Supercharacter Sheaves for Algebra Groups

João Dias

Universidade de Lisboa

Seminar of Representation Theory and Related Areas

17/12/2016

・ 同 ト ・ ヨ ト ・ ヨ ト

Supercharacter Theory

João Dias Supercharacter Sheaves for Algebra Groups

< ロ > (同 > (回 > (回 >))

Definition of a Supercharacter Theory for a finite group G

A pair $(\mathcal{X}, \mathcal{K})$, with \mathcal{X} a collection of characters of G and \mathcal{K} a partition of G is a Supercharacter Theory if:

- Each irreducible character of G is constituent of an unique character of \mathcal{X} ,
- $\textcircled{2} |\mathcal{X}| = |\mathcal{K}|,$
- **③** The characters $\chi \in \mathcal{X}$ are constant on the elements of \mathcal{K} ,
- $\ \, {\bf 0} \ \, {\bf 1} {\bf \} \in \mathcal{K}. }$

イロト イポト イラト イラト

Definition of a Supercharacter Theory for a finite group G

A pair $(\mathcal{X}, \mathcal{K})$, with \mathcal{X} a collection of characters of G and \mathcal{K} a partition of G is a Supercharacter Theory if:

- Each irreducible character of G is constituent of an unique character of \mathcal{X} ,
- $\textcircled{2} |\mathcal{X}| = |\mathcal{K}|,$
- **③** The characters $\chi \in \mathcal{X}$ are constant on the elements of \mathcal{K} ,
- $\ \, {\bf 0} \ \, {\bf 1} {\bf \} \in \mathcal{K}. }$

Idempotents and Supercharacters

We have a bijection between:

- {{e_i}_{i∈I}}, with {e_i}_{i∈I} a decomposition of the unit in CG in central ortogonal idempotents, with e₁ the trivial character,
- $\{(\mathcal{X},\mathcal{K}) \mid (\mathcal{X},\mathcal{K}) \text{ a supercharacter theory for } G\}/\sim$

Some facts about Supercharacters

Given a supercharacter theory on G we have:

- The superclasses are union of conjugacy classes to each other,
- The supercharacters are ortogonal,
- For each supercharacter $\chi \in \mathcal{X}$ and an element $k \in K$ in a superclass we have that $\chi(k)\frac{|K|}{\chi(1)}$ is an algebraic integer.
- The supercharacters are multiples of $\sum_{\chi\in X}\chi(1)\chi$,
- The supercharacters determine uniquely the superclasses.

(日本) (日本) (日本)

Algebra groups

Consider G = 1 + J with J a finite dimensional \mathbb{F}_q nilpotent algebra without unity.

イロト イポト イヨト イヨト

Algebra groups

Consider G = 1 + J with J a finite dimensional \mathbb{F}_q nilpotent algebra without unity.

Action on the Algebra groups

We have the following actions of $G \times G$ in G, J, and Irr(J, +)

•
$$(g, h).(x) = gxh^{-1}$$
,

•
$$(g, h).(1 + x) = 1 + gxh^{-1}$$
,

•
$$((g,h).\lambda)(x) = \lambda(g^{-1}xh).$$

イロト イポト イヨト イヨト

Supercharacter theory for Algebra groups

We define a supercharacter theory as follows:

•
$$\mathcal{K} = \{1 + GxG \mid x \in J\},$$

• $\mathcal{X} = \{\frac{1}{n_{\lambda}} \sum_{\mu \in G\lambda G} \hat{\mu} \mid \lambda \in Irr(J, +)\},$
with $n_{\lambda} = \frac{|G\lambda G|}{|\lambda G|}$ and $\hat{\mu}(1 + x) = \mu(x).$

Supercharacter theory for Algebra groups

We define a supercharacter theory as follows:

•
$$\mathcal{K} = \{1 + GxG \mid x \in J\},$$

• $\mathcal{X} = \{\frac{1}{n_{\lambda}} \sum_{\mu \in G\lambda G} \hat{\mu} \mid \lambda \in Irr(J, +)\},$
with $n_{\lambda} = \frac{|G\lambda G|}{|\lambda G|}$ and $\hat{\mu}(1 + x) = \mu(x).$

An equivalent way to define the supercharacters

We also have that the set:

$$\mathcal{X}' = \{ Ind_{R_{\lambda}}^{\mathcal{G}}(\widehat{\lambda_{|R_{\lambda}}}) \mid \lambda \in Irr(J,+) \},$$

where $R_{\lambda} = \{g \in G | g\lambda = \lambda\}$, defines the same supercharacter theory.

