
Introduction
Inversions

Some partial orders on the class of
(0, 1)-matrices and related conjectures

Rosário Fernandes
NOVAMath and Department of Mathematics, NOVA SST

Funded by UIDB/00297/2020

joint work with H.F. da Cruz and D. Salomão

June 28, 2024

Rosário Fernandes NOVAMath and Department of Mathematics, NOVA SST Funded by UIDB/00297/2020 joint work with H.F. da Cruz and D. SalomãoSome partial orders on the class of (0, 1)-matrices and related conjectures



Introduction
Inversions

R = (r1, . . . , rm), S = (s1, . . . , sn) two sequences of positive
integers in weakly decreasing order having the same sum,

r1 ≥ . . . ≥ rm, s1 ≥ . . . ≥ sn,

r1 + . . .+ rm = s1 + . . .+ sn.

A(R,S) the class of all m-by-n (0, 1)-matrices with row sum
vector R and column sum vector S.

A(n, k) the class of all n-by-n (0, 1)-matrices with constant
row and column sums k.
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EXAMPLE

R = (4, 4, 4, 3), S = (3, 3, 3, 3, 3)

A =


1 0 1 1 1
0 1 1 1 1
1 1 0 1 1
1 1 1 0 0

 ∈ A(R,S)

B =


1 1 0 1 0
1 0 1 1 0
1 0 1 0 1
0 1 1 0 1
0 1 0 1 1

 ∈ A(5, 3)
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A = [aij ] a m-by-n real matrix, let Σ(A) be the m-by-n matrix
whose (r, s)-entry is

σr,s(A) =

r∑
i=1

s∑
j=1

aij , 1 ≤ r ≤ m, 1 ≤ s ≤ n.

Example

A =


1 0 1 1 1
0 1 1 1 1
1 1 0 1 1
1 1 1 0 0

 , σ2,3(A) = 4

Σ(A) =


1 1 2 3 4
1 2 4 6 8
2 4 6 9 12
3 6 9 12 15

 .
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BRUHAT ORDER

A,C ∈ A(R,S) then A precedes C in the Bruhat order,
written A �B C, provided that Σ(A) ≥ Σ(C) (by the
entrywise order).

Example

A =


1 0 1 1 1
0 1 1 1 1
1 1 0 1 1
1 1 1 0 0

 , C =


0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 0



Σ(A) =


1 1 2 3 4
1 2 4 6 8
2 4 6 9 12
3 6 9 12 15

 , Σ(C) =


0 1 2 3 4
1 2 4 6 8
2 4 6 9 12
3 6 9 12 15

 .
Σ(A) ≥ Σ(C) and A �B C
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An interchange consists of replacing one of the following two
submatrices by the other,

L2 =

[
0 1
1 0

]
and I2 =

[
1 0
0 1

]
.

Example

B =


1 1 0 1 0
1 0 1 1 0
1 0 1 0 1
0 1 1 0 1
0 1 0 1 1

 , D =


1 1 0 1 0
1 1 1 0 0
1 0 1 0 1
0 0 1 1 1
0 1 0 1 1


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If A1 ∈ A(R,S) and A2 is the matrix obtained from A1 replacing
a 2-by-2 submatrix of A1 equal to L2 (respectively, I2) by I2
(respectively, L2) then we say that A2 is obtained from A1 by an
L2 → I2 (respectively, I2 → L2)

Example

B =


1 1 0 1 0
1 0 1 1 0
1 0 1 0 1
0 1 1 0 1
0 1 0 1 1

 , D =


1 1 0 1 0
1 1 1 0 0
1 0 1 0 1
0 0 1 1 1
0 1 0 1 1


D is obtained from B by an L2 → I2.
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Example

B =


1 1 0 1 0
1 0 1 1 0
1 0 1 0 1
0 1 1 0 1
0 1 0 1 1

 , D =


1 1 0 1 0
1 1 1 0 0
1 0 1 0 1
0 0 1 1 1
0 1 0 1 1


D is obtained from B by an L2 → I2.

