Commuting graph of a 0-Rees matrix semigroup over a group

Tânia Paulista

NOVA FCT

The 14th Combinatorics Days

NOVAMATH

CENTER FOR MATHEMATICS + APPLICATIONS

This work is funded by National Funds through the FCT - Fundação para a Ciência e a Tecnologia, I.P., under the scope of the projects UIDB/00297/2020 and UIDP/00297/2020 and the studentship 2021.07002.BD.

Let S be a finite non-commutative semigroup.

The **commuting graph** of S, denoted $\mathcal{G}(S)$, is the simple graph such that:

 \bullet $S \setminus Z(S)$ is the set of vertices, where

$$
Z(S) = \{x \in S : xy = yx \text{ for all } y \in S\}.
$$

• $\{x, y\}$ is an edge if $x \neq y$ and $xy = yx$.

Theorem (Rees–Suschkewitsch Theorem)

A semigroup S is completely 0-simple if and only if there exist a group G, index sets I and N, and a regular N \times I matrix P with entries from ${\sf G}^0$ such that $S \simeq \mathcal{M}_0[G; I, \Lambda; P]$.

Let G be a group, I and Λ be index sets, and P be a regular $\Lambda \times I$ matrix with entries from G^0 .

Let $p_{\lambda i}$ be the (λ, i) -th entry of P.

A 0-Rees matrix semigroup over a group, denoted $\mathcal{M}_0[G; I, \Lambda; P]$, is the set $(I \times G \times \Lambda) \cup \{0\}$ with the multiplication

$$
(i, x, \lambda)(j, y, \mu) = \begin{cases} (i, x p_{\lambda j} y, \mu) & \text{if } p_{\lambda j} \neq 0, \\ 0 & \text{if } p_{\lambda j} = 0, \end{cases}
$$

 $0(i, x, \lambda) = (i, x, \lambda)0 = 00 = 0.$

Lemma

Let P and Q be regular $\Lambda \times I$ matrices with entries from G^0 . If for all $i \in I$ and $\lambda \in \Lambda$ $p_{\lambda i} = 0$ if and only if $q_{\lambda i} = 0$, then the graphs $\mathcal{G}(\mathcal{M}_0 | G;$ I, Λ, P]) and $\mathcal{G}(\mathcal{M}_0[G; I, \Lambda, Q])$ are isomorphic.

Example

Let $e, g, h \in G$.

Reordering columns and rows implies isomorphism

Lemma

Let Q be the matrix obtained from P by reordering the columns and rows of P. Then the graphs $G(M_0[G; I, \Lambda; P])$ and $G(M_0[G; I, \Lambda; Q])$ are isomorphic.

$|I| = |\Lambda| = 1$: characterization of $\mathcal{G}(\mathcal{M}_0[G; I, \Lambda; P])$

Theorem (P., 2024)

- $\mathcal{M}_0[G; I, \Lambda; P] \simeq \mathit{G}^{0}.$
- \bullet Suppose that G is non-abelian. Then the graphs $\mathcal{G}(\mathcal{M}_0[G; I, \Lambda; P])$ and $G(G)$ are isomorphic.

$|I| > 1$ or $|\Lambda| > 1$, P has no zeros: connectedness

- \bullet Z($\mathcal{M}_0[G; I, \Lambda; P]$) = {0}.
- \bullet $\mathcal{M}_0[G; I, \Lambda; I]$ is non-commutative.

Theorem (P., 2024)

- $G(\mathcal{M}_0[G; I, \Lambda; P])$ is not connected.
- The connected components of $\mathcal{G}(\mathcal{M}_0[G; I, \Lambda; P])$ are the graphs induced by $\{i\} \times G \times \{\lambda\}, i \in I, \lambda \in \Lambda$.
- Let C be a connected component of $\mathcal{G}(\mathcal{M}_0[G; I, \Lambda; P])$. Then

$$
C \simeq \begin{cases} K_{|G|} & \text{if } G \text{ is abelian,} \\ K_{|Z(G)|} \nabla G(G) & \text{if } G \text{ is non-abelian.} \end{cases}
$$

$|I| > 1$ or $|\Lambda| > 1$, P has zeros: connectedness

- \bullet Z($\mathcal{M}_0[G; I, \Lambda; P]$) = {0}.
- \bullet $\mathcal{M}_0[G; I, \Lambda; I]$ is non-commutative.