4 日 2 4 周 2 4 月 2 4 月 2 4

Supercharacter Sheaves

João Dias Supercharacter Sheaves for Algebra Groups

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

Algebra groups in algebraic geometry

Consider $G_0 = 1 + J_0$ with J_0 a finite dimensional \mathbb{F}_q nilpotent algebra without unity. And let:

• $G = G_0 \otimes \mathbb{F}$ a connected \mathbb{F} algebraic group,

• $J = J_0 \otimes \mathbb{F}$ an abelian connected \mathbb{F} algebraic group,

• J^* the Serre Dual, it's an abelian connected \mathbb{F} algebraic group. We have that $(J^*)^{F^n} = Irr(J_0 \otimes \mathbb{F}_{q^n}, +)$.

イロト イポト イヨト イヨト

Algebra groups in algebraic geometry

Consider $G_0 = 1 + J_0$ with J_0 a finite dimensional \mathbb{F}_q nilpotent algebra without unity. And let:

• $G = G_0 \otimes \mathbb{F}$ a connected \mathbb{F} algebraic group,

• $J = J_0 \otimes \mathbb{F}$ an abelian connected \mathbb{F} algebraic group,

• J^* the Serre Dual, it's an abelian connected \mathbb{F} algebraic group. We have that $(J^*)^{F^n} = Irr(J_0 \otimes \mathbb{F}_{q^n}, +)$.

Derived category of constructible complexes of ℓ -adic sheaves

Consider the category $\mathcal{D}(G) = D_c^b(G, \mathbb{Q}_\ell)$ and the bifunctor:

$$M*N:=\mu_!(\pi_1^*(M)\otimes\pi_2^*(N)).$$

And if *H* is acting in *G* denote by $\mathcal{D}_H(G)$ the full subcategory of $\mathcal{D}(G)$ with elements $a^*M \simeq \pi^*M$.

Minimal idempotents in $\mathcal{D}_H(G)$

An element $e \in \mathcal{D}_H(G)$ is called idempotent if $e * e \simeq e$, and it's a minimal idempotent if for all idempotent $f \in \mathcal{D}_H$, we have $e * f \simeq e$ or $e * f \simeq 0$.

• • = • • = •

Minimal idempotents in $\mathcal{D}_H(G)$

An element $e \in \mathcal{D}_H(G)$ is called idempotent if $e * e \simeq e$, and it's a minimal idempotent if for all idempotent $f \in \mathcal{D}_H$, we have $e * f \simeq e$ or $e * f \simeq 0$.

Definition of Supercharacter Sheaves

Let H be a group action on G, such that the conjugacy action is a subaction.

Then a supercharacter sheaf \mathcal{L} (for the supercharacter theory defined by H) is an indecomposable perverse sheaf such that $\mathcal{L} * e \simeq \mathcal{L}$, for some $e \in \mathcal{D}_H(G)$ minimal idempotent.

イロト イポト イラト イラト

Action on the algebra group G

We extend the actions of $G_0 \times G_0$ on G_0 and J_0 to action on $G \times G$ on G and J. So we have:

- A compatible action on J^* of $G \times G$ (taking the fixed points defines the same action as above),
- If Ω is a biorbit, a right orbit or a conjugacy class then Ω^{F^n} is a biorbit, a right orbit or a conjugacy class respectively for G^{F^n} .
- For each *n* it defines the same supercharacter theory as above for G^{F^n} .

