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Weight modules

Simple Lie algebra

Let g be a simple complex finite dimensional Lie algebra, h a fixed Cartan
subalgebra, U(g) the universal enveloping algebra of g, and W the Weyl
group of g. By ∆ we denote the root system of g and π a fixed basis of ∆.
For a subset Σ of π denote by ∆Σ the root subsystem in h∗ generated by
Σ. Then the standard parabolic subalgebra pΣ of g associated to Σ is
defined as pΣ = lΣ ⊕ u+Σ with nilradical u+Σ :=

⊕
α∈∆+\∆Σ

gα and Levi
subalgebra lΣ defined by lΣ := h⊕

⊕
α∈∆Σ

gα.
Let V be a simple weight lΣ-module. Set p := pΣ and consider V as a
p-module with trivial action of the nilradical u+Σ . The generalized Verma
g-module Mg

p (Σ,V ) is the induced module

Mg
p (Σ,V ) = IndgpV = U(g)⊗U(p) V .
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Weight modules

Weight modules of infinite dimension

Recall that a g-module M is called weight if h is diagonalizable on M. For
λ ∈ h∗ the subspace Mλ of those v ∈ V such that hv = λ(h)v is the
weight subspace of weight λ. The dimension of Mλ is the multiplicity of
weight λ. We say that a weight module is

Bounded if all weight multiplicities are uniformly bounded;

Unbounded is not bounded and all weight multiplicities are finite;

Dense if one weight multiplicity is infinite. In this case, all weight
multiplicities are infinity.
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Admissible modules

Admissible weight

Let κ be a g-invariant symmetric bilinear form on g and ĝκ the affine
Kac–Moody algebra of level κ associated to g.
For λ ∈ ĥ∗, we define its integral root system ∆̂(λ) by

∆̂(λ) = {α ∈ ∆̂re;
〈
λ+ ρ̂, α∨〉 ∈ Z},

where ρ̂ = ρ+ h∨Λ0.

Definition (Kac-Wakimoto, 1989)

A weight λ ∈ ĥ∗ is admissible provided

i) λ is regular dominant, that is ⟨λ+ ρ̂, α∨⟩ /∈ −N0 for all α ∈ ∆̂re
+ ;

ii) the Q-span of ∆̂(λ) contains ∆̂re.
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Admissible modules

Admissible module

Let k ∈ Q be an admissible number for g and let κ = kκ0.

Definition (Universal affine vertex algebra)

For a g-module E , let us consider the induced ĝκ-module

Mκ,g(E ) = U(ĝκ)U(g[[t]]⊕Cc)E ,

where E is considered as the g[[t]]⊕Cc-module on which g⊗C tC[[t]] acts
trivially and c acts as the identity. We denote by Lκ,g(E ) the corresponding
quotient.

If E = L(0) then Mκ,g(E ) = Vκ(g) is the universal affine vertex algebra
associated to the affine Kac–Moody algebra ĝκ and Lκ,g(E ) = Lκ(g).

Definition (Admissible module)

We say that a g-module E is admissible of level k if Lκ,g(E ) is an Lκ(g)-
module.
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Admissible modules

Open question and principal results

Open problem

Let p a subalgebra of g. Classify all g-modules induced from simple p-
modules admissible in the Universal Affine Vertex Algebra.

Let Zk := Zhu(Lκ(g)) denoted the Zhu’s algebra of Lκ(g).

Theorem (Kawasetsu and Ridout, 2021)

A simple weight g-module M, with finite-dimensional weight spaces, is a
Zk -module if and only if either of the following statements hold:

M is a highest-weight Zk -module, with respect to some Borel
subalgebra of g.

There is a parabolic subalgebra p ⊆ g, with non-abelian Levi factor l
of AC-type, and a corresponding irreducible semisimple parabolic
family P of g-modules such that M is isomorphic to a submodule of
P and some submodule of P is an l-bounded highest-weight
Zk -module.
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Gelfand–Tsetlin modules

Γ-Gelfand–Tsetlin module

Let us consider the simple Lie algebra g = sln+1(C) with the set of simple
roots Π = {α1, α2, . . . , αn}. Further, let us denote by gk for k = 1, 2, . . . , n
the Lie subalgebra of g generated by the root subspaces gα1 , . . . , gαk

and
g−α1 , . . . , g−αk

.
Let us denote by zgk the center of U(gk) for k = 1, 2, . . . , n. Then the
Gelfand–Tsetlin subalgebra Γ of U(g) to respect F is generated by zgk for
k = 1, 2, . . . , n and by the Cartan subalgebra h.

