A recursive presentation of switching on ballot tableau pairs

or

the many faces of the involutive nature of Littlewood-Richardson coefficient commutativity

Olga Azenhas, CMUC, University of Coimbra

Workshop on Representation Theory and Related areas

Lisboa, December 17, 2016

- Motivation: LR coefficients as structure constants versus combinatorial numbers
- IR tableaux, Gelfand-Tsetlin patterns (and LR hives)
- **③** Involution commutators of LR tableaux (and LR hives)
 - based on the Schützenberger involution/jeu de taquin
 - our involution commutator based on internal Schensted insertion

• The ring of symmetric polynomials: the product of Schur polynomials. Let $x = (x_1, \ldots, x_d)$ be a sequence of indeterminates. Schur polynomials $s_{\lambda}(x)$ for all partitions λ with $\ell(\lambda) \leq d$, form a \mathbb{Z} -linear basis for the ring $\Lambda_d := \mathbb{Z}[x]^{\mathfrak{S}_d}$ of symmetric polynomials in x,

$$s_\mu s_
u = \sum_{\substack{\lambda \ \ell(\lambda) \leq d}} c^\lambda_{\mu\,
u} s_\lambda, \quad c^\lambda_{\mu\,
u} \in \mathbb{Z}^+_{\geq 0}.$$

• The ring of symmetric polynomials: the product of Schur polynomials. Let $x = (x_1, \ldots, x_d)$ be a sequence of indeterminates. Schur polynomials $s_{\lambda}(x)$ for all partitions λ with $\ell(\lambda) \leq d$, form a \mathbb{Z} -linear basis for the ring $\Lambda_d := \mathbb{Z}[x]^{\mathfrak{S}_d}$ of symmetric polynomials in x,

$$s_{\mu}s_{\nu} = \sum_{\substack{\lambda \ \ell(\lambda) \leq d}} c_{\mu\nu}^{\lambda}s_{\lambda}, \quad c_{\mu\nu}^{\lambda} \in \mathbb{Z}^+_{\geq 0}.$$

• Schubert calculus of Grassmannians: the product in the cohomology ring of Grassmannians. Schur polynomials $s_{\lambda}(x)$ with λ inside a rectangle $d \times (n - d) (0 < d < n)$ may be interpreted as representatives of Schubert classes σ_{λ}

Schubert classes $\{\sigma_{\lambda}\}_{\lambda \subseteq n \times (n-d)}$ form a \mathbb{Z} -linear basis for the cohomology ring $H^*(G(d, n))$ of the Grassmannian G(d, n) (the set of all complex *d*-dimensional linear subspaces of \mathbb{C}^n), and

$$\sigma_{\mu}\sigma_{\nu} = \sum_{\lambda \subseteq d \times (n-d)} c_{\mu \nu}^{\lambda} \sigma_{\lambda}.$$

- These numbers $c_{\mu,\nu}^{\lambda}$ also arise as *tensor product multiplicities*.
 - general linear group $GL_d(\mathbb{C})$. Schur polynomials $s_{\lambda}(x)$ may be interpreted as irreducible characters of $GL_d(\mathbb{C})$. The decomposition of the tensor product of two irreducible polynomial representations V^{μ} and V^{ν} of $GL_d(\mathbb{C})$ into irreducible representations of $GL_d(\mathbb{C})$, is given by

$$V^\mu\otimes V^
u = igoplus_{\ell(\lambda)\leq d} V^{\lambda\oplus c^\lambda_{\mu\,
u}} Y^{\lambda\oplus c^\lambda_{\mu\,
u}}$$

