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Commuting graphs of semigroups

Let S be a finite non-commutative semigroup.

The commuting graph of S, denoted G(S), is the simple graph such
that:

e S\ Z(S) is the set of vertices, where
Z(S)={xeS:xy=yxforall y € S}.

o {x,y} is an edge if x # y and xy = yx.
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Completely 0-simple semigroups

Theorem (Rees—Suschkewitsch Theorem)

A semigroup S is completely 0-simple if and only if there exist a group G,

index sets | and N\, and a regular \ x | matrix P with entries from G° such
that S ~ My|[G; I, A; P].
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0-Rees matrix semigroup over a group

Let G be a group, / and A be index sets, and P be a regular A x | matrix
with entries from G°.

Let py; be the (A, i)-th entry of P.
A 0-Rees matrix semigroup over a group, denoted My[G; I, A; P], is
the set (/ x G x A) U {0} with the multiplication

(ia XPNj Y, ,U) if P)j 7é 07

i7X’)\ .7 ) — .
( YUy, 1) {0 £ oy = 0,

0(i,x,\) = (i,x,A)0 = 00 = 0.
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Zeros are important

Lemma
Let P and Q be regular A x | matrices with entries from G°. If for all

i€l and X €N py =0 ifand only if g; =0, then the graphs G(My[G;
I,\; P]) and G(Mo[G; I, \; Q]) are isomorphic.

Example

Let e,g,h € G.
e 0 O x 0 0
0 g h ANNNANS 0 x x
e 0 ¢ x 0 x
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Reordering columns and rows implies isomorphism

Lemma

Let Q be the matrix obtained from P by reordering the columns and rows
of P. Then the graphs G(My[G; I, N\; P]) and G(Mo|[G; I, \; Q]) are
isomorphic.

Example

o
X

o
X

o
X
o
X
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|/| = |A| = 1: characterization of G(M[G; I, A; P])

Theorem (P., 2024)
o Mo[G;I,A; P] ~ G°.

@ Suppose that G is non-abelian. Then the graphs G(Mo[G; I, A; P])
and G(G) are isomorphic.




[/| > 1 or |A] > 1, P has no zeros: connectedness

o Z(My[G;I,A; P]) = {0}.

e My[G; I, A; 1] is non-commutative.

Theorem (P., 2024)
e G(Mo[G;I,A; P]) is not connected.

@ The connected components of G(My[G; I, \; P]) are the graphs
induced by {i} x G x {\}, iel, Xe .

@ Let C be a connected component of G(My[G; I,A\; P]). Then

C~ K‘G| if G is abelian,
| Kiz(6)|VG(G) if G is non-abelian.
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[/| > 1 or |A] > 1, P has zeros: connectedness

o Z(Mo[G;1,A; P]) = {0}.

e My[G; 1, A; ] is non-commutative.

Theorem (P., 2024)

G(Mo[G; I, A; P]) is connected if and only if P cannot be decomposed in
one of the following ways
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|dentifying if G(Mo[G; I, \; P]) is connected

Example

1
X X o

o o X

o X O©
1




|dentifying if G(Mo[G; I, \; P]) is connected

Example

| o—
X X o
o X O©
1

o o X
o X O
—_ 1
| — |
X X ©
o O X




|dentifying if G(Mo[G; I, \; P]) is connected

Example

1
X X o
o X ©
I — |

o o X
o X O
—_ 1
| — |
X X ©
o O X
o X O
| IS
| — |
X X o
O O X




|dentifying if G(Mo[G; I, \; P]) is connected

Example
0 x O 0 x O
AN VA
x 0 X x 0 X
x 0 0 x 0 0

X X ©

o O X

o X o




|dentifying if G(Mo[G; I, \; P]) is connected

Example
0 x O 0 x O 0 x [0
< 0 x AL < 0 AN < 0 x
x 0 0 x 0 0 x 0 0




|dentifying if G(Mo[G; I, \; P]) is connected

Example

o

o

o

o

o

o




|dentifying if G(Mo[G; I, \; P]) is connected

Example

o

o

o

o
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|dentifying

Example

if G(My[G; I, N; P]) is connected

o

o
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|dentifying

Example

if G(My[G; I, N; P]) is connected

0 0 x 0 0
x 0 0 x 0
0 x AN < 0 x AN
0 O x 0 [0
X 0 0 x 0
0 x AN » 0 x AN
0 O X 0 O

| — |
X X o

X X o

o

o

o

o O X




|dentifying connected components of G(M,[G; I, A\; P))

