

# A Schur ring approach to supercharacters of adjoint groups and related subgroups

Tânia Z. Silva

NOVA SBE

The 14th Combinatorics Days - Almada 27th June 2024

Joint work with Carlos A. M. André and Pedro J. Freitas

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Let G be a finite group.

• The complex group algebra of G,

 $\mathbb{C}[G] := \{ \alpha : \alpha \text{ is a map from } G \text{ to } \mathbb{C} \}$ 

• The convolution product,

$$(lphaeta)(g):=\sum_{h\in G}lpha(h)eta(h^{-1}g)$$

• The Hadamard product,

$$(\alpha \cdot \beta)(g) := \alpha(g)\beta(g)$$

• The anti-involution +,

$$\alpha^{\star}(g) = \alpha(g^{-1})$$

for all  $\alpha, \beta \in \mathbb{C}[G]$  and all  $g \in G$ .

• The characteristic map:

$$\delta_{K}(g) := egin{cases} 1, & ext{if } g \in K \ 0, & ext{otherwise} \end{cases}$$

for every  $K \subseteq G$  and all  $g \in G$ .

- δ<sub>1</sub> is the identity of C[G] with respect to the convolution product.
- δ<sub>G</sub> is the identity of C[G] with respect to the Hadamard product.

 $\mathbb{C}[G]$  and the center of  $\mathbb{C}[G]$  are unital  $\star$ -algebras over  $\mathbb{C}$  with respect to the convolution product and the Hadamard product.

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - のへで

# Schur rings

## Definition [Wielandt, 1964]

A partition  $\mathcal{K}$  of *G* is called a Schur partition of *G* if the following conditions hold:

- {1} ∈ 𝔅
- $K^{-1} := \{g^{-1} : g \in K\} \in \mathcal{K}$ , for all  $K \in \mathcal{K}$
- The convolution product of characteristic maps of  $\mathcal{K}$  is a linear combination of characteristic maps of  $\mathcal{K}$ .

If  $\mathcal{K}$  is a Schur partition of G, then

$$\mathcal{S}_{\mathcal{K}} := \operatorname{span}_{\mathbb{C}} \{ \delta_{K} : K \in \mathcal{K} \}$$

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - のへで

is the Schur ring over G afforded by  $\mathcal{K}$ .

What about characters of G?

# Schur rings

## Definition [Wielandt, 1964]

A partition  $\mathcal{K}$  of *G* is called a Schur partition of *G* if the following conditions hold:

- {1} ∈ 𝔅
- $K^{-1} := \{g^{-1} : g \in K\} \in \mathcal{K}$ , for all  $K \in \mathcal{K}$
- The convolution product of characteristic maps of  $\mathcal{K}$  is a linear combination of characteristic maps of  $\mathcal{K}$ .

If  $\mathcal{K}$  is a Schur partition of G, then

$$\mathcal{S}_{\mathcal{K}} := \operatorname{span}_{\mathbb{C}} \{ \delta_{K} : K \in \mathcal{K} \}$$

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - のへで

is the Schur ring over G afforded by  $\mathcal{K}$ .

What about characters of G?

- Semisimplicity of unital ★-subalgebras of C[G].
- Uniqueness of a central partition of unity in this cases.

#### Theorem [Muzychuk, 1994]

A vector subspace of  $\mathbb{C}[G]$  is a Schur ring over *G* if and only if it is a unital  $\star$ -subalgebra of  $\mathbb{C}[G]$  with respect to the convolution product and the Hadamard product.

Unique central partition of unity with respect to the convolution product  $\longrightarrow$  supercharacters Unique central partition of unity with respect to the Hadamard product  $\longrightarrow$  superclasses

- Semisimplicity of unital ★-subalgebras of C[G].
- Uniqueness of a central partition of unity in this cases.

#### Theorem [Muzychuk, 1994]

A vector subspace of  $\mathbb{C}[G]$  is a Schur ring over *G* if and only if it is a unital  $\star$ -subalgebra of  $\mathbb{C}[G]$  with respect to the convolution product and the Hadamard product.

