A recursive presentation of switching on ballot tableau pairs or
the many faces of the involutive nature of Littlewood-Richardson coefficient commutativity

Olga Azenhas, CMUC, University of Coimbra

Workshop on Representation Theory and Related areas
Lisboa, December 17, 2016

Plan

(1) Motivation: LR coefficients as structure constants versus combinatorial numbers
(2) LR tableaux, Gelfand-Tsetlin patterns (and LR hives)
(3) Involution commutators of LR tableaux (and LR hives)

- based on the Schützenberger involution/jeu de taquin
- our involution commutator based on internal Schensted insertion

Littlewood-Richardson coefficients as structure constants

- The ring of symmetric polynomials: the product of Schur polynomials. Let $x=\left(x_{1}, \ldots, x_{d}\right)$ be a sequence of indeterminates. Schur polynomials $s_{\lambda}(x)$ for all partitions λ with $\ell(\lambda) \leq d$, form a \mathbb{Z}-linear basis for the ring $\Lambda_{d}:=\mathbb{Z}[x]^{\mathfrak{G}_{d}}$ of symmetric polynomials in x,

$$
s_{\mu} s_{\nu}=\sum_{\substack{\lambda \\ \ell(\lambda) \leq d}} c_{\mu \nu}^{\lambda} s_{\lambda}, \quad c_{\mu \nu}^{\lambda} \in \mathbb{Z}_{\geq 0}^{+} .
$$

Littlewood-Richardson coefficients as structure constants

- The ring of symmetric polynomials: the product of Schur polynomials. Let $x=\left(x_{1}, \ldots, x_{d}\right)$ be a sequence of indeterminates. Schur polynomials $s_{\lambda}(x)$ for all partitions λ with $\ell(\lambda) \leq d$, form a \mathbb{Z}-linear basis for the ring $\Lambda_{d}:=\mathbb{Z}[x]^{\mathfrak{G}_{d}}$ of symmetric polynomials in x,

$$
s_{\mu} s_{\nu}=\sum_{\substack{\lambda \\ \ell(\lambda) \leq d}} c_{\mu \nu}^{\lambda} s_{\lambda}, \quad c_{\mu \nu}^{\lambda} \in \mathbb{Z}_{\geq 0}^{+} .
$$

- Schubert calculus of Grassmannians: the product in the cohomology ring of Grassmannians. Schur polynomials $s_{\lambda}(x)$ with λ inside a rectangle $d \times(n-d)(0<d<n)$ may be interpreted as representatives of Schubert classes σ_{λ}

Schubert classes $\left\{\sigma_{\lambda}\right\}_{\lambda \subseteq n \times(n-d)}$ form a \mathbb{Z}-linear basis for the cohomology ring $H^{*}(G(d, n))$ of the Grassmannian $G(d, n)$ (the set of all complex d-dimensional linear subspaces of $\left.\mathbb{C}^{n}\right)$, and

$$
\sigma_{\mu} \sigma_{\nu}=\sum_{\lambda \subseteq d \times(n-d)} c_{\mu \nu}^{\lambda} \sigma_{\lambda}
$$

Littlewood-Richardson coefficients as structure constants

- These numbers $c_{\mu, \nu}^{\lambda}$ also arise as tensor product multiplicities.
- general linear group $G L_{d}(\mathbb{C})$. Schur polynomials $s_{\lambda}(x)$ may be interpreted as irreducible characters of $G L_{d}(\mathbb{C})$. The decomposition of the tensor product of two irreducible polynomial representations V^{μ} and V^{ν} of $G L_{d}(\mathbb{C})$ into irreducible representations of $G L_{d}(\mathbb{C})$, is given by

$$
V^{\mu} \otimes V^{\nu}=\bigoplus_{\ell(\lambda) \leq d} V^{\lambda \oplus c_{\mu \nu}^{\lambda}}
$$

Littlewood-Richardson coefficients as structure constants

- These numbers $c_{\mu, \nu}^{\lambda}$ also arise as tensor product multiplicities.
- general linear group $G L_{d}(\mathbb{C})$. Schur polynomials $s_{\lambda}(x)$ may be interpreted as irreducible characters of $G L_{d}(\mathbb{C})$. The decomposition of the tensor product of two irreducible polynomial representations V^{μ} and V^{ν} of $G L_{d}(\mathbb{C})$ into irreducible representations of $G L_{d}(\mathbb{C})$, is given by

$$
V^{\mu} \otimes V^{\nu}=\bigoplus_{\ell(\lambda) \leq d} V^{\lambda^{\oplus c_{\mu \nu}^{\lambda}}}
$$