B =


1 1 0 1 0
1 0 1 1 0
1 0 1 0 1
0 1 1 0 1
0 1 0 1 1

 = D +


0 0 0 0 0
0 −1 0 1 0
0 0 0 0 0
0 1 0 −1 0
0 0 0 0 0


B is obtained from D by an (1)-interchange
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Example

B =


1 1 0 1 0
1 0 1 1 0
1 0 1 0 1
0 1 1 0 1
0 1 0 1 1

 , D =


1 1 0 1 0
1 1 1 0 0
1 0 1 0 1
0 0 1 1 1
0 1 0 1 1


D is obtained from B by an L2 → I2.

D =


1 1 0 1 0
1 1 1 0 0
1 0 1 0 1
0 0 1 1 1
0 1 0 1 1

 = B +


0 0 0 0 0
0 1 0 −1 0
0 0 0 0 0
0 −1 0 1 0
0 0 0 0 0


D is obtained from B by a (−1)-interchange
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SECONDARY BRUHAT ORDER

if A,C ∈ A(R,S) then A precedes C in the secondary Bruhat
order, written A �B̂ C, if A can be obtained from C by a
finite sequence of L2 → I2 interchanges (sequence of
(−1)-interchanges).
The only interchanges allowed are the L2 → I2 interchanges
((−1)-interchanges)

Example

C =

 0 1 1 1
1 1 1 0
1 0 0 1

 , D1 =

 1 1 1 0
0 1 1 1
1 0 0 1


D2 =

 1 1 1 0
1 0 1 1
0 1 0 1

 , A =

 1 1 1 0
1 1 0 1
0 0 1 1

 .
A �B̂ C
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Theorem

Let A,C ∈ A(R,S). If A is obtained from C by the interchange
C[{i, j}; {k, l}] = L2 → I2 then A �B C.

Proof :

C =


c11 · · · c1n

...

0 · · · 1
...

...
1 · · · 0

...

cm1 · · · cmn

 , A =


c11 · · · c1n

...

1 · · · 0
...

...
0 · · · 1

...

cm1 · · · cmn


σr,s(A) =

r∑
i=1

s∑
j=1

aij , 1 ≤ r ≤ m, 1 ≤ s ≤ n.

σr,s(A) =

{
σr,s(C) + 1 if (r, s) ∈ {i, . . . , j − 1} × {k, . . . , l − 1}
σr,s(C) otherwise

�
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Theorem

Let A,C ∈ A(R,S). If A �B̂ C then A �B C.

Corollary

Let A ∈ A(R,S). If A is a minimal matrix for the Bruhat order on
A(R,S) (matrix Σ(A)), then A is a minimal matrix for the
secondary Bruhat order on A(R,S), (A does not have a submatrix
equal to L2).
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Corollary

Let A ∈ A(R,S). If A is a minimal matrix for the Bruhat order on
A(R,S) (matrix Σ(A)), then A is a minimal matrix for the
secondary Bruhat order on A(R,S), (A does not have a submatrix
equal to L2).

Conjecture

The converse of this Corollary is true.
If A ∈ A(R,S) does not have a submatrix equal to L2 then A is a
minimal matrix for the Bruhat order on A(R,S).
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This conjecture was shown to be false using a counterexample in
A(R,S) with R 6= S.

Conjecture

If A ∈ A(n, k) does not have a submatrix equal to L2 then A is a
minimal matrix for the Bruhat order on A(n, k).

This conjecture arose other notions linked to the Bruhat orders.
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INVERSION IN A (0,1)-MATRIX

An inversion in A = [aij ] ∈ A(R,S) consists of two entries
aij = akl = 1 such that (i− k)(j − l) < 0.

The total number of inversions in A is denoted by ν(A).

Example

A =


1 0 1 1 1
0 1 1 1 1
1 1 0 1 1
1 1 1 0 0


a13 = a42 = 1 and (1− 4)(3− 2) = −3 < 0.