Definition (Gelfand-Tsetlin module)

A Gelfand-Tsetlin module (with respect to Γ) M can be decomposed as
M =

⊕
χ∈Γ∗ M(χ), where

M(χ) = {v ∈ M | for each γ ∈ Γ , ∃k ∈ Z≥0 such that (γ−χ(γ))kv = 0}.
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Gelfand–Tsetlin modules

Tame Γ-Gelfand–Tsetlin module

Definition

We say that a Γ-Gelfand–Tsetlin g-module M is tame if Γ has a simple
spectrum on M, i.e. all Γ-multiplicities are equal to 1.

Remark

If M is tame Γ-Gelfand–Tsetlin g-module then Γ-weights of M parameterize
a basis of M.

Finite-dimensional g-modules are examples of tame Γ-Gelfand–Tsetlin
g-modules. For infinite-dimensional g-modules the situation is very more
complicated, for example the Verma Γ-Gelfand–Tsetlin g-module M(−ρ) is
not strongly tame (Futorny-Grantcharov-Ramirez-Zadunaisky, 2020). On
the other hand, generic modules, or more generally, relation modules are
tame Γ-Gelfand–Tsetlin g-modules (Futorny-Ramirez-Zhang, 2019).

Oscar A. H. Morales (CMUP) The 14th Combinatorics Days June 27, 2024 12 / 29



Gelfand–Tsetlin modules

Twisted Gelfand-Tsetlin module

Definition

Given m ∈ N, and σ ∈ Sm, a weight glm-module M will be called σ-
admissible if M is isomorphic to Nσ for some Γ-relation module N. A
weight λ will be σ-admissible if the simple highest weight glm-module Lh(λ)
is σ-admissible.

Remark

If M is σ-admissible, all Γσ-multiplicities are equal to one (Futorny-Ramirez-
Zhang, 2019). The next example shows that the converse is not necessarily
true.
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Gelfand–Tsetlin modules

Example (Arias, H. M. and Ramirez, 2024)

Let λ be the gl(3)-weight
(
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2
3 ,

5
6

)
. The tableaux Tid(λ + ρ̄) and,

Ts2(s2(λ+ ρ̄)) are, respectively
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−

5

3

−
1

6

−
1

6
−
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1
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1
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As Tid(λ + ρ̄) is generic, the module L(λ) is admissible. Moreover, all its
weight multiplicities are 1, and consequently Γσ is diagonalizable for any
σ ∈ S3. However, L(λ) is not s2-admissible since the associated tableau
Ts2(s2(λ+ ρ̄)) is critical.
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Gelfand–Tsetlin modules

Gelfand-Tsetlin admissible modules

Fixed g = sl3. Let k be an admissible number, so that k + 3 = p/q,
p ≥ 3, q ≥ 1, p and q are coprime integers. All simple Gelfand-Tsetlin
admissible sl3-module of an admissible level k (Arakawa, Futorny and
Ramirez, 2017). These modules have the same annihilator as L(λ), where
the sl3-weight λ corresponds to an admissible number with denominator q.
Moreover, explicit basis and the action of the generators of sl3 are given.
In this case, exist bounded, unbounded and dense sl3-modules.

Open problem

Classify all simple Gelfand-Tsetlin admissible sln-module of an admissible
level k for any n > 3.
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Gelfand–Tsetlin modules

Realization of admissible highest weight modules

Lemma (Futorny, H. M. and Křižka, 2023)

If λ ∈ h∗ dominant integral or dominant regular, then Lgb(λ) is a strongly
tame Γ-Gelfand–Tsetlin g-module.