- $U_{q}\left(\mathfrak{g l}_{d}\right)$ the quantum group of $\mathfrak{g l}_{d}: \mathfrak{g l}_{d}$-crystal bases. Let B_{λ} denote the crystal basis of the irreducible representation V_{λ} of $U_{q}\left(\mathfrak{g l}_{d}\right)$. B_{λ} can be taken to be the set of all SSYTs of shape λ, in the alphabet $\{1, \ldots, d\}$, equipped with crystal operators. The decomposition of the tensor product of $\mathfrak{g l}_{d^{-}}$-crystals is given by

$$
B_{\mu} \otimes B_{\nu} \cong \bigoplus_{\substack{\lambda \\ T \in \mathcal{L R}(\lambda / \mu, \nu)}} B_{\lambda}(T)
$$

with $B_{\lambda}(T) \cong B_{\lambda}$.

- Positivity of Littlewood-Richardson coefficients in matrix existence problems. There exist $d \times d$ non singular matrices A, B and $C=A B$, over a discrete valuation ring, with Smith invariants μ, ν and λ respectively iff $c_{\mu \nu}^{\lambda}>0$.
- Positivity of Littlewood-Richardson coefficients in matrix existence problems. There exist $d \times d$ non singular matrices A, B and $C=A B$, over a discrete valuation ring, with Smith invariants μ, ν and λ respectively iff $c_{\mu \nu}^{\lambda}>0$.
- The commutativity of Littlewood-Richardson coefficients

$$
\begin{gathered}
c_{\mu \nu}^{\lambda}=c_{\nu \mu}^{\lambda} \\
c_{\mu \nu}^{\lambda}>0 \text { iff } c_{\nu \mu}^{\lambda}>0 .
\end{gathered}
$$

Our structure coefficients are combinatorial numbers

- The structure coefficient $c_{\mu, \nu}^{\lambda}$ is
the cardinality of an explicit set of combinatorial objects.
- It is possible to determine $c_{\mu, \nu}^{\lambda}>0$ without determining its exact value.
- We are interested in exploiting symmetry properties of these combinatorial objects.
- In particular, we are interested in exhibiting the commutativity symmetry

$$
c_{\mu, \nu}^{\lambda}=c_{\nu, \mu}^{\lambda} .
$$

Littlewood-Richardson coefficients as numbers which

count

- The Littlewood-Richardson (LR) rule (D.E. Littlewood and A. Richardson 34; M.-P. Schützenberger 77; G.P. Thomas 74) states that the coefficients appearing in the expansion of a product of Schur polynomials s_{μ} and s_{ν}

$$
s_{\mu}(x) s_{\nu}(x)=\sum_{\lambda} c_{\mu \nu}^{\lambda} s_{\lambda}(x)
$$

are given by

$$
\begin{aligned}
c_{\mu \nu}^{\lambda} & =\#\{T \in \mathcal{L R}(\lambda / \mu, \nu)\}=\# \mathcal{L R}(\lambda / \mu, \nu) \\
c_{\nu, \mu}^{\lambda} & =\#\{T \in \mathcal{L R}(\lambda / \nu, \mu)\}=\# \mathcal{L R}(\lambda / \nu, \mu) .
\end{aligned}
$$

$\mathcal{L R}(\lambda / \mu, \nu)$ the set of Littlewood-Richardson tableaux of shape λ / μ and weight ν.

- The connection to the cohomology of Grassmannians was made by L. Lesieur (1947).

Littlewood-Richardson tableaux (D.E. Littlewood and A. Richardson, 1934) or ballot tableaux

- A Young tableau T of shape λ / μ is said to be a Littlewood-Richardson tableau if
- it is semistandard (SSYT)
(1) the entries in each row of λ / μ are weakly increasing from left to right, and
(2) the entries in each column of λ / μ are strictly increasing from top to bottom,
- and satisfy the lattice permutation property or ballot condition
(1) the content of each initial segment of the reading word, right to left across rows and top to bottom, is a partition.