5/26

- These numbers $c_{\mu,\nu}^{\lambda}$ also arise as *tensor product multiplicities*.
 - general linear group $GL_d(\mathbb{C})$. Schur polynomials $s_{\lambda}(x)$ may be interpreted as irreducible characters of $GL_d(\mathbb{C})$. The decomposition of the tensor product of two irreducible polynomial representations V^{μ} and V^{ν} of $GL_d(\mathbb{C})$ into irreducible representations of $GL_d(\mathbb{C})$, is given by

$$V^{\mu}\otimes V^{
u}=igoplus_{\ell(\lambda)\leq d}V^{\lambda\oplus c^{\lambda}_{\mu\,
u}}$$

• $U_q(\mathfrak{gl}_d)$ the quantum group of \mathfrak{gl}_d : \mathfrak{gl}_d -crystal bases. Let B_λ denote the crystal basis of the irreducible representation V_λ of $U_q(\mathfrak{gl}_d)$. B_λ can be taken to be the set of all SSYTs of shape λ , in the alphabet $\{1, \ldots, d\}$, equipped with crystal operators. The decomposition of the tensor product of \mathfrak{gl}_d -crystals is given by

$$B_{\mu}\otimes B_{
u}\cong igoplus_{\mathcal{T}\in\mathcal{LR}(\lambda/\mu,
u)}^{\lambda}B_{\lambda}(\mathcal{T}),$$

with $B_{\lambda}(T) \cong B_{\lambda}$.

▲□▶ ▲@▶ ▲ ≧▶ ▲ ≧▶ _ ≧

• Positivity of Littlewood-Richardson coefficients in matrix existence problems. There exist $d \times d$ non singular matrices A, B and C = AB, over a discrete valuation ring, with Smith invariants μ , ν and λ respectively iff $c_{\mu\nu}^{\lambda} > 0$.

- Positivity of Littlewood-Richardson coefficients in matrix existence problems. There exist $d \times d$ non singular matrices A, B and C = AB, over a discrete valuation ring, with Smith invariants μ , ν and λ respectively iff $c_{\mu\nu}^{\lambda} > 0$.
- The commutativity of Littlewood-Richardson coefficients

$$c_{\mu
u}^{\lambda} = c_{
u\mu}^{\lambda}$$

$$c_{\mu
u}^{\lambda}>0 ext{ iff } c_{
u\mu}^{\lambda}>0.$$

8/26

Our structure coefficients are combinatorial numbers

• The structure coefficient $c^\lambda_{\mu,
u}$ is

the cardinality of an explicit set of combinatorial objects.

- It is possible to determine $c_{\mu,\nu}^{\lambda} > 0$ without determining its exact value.
- We are interested in exploiting symmetry properties of these combinatorial objects.
- In particular, we are interested in exhibiting the commutativity symmetry

$$c_{\mu,
u}^{\lambda}=c_{
u,\mu}^{\lambda}.$$

Littlewood-Richardson coefficients as numbers which count

 The Littlewood-Richardson (LR) rule (D.E. Littlewood and A. Richardson 34; M.-P. Schützenberger 77; G.P. Thomas 74) states that the coefficients appearing in the expansion of a product of Schur polynomials s_μ and s_ν

$$s_{\mu}(x) \ s_{\nu}(x) = \sum_{\lambda} \ c_{\mu\nu}^{\lambda} \ s_{\lambda}(x)$$

are given by

$$c_{\mu\nu}^{\lambda} = \#\{T \in \mathcal{LR}(\lambda/\mu,\nu)\} = \#\mathcal{LR}(\lambda/\mu,\nu)$$
$$c_{\nu,\mu}^{\lambda} = \#\{T \in \mathcal{LR}(\lambda/\nu,\mu)\} = \#\mathcal{LR}(\lambda/\nu,\mu).$$

 $\mathcal{LR}(\lambda/\mu,\nu)$ the set of Littlewood-Richardson tableaux of shape λ/μ and weight ν .

• The connection to the cohomology of Grassmannians was made by L. Lesieur (1947).

