Rui Duarte

CIDMA & University of Aveiro

rduarte@ua.pt

14th Combinatorics Day Almada, June 27, 2024

The author was partially supported by CIDMA which is financed by national funds through Fundação para a Ciência e a Tecnologia (FCT) within project UIDB/04106/2020 (CIDMA).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Let $\ell, k \in \mathbb{N}$. In how many ways can we cover a $\ell \times k$ "chess board" with 1×2 dominos without overlapping any two domino pieces?

Tiling randomly generated with J. Rangel-Mondragon's application for Mathematica "Random Domino Tilings", Wolfram Demonstrations Project, http://demonstrations.wolfram.com/RandomDominoTilings/.

Equivalently, how many different perfect matchings of the $\ell \times k$ square grid graph $(P_{\ell} \times P_k)$ represented below are there?

・ロト・西ト・山田・山田・山口・

Let $T(\ell, k)$ denote that number of perfect matchings of $P_{\ell} \times P_k$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

It is easy to see that...

$$\bullet \ T(\ell,k) = T(k,\ell).$$

•
$$T(\ell, k) = 0$$
 if both ℓ and k are odd.

Not so is easy to see...

• $T(12,7) = 2\,188\,978\,117$.

Theorem (Kasteleyn's formula) For every $\ell, k \in \mathbb{N}$,

$$T(\ell,k) = \prod_{p=1}^{\ell} \prod_{q=1}^{k} \sqrt[4]{4\cos^2\left(\frac{p\pi}{\ell+1}\right)} + 4\cos^2\left(\frac{q\pi}{k+1}\right).$$

Not so is easy to see...

• $T(12,7) = 2\,188\,978\,117$.

Theorem (Kasteleyn's formula) For every $\ell, k \in \mathbb{N}$,

$$T(\ell,k) = \prod_{p=1}^{\ell} \prod_{q=1}^{k} \sqrt[4]{4\cos^2\left(\frac{p\pi}{\ell+1}\right) + 4\cos^2\left(\frac{q\pi}{k+1}\right)}.$$

Decomposition of Rectangles in Dominos \square Introduction

For example, for
$$\ell = 4$$
 and $k = 3$ we have

$$4\cos^{2}\left(\frac{\pi}{5}\right) = 4\cos^{2}\left(\frac{4\pi}{5}\right) = \varphi^{2} = 1 + \varphi = \frac{3+\sqrt{5}}{2},$$

$$4\cos^{2}\left(\frac{2\pi}{5}\right) = 4\cos^{2}\left(\frac{3\pi}{5}\right) = 2 - \varphi = \frac{3-\sqrt{5}}{2},$$

$$4\cos^{2}\left(\frac{\pi}{4}\right) = 4\cos^{2}\left(\frac{3\pi}{4}\right) = 2 \quad , \quad 4\cos^{2}\left(\frac{2\pi}{4}\right) = 0,$$

Hence,

$$T(4,3) = \sqrt[4]{\left(\frac{3+\sqrt{5}}{2}\right)^2 \left(\frac{3-\sqrt{5}}{2}\right)^2 \left(\frac{7+\sqrt{5}}{2}\right)^4 \left(\frac{7-\sqrt{5}}{2}\right)^4} = 11.$$

(ロ)、(型)、(E)、(E)、 E) の(()

In what follows we assume that ℓ is even or k is even.

L The determinant of the Kasteleyn Matrix $m(\ell, k)$

Label both black and white squares with integers from 1 to $d = \ell k/2$. Black squares are labeled with black labels, and white squares with red labels. The Kasteleyn Matrix is $m(\ell, k) = (a_{br})_{1 \le b, r \le d}$ defined by:

$$a_{br} = \begin{cases} 0, & \text{if black square } b \text{ and white square } r \\ & \text{are not adjacent;} \\ 1, & \text{if black square } b \text{ and white square } r \\ & \text{are placed side by side;} \\ i = \sqrt{-1}, & \text{if black square } b \text{ and white square } r \\ & \text{are placed one on top of the other.} \end{cases}$$

L The determinant of the Kasteleyn Matrix $m(\ell, k)$

For
$$\ell = 4$$
 and $k = 3$:

_	_		_		1	2	3	4	5	6
5	5	6	6	1	$\begin{pmatrix} 1\\ 1 \end{pmatrix}$	0	i	0	0	0 \
				2	1	1	0	i	0	0
3	3	4	4	$m(4,3) = \frac{3}{4}$	l i	0	1	1	i	0
				m(4, 5) = 4	0	i	0	1	0	i
1	1	2	2	5	0	0	i	0	1	0
-	-	2	-	6	$ \begin{bmatrix} 1 \\ i \\ 0 \\ 0 \\ 0 \end{bmatrix} $	0	0	i	1	1/

To every tiling in we may assign a *permutation* $\sigma \in \mathfrak{S}_d$ defined by $\sigma(a) = b$ when the black square labeled *a* is paired with the white square labeled *b*.

The determinant of the Kasteleyn Matrix $m(\ell, k)$

When $\ell = 4$ and k = 3, there are five permutations with sign +1,

5	5	6	6
3	3	4	4
1	1	2	2
1	45	23	6

5	5	6	6
3	3	4	4
1	1	2	2
3	21	65	4

5	5	6	6	
3	3	4	4	
1	1	2	2	
341256				

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

and six with sign -1,

		_		
5	5	6	6	
3	3	4	4	
1	1	2	2	
1	23	65	4	
5	5	6	6	
3	3	4	4	
1	1	2	2	
1	43	25	6	

5	5	6	6
3	3	4	4
1	1	2	2
1	25	12	C
1	25	4 3	0
5	5	4 3 6	6
_			

Decomposition of Rectangles in Dominos Why is $T(\ell, k) = |\det m(\ell, k)|$?

Define, for $\tau \in \mathfrak{S}_d$,

$$s(\tau) := a_{1\tau_1} \cdot a_{2\tau_2} \cdots a_{d\tau_d}.$$

Then $s(\tau) = 0$ if and only if there is no tiling associated with τ .

Let $S = \{\tau \in \mathfrak{S}_d \mid s(\tau) \neq 0\}$. By definition, det $m(\ell, k) = \sum_{\tau \in \mathfrak{S}_d} \operatorname{sign}(\tau) s(\tau) = \sum_{\tau \in S} \operatorname{sign}(\tau) s(\tau)$.

Then $\operatorname{sign}(\sigma) s(\sigma) = \operatorname{sign}(\mu) s(\mu)$ for any two $\sigma, \mu \in S$. Since $\|\operatorname{sign}(\sigma) s(\sigma)\| = 1$,

$$\|\det m(\ell, k)\| = \left\| \sum_{\tau \in S} \operatorname{sign}(\tau) s(\tau) \right\|$$
$$= |S| \|\operatorname{sign}(\sigma) s(\sigma)\|$$
$$= \text{number of domino tilings of } B.$$

Decomposition of Rectangles in Dominos Why is $T(\ell, k) = |\det m(\ell, k)|$?

$$sign(\sigma) s(\sigma) = (-1) i^2 = sign(\mu) s(\mu) = (+1) i^4 = 1.$$

- $\sigma = 314256 = (1342)(5)(6)$ $s(\sigma) = i^2 = -1 = \text{sign } \sigma$
- $\mu = 145236 = (24)(35)(1)(6)$ $s(\mu) = i^4 = 1 = \text{sign } \mu$
- $\sigma \circ \mu^{-1} = (1354)(2)(6)$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Decomposition of Rectangles in Dominos Why is $T(\ell, k) = |\det m(\ell, k)|$?

Let $(a_{pq})_{1 \le p,q \le \ell k}$ be the square matrix where a_{pq} is defined as before but we do not distinguish between black and white squares. If black squares are numbered from 1 to d and white squares from d + 1 to $2d = \ell k$, we obtain the following matrix, formed by four $d \times d$ blocks,

$$\left(egin{array}{cc} 0 & m(\ell,k) \ m(\ell,k)^{T} & 0 \end{array}
ight),$$

where $m(\ell, k)$ was defined before. The determinant of this matrix is

$$(-1)^d \det m(\ell,k) \det m(\ell,k)^T = (-1)^d (\det m(\ell,k))^2.$$

Determinant associated with a linear board

For
$$k = 1$$
 and $\ell = 2d$ we obtain $T(\ell, 1) = 1$.