Let k be admissible, i.e., k + n + 1 = p
q with p, q ∈ Z>0, (p, q) = 1,

p > n and Prk the set of admissible weight of g (Arakawa, 2015). Given
that λ ∈ Prk implies that λ is dominant regular, we have that

Theorem (Futorny, H. M. and Křižka, 2023)

For λ ∈ Prk , the simple g-module Lgb(λ) is a strongly tame Γ-Gelfand–
Tsetlin g-module.
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Admissible Gelfand-Tsetlin modules Minimal nilpotent orbit

Minimal Orbit

The orbit Omin is the unique minimal non-trivial nilpotent orbit of g with

dimOmin = 2n. We have the following description of [Pr
Omin

k ]:

λ̄− ap

q
ϖ1 =

(
λ1 −

ap

q
, λ2, λ3, . . . , λn−1, λn

)
,

where λi ∈ Z≥0, for all i = 1, . . . , n are such that λ1 + . . .+ λn < p − n
and a ∈ {1, 2, . . . , q − 1}.

Theorem (Futorny, H. M. and Ramirez, 2021)

Any simple admissible highest weight module in the minimal nilpotent orbit
is a bounded stronly tame Γ-Gelfand–Tsetlin module.
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Admissible Gelfand-Tsetlin modules Minimal nilpotent orbit

Example for sl4

For λ ∈ Λk(p
max
α1

) ⊂ Pr
Omin

k , we have

λ =
(
λ1 − p

qa, λ2, λ3

)
with a ∈ N, a ≤ q − 1.

We set v1 − v3 = ⟨λ+ ρ, α∨
1 ⟩ /∈ Z, v3 − v2 = ⟨λ+ ρ, α∨

2 ⟩ ∈ N,
v2 − v4 = ⟨λ+ ρ, α∨

3 ⟩ ∈ N such that v1 + v2 + v3 + v4 = −6.

T (v) =

v1 v3 v2 v4

v1 v3 v2

v1 v2 + 1

v1
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Admissible Gelfand-Tsetlin modules Minimal nilpotent orbit

VC(T (w)) T (w) C BC(T (w))

Mg
p (λ) T (v)


ℓ ≤ m ≤ r ≤ 0

−λ2 ≤ t ≤ 0

−λ3 ≤ s ≤ 0

s ≤ n ≤ t − λ2



DfM
g
p (λ) T (v)


m ≤ r ≤ 0

−λ2 ≤ t ≤ 0

−λ3 ≤ s ≤ 0

s ≤ n ≤ t − λ2


Table: Minimal nilpotent orbit
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Admissible Gelfand-Tsetlin modules Minimal nilpotent orbit

VC(T (w)) T (w) C BC(T (w))

TfM
g
p (λ) T (v + δ1,1)



m ≤ r ≤ 0

−λ2 ≤ t ≤ 0

−λ3 ≤ s ≤ 0

s ≤ n ≤ t − λ2

m ≤ ℓ



Dν
f M

g
p (λ) T (v + νδ1,1)


m ≤ r ≤ 0

−λ2 ≤ t ≤ 0

−λ3 ≤ s ≤ 0

s ≤ n ≤ t − λ2


Table: Minimal nilpotent orbit
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Admissible Gelfand-Tsetlin modules Minimal nilpotent orbit

Main Theorem: Minimal Orbit

Theorem (Futorny, H. M. and Ramirez, 2021)

Let β be a root of g, b a Borel subalgebra of g for which β is a positive
root, ρβ the half-sum of positive (with respect to b) roots. Let Lb(λ) be
an admissible simple b-highest weight g-module in the minimal orbit, such
that ⟨λ, β∨⟩ /∈ Z, and f = fβ. Denote by Ab,β the set of all x ∈ C \ Z such
that x + ⟨λ+ ρβ, β

∨⟩ /∈ Z.
a The g-module Dx

fβ
Lb(λ) is admissible in the minimal orbit for any

x ∈ Ab,β;

b Modules Dx
fβ
Lb(λ), where gβ ⊂ b, x ∈ Ab,β, ⟨λ, β∨⟩ /∈ Z and Lb(λ) is

admissible in the minimal orbit, exhaust all simple sl2-induced
admissible modules in the minimal orbit. All such modules have
bounded weight multiplicities;

c There exists a flag F such that Dx
f Lb(λ) is ΓF -relation

Gelfand–Tsetlin g-module.
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Admissible Gelfand-Tsetlin modules Principal nilpotent orbit

Principal orbit

An element of [Pr
Oprin

k ] is represented by the set Λk(b), where

Λk(b) =

{
µ− p

q

n∑
i=1

aiωi ; µ ∈ Prk,Z, a1, a2, . . . , an ∈ N,
n∑

i=1

ai ≤ q − 1

}
.

