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Plan

@ Motivation: LR coefficients as structure constants versus
combinatorial numbers

@ LR tableaux, Gelfand-Tsetlin patterns (and LR hives)

@ Involution commutators of LR tableaux (and LR hives)

» based on the Schiitzenberger involution/jeu de taquin
» our involution commutator based on internal Schensted insertion
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Littlewood-Richardson coefficients as structure constants

@ The ring of symmetric polynomials: the product of Schur polynomials. Let
x = (x1,...,xq) be a sequence of indeterminates. Schur polynomials sy (x)
for all partitions A with £(\) < d, form a Z-linear basis for the ring
Ag := Z[x]®¢ of symmetric polynomials in x,

— A A +
SuSy = § Cuvdx, Sy € ZzO'
A

o(N<d
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@ Schubert calculus of Grassmannians: the product in the cohomology ring of
Grassmannians. Schur polynomials sy(x) with X inside a rectangle
d x (n—d) (0 < d < n) may be interpreted as representatives of Schubert

classes oy

Schubert classes {0} xcnx(n—d) form a Z-linear basis for the cohomology
ring H*(G(d, n)) of the Grassmannian G(d, n) (the set of all complex
d-dimensional linear subspaces of C"), and

_ A
0,0, = g /) LOA-

ACdx(n—d)



Littlewood-Richardson coefficients as structure constants

@ These numbers c ., also arise as tensor product multiplicities.

> general I|near group GLy4(C). Schur polynomials s)(x) may be
interpreted as irreducible characters of GLy(C). The decomposition of
the tensor product of two irreducible polynomial representations V*
and V¥ of GL4(C) into irreducible representations of GL4(C), is given
by
Vio v = @ VA
{N)<d
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@ These numbers c ., also arise as tensor product multiplicities.

> general I|near group GLy4(C). Schur polynomials s)(x) may be
interpreted as irreducible characters of GLy(C). The decomposition of
the tensor product of two irreducible polynomial representations V*
and V¥ of GL4(C) into irreducible representations of GL4(C), is given
by

Vo v = P VA&
£(N)<d

» Uq(gly) the quantum group of gl : gl -crystal bases. Let By denote
the crystal basis of the irreducible representation V) of Uq(gly). B
can be taken to be the set of all SSYTs of shape A, in the alphabet
{1,...,d}, equipped with crystal operators. The decomposition of the
tensor product of gly-crystals is given by

Bﬂ® B, = @ BA(T)7

A
TELR(N/ p,v)
with B)\(T) =~ B,.
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@ Positivity of Littlewood-Richardson coefficients in matrix existence problems.
There exist d x d non singular matrices A, B and C = AB, over a discrete
valuation ring, with Smith invariants p, v and A respectively iff c;\ > 0.

v
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@ Positivity of Littlewood-Richardson coefficients in matrix existence problems.
There exist d x d non singular matrices A, B and C = AB, over a discrete
valuation ring, with Smith invariants p, v and A respectively iff c;\ > 0.

v

@ The commutativity of Littlewood-Richardson coefficients

A
Cuv = Cup
A e A
¢, > 0 iff ¢/, > 0.
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Our structure coefficients are combinatorial numbers

@ The structure coefficient cﬁ"y is

the cardinality of an explicit set of combinatorial objects.

@ It is possible to determine c[}yl, > 0 without determining its exact
value.

@ We are interested in exploiting symmetry properties of these
combinatorial objects.

@ In particular, we are interested in exhibiting the commutativity

symmetry
A A
C/"?” - Cl/#‘.
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Littlewood-Richardson coefficients as numbers which
count

@ The Littlewood-Richardson (LR) rule (D.E. Littlewood and A. Richardson
34; M.-P. Schiitzenberger 77; G.P. Thomas 74) states that the coefficients
appearing in the expansion of a product of Schur polynomials s, and s,

5:0) 509 =Y 6 si(x)
A

are given by

o, = #HT € LR\ pv)} =#LR(N p,v)
o, = #{T e LR v, pn)} = #LR(N v, 1).

LR(N/ i, v) the set of Littlewood-Richardson tableaux of shape A/u and
weight v.