Theorem (P., 2024)

 $\mathcal{G}(\mathcal{M}_0[G; I, \Lambda; P])$ is connected if and only if P cannot be decomposed in one of the following ways

Identifying connected components of $\mathcal{G}(\mathcal{M}_0[G; I, \Lambda; P])$

The subgraph induced by ${2, 4} \times G \times {1, 3, 4}$ is a connected component of $\mathcal{G}(\mathcal{M}_0[G; I, \Lambda; P]).$

The subgraph induced by ${2, 4} \times G \times {1, 3, 4}$ is a connected component of $\mathcal{G}(\mathcal{M}_0[G; I, \Lambda; P]).$

The subgraph induced by $∪({2, 4} × G × {2})$ is a connected component of $G(M_0[G; I, \Lambda; P]).$

The subgraph induced by $({1} \times G \times {1, 3, 4})$ \bigcup {{2,4} × $G \times$ {2}} is a connected component of $G(M_0[G; I, \Lambda; P]).$

Identifying connected components of $\mathcal{G}(M_0[G; I, \Lambda; P])$

Example (cont.)

The subgraph induced by ${2} \times G \times {7}$ is a connected component of $G(M_0[G; I, \Lambda; P])$.

Identifying connected components of $\mathcal{G}(M_0[G; I, \Lambda; P])$

Example (cont.)

The subgraph induced by ${2} \times G \times {7}$ is a connected component of $\mathcal{G}(\mathcal{M}_0[G; I, \Lambda; P])$.

$|I| > 1$ or $|\Lambda| > 1$, P has no zeros: clique number

Let $H = (V, E)$ be a simple graph.

• A clique is a subset $K \subseteq V$ such that $\{u, v\} \in E$, for all distinct $u, v \in K$. The clique number of H, denoted $\omega(H)$, is the largest integer r such that H has a clique K such that $|K| = r$.

Theorem (P., 2024)

$$
\omega(\mathcal{G}(\mathcal{M}_0[G; I, \Lambda; P])) = \begin{cases} |G| & \text{if } G \text{ is abelian,} \\ \omega(\mathcal{G}(G)) + |Z(G)| & \text{if } G \text{ is non-abelian.} \end{cases}
$$

$|I| > 1$ or $|\Lambda| > 1$, P has zeros: clique number

Theorem (P., 2024)

• Suppose that G is abelian. If

$$
\begin{bmatrix} \times & 0 & 0 \\ 0 & \times & 0 \\ 0 & 0 & \times \end{bmatrix}
$$

is a submatrix of P and

$$
\begin{bmatrix} 0 & 0 & 0 \end{bmatrix} \qquad \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \qquad \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}
$$

are not submatrices of P, then

 $\omega(\mathcal{G}(\mathcal{M}_0[G; I, \Lambda; P])) = 3|G|.$

$|I| > 1$ or $|\Lambda| > 1$, P has zeros: clique number

Theorem (cont.) (P., 2024)

• Suppose that G is abelian. If

$$
\begin{bmatrix} \times & 0 \\ 0 & \times \end{bmatrix}
$$

is a submatrix of P and

$$
\begin{bmatrix} 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}
$$

are not submatrices of P, then

$$
\omega(\mathcal{G}(\mathcal{M}_0[G; I, \Lambda; P])) = 2|G|.
$$

$|I| > 1$ or $|\Lambda| > 1$, P has zeros: clique number

Theorem (cont.) (P., 2024)

• For the remaining cases, we have

 $\omega(\mathcal{G}(\mathcal{M}_0[G; I, \Lambda; P])) = |G| \cdot \max\{nm : 0_{n \times m} \text{ is a submatrix of } P\}.$

Let $H = (V, E)$ be a simple graph.

• The girth of H, denoted girth (H) , is the length of a shortest cycle contained in H.

Theorem (P., 2024)

• If $|G| \leq 2$, then $\mathcal{G}(\mathcal{M}_0[G; I, \Lambda; P])$ has no cycles.

• If $|G| \geq 3$, then girth $(\mathcal{G}(\mathcal{M}_0[G; I, \Lambda; P])) = 3$.

Theorem (P., 2024)

• Suppose that $|G| \geq 3$. Then

girth $(\mathcal{G}(\mathcal{M}_0[G; I, \Lambda; P])) = 3.$

• Suppose that $|G| = 2$. If P contains only one zero entry, then $\mathcal{G}(\mathcal{M}_0[G; I, \Lambda; P])$ has no cycles.

