note: The diameter of the metric space (R(w), t) is a lower bound for the diameter of the graph G(w)

Proposition

Let $a, b \in R(w)$. If a and b are in the same commutation class, then t(a, b) = d(a, b).

Definition

Given $w \in S_n$, define the following disjoint subsets of $I_2(w)$:

$$I_2^{S}(\mathbf{w}) := \{ (ij, k\ell) \in I_2(\mathbf{w}) : i < j < k < \ell \},$$

$$I_2^{C}(\mathbf{w}) := \{ (ik, j\ell) \in I_2(\mathbf{w}) : i < j < k < \ell \},$$

$$I_2^{N}(\mathbf{w}) := \{ (i\ell, jk) \in I_2(\mathbf{w}) : i < j < k < \ell \}.$$

Definition

Given $a \in Red(w)$, define the following disjoint subsets of $T_{[a]}$:

Lemma

Let a be a reduced word of a permutation w and $(ij, k\ell) \in I_2^S(w)$, with $i < j < k < \ell$. The pair $(ij, k\ell) \in T_{[a]}^S$ if and only if either of the following conditions hold:

- $ij\ell \notin I_3(w)$ and $ik\ell \notin I_3(w)$;
- $ij\ell \not\in I_3(w)$ and $\Gamma_a(ik\ell) = 1$;
- $\Gamma_a(ij\ell) = 0$ and $ik\ell \not\in I_3(w)$;
- $\Gamma_a(ij\ell) = 0$ and $\Gamma_a(ik\ell) = 1$;
- $\Gamma_a(ij\ell) = 1$ and $\Gamma_a(ik\ell) = 0$.

	ikℓ ∉ I₃	$\Gamma_a(ik\ell)=0$	$\Gamma_a(ik\ell)=1$
ijℓ ∉ <i>I</i> 3	✓	X	✓
$\Gamma_a(ij\ell)=0$	√	Х	✓
$\Gamma_a(ij\ell)=1$	Х	✓	X

Table: Separated pairs of inversions $(ij, k\ell) \in I_2^S(w)$

Theorem

Let $a \in \textit{Red}(w).$ The diameter of the commutation class [a] is given by

$$|T_{[a]}| = |T_{[a]}^{S}| + |T_{[a]}^{C}| + |T_{[a]}^{N}|.$$

Corollary

If w is a fully commutative permutation, then the diameter of the graph G(w) is given by

$$|I_2^{S}(\mathbf{w})| + |I_2^{C}(\mathbf{w})|.$$

Example

The permutation w=[24517386] is fully commutative, since $I_3(w)=\emptyset$.

The graph
$$G(w)$$
 has 344 reduced words and 1818 commutations. We have $I_{\Phi}(w)=\{12,14,15,34,35,37,67,68\}$ and thus,

have
$$I_{\Phi}(w) = \{12, 14, 15, 34, 35, 37, 07, 08\}$$
 and thus,

$$I_{2}^{S}(w) = \{(12, 34), (12, 35), (12, 37), (12, 67), (12, 68), (14, 67), (14, 67), (14, 6$$

$$(15,67), (15,69), (34,67), (34,68), (35,67), (35,68)$$
$$I_2^C(w) = \{ (14,35), (14,37), (15,37), (37,68) \}.$$

 $G(24517386) = |I_2^S(w)| + |I_2^C(w)| = 13 + 4 = 17.$

It follows that the diameter of

A permutation $w \in S_n$ is called **Grassmannian** if it has at most one descent. Grassmannian permutations can be defined using their Lehmer code $L(w) = (c_1, c_2, \dots, c_n)$, where

$$c_i = \#\{j : j > i \text{ e } w_i < w_i\}.$$

It is easy to see that w is a Grassmannian permutation with descent r if and only if $c_1 \leq c_2 \leq \cdots c_r \leq n-r$ and $c_{r+1} = \cdots = c_n = 0$.

Corollary

Let $w \in S_n$ be a Grassmannian permutation with Lehmar code $L(w) = (c_1, \ldots, c_n)$. Then, the diameter of the graph G(w) is given by

$$\sum_{1 \leq i < k \leq r} c_i(c_k - c_i) + \sum_{i=1}^{r-1} {c_i \choose 2} (r-i).$$

References

- Y. Cho, J. S. Kim and E. Lee (2022). Enumeration of Gelfand-Cetlin type reduced words, The Electronic Journal of Combinatorics 29(1), P1.27.
- S. Dahlberg and Y. Kim (2023). Diameters of graphs on reduced words of 12 and 21-inflations. Journal of Combinatorics, Vol.14 (1), 69–110.
- G. Gutierres, R. Mamede and J.L. Santos (2020). Commutation classes of the reduced words for the longest element of S_n . The Electronic Journal of Combinatorics, volume 27, Issue 2, P2.21.
- G. Gutierres, R. Mamede and J.L. Santos (2022). Diameter of the commutation classes graph of a permutation. European Journal of Combinatorics, 103, paper no.103525.
- G. Gutierres and R. Mamede (2024). Diameter of a commutation class on reduced words. Discrete Mathematics 347 (2024), paper no. 114098.
- V. Reiner and Y. Roichman (2013). Diameter of graphs of reduced words and galleries. Transactions of the American Mathematical Society, 365(5), 2779–2802.

Thank you.