Unique central partition of unity with respect to the convolution product  $\longrightarrow$  supercharacters Unique central partition of unity with respect to the Hadamard product  $\longrightarrow$  superclasses

## Supercharacter theory

- The set of irreducible characters of G,  $Irr(G) \subseteq \mathbb{C}[G]$ .
- If  $X \subseteq Irr(G)$ , then we consider the character of G

$$\xi_X := \sum_{\chi \in X} \chi(1) \chi \in \mathbb{C}[G]$$

#### Definition [Diaconis & Isaacs, 2008]

A pair  $(\mathcal{K}, \mathcal{X})$ , where  $\mathcal{K}$  is a partition of G and  $\mathcal{X}$  is a partition of Irr(G), is called a (canonical) supercharacter theory of G if the following two conditions hold:

1.  $|\mathcal{K}| = |\mathcal{X}|$ 

2.  $X \in \mathcal{X} \Rightarrow \xi_X$  is constant on each  $K \in \mathcal{K}$ 

If  $(\mathcal{K}, \mathcal{X})$  is a supercharacter theory of *G*, then each  $K \in \mathcal{K}$  is called a superclass of *G* and each  $\xi_X$ , with  $X \in \mathcal{X}$ , is called a supercharacter of *G*.



▲□▶▲□▶▲□▶▲□▶ ■ のへで

Let  $\mathcal{K}$  be a partition of G,  $\mathcal{X}$  be a partition of Irr(G) and denote by cf(G) the center of  $\mathbb{C}[G]$  (class functions of G).

### Theorem]

The following are equivalent:

- 1.  $(\mathcal{K}, \mathcal{X})$  is a supercharacter theory for *G*;
- 2.  $S_{\mathcal{K}}$  is a central Schur ring;
- 3. span<sub> $\mathbb{C}$ </sub>{ $\xi_X : X \in \mathcal{X}$ } is a subalgebra of cf(*G*) (with identity) with respect to the Hadamard product;
- 4. span<sub> $\mathbb{C}$ </sub>{ $\delta_{K} : K \in \mathcal{K}$ } is a subalgebra of cf(*G*) (with identity) with respect to the convolution product;
- 5.  $|\mathcal{K}| = |\mathcal{X}|$  and span<sub>C</sub>{ $\xi_X : X \in \mathcal{X}$ } is the set of all  $\mathcal{K}$ -superclass functions of *G*.

## Adjoint Group

Let *R* be a finite radical ring and let  $R^{\circ} = 1 + R$  be the adjoint group of *R*.

• The map

$$\begin{array}{rcccc} \nu : & R^{\circ} & \longrightarrow & R^{+} \\ & g & \mapsto & g-1 \end{array}$$

for all  $g \in R^{\circ}$ , is a bijection.

•  $S_{\mathcal{K}^+} := \operatorname{span}_{\mathbb{C}} \{ \delta_{R^\circ x R^\circ} : x \in R \}$  is an orbit Schur ring over  $R^+$ .

•  $\nu$  : span<sub>C</sub>{ $\delta_{1+R^{\circ}xR^{\circ}}$  :  $x \in R$ }  $\rightarrow S_{\mathcal{K}^{+}}$ , linear extension of  $\nu$ .

Theorem

The set

$$\mathcal{K}^{\circ} := \{1 + R^{\circ} x R^{\circ} : x \in R\}$$

is a central Schur partition of  $R^{\circ}$  (affording the standard Schur ring over  $R^{\circ}$ , denoted by  $S_{\mathcal{K}^{\circ}}$ ).

Let  $S_{\mathcal{K}}$  be the standard Schur ring over  $R^{\circ}$ .

•  $\nu : S_{\mathcal{K}^{\circ}} \longrightarrow S_{\mathcal{K}^{+}}$  is an isomorphism of central Schur rings.

Theorem [André & Nicolás, 2008] (with a new proof) If  $\xi$  is a standard supercharacter of  $R^{\circ}$ , then there exists  $\vartheta \in Irr(R^+)$  such that

$$artheta(g) = \sum_{artheta'\in R^\circartheta R^\circ} artheta'(artheta(g))$$

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - のへで

for all  $g \in R^{\circ}$ .

Let *R* be a finite radical ring of odd characteristic endowed with an anti-involution  $\sigma$ .

• The map

$$\begin{array}{rccc} \sigma^{\circ}: & R^{\circ} & \longrightarrow & R^{\circ} \\ & g & \mapsto & 1 + \sigma(\nu(g^{-1})) \\ \end{array}$$
 defines an involution on the adjoint group  $R^{\circ}$ .