Littlewood-Richardson tableaux (*D.E. Littlewood and A. Richardson, 1934*) or ballot tableaux

- A Young tableau ${\cal T}$ of shape λ/μ is said to be a Littlewood-Richardson tableau if
 - it is semistandard (SSYT)
 - () the entries in each row of λ/μ are weakly increasing from left to right, and
 - (2) the entries in each column of λ/μ are strictly increasing from top to bottom,
 - and satisfy the lattice permutation property or ballot condition
 - the content of each initial segment of the reading word, right to left across rows and top to bottom, is a partition.

one has 3 candidates 1,2,3 each receiving 4,2,1 votes respectively. A particular ordering of the votes is then a sequence of length 7 where at any stage candidate 1 has at least many votes as candidate 2, and candidate 2 has at least many votes as candidate 3.

・ロン ・四 と ・ ヨ と ・ ヨ と … ヨ

$$c_{31,21}^{421} = 2$$

 $c_{21,31}^{421} = 2$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The split of LR tableaux into Gelfand-Tsetlin patterns led to hives

• I.M. Gelfand, A.V. Zelevinsky (1986), A.D. Berenstein, A.V.Zelevinsky (1989)

Interlock the three GT patterns

• A hive in the edge representation form, R.C. King, C. Tollu, F. Toumazet (2006), is a labelling of all edges of a planar, equilateral triangular graph satisfying the triangle and the betweeness conditions

Edge and vertex representation of a hive A. Knutson, T. Tao (1999), and A.S. Buch (2000)

Interlocking GT-pairs and tensor product of gl_n-crystals

 The crystal basis B_λ of the irreducible representation V_λ of U_q(gl_n), can be taken to be the set of all SSYTs of shape λ, in the alphabet [n], equipped with crystal operators.

\mathfrak{gl}_n -Littlewood-Richardson rule: the decomposition of $B_\mu\otimes B_ u$

Example

$$U = \begin{bmatrix} 1 & 2 & 2 \\ 3 & 4 \end{bmatrix} \qquad V = \begin{bmatrix} 2 & 2 \\ 3 & 4 \\ 4 \end{bmatrix} \qquad U \otimes V \cong (U \leftarrow V) = \begin{bmatrix} 1 & 2 & 2 \\ 3 & 4 \end{bmatrix} \leftarrow 24234 = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 3 \\ 4 & 4 \end{bmatrix} \leftarrow 34 = \begin{bmatrix} 1 & 2 & 2 & 2 \\ 2 & 3 \\ 4 & 4 & 4 \end{bmatrix} \qquad (U \otimes V) = \begin{bmatrix} 1 & 2 & 2 & 2 \\ 2 & 3 \\ 4 & 4 & 4 \end{bmatrix} \qquad (U \otimes V) = \begin{bmatrix} 1 & 2 & 2 & 2 \\ 2 & 3 \\ 4 & 4 & 4 & 4 \end{bmatrix}$$

• The map $U \otimes V \to (P(U \otimes V), Q(U \otimes V))$ gives the \mathfrak{gl}_n -isomorphism

$$B_{\mu}\otimes B_{
u}\cong igoplus_{T\in\mathcal{LR}(\lambda/\mu,
u)}B_{\lambda}(T).$$

with $B_{\lambda}(T) = B_{\lambda} \times \{T\} \cong B_{\lambda}$. The multiplicity of B_{λ} in $B_{\mu} \otimes B_{\nu}$ is #highest (lowest) weight elements of weight λ (rev λ) in $B_{\mu} \otimes B_{\nu}$ $= |\mathcal{LR}(\lambda/\mu, \nu)| = c_{\mu,\nu}^{\lambda} \otimes c_{\mu,\nu} \otimes c_{\mu,\nu$

- The lowest and the highest weight elements of B_λ in B_μ ⊗ B_ν. The c^λ_{μ,ν} crystal connected components in B_μ ⊗ B_ν with highest weight λ are distinguished by
 - highest weight element $Y_{\mu} \otimes T_{\nu}$, and
 - ► lowest weight element $T_{\mu} \otimes Y_{rev\nu}$, where (T_{μ}, T_{ν}) is the GT-pattern pair of $T \in \mathcal{LR}(\lambda/\mu, \nu)$.

