Rui Duarte

CIDMA & University of Aveiro

rduarte@ua.pt

14th Combinatorics Day Almada, June 27, 2024

The author was partially supported by CIDMA which is financed by national funds through Fundação para a Ciência e a Tecnologia (FCT) within project UIDB/04106/2020 (CIDMA).

KORK ERKER ADAM ADA

Let $\ell, k \in \mathbb{N}$. In how many ways can we cover a $\ell \times k$ "chess board" with 1×2 dominos without overlapping any two domino pieces?

Tiling randomly generated with J. Rangel-Mondragon's application for Mathematica "Random Domino Tilings", Wolfram Demonstrations Project, [http://demonstrations.wolfram.com/RandomDominoTilings/](http://demonstrations.wolfram.com/RandomDomino Tilings/).

Equivalently, how many different perfect matchings of the $\ell \times k$ square grid graph $(P_{\ell} \times P_{k})$ represented below are there?

KORK ERKER ADAM ADA

Let $T(\ell, k)$ denote that number of perfect matchings of $P_{\ell} \times P_{k}$.

It is easy to see that...

$$
\blacktriangleright \ \mathcal{T}(\ell,k) = \mathcal{T}(k,\ell).
$$

•
$$
T(\ell, k) = 0
$$
 if both ℓ and k are odd.

$$
T(\ell, k) = 0 \text{ if } \ell \text{ is even};
$$

\n
$$
T(\ell, 1) = \begin{cases} 1 & \text{if } \ell \text{ is even}; \\ 0 & \text{if } \ell \text{ is odd}. \end{cases}
$$

\n- \n
$$
\mathcal{T}(\ell, 2) = \mathcal{T}(\ell - 1, 2) + \mathcal{T}(\ell - 2, 2)
$$
, for $\ell \geq 3$.\n
\n- \n $\mathcal{T}(1, 2) = 1 = f_2$.\n
\n- \n $\mathcal{T}(2, 2) = 2 = f_3$.\n
\n- \n So $\mathcal{T}(\ell, 2) = f_{\ell+1}$, where f_n denotes the *n*th Fibonacci number.\n
\n

Not so is easy to see. . .

 \blacktriangleright $\mathcal{T}(12, 7) = 2188978117$.

Theorem (Kasteleyn's formula) For every $\ell, k \in \mathbb{N}$,

$$
T(\ell, k) = \prod_{p=1}^{\ell} \prod_{q=1}^{k} \sqrt[4]{4 \cos^2 \left(\frac{p \pi}{\ell+1}\right) + 4 \cos^2 \left(\frac{q \pi}{k+1}\right)}.
$$

Not so is easy to see. . .

 \blacktriangleright $\mathcal{T}(12, 7) = 2188978117$.

Theorem (Kasteleyn's formula) For every $\ell, k \in \mathbb{N}$,

$$
T(\ell,k) = \prod_{p=1}^{\ell} \prod_{q=1}^{k} \sqrt[4]{4 \cos^2 \left(\frac{p \pi}{\ell+1}\right) + 4 \cos^2 \left(\frac{q \pi}{k+1}\right)}.
$$

[Decomposition of Rectangles in Dominos](#page-0-0) L [Introduction](#page-1-0)

For example, for $\ell = 4$ and $k = 3$ we have

$$
4\cos^2\left(\frac{\pi}{5}\right) = 4\cos^2\left(\frac{4\pi}{5}\right) = \varphi^2 = 1 + \varphi = \frac{3+\sqrt{5}}{2},
$$

$$
4\cos^2\left(\frac{2\pi}{5}\right) = 4\cos^2\left(\frac{3\pi}{5}\right) = 2 - \varphi = \frac{3-\sqrt{5}}{2},
$$

$$
4\cos^2\left(\frac{\pi}{4}\right) = 4\cos^2\left(\frac{3\pi}{4}\right) = 2 , \quad 4\cos^2\left(\frac{2\pi}{4}\right) = 0,
$$

Hence,

$$
T(4,3) = \sqrt[4]{\left(\frac{3+\sqrt{5}}{2}\right)^2 \left(\frac{3-\sqrt{5}}{2}\right)^2 \left(\frac{7+\sqrt{5}}{2}\right)^4 \left(\frac{7-\sqrt{5}}{2}\right)^4}
$$

= 11.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

[Decomposition of Rectangles in Dominos](#page-0-0) **L**[Introduction](#page-1-0)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

In what follows we assume that ℓ is even or k is even.