Example

1 2 3 4 5
1[x x x 0 x]
2|10 X x X X
3|x 0 x x x
4|1x 0 x 0 x
5|x x 0 x 0
6| x x x x 0
7 [x X X X X]
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Example

0

0 X

< O

™M X

Ao X

= X

X X X

X

X

X

0

X X X

3|x O

5

6 [ x

7[X X X X X




|dentifying connected components of G(M,[G; I, A\; P))

Example (cont.)

2 4 1 3 5
1| x 0 [ x x X
30 X | X X X
s 4110 0 | x x x
2| X x |0 x X
5| x X |x 0 0
6| x X | x x 0
7| x X | X X X
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Example (cont.)

0 X

™M X

0 X

™M X

= X

0

X X

O M~
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|dentifying connected components of G(M,[G; I, A\; P))

Example (cont.)

N o OaN AW

2

XX X|X[© o X

XX X[X|[© X Ob

XX XX X X =

XX Ol X|[X X X W

X[ o X|X X X @&




|dentifying connected components of G(M,[G; I, A; P])

Example (cont.)

2 4 1 3 5
1i/'x 0 | x| x X
3]0 X | x| x X The subgraph induced by
4|0 0 | x| x x {2,4} x G x {1,3,4} isa
AN
2 x x |0] x x connected component of
5l x x| x| 0 0 G(Mo[G; 1, A; P]).
6] x x [ x| x 0
T X X | X | X X|
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|dentifying connected components of G(M,[G; I, A; P])

Example (cont.)

2

XX XX [ X o
XX XX X [X =

NOoO AN B W=
XX X[IX|[©O o X
XX Ol X |[X X X W
X[l olX|X X X @&
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|dentifying connected components of G(M,[G; I, A; P])

Example (cont.)

2

The subgraph induced by
({1} x G x {1,3,4})
U({2,4} x G x {2}) isa
connected component of
G(Mo[G; I, A; P)).

XX XX [ X o
XX XX X [X =

~No N B W=
XX X[IX|[©O o X
XX Ol X |[X X X W
X[l olX|X X X @&
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|dentifying connected components of G(M,[G; I, A; P])

Example (cont.)

2 4 1 3 5
1| X 0 X X X
31 0 X X X X
4]0 0 X X X
2| X X 0 X X
5(Ix| X X 0 0
6| X X X X 0
7_- X | X | X X |
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|dentifying connected components of G(M,[G; I, A; P])

Example (cont.)

2 4 1 3 5
1| X 0 X X X
3]0 X X X X )

The subgraph induced by

41 0 0 X X X .
N 0 W is a connected
s\s = 0 o component of G(Mo[G; I, A; P]).
6| X X X X 0
7 _- X | X | X X |
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[/| > 1 or |A] > 1, P has no zeros: clique number

Let H = (V, E) be a simple graph.

e A clique is a subset K C V such that {u, v} € E, for all distinct
u,v € K. The clique number of H, denoted w(H), is the largest
integer r such that H has a clique K such that |K| =r.

Theorem (P., 2024)

|G| if G is abelian,

w(G(Mo[G; 1, A; P])) = {w(g((;)) +1Z(G)| if G is non-abelian.
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[/| > 1 or |A| > 1, P has zeros: clique number

Theorem (P., 2024)
@ Suppose that G is abelian. If

is a submatrix of P and

0 0 0 E] [8 8]

are not submatrices of P, then

o o X
o X O

w(G(Mo[G; I, A; P])) = 3]G|.




[/| > 1 or |A| > 1, P has zeros: clique number

Theorem (cont.) (P., 2024)
@ Suppose that G is abelian. If

is a submatrix of P and

oo g

are not submatrices of P, then

w(G(Mo[G; I, A; P])) = 2|G].




[/| > 1 or |A| > 1, P has zeros: clique number

Theorem (cont.) (P., 2024)

@ For the remaining cases, we have

w(G(Mo[G; I,A; P])) = |G| - max{nm : Opxpm is a submatrix of P}.