@ The connection to the cohomology of Grassmannians was made by L.
Lesieur (1947).
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Littlewood-Richardson tableaux (D.E. Littlewood and A.
Richardson, 1934) or ballot tableaux

@ A Young tableau T of shape A/u is said to be a Littlewood-Richardson
tableau if

> it is semistandard (SSYT)
@ the entries in each row of \/u are weakly increasing from left to right,
and
@ the entries in each column of \/u are strictly increasing from top to
bottom,
» and satisfy the lattice permutation property or ballot condition

@ the content of each initial segment of the reading word, right to left
across rows and top to bottom, is a partition.

1[1]2] 1[1]1] 1[1]1]
1]2 2112131 [2]2 1112231 [1]2 1112132
1[3 1[3 2[3

one has 3 candidates 1,2,3 each receiving 4,2,1 votes respectively. A particular ordering of
the votes is then a sequence of length 7 where at any stage candidate 1 has at least many
votes as candidate 2, and candidate 2 has at least many votes as candidate 3.
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2]

[1]

1]

421 _
C31.01 = 2

1]1]

1]1]

1,31 = 2
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The split of LR tableaux into Gelfand-Tsetlin patterns led

to hives

@ |.M. Gelfand, A.V. Zelevinsky (1986), A.D. Berenstein, A.V.Zelevinsky

(1989)

T =

~
I
BN
[S21[ON]] ]
G1jw(N

11
1122
p=75300 v =75200 \= 99641
A 7
Ao 75
G, = -
T o Cx=9 ¢ 2
PO 9 8 41
PvwwYwooo 9 96 41
T[1[1[1[1[1][1][3][3
1[1[2]2[3[3]4] 2[21212[2[3]4[4]5
L, = [2]2]3]4]4 T = [3]3]4]4]5]5
4[5 4[5[5[5
5]
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Interlock the three GT patterns

Q/\—\
7
Sy
7 57\
M ON QW
96 27\
LD v P™Hh YN O
9—-8—X-4 17\
AvRvAvvPoOoOoNonN©
VA, WLV, T VAN S VAl TR VA TR

@ A hive in the edge representation form, R.C. King, C. Tollu, F. Toumazet
(2006), is a labelling of all edges of a planar, equilateral triangular graph
satisfying the triangle and the betweeness conditions

Y Y-

14 /26



Edge and vertex representation of a hive A. Knutson, T.

Tao (1999), and A.S. Buch (2000)

pRY 15

7\ / N\

P A8 % AV
/§7 57\ 15 — 22 — 27

D AN A S R / N/ N/ \

kg%ﬁ 27\ 12— 21— 27 — 29
o »m e N O /N/ N/ N/ N\

kg 8 4 1 7— 16 —24 —28 — 29

/\v—“\v-ﬂoovo'wi /NN NN N

PEAVAVRAVAS) 0— 90— 18— 24— 28 —29

70

- >0
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Interlocking GT-pairs and tensor product of gl -crystals

@ The crystal basis By of the irreducible representation V) of Ug(gl,), can be taken to be
the set of all SSYTs of shape A, in the alphabet [n], equipped with crystal operators.

Hm
/ .Q/Em\‘

B 1
2 Ef}



gl,-Littlewood-Richardson rule: the decomposition of B, ® B,

oExampIe
212
u= 22 v- 3 VeV Vv)= 12120« 2031 =
(21 i —
77 1]2]2] 1]2]2]2]
513 +— 4234 = [2]3 +— 234 = [2]3 — 34 =
14] 14]
ToT00] 1[2[2[2] [1]
213 —4=PURV)= %2 QU V)= 2%
3[4
14] 13]
"

@ Themap U® V — (P(U® V), Q(U ® V)) gives the gl,-isomorphism

B.®B,= P BT,

A
TELR(N/ p,v)

with By\(T) = By x {T} = By. The multiplicity of By in B, ® B, is
#highest (lowest) weight elements of weight A (rev)) in B, ® B,
= LR/, v)| = ¢,
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@ The lowest and the highest weight elements of By in B, ® B,,.