## Definition [S., 2023]

The subgroup of the adjoint group  $R^{\circ}$ , defined by

$$R^{\circ}_{\sigma} := \{g \in R^{\circ} : \sigma^{\circ}(g) = g\},\$$

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - のへで

is called the involutive adjoint group of R with respect to  $\sigma$ .

Let *K* be an element of the standard Schur partition of  $R^{\circ}$ .

- $\sigma^{\circ}(K) = K$  if and only if K has a fixed element by  $\sigma^{\circ}$ .
- We consider the subalgebra of C[R°]

$$\mathbb{C}[R^{\circ}]_{\sigma} = \{ \alpha \in \mathbb{C}[R^{\circ}] : \sigma^{\circ}(\alpha) = \alpha \} \\ = \mathbb{C}[R^{\circ}_{\sigma}] \oplus \operatorname{span}_{\mathbb{C}}\{\delta_{g,\sigma^{\circ}(g)} : g \neq R^{\circ}_{\sigma} \}.$$

•  $\pi : \mathbb{C}[R^{\circ}]_{\sigma} \to \mathbb{C}[R^{\circ}_{\sigma}]$  is an algebra homomorphism and  $\pi(\delta_{\mathcal{K}}) = \delta_{\mathcal{K} \cap R^{\circ}_{\sigma}}$ .

Theorem [S., 2023]

The set

$$\mathfrak{K}_{\sigma}^{\circ} := \{ K \cap R_{\sigma}^{\circ} : K \in \mathfrak{K}^{\circ} \text{ and } \sigma^{\circ}(K) = K \}$$

is a central Schur partition of  $R^{\circ}_{\sigma}$  (affording the standard Schur ring over  $R^{\circ}_{\sigma}$ , denoted by  $S_{\mathcal{K}^{\circ}_{\sigma}}$ ).

Let  $S_{\mathcal{K}_{\sigma}^{\circ}}$  be the standard Schur ring over  $R_{\sigma}^{\circ}$  and consider the subgroup of  $R^+$ ,  $R_{\sigma}^+ := \{x \in R^+ : \sigma(x) = -x\}.$ 

• The action of  $R^{\circ}$  on  $R_{\sigma}^{+}$  defined by

$$g \odot x := g x \sigma^{\circ}(g^{-1})$$

for all  $g \in R^{\circ}$  and all  $x \in R_{\sigma}^{+}$ , affords an orbit Schur ring over  $R_{\sigma}^{+}$ , denoted by  $S_{\mathcal{K}_{\sigma}^{+}}$ .

• The map (Cayley transform)  $\begin{array}{cccc}
\Phi : & R^+ & \longrightarrow & R^\circ \\
& x & \mapsto & (1+x)(1-x)^{-1}
\end{array}$ for all  $x \in R^+_{\sigma}$ , is a bijection. Let  $S_{\mathcal{K}^{\circ}_{\sigma}}$  be the standard Schur ring over  $R^{\circ}_{\sigma}$ .

 Ψ : S<sub>K<sup>o</sup><sub>σ</sub></sub> → S<sub>K<sup>+</sup><sub>σ</sub></sub> is an isomorphism of Schur rings, where Ψ is the linear extension of the inverse of the Cayley transform.

#### Theorem [S. et al., 2024]

If  $\xi$  is a standard supercharacter of  $R_{\sigma}^{\circ}$ , then there exists  $\vartheta \in \operatorname{Irr}(R_{\sigma}^{+})$  such that

$$artheta(g) = \sum_{artheta' \in R^\circ \odot artheta} artheta'(\Psi(g))$$

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - のへで

for all  $g \in R^{\circ}$ .

## Main references

- P. Diaconis, I. M. Isaacs. Supercharacters and superclasses for algebra groups. *Trans. Amer. Math. Soc.*, 360(5):2359-2392, 2008.
- C. A. M. André, A. P. Nicolás. Supercharacters of the adjoint group of a finite radical ring. *Journal of Group Theory*, 11(5):709-746, 2008.
- A. O. F. Hendrickson. Supercharacter theory constructions corresponding to Schur ring products. *Communications in Algebra*, 40:12, 4420-4438, 2012.
- C. A. M. André, P. J. Freitas, A. M. Neto. A supercharacter theory for involutive algebra groups. *Journal of Algebra*, 430:159-190, 2015.
- C. A. M. André, P. J. Freitas, T. Z. Silva. A supercharacter theory for involutive algebra groups. *Communication in Algebra*, 52:7, 2693-2705, 2024.

# Thank you!

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@