		1	1	2
	1	2		
1	3			

2112131

		1	1
	2	1	
1	2		
1	3		

1112231

		1	1
	1	1	
2	2		
2	3		

one has 3 candidates 1,2,3 each receiving 4,2,1 votes respectively. A particular ordering of the votes is then a sequence of length 7 where at any stage candidate 1 has at least many votes as candidate 2, and candidate 2 has at least many votes as candidate 3.

$$
c_{31,21}^{421}=2
$$

$$
c_{21,31}^{421}=2
$$

The split of LR tableaux into Gelfand－Tsetlin patterns led to hives
－I．M．Gelfand，A．V．Zelevinsky（1986），A．D．Berenstein，A．V．Zelevinsky （1989）

$$
\mu=75300 \quad \nu=75200 \quad \lambda=99641
$$

へへーかへ

$T_{\mu}=$| 1 | 2 | 2 | 2 | 3 | 3 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 3 | 3 | 4 | 4 | | |
| 4 | 5 | 5 | | | | |

$T_{\nu}=$| 1 | 1 | 2 | 2 | 3 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- |

$$
2 \subseteq 42 \subseteq 630 \subseteq
$$

Interlock the three GT patterns

- A hive in the edge representation form, R.C. King, C. Tollu, F. Toumazet (2006), is a labelling of all edges of a planar, equilateral triangular graph satisfying the triangle and the betweeness conditions

Edge and vertex representation of a hive A . Knutson, T . Tao (1999), and A.S. Buch (2000)

Interlocking GT-pairs and tensor product of $\mathfrak{g l}_{n}$-crystals

- The crystal basis B_{λ} of the irreducible representation V_{λ} of $U_{q}\left(\mathfrak{g l}_{n}\right)$, can be taken to be the set of all SSYTs of shape λ, in the alphabet [n], equipped with crystal operators.

$\mathfrak{g l}_{n}$-Littlewood-Richardson rule: the decomposition of $B_{\mu} \otimes B_{\nu}$

Example

$$
\begin{aligned}
& \begin{array}{|l|l|l|}
\hline 1 & 2 & 2 \\
\hline 2 & 3 & 2 \\
\hline 3 & 4 & \\
\hline & 4 & \\
& &
\end{array} \\
& \leftarrow 4=P(U \otimes V)=\begin{array}{llll}
\hline 1 & 2 & 2 & 2 \\
2 & 3 & \\
\hline 3 & 4 & \\
\hline 4 & &
\end{array} \\
& Q(U \otimes V)=\begin{array}{|l|l|l}
\hline & & 1 \\
\hline & 1 & \\
\hline & 2 & \\
\hline 3 & &
\end{array}
\end{aligned}
$$

- The map $U \otimes V \rightarrow(P(U \otimes V), Q(U \otimes V))$ gives the $\mathfrak{g l}_{n}$-isomorphism

$$
B_{\mu} \otimes B_{\nu} \cong \bigoplus_{\substack{\lambda \\ T \in \mathcal{L R}(\lambda / \mu, \nu)}} B_{\lambda}(T)
$$

with $B_{\lambda}(T)=B_{\lambda} \times\{T\} \cong B_{\lambda}$. The multiplicity of B_{λ} in $B_{\mu} \otimes B_{\nu}$ is \#highest (lowest) weight elements of weight $\lambda(\operatorname{rev} \lambda)$ in $B_{\mu} \otimes B_{\nu}$

$$
=|\mathcal{L R}(\lambda / \mu, \nu)|=c_{\mu, \nu}^{\lambda}
$$

- The lowest and the highest weight elements of B_{λ} in $B_{\mu} \otimes B_{\nu}$. The $c_{\mu, \nu}^{\lambda}$ crystal connected components in $B_{\mu} \otimes B_{\nu}$ with highest weight λ are distinguished by
- highest weight element $Y_{\mu} \otimes T_{\nu}$, and
- lowest weight element $T_{\mu} \otimes Y_{\text {rev }}$, where $\left(T_{\mu}, T_{\nu}\right)$ is the GT-pattern pair of $T \in \mathcal{L R}(\lambda / \mu, \nu)$.