Further, since for λ ∈ Λk(b), ⟨λ+ ρb, γ
∨⟩ /∈ Z for all γ ∈ ∆b

+, we obtain
immediately that a weight λ ∈ Pr

Oprin

k is not only regular dominant but
also antidominant.

Theorem (Futorny, H. M. and Křižka, 2023)

If λ ∈ Pr
Oprin

k , then Lgb(λ) is a strongly tame Γst(w(Π))-Gelfand–Tsetlin
g-module for any w ∈ W .
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Admissible Gelfand-Tsetlin modules Principal nilpotent orbit

Main Theorem: Principal orbit

Theorem (Futorny, H. M. and Křižka, 2023)

Let n > 1, λ ∈ Pr
Oprin

k , γ ∈ ∆b
+, ν ∈ C \ Z and ν + ⟨λ + ρb, γ

∨⟩ /∈ Z.
Further, let us assume that w ∈ W satisfies γ = w(γ1). Then

a Dν
fγ
(Lgb(λ)) is a simple admissible strongly tame

Γst(w(Π))-Gelfand–Tsetlin g-module which belongs to the principal
nilpotent orbit;

b g-modules Dν
fγ
(Lgb(λ)) for γ ∈ Π exhaust all simple admissible

sl2-induced g-modules which belongs to the principal nilpotent orbit.
All such g-modules have unbounded finite weight multiplicities.
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Admissible Gelfand-Tsetlin modules Principal nilpotent orbit

For λ ∈ Λk(b) ⊂ Pr
Oprin

k , we have

λ =
(
λ1 − p

qa, λ2 − p
qb, λ3 − p

qa
)
with a, b, c ∈ Na+ b + c ≤ q − 1.

We set v1 − v3 = ⟨λ+ ρ, α∨
1 ⟩ /∈ Z, v3 − v2 = ⟨λ+ ρ, α∨

2 ⟩ /∈ Z,
v2 − v4 = ⟨λ+ ρ, α∨

3 ⟩ /∈ Z such that v1 + v2 + v3 + v4 = −6.

T (v) =

v1 v2 v3 v4

v1 v2 v3

v1 v2 + 1

v1
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Admissible Gelfand-Tsetlin modules Principal nilpotent orbit

VC(T (w)) T (w) C BC(T (w))

Mg
p (λ) T (v)


ℓ ≤ m ≤ r ≤ 0

s ≤ 0

t ≤ 0

s ≤ n



DfM
g
p (λ) T (v)


m ≤ r ≤ 0

s ≤ 0

t ≤ 0

s ≤ n


Table: Principal nilpotent orbit
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Admissible Gelfand-Tsetlin modules Principal nilpotent orbit
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Admissible Gelfand-Tsetlin modules Admissible bounded modules

New results in the Minimal orbit

Theorem (Futorny, H. M. and Křižka, 2024)

Let L(λ) be an admissible simple highest weight bounded g-module, such
that ⟨λ, α∨

1 ⟩ /∈ Z, F = {fα1j | j = 1, 2, . . . , n} and x = (x1, x2, . . . , xn) for
some set of complex numbers {xi | i = 1, 2, . . . , n}, then

a Dx
FL(λ) is strongly tame Γst-Gelfand–Tsetlin g-module if and only if
n∑
j=i

xj +
〈
λ, α∨

1

〉
/∈ Z, for all i = 2, . . . , n;

b The g-module Dx
FL(λ) is simple strongly tame Γst-Gelfand–Tsetlin

g-module if and only if xi /∈ Z for all i = 1, 2, . . . , n and
n∑
j=i

xj +
〈
λ, α∨

1

〉
/∈ Z, for all i = 1, 2, . . . , n.
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