 \Box [The determinant of the Kasteleyn Matrix](#page-8-0) $m(\ell, k)$

 \mathbb{R}^2

Label both black and white squares with integers from 1 to $d = \ell k/2$. Black squares are labeled with black labels, and white squares with red labels. The Kasteleyn Matrix is squares with red labels. The Kaste
 $m(\ell,k) = \bigl(a_{br}\bigr)_{1\leqslant b,r\leqslant d}$ defined by:

$$
a_{br} = \begin{cases} 0, & \text{if black square } b \text{ and white square } r \\ 1, & \text{if black square } b \text{ and white square } r \\ & \text{are placed side by side;} \\ i = \sqrt{-1}, & \text{if black square } b \text{ and white square } r \\ & \text{are placed one on top of the other.} \end{cases}
$$

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

 \Box [The determinant of the Kasteleyn Matrix](#page-8-0) $m(\ell, k)$

For
$$
\ell = 4
$$
 and $k = 3$:

To every tiling in we may assign a *permutation* $\sigma \in \mathfrak{S}_d$ defined by $\sigma(a) = b$ when the black square labeled a is paired with the white square labeled b.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

 \Box [The determinant of the Kasteleyn Matrix](#page-8-0) $m(\ell, k)$

When $\ell = 4$ and $k = 3$, there are five permutations with sign $+1$,

KORK ERKER ADA ADA KORA

and six with sign -1 ,

[Decomposition of Rectangles in Dominos](#page-0-0) [Why is](#page-11-0) $T(\ell, k) = |\det m(\ell, k)|$?

Define, for $\tau \in \mathfrak{S}_d$,

$$
s(\tau) := a_{1\tau_1} \cdot a_{2\tau_2} \cdots a_{d\tau_d}.
$$

Then $s(\tau) = 0$ if and only if there is no tiling associated with τ .

Let $S = \{ \tau \in \mathfrak{S}_d \mid s(\tau) \neq 0 \}$. By definition, det $m(\ell, k) = \sum_j \text{sign}(\tau) s(\tau) = \sum_j \text{sign}(\tau) s(\tau)$. $T\in\mathfrak{S}_d$ τ ϵ S

Then $sign(\sigma) s(\sigma) = sign(\mu) s(\mu)$ for any two $\sigma, \mu \in S$. Since $\|\operatorname{sign}(\sigma) s(\sigma)\| = 1.$

$$
\|\det m(\ell, k)\| = \Big\| \sum_{\tau \in \mathcal{S}} \operatorname{sign}(\tau) s(\tau) \Big\|
$$

= $|\mathcal{S}| \|\operatorname{sign}(\sigma) s(\sigma)\|$
= number of domino tilings of *B*.

[Decomposition of Rectangles in Dominos](#page-0-0) [Why is](#page-11-0) $T(\ell, k) = |\det m(\ell, k)|$?

$$
sign(\sigma) s(\sigma) = (-1) i^2 = sign(\mu) s(\mu) = (+1) i^4 = 1.
$$

- $\sigma = 314256 = (1342)(5)(6)$ $\mu = 145236 = (24)(35)(1)(6)$ $s(\sigma) = i^2 = -1 = \text{sign }\sigma$ $s(\mu) = i$
	- $s(\mu) = i^4 = 1 = \text{sign }\mu$
- $\sigma \circ \mu^{-1} = (1354)(2)(6)$

[Decomposition of Rectangles in Dominos](#page-0-0) L [Why is](#page-11-0) $T(\ell, k) = |\det m(\ell, k)|$?

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Let $(a_{pq})_{1\leqslant p,q\leqslant \ell \,k}$ be the square matrix where a_{pq} is defined as before but we do not distinguish between black and white squares. If black squares are numbered from 1 to d and white squares from $d + 1$ to $2d = \ell k$, we obtain the following matrix, formed by four $d \times d$ blocks, ˆ

$$
\left(\begin{array}{cc}0&m(\ell,k)\\m(\ell,k)^{\textsf{T}}&0\end{array}\right)\,,
$$

where $m(\ell, k)$ was defined before. The determinant of this matrix is

$$
(-1)^d \det \, m(\ell,k) \det \, m(\ell,k)^\mathcal{T} = (-1)^d (\det \, m(\ell,k))^2 \, .
$$

KORKAR KERKER SAGA

[Determinant associated with a linear board](#page-15-0)

For
$$
k = 1
$$
 and $\ell = 2d$ we obtain $T(\ell, 1) = 1$.