Involution commutators and the Schützenberger involution

- Henriques-Kamnitzer involution LR commutator (arxiv 2004). For each $T \in \mathcal{L R}(\lambda / \mu, \nu)$ there exists $T^{*} \in \mathcal{L} \mathcal{R}(\lambda / \nu, \mu)$ such that the map

$$
\left.\begin{array}{cl}
B(\mu) \otimes B(\nu) & \rightarrow B(\nu) \otimes B(\mu) \\
U \otimes V & \mapsto
\end{array}\right)(V) \otimes \xi(U)
$$

sends

$$
\begin{array}{rll}
Y_{\mu} \otimes T_{\nu} & \rightarrow T_{\nu}^{*} \otimes \xi Y_{\mu}, & \xi T_{\nu}=T_{\nu}^{*} \\
T_{\mu} \otimes \xi Y_{\nu} & \rightarrow Y_{\nu} \otimes T_{\mu}^{*}, & \xi T_{\mu}=T_{\mu}^{*} .
\end{array}
$$

For each $T \in \mathcal{L R}(\lambda / \mu, \nu)$ there exists $T^{*} \in \mathcal{L} \mathcal{R}(\lambda / \nu, \mu)$ such that

$$
T_{\nu}^{*}=\xi T_{\nu}, T_{\mu}^{*}=\xi T_{\mu}, \quad \xi \text { the Schützenberger involution. }
$$

$$
\begin{array}{clc}
\operatorname{Com}_{H K}: & \mathcal{L R}(\lambda / \mu, \nu) & \rightarrow \\
T & \rightarrow & \mathcal{L}(\lambda / \nu, \mu) \\
T^{*}
\end{array} \quad \text { is an involution. }
$$

- Pak-Vallejo LR commutator bijections (arxiv 2004):

$$
\begin{array}{cccc}
\rho_{2}: \mathcal{L R}(\lambda / \mu, \nu) & \rightarrow & \mathcal{L R}(\lambda / \nu, \mu) & \\
T & \rightarrow & Q: & Q_{\nu}=\xi T_{\nu} \\
& & \mathcal{L R}(\lambda / \nu, \mu) & \\
\rho_{2}^{-1}: \mathcal{L R}(\lambda / \mu, \nu) & \rightarrow & U: & U_{\mu}=\xi T_{\mu} \\
T & \rightarrow & U:
\end{array}
$$

Conjectured to be an involution $\rho_{2}=\rho_{2}^{-1} \Leftrightarrow Q=U$. It is exactly the $\mathrm{H}-\mathrm{K}$ commutator.

Example:

$$
\begin{aligned}
& \longrightarrow \xi T_{\nu}=\begin{array}{|l|l|l|l}
\hline & 1 & 1 & 1 \\
\hline 2 & 2 & 4 & 1 \\
3 & 2 & \\
\hline
\end{array}
\end{aligned}
$$

Benkart,Sottile-Stroomer switching on ballot tableau pairs: ρ_{1}

$$
\begin{aligned}
& Y_{\mu} \cup T=\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
2 & 2 & 2 & 2 & 2 \\
3 & 1 & 2 & 3 & \\
4 & 2 & 3 & 4 &
\end{array} \\
& \begin{array}{llllll}
1 & 1 & 1 & 1 & 1 & 1
\end{array} \\
& \begin{array}{lllll}
2 & 2 & 2 & 2
\end{array} \\
& \rightarrow \\
& 1233 \\
& \begin{array}{llll}
2 & 3 & 4 & 4
\end{array}
\end{aligned}
$$

Benkart-Sottile-Stroomer switching on ballot tableau pairs: ρ_{1}

1	1	1	1	1	1		1	1	1	1	1	1
1	2	2	2	2			1	2	2	2	2	
2	3	3	3			\rightarrow	2	3	3	3		
2	2	4	4				4	2	2	4		
1	1	1	1	1	1		1	1	1	1	1	1
1	2	2	2	2			2	2	2	2	2	
2	3	3	3			\rightarrow	1	3	3	3		
4	2	2	4				4	2	2	4		

1	1	1	1	1	1
2	2	2	2	2	
3	3	1	3		
4	2	2	4		

$$
=Y_{\nu} \cup U=\rho_{1}\left(Y_{\mu} \cup T\right) \quad U \equiv Y_{\mu}, Y_{\nu} \equiv T
$$

Internal and External insertion on skew-tableaux

For skew tableaux there are two types of row insertion: external and internal. External insertion is similar to Schensted's original procedure.