ν(A) = 5 + 7 + 9 + 2 + 4 + 5 + 6 + 1 + 3 + 3 = 45.
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Theorem

Let A,C ∈ A(R,S). If A is obtained from C by the interchange
C[{i, j}; {k, l}] = L2 → I2 then ν(A) < ν(C).

Proof :

C =


c11 · · · c1n

...

0 · · · 1
...

...
1 · · · 0

...

cm1 · · · cmn

 , A =


c11 · · · c1n

...

1 · · · 0
...

...
0 · · · 1

...

cm1 · · · cmn


ν(A) < ν(C).

�
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Theorem

Let A,C ∈ A(R,S). If A ≺B̂ C then ν(A) < ν(C).

Conjecture

Let A,C ∈ A(R,S). If A ≺B C then ν(A) < ν(C).
(If Σ(A) > Σ(C) then ν(A) < ν(C).)
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Example

A =

 1 1 0
1 0 1
0 1 1

 , C =

 0 1 1
1 1 0
1 0 1

 ∈ A(3, 2)

Σ(A) =

 1 2 2
2 3 4
2 4 6

 , Σ(C) =

 0 1 2
1 3 4
2 4 6


Σ(A) > Σ(C) =⇒ A ≺B C
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Definition

Let A = [aij ] be an m-by-n real matrix, with m,n ≥ 2, and b be a
real number. Let 1 ≤ k < l ≤ m, 1 ≤ p < r ≤ n be integers and

E
(b)
{k,l;p,r} = [eij ] be the m-by-n real matrix with all entries equal to

zero, except

E
(b)
{k,l;p,r}[{k, l}; {p, r}] =

[
−b b
b −b

]
.

We say that the m-by-n real matrix D is obtained from A by the
b-interchange in the submatrix A[{k, l}; {p, r}] if

D = A+ E
(b)
{k,l;p,r}.
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Example

A =

[
1 1 0
1 0 1
0 1 1

]
, E

(1)
{1,2;1,2} =

[
−1 1 0
1 −1 0
0 0 0

]

D =

[
0 1 1
2 0 0
0 1 1

]
= A+E

(1)
{1,2;1,2} =

[
1 1 0
1 0 1
0 1 1

]
+

[
−1 1 0
1 −1 0
0 0 0

]
D is obtained from A by a 1-interchange.

Rosário Fernandes NOVAMath and Department of Mathematics, NOVA SST Funded by UIDB/00297/2020 joint work with H.F. da Cruz and D. SalomãoSome partial orders on the class of (0, 1)-matrices and related conjectures



Introduction
Inversions

Definition

Let A = [aij ] be an m-by-n real matrix with m,n ≥ 2. We denote
by ξ(A) the real number

ξ(A) =

m−1∑
i=1

n∑
j=2

(σm,j−1(A)− σi,j−1(A))aij ,

where the number σij(A) is defined in Σij(A) .

Example

A =


1 0 1 1 1
0 1 1 1 1
1 1 0 1 1
1 1 1 0 0


(σ4,2(A)− σ1,2(A))a13 = (6− 1)1 = 5.
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Theorem

Let A ∈ A(R,S). Then ξ(A) = ν(A).
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Theorem

Let A = [aij ] be an m-by-n real matrix and b be a real number.
Let k, p, r be positive integers with 1 ≤ k ≤ m− 1, 1 ≤ p < r ≤ n.
Let x =

∑r
j=p+1 akj and z =

∑r−1
j=p ak+1,j . Let D be the matrix

obtained from A by the b-interchange in the submatrix
A[{k, k + 1}; {p, r}]. Then

ξ(D) = ξ(A) + (x+ z + b)b.
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Example

A =

 1 2 0 1
−1 0 1 1
2 1 1 1

 D is obtained from A by the 2-interchange

in the submatrix A[{1, 2}; {2, 3}], (b = 2, p = 2, r = 3)

D = A+

 0 −2 2 0
0 2 −2 0
0 0 0 0

 =

 1 0 2 1
−1 2 −1 1
2 1 1 1


x =

∑r
j=p+1 akj = 0 and z =

∑r−1
j=p ak+1,j = 0 and

(x+ z + b)b = (0 + 0 + 2)2.