• Suppose that $|G| = 2$. If P contains more than one zero entry, then

girth $(\mathcal{G}(\mathcal{M}_0[G; I, \Lambda; P])) = 3.$

Theorem (cont.) (P., 2024)

• Suppose that $|G| = 1$. If

are not submatrices of P, then $G(M_0[G; I, \Lambda; P])$ has no cycles.

Theorem (cont.) (P., 2024)

• Suppose that $|G| = 1$. If at least one of the matrices

$$
\begin{bmatrix} 0 & 0 & 0 \end{bmatrix} \qquad \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \qquad \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \qquad \begin{bmatrix} \times & 0 & 0 \\ 0 & \times & 0 \\ 0 & 0 & \times \end{bmatrix}
$$

is a submatrix of P, then

girth $(\mathcal{G}(\mathcal{M}_0[G; I, \Lambda; P])) = 3.$

Theorem (cont.) (P., 2024)

• Suppose that $|G| = 1$. If at least one of the matrices

$$
\begin{bmatrix} 0 & 0 & \times & \times \\ \times & \times & 0 & 0 \end{bmatrix} \qquad \begin{bmatrix} 0 & \times \\ 0 & \times \\ \times & 0 \\ \times & 0 \end{bmatrix} \qquad \begin{bmatrix} 0 & 0 & \times \\ \times & 0 & 0 \end{bmatrix} \qquad \begin{bmatrix} 0 & \times \\ 0 & 0 \\ \times & 0 \end{bmatrix}
$$

is a submatrix of P and

$$
\begin{bmatrix} 0 & 0 & 0 \end{bmatrix} \qquad \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \qquad \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \qquad \begin{bmatrix} \times & 0 & 0 \\ 0 & \times & 0 \\ 0 & 0 & \times \end{bmatrix}
$$

are not submatrices of P, then

girth $(\mathcal{G}(\mathcal{M}_0[G; I, \Lambda; P])) = 4.$

Let $H = (V, E)$ be a simple graph.

• The chromatic number of H, denoted $\chi(H)$, is the minimum number of colours necessary to colour the vertices of H in such a way that no adjacent vertices have the same colour.

Theorem (P., 2024)

$$
\chi(\mathcal{G}(\mathcal{M}_0[G; I, \Lambda; P])) = \begin{cases} |G| & \text{if } G \text{ is abelian,} \\ \chi(\mathcal{G}(G)) + |Z(G)| & \text{if } G \text{ is non-abelian.} \end{cases}
$$

$|I| > 1$ or $|\Lambda| > 1$, P has no zeros: knit degree

Let S be a finite non-commutative semigroup.

- A path $a_1 a_2 \cdots a_k$ in $\mathcal{G}(S)$ is called a **left path** if $a_1 \neq a_k$ and $a_1a_i=a_ka_i$, for all $i\in\{1,\ldots,k\}$.
- Suppose $G(S)$ has a left path. The **knit degree** of S, denoted kd(S), is the length of a shortest left path in $G(S)$.

Theorem (P., 2024) $\mathcal{G}(\mathcal{M}_0[G; I, \Lambda; P])$ contains no left paths.

$|I| > 1$ or $|\Lambda| > 1$, P has zeros: knit degree

Theorem (P., 2024)

• Suppose that $|G| = 1$. If

$$
\begin{bmatrix} 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}
$$

are not submatrices of P, then $G(M_0[G; I, \Lambda; P])$ has no left paths.

• For the remaining cases, we have

 $kd(\mathcal{G}(\mathcal{M}_0[G; I, \Lambda; P])) = 1.$

Theorem (Rees–Suschkewitsch Theorem)

A semigroup S is completely 0-simple if and only if there exist a group G, index sets I and N, and a regular N \times I matrix P with entries from ${\sf G}^0$ such that $S \simeq \mathcal{M}_0[G; I, \Lambda; P]$.

Commuting graph of completely 0-simple semigroups

Theorem (P., 2024)

- For each $n \in \mathbb{N}$, there is a completely 0-simple semigroup whose commuting graph has clique number equal to n.
- For each $n \in \mathbb{N}$, there is a completely 0-simple semigroup whose commuting graph has chromatic number equal to n.
- For each $n \in \mathbb{N}$, there is a completely 0-simple semigroup whose commuting graph has diameter greater than n.
- Let S be a finite non-commutative completely 0-simple semigroup. Then $G(S)$ has no cycles or the girth of $G(S)$ is either 3 or 4.
- Let S be a finite non-commutative completely 0-simple semigroup. Then $G(S)$ has no left paths or the knit degree of $G(S)$ is 1.

Thank you!