1	2	3	4	5	6	...	$d-1$	d
---	---	---	---	---	---	-----	-------	-----

$$
M(\ell,1) = \begin{pmatrix} 0 & 1 & \cdots & 0 & |0| \\ 1 & 0 & \ddots & 0 & |0| \\ \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & \ddots & 0 & |1| \\ \hline 0 & 0 & \cdots & 1 & |0 \end{pmatrix}, \qquad \chi_{\ell}(\lambda) = \det \begin{pmatrix} -\lambda & 1 & \cdots & 0 & 0 \\ 1 & -\lambda & \ddots & 0 & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \ddots & -\lambda & 1 \\ 0 & 0 & \cdots & 1 & -\lambda \end{pmatrix}
$$

For every $n \geq 3$ and $\lambda \in \mathbb{C}$,

$$
\chi_{\ell}(\lambda) = -\lambda \, \chi_{\ell-1}(\lambda) - \chi_{\ell-2}(\lambda) \, .
$$

[Decomposition of Rectangles in Dominos](#page-0-0) [Determinant associated with a linear board](#page-15-0)

In particular,

$$
\chi_{\ell}(2\cos(t)) = -2\cos(t)\big(\chi_{\ell-1}(2\cos(t))\big) - \chi_{\ell-2}(2\cos(t))\,.
$$

Since

$$
\chi_1(2\cos(t)) = -\frac{\sin(2t)}{\sin(t)} \quad \text{and} \quad \chi_2(2\cos(t)) = \frac{\sin(3t)}{\sin(t)},
$$

$$
\chi_\ell(2\cos(t)) = (-1)^\ell \frac{\sin((\ell+1)t)}{\sin(t)}.
$$

The eigenvalues of $m(\ell, 1)$ are, for $p = 1, 2, \ldots, \ell$, 2 cos $\left(\frac{p\pi}{\ell+1}\right)$ $\ell+1$ since

$$
\chi_{\ell}\Big(2\cos\Big(\frac{p\,\pi}{\ell+1}\Big)\Big)=(-1)^{\ell}\sin(p\,\pi)=0\,.
$$

In particular,

$$
\left|\prod_{p=1}^{\ell} 2\cos\left(\frac{p\,\pi}{\ell+1}\right)\right| = \begin{cases} 1, & \text{if } \ell \text{ is even;} \\ 0, & \text{if } \ell \text{ is odd.} \end{cases}
$$

B

 $2Q$

[Determinant associated with a general board](#page-17-0)

Now, we consider three
$$
(\ell k) \times (\ell k)
$$
 matrices,
\n $M(\ell, k) = (a_{pq})_{1 \leq p, q \leq \ell k}$ as before,
\nand $M_h(\ell, k) = (b_{pq})_{1 \leq p, q \leq \ell k}$ and $M_V(\ell, k) = (c_{pq})_{1 \leq p, q \leq \ell k}$

 $b_{pq} =$ # $1,$ if squares p and q are placed side by side, $\begin{pmatrix} 0, & \text{otherwise} \end{pmatrix}$ $c_{pq} = \begin{cases} i, & \text{if squares } p \text{ and } q \text{ are placed one on top of the} \\ 0, & \text{otherwise.} \end{cases}$ other, 0, otherwise.

[Determinant associated with a general board](#page-17-0)

Then

$$
M(\ell,k)=M_h(\ell,k)+M_v(\ell,k).
$$

If λ is an eigenvalue of $M(\ell, 1)$ and μ is an eigenvalue of $M(k, 1)$, then $\lambda + \mu i$ is an eigenvalue of $M(\ell, k)$.

$$
\det\left(M(\ell,k)\right)=\prod_{p=1}^{\ell}\prod_{q=1}^{k}\left(2\cos\left(\frac{p\,\pi}{\ell+1}\right)+2\cos\left(\frac{q\,\pi}{k+1}\right)i\right).
$$

[Determinant associated with a general board](#page-17-0)

Finally,

$$
\det (M(\ell, k)) = |\det (M(\ell, k))|
$$

=
$$
\prod_{p=1}^{\ell} \prod_{q=1}^{k} \left\| 2 \cos \left(\frac{p \pi}{\ell+1} \right) + 2 \cos \left(\frac{q \pi}{k+1} \right) i \right\|
$$

=
$$
\prod_{p=1}^{\ell} \prod_{q=1}^{k} \sqrt{4 \cos^2 \left(\frac{p \pi}{\ell+1} \right) + 4 \cos^2 \left(\frac{q \pi}{k+1} \right)}.
$$

[Determinant associated with a general board](#page-17-0)

Thank you for your attention!