ξ(D) = ξ(A) + (0 + 0 + 2)2 = ξ(A) + 4⇒ ξ(D) > ξ(A)
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Theorem

Let A = [aij ] be an m-by-n real matrix and b be a real number.
Let k, p, r be positive integers with 1 ≤ k ≤ m− 1, 1 ≤ p < r ≤ n.
Let x =

∑r
j=p+1 akj and z =

∑r−1
j=p ak+1,j . Let D be the matrix

obtained from A by the b-interchange in the submatrix
A[{k, k + 1}; {p, r}]. Then

ξ(D) = ξ(A) + (x+ z + b)b.

Remark

In the conditions of the previous theorem we conclude that if A is
a real matrix, x ≥ 0, z ≥ 0 and b > 0 then ξ(A) < ξ(D).
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Definition

Let Y = [yij ], W = [wij ] ∈ A(R,S) and α be a positive integer
with 1 ≤ α ≤ m. The (α, Y,W )-matrix is the m-by-n matrix
Z = [zij ] such that

the i-row of Z is the i-row of Y , for 1 ≤ i < α.

the i-row of Z is the i-row of W , for α < i ≤ m.

the α-row of Z is zαj = sj −
(∑α−1

l=1 ylj +
∑m

l=α+1wlj

)
, for

1 ≤ j ≤ n.
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Example

A =

 1 1 0
1 0 1
0 1 1

 , C =

 0 1 1
1 1 0
1 0 1



(1, C,A) =

 1 1 0
1 0 1
0 1 1

 = A, (2, C,A) =

 0 1 1
2 0 0
0 1 1

 = D

(3, C,A) =

 0 1 1
1 1 0
1 0 1

 = C
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Example

(1, C,A) =

 1 1 0
1 0 1
0 1 1

 = A, (2, C,A) =

 0 1 1
2 0 0
0 1 1

 = D

D is obtained from A by the 1-interchange in the submatrix
A[{1, 2}; {1, 3}], (b = 1, p = 1, r = 3)

(3, C,A) =

 0 1 1
1 1 0
1 0 1

 = C

C is obtained from D by the 1-interchange in the submatrix
D[{2, 3}; {1, 2}], (b = 1, p = 1, r = 2)

ν(A) = ξ(A) < ξ(D) < ξ(C) = ν(C).

Rosário Fernandes NOVAMath and Department of Mathematics, NOVA SST Funded by UIDB/00297/2020 joint work with H.F. da Cruz and D. SalomãoSome partial orders on the class of (0, 1)-matrices and related conjectures



Introduction
Inversions

Theorem

Let A,C ∈ A(R,S). If A ≺B C then ν(A) < ν(C).

Corollary

Let A,C ∈ A(R,S). If ν(A) = ν(C) then A and C are
incomparable in the Bruhat order.
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Theorem

Let A,C ∈ A(R,S). If A ≺B C then ν(A) < ν(C).

The converse of this Theorem is not valid.

Example

If

A =


1 1 1 0 0 0 0
1 1 1 0 0 0 0
1 1 0 1 0 0 0
0 0 1 1 1 0 0
0 0 0 1 0 1 1
0 0 0 0 1 1 1
0 0 0 0 1 1 1

 , C =


1 1 1 0 0 0 0
1 1 0 1 0 0 0
1 0 1 1 0 0 0
0 1 1 1 0 0 0
0 0 0 0 1 1 1
0 0 0 0 1 1 1
0 0 0 0 1 1 1


two minimal matrices for the Bruhat order on A(7, 3)

ν(A) = 20, ν(C) = 23.
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Thank you
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