[/| > 1 or |A] > 1, P has no zeros: girth

Let H = (V, E) be a simple graph.

@ The girth of H, denoted girth(H), is the length of a shortest cycle
contained in H.

Theorem (P., 2024)
e If|G| < 2, then G(My[G; I,N; P]) has no cycles.

e If|G| = 3, then girth(G(Mo[G; I, A; P])) =
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[/| > 1 or |A] > 1, P has zeros: girth

Theorem (P., 2024)
e Suppose that |G| > 3. Then

girth(G(Mo[G; I, A; P])) = 3.

@ Suppose that |G| = 2. If P contains only one zero entry, then
G(Mo[G; I, A; P]) has no cycles.

@ Suppose that |G| = 2. If P contains more than one zero entry, then

girth(G(Mo[G; I, \; P])) = 3.
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[/| > 1 or |A] > 1, P has zeros: girth

Theorem (cont.) (P., 2024)
e Suppose that |G| =1. If

[0 0 0] [

0 0 x x
x x 0 0

are not submatrices of P, then G(My[G; I, \; P]) has no cycles.

o O O
| ——

X X O o
o o X X
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[/| > 1 or |A] > 1, P has zeros: girth

Theorem (cont.) (P., 2024)

@ Suppose that |G| = 1. If at least one of the matrices

oty |

is a submatrix of P, then

X O o

0
X
0

o O X

girth(G(Mo[G; I, \; P])) = 3.

|




[/| > 1 or |A] > 1, P has zeros: girth

Theorem (cont.) (P., 2024)
@ Suppose that |G| = 1. If at least one of the matrices

0 0 x x
x x 0 0

is a submatrix of P and

oo [l s |

are not submatrices of P, then

X X O o

—
X o
o O
o X
[
1
X O O
O O X
| I |

o O X X

o O X
o X O©

X © o
| I

girth(G(Mo[G; I, A; P])) = 4.
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[/| > 1 or [A] > 1, P has no zeros: chromatic number

Let H = (V, E) be a simple graph.

@ The chromatic number of H, denoted x(H), is the minimum
number of colours necessary to colour the vertices of H in such a way
that no adjacent vertices have the same colour.

Theorem (P., 2024)

|G| if G is abelian,

X(G(Mo[G: 1, A\; P])) = {X(g(g)) +1|Z(G)| if G is non-abelian.
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[/| > 1 or |A] > 1, P has no zeros: knit degree

Let S be a finite non-commutative semigroup.

@ A path a; —ap — -+ — ax in G(S) is called a left path if a; # ax and
aira; = aga;, forall i € {1,... k}.

@ Suppose G(S) has a left path. The knit degree of S, denoted kd(S),
is the length of a shortest left path in G(S).

Theorem (P., 2024)
G(Mop[G; I, A; P]) contains no left paths. J
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[/| > 1 or |A] > 1, P has zeros: knit degree

Theorem (P., 2024)
e Suppose that |G| =1. If

oo [

are not submatrices of P, then G(My[G; I, N\; P]) has no left paths.

@ For the remaining cases, we have

kd(G(Mo[G; I, A; P])) = 1.




Completely 0-simple semigroups

Theorem (Rees—Suschkewitsch Theorem)

A semigroup S is completely 0-simple if and only if there exist a group G,

index sets | and N\, and a regular \ x | matrix P with entries from G° such
that S ~ My|[G; I, A; P].
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Commuting graph of completely 0-simple semigroups

Theorem (P., 2024)
@ For each n € N, there is a completely 0-simple semigroup whose

commuting graph has clique number equal to n.

@ For each n € N, there is a completely 0-simple semigroup whose
commuting graph has chromatic number equal to n.

@ For each n € N, there is a completely 0-simple semigroup whose
commuting graph has diameter greater than n.

o Let S be a finite non-commutative completely 0-simple semigroup.
Then G(S) has no cycles or the girth of G(S) is either 3 or 4.

@ Let S be a finite non-commutative completely 0-simple semigroup.
Then G(S) has no left paths or the knit degree of G(S) is 1.
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Thank youl!