Sagan-Stanley internal insertion operator $\bar{\phi}_{i}$ on $Y \cup T, Y$ Yamanouchi tableau, T a skew-tableau:

- Definition of internal insertion operator $\bar{\phi}_{i}$ on $Y_{\mu} \cup T$. Need $\left(i, \mu_{i}+1\right)$ to be an inner corner of T :
- $\bar{\phi}_{i}$ bumps the entry, say x, in the inner corner cell $\left(i, \mu_{i}+1\right)$ of T, and replaces it with i, and then inserts (externally as in the Schensted procedure) the bumped element x in the sutableau consisting of the last $n-i$ rows of T.

Internal insertion Knuth relations on skew-tableaux

Elementary Knuth transformations on words:

$$
k i j \equiv k j i=\begin{array}{|c|}
\hline i \\
\hline k
\end{array}, \quad i<k \leq j, \quad i j k \equiv j i k=\begin{array}{|c}
\hline i \\
\hline j \\
\hline
\end{array}, \quad i \leq k<j .
$$

Lemma

(A. 2016) $Y \cup T$ with n rows. Whenever the compositions are defined it holds:

$$
\begin{gathered}
\bar{\phi}_{k} \bar{\phi}_{i} \bar{\phi}_{n}(Y \cup T)=\bar{\phi}_{k} \bar{\phi}_{n} \bar{\phi}_{i}(Y \cup T), \quad 1 \leq i<k \leq n, \\
\bar{\phi}_{i} \bar{\phi}_{n} \bar{\phi}_{k}(Y \cup T)=\bar{\phi}_{n} \bar{\phi}_{i} \bar{\phi}_{k}(Y \cup T), \quad 1 \leq i \leq k<n .
\end{gathered}
$$

Proposition

(A. 2016; Internal insertion Knuth relations on skew-tableaux.) $Y \cup T$ with n rows.

$$
\begin{gathered}
\bar{\phi}_{k} \bar{\phi}_{i} \bar{\phi}_{j}(Y \cup T)=\bar{\phi}_{k} \bar{\phi}_{j} \bar{\phi}_{i}(Y \cup T), \quad 1 \leq i<k \leq j \leq n, \\
\bar{\phi}_{i} \bar{\phi}_{j} \bar{\phi}_{k}(Y \cup T)=\bar{\phi}_{j} \bar{\phi}_{i} \bar{\phi}_{k}(Y \cup T), \quad 1 \leq i \leq k<j \leq n .
\end{gathered}
$$

Proof.

The action of $\bar{\phi}_{k} \bar{\phi}_{i} \bar{\phi}_{j}$ and $\bar{\phi}_{k} \bar{\phi}_{j} \bar{\phi}_{i}\left(\bar{\phi}_{i} \bar{\phi}_{j} \bar{\phi}_{k}\right.$ and $\left.\bar{\phi}_{j} \bar{\phi}_{i} \bar{\phi}_{k}\right)$ on $Y \cup T$ inserts Knuth equivalent words in the subtableau consisting of the last $n-j$ rows of $Y \cup \underline{I}$ 。
(A. 99; A., King, Terada, 2016) Involution commutator ρ_{3}

$$
\begin{aligned}
& \begin{array}{|l|l|l|l|l}
\hline 1 & 1 & 1 & 1 & 1 \\
\hline 2 & 2 & 2 & 2 & 2 \\
\hline 3 & & & \\
\hline
\end{array} \rightarrow \begin{array}{|l|l|l|l|ll}
\hline 1 & 1 & 1 & 1 & 1 & 1 \\
2 & 2 & 2 & 2 & 2 \\
3 & 2 & & & \\
\hline
\end{array} \rightarrow \begin{array}{|l|l|l|l|ll}
\hline 1 & 1 & 1 & 1 & 1 & 1 \\
2 & 2 & 1 & 2 & 2 \\
3 & 2 & 2 & & \\
\hline
\end{array} \rightarrow \begin{array}{|l|l|l|l|l|}
\hline 1 & 1 & 1 & 1 & 1 \\
2 & 2 & 1 & 2 & 1 \\
3 & 2 & 2 & 3 & \\
\hline
\end{array}
\end{aligned}
$$