イロト イポト イラト イラト

Equivalence Functors

We have the following functors:

$$\mathcal{D}_{G \times G}(G) \xleftarrow{\phi^*} \mathcal{D}_{G \times G}(J) \xleftarrow{\mathcal{F}} \mathcal{D}_{G \times G}(J^*).$$

With $\phi : G \to J$ and \mathcal{F} the Fourier-Deligne transform. That satisfy:

- They are equivalence of categories,
- $\mathcal{F}(M \otimes N) \simeq \mathcal{F}(M) *_J \mathcal{F}(N)$,

•
$$\phi^*(M*_J N) \simeq \phi^*M*_G \phi^*N$$
,

- They perserve minimal idempotents,
- They perserve preversety.

| 4 同 1 4 三 1 4 三 1

Construction of Supercharacter Sheaves

Let $\Omega \subset J^*$ be a biorbit, and $(\bar{\mathbb{Q}}_{\ell})_{\Omega}$ be the (unique) indecomposable complex of ℓ -adic sheaves on Ω , then $\phi^*(\mathcal{F}(i_{\Omega})_!((\bar{\mathbb{Q}}_{\ell})_{\Omega}))$ is a supercharacter sheaf. Furthermore all supercharacter sheaves are of that form.

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Construction of Supercharacter Sheaves

Let $\Omega \subset J^*$ be a biorbit, and $(\overline{\mathbb{Q}}_{\ell})_{\Omega}$ be the (unique) indecomposable complex of ℓ -adic sheaves on Ω , then $\phi^*(\mathcal{F}(i_{\Omega})_!((\overline{\mathbb{Q}}_{\ell})_{\Omega}))$ is a supercharacter sheaf. Furthermore all supercharacter sheaves are of that form.

Relations of Supercharacter Sheaves and Biorbits

We have the bijection:

 $\mathcal{S}: PSCS(G) \to \{\Omega \subset J^* \mid \Omega \text{ is a sum of biorbits}\}$

With PSCS(G) the collection of supercharacter sheaves and his (tensor) products, such that $S(\mathcal{L}_1 \otimes \mathcal{L}_2) = S(\mathcal{L}_1) + S(\mathcal{L}_2)$, and $F^n(S(\mathcal{L})) = S(\mathcal{L})$ if and only if $(F^n)^*\mathcal{L} \simeq \mathcal{L}$.

ヘロト ヘポト ヘヨト ヘヨト

Properties of Supercharacter Sheaves

- Exists a (minimal) collection of supercharacter sheaves {L_i}, called indecomposable, such that all supercharacter sheaf is a product of some indecomposable.
- A supercharacter sheaf associated to a biorbit Ω is a character sheaf if and only if Ω is a conjugacy orbit.
- The supercharacter sheaves define a partition of the character sheaves {{M ∈ CS(G) | M * L ≃ M} | L ∈ SCS(G)}
- We have a ("well behaved") isomorphism between
 ∠ ∈ SCS(G) | (Fⁿ)*L ≃ L >_C and SC(G^{Fⁿ}) (where the first is the free C-algebra generated by the supercharacter sheaves with the (tensor) product and convolution.)

イロト イポト イラト イラト

References

João Dias Supercharacter Sheaves for Algebra Groups

イロト イヨト イヨト イヨト

э

- Supercharacter Theory Supercharacter Sheaves References
- A motivated introduction to character sheaves and the orbit method for unipotent groups in positive characteristic, by M. Boyarchenko and V. Drinfeld, in Preprint, September 2006, arXiv:math.RT/0609769.
- Characters of unipotent groups over finite fields, by M. Boyarchenko, in Selecta Math. 16 (2010),no. 4, 857–933.
- Character sheaves on unipotent groups in positive characteristic: foundations,

by M. Boyarchenko and V. Drinfeld, in Preprint, August 2011 arXiv:0810.0794.

Supercharacters and superclasses for algebra groups, by Diaconis, Persi and Isaacs, I, in Transactions of the American Mathematical Society 360.5 (2008): 2359-2392.

・ 同 ト ・ ヨ ト ・ ヨ ト