The Cﬁ\,u crystal connected components in B, ® B, with highest weight A
are distinguished by

> highest weight element Y, ® T,, and
> lowest weight element T, @ Yy,
where (T, T,) is the GT-pattern pair of T € LR(\/p, V).
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Involution commutators and the Schiitzenberger involution

@ Henriques-Kamnitzer involution LR commutator (arxiv 2004). For each
T € LR(N p,v) there exists T* € LR(A/v, 1) such that the map

B(p) @ B(v) — B(v)® B(n)
UV = (V) ®E)

sends
YM®TV — T:®§Yua ngI:TIj
T, &Y, — Y,@T: (T,=T:
For each T € LR(\/p,v) there exists T* € LR(\/v, i) such that

T, =¢&T,, T, =¢&T,, & the Schiitzenberger involution.

Compyk: LR(N p,v) — LR(Nv,wn)

T . T is an involution.
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@ Pak-Vallejo LR commutator bijections (arxiv 2004):

p2: LR(A/p,v) — ﬁR()\/.l/,,u)

T — Q . Qy - €Tl/
pat  LR(A/pv) —  LR(Nv,p)
T - U: U, =€T,

Conjectured to be an involution py = pgl & Q = U. It is exactly the H-K
commutator.
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Example:

111]2]3]4]
3[31412]

3
o,

N

[1]1]

— T, =

1[1[1]

1[2[2]2

1[2[2

1121213

1[2[3]3

— Q

1[1[1]1]2]
2[2]4]4]

—&T, =
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Benkart,Sottile-Stroomer switching on ballot tableau
pairs: p1

M b —- a b, a<b m b b B, a>b
a [ | a a
1 1 1 1 11 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2
YpUuT = —
3 1 2 3 1 2 3 3
4 2 3 4 2 3 4 4
1 1 1 1 1 1 11 1 1 1 1
2 2 2 2 2 1 2 2 2 2
%
1 2 3 3 2 2 3 3
2 3 4 4 2 3 4 4
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Benkart-Sottile-Stroomer switching on ballot tableau

pairs: pp

1

1111

1

1111

1 2 2 2 2
2 3 3 3
4 2 2 4

2 2 2 2
2 3 3 3
2 2 4 4

1

2 2 2 2 2
1 3 3 3
4 2 2 4

2 2 2 2
2 3 3 3
4 2 2 4

1

111
2.2 2 2 2

1
3 3 1 3

=T.

Yu, Yo

U=

YouU=pi(Y,UT)

4 2 2 4
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Internal and External insertion on skew-tableaux

For skew tableaux there are two types of row insertion: external and internal.
External insertion is similar to Schensted'’s original procedure.

Sagan-Stanley internal insertion operator ¢; on Y U T, Y Yamanouchi tableau, T
a skew-tableau:

T[i[L[1[1]1] %%H%”

2[2[12]2 _ SOEIE
YUT = 312133 G(YUT) = Siolala

1[3[4]4 5

5[5

@ Definition of internal insertion operator ¢; on Y, UT. Need (i, pj + 1) to be
an inner corner of T:

> ¢; bumps the entry, say x, in the inner corner cell (i, u; +1) of T , and
replaces it with 7, and then inserts (externally as in the Schensted
procedure) the bumped element x in the sutableau consisting of the
last n — i rows of T.
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Internal insertion Knuth relations on skew-tableaux
Elementary Knuth transformations on words:

i|k]

kij = kji = l’;fﬂ i< k<j, ijk=jik=

. i<k<j.

Lemma
(A.2016) Y U T with n rows. Whenever the compositions are defined it holds:

kdipn(YUT) = dpnpi(YUT), 1<i<k<n,
Gibndk(YUT) = ¢ndion(YUT), 1<i<k<n.

Proposition
(A. 2016; Internal insertion Knuth relations on skew-tableaux.) Y U T with n
rows.
Spidi(Y U T) =
Gigjo(YUT) =
Proof. o S L
The action of ¢x¢;id; and ¢r@jdi (PidjPi and @jpidk) on Y U T inserts Knuth
equivalent words in the subtableau consisting of the last n —j rows of Y U T. .[J
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(A. 99; A., King, Terada, 2016) Involution commutator ps

Y,UT=

N[N
WININ |

BN

HWIN|—=

TAA . [

Pup— ~ 7] = BhhEhE
AN [OAAAAE [OEEEEE [EEEE
SRR — RRRERRT — RRARR — RRARDR
3] 32 321 AR

R L
30203 — B335 — B35 - 535113 =Y, uu
0 a02] a0 A0
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