$$M(\ell, 1) = \begin{pmatrix} 0 & 1 & \cdots & 0 & | \\ 1 & 0 & \ddots & 0 & | \\ \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \ddots & 0 & 1 \\ \hline 0 & 0 & \cdots & 1 & | 0 \end{pmatrix}, \qquad \chi_{\ell}(\lambda) = \det \begin{pmatrix} -\lambda & 1 & \cdots & 0 & 0 \\ 1 & -\lambda & \ddots & 0 & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \ddots & -\lambda & 1 \\ 0 & 0 & \cdots & 1 & -\lambda \end{pmatrix}$$

For every $n \ge 3$ and $\lambda \in \mathbb{C}$,

$$\chi_{\ell}(\lambda) = -\lambda \chi_{\ell-1}(\lambda) - \chi_{\ell-2}(\lambda).$$

(ロ)、(型)、(E)、(E)、 E) の(()

Determinant associated with a linear board

In particular,

$$\chi_{\ell}(2\cos(t)) = -2\cos(t) \big(\chi_{\ell-1}(2\cos(t))\big) - \chi_{\ell-2}(2\cos(t)) \,.$$

Since

$$\begin{split} \chi_1(2\cos(t)) &= -\frac{\sin\left(2t\right)}{\sin(t)} \quad \text{and} \quad \chi_2(2\cos(t)) = \frac{\sin\left(3t\right)}{\sin(t)} \,, \\ \chi_\ell(2\cos(t)) &= (-1)^\ell \frac{\sin\left((\ell+1)t\right)}{\sin(t)} \,. \end{split}$$

The eigenvalues of $m(\ell, 1)$ are, for $p = 1, 2, ..., \ell$, $2\cos\left(\frac{p\pi}{\ell+1}\right)$ since

$$\chi_\ell\Big(2\cos\Big(\frac{p\,\pi}{\ell+1}\Big)\Big) = (-1)^\ell\sin(p\,\pi) = 0\,.$$

In particular,

$$\left|\prod_{p=1}^{\ell} 2\cos\left(\frac{p\pi}{\ell+1}\right)\right| = \begin{cases} 1, & \text{if } \ell \text{ is even;} \\ 0, & \text{if } \ell \text{ is odd.} \end{cases}$$

э

Determinant associated with a general board

Now, we consider three
$$(\ell k) \times (\ell k)$$
 matrices,
 $M(\ell, k) = (a_{pq})_{1 \leq p,q \leq \ell k}$ as before,
and $M_h(\ell, k) = (b_{pq})_{1 \leq p,q \leq \ell k}$ and $M_v(\ell, k) = (c_{pq})_{1 \leq p,q \leq \ell k}$,
defined by

 $b_{pq} = \begin{cases} 1, & \text{if squares } p \text{ and } q \text{ are placed side by side,} \\ 0, & \text{otherwise;} \end{cases}$ $c_{pq} = \begin{cases} i, & \text{if squares } p \text{ and } q \text{ are placed one on top of the other,} \\ 0, & \text{otherwise.} \end{cases}$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Determinant associated with a general board

Then

$$M(\ell,k) = M_h(\ell,k) + M_\nu(\ell,k) \,.$$

If λ is an eigenvalue of $M(\ell, 1)$ and μ is an eigenvalue of M(k, 1), then $\lambda + \mu i$ is an eigenvalue of $M(\ell, k)$.

$$\det\left(M(\ell,k)\right) = \prod_{p=1}^{\ell} \prod_{q=1}^{k} \left(2\cos\left(\frac{p\pi}{\ell+1}\right) + 2\cos\left(\frac{q\pi}{k+1}\right)i\right).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Determinant associated with a general board

Finally,

$$\det \left(M(\ell, k) \right) = |\det \left(M(\ell, k) \right)|$$
$$= \prod_{p=1}^{\ell} \prod_{q=1}^{k} \left\| 2\cos\left(\frac{p\pi}{\ell+1}\right) + 2\cos\left(\frac{q\pi}{k+1}\right)i \right\|$$
$$= \prod_{p=1}^{\ell} \prod_{q=1}^{k} \sqrt{4\cos^2\left(\frac{p\pi}{\ell+1}\right) + 4\cos^2\left(\frac{q\pi}{k+1}\right)}.$$

(ロ)、(型)、(E)、(E)、 E) の(()

Determinant associated with a general board

Thank you for your attention!

(ロ)、(型)、(E)、(E)、 E) の(()