Involution commutators and the Schützenberger involution

• Henriques-Kamnitzer involution LR commutator (arxiv 2004). For each $T \in \mathcal{LR}(\lambda/\mu, \nu)$ there exists $T^* \in \mathcal{LR}(\lambda/\nu, \mu)$ such that the map

$$\begin{array}{rcl} B(\mu)\otimes B(\nu) & \to & B(\nu)\otimes B(\mu) \\ U\otimes V & \mapsto & \xi(V)\otimes \xi(U) \end{array}$$

sends

$$\begin{array}{rccc} Y_{\mu}\otimes T_{\nu} & \to & T_{\nu}^{*}\otimes\xi Y_{\mu}, & \xi T_{\nu}=T_{\nu}^{*} \\ T_{\mu}\otimes\xi Y_{\nu} & \to & Y_{\nu}\otimes T_{\mu}^{*}, & \xi T_{\mu}=T_{\mu}^{*}. \end{array}$$

For each $T \in \mathcal{LR}(\lambda/\mu, \nu)$ there exists $T^* \in \mathcal{LR}(\lambda/\nu, \mu)$ such that

 $T^*_{
u} = \xi T_{
u}, \ T^*_{\mu} = \xi T_{\mu}, \ \xi$ the Schützenberger involution.

$$\begin{array}{ccc} {\it Com}_{\it HK}\colon {\cal LR}(\lambda/\mu,\nu) & \to & {\cal LR}(\lambda/\nu,\mu) \\ T & \to & T^* \end{array} \quad \text{ is an involution}. \end{array}$$

• Pak-Vallejo LR commutator bijections (arxiv 2004):

$$\begin{array}{ccccc} \rho_{2}:\mathcal{LR}(\lambda/\mu,\nu) & \to & \mathcal{LR}(\lambda/\nu,\mu) \\ T & \to & Q: \\ \rho_{2}^{-1}:\mathcal{LR}(\lambda/\mu,\nu) & \to & \mathcal{LR}(\lambda/\nu,\mu) \\ T & \to & U: \\ \end{array} \qquad \begin{array}{cccc} Q_{\nu} = \xi T_{\nu} \\ U_{\mu} = \xi T_{\mu} \end{array}$$

Conjectured to be an involution $\rho_2 = \rho_2^{-1} \Leftrightarrow Q = U$. It is exactly the H-K commutator.

Example:

۲

Benkart,Sottile-Stroomer switching on ballot tableau pairs: ρ_1

lacksquare $b ightarrow$ a				b												
	J T =	1	1	1	1	1	1			1	1	1	1	1	1	
V. I.I		2	2	2	2	2				2	2	2	2	2		
γ _μ υ		3	1	2	3			\rightarrow		1	2	3	3			
		4	2	3	4					2	3	4	4			
	1	1	1	1	1	1				1	1	1	1	1	1	
	2	2	2	2	2			X		1	2	2	2	2		
	1	2	3	3				\rightarrow		2	2	3	3			
	2	3	4	4						2	3	4	4			
														4.3		э

22 / 26

Benkart-Sottile-Stroomer switching on ballot tableau pairs: ρ_1

1	1	1	1	1	1				1	1	1	1	1	1			
1	2	2	2	2					1	2	2	2	2				
2	3	3	3				\rightarrow		2	3	3	3					
2	2	4	4					4	2	2	4						
1	1	1	1	1	1				1	1	1	1	1	1			
1	2	2	2	2					2	2	2	2	2				
2	3	3	3				\rightarrow		1	3	3	3					
4	2	2	4						4	2	2	4					
1	1	1	1	1	1												
2	2	2	2	2													
3	3	1	3	_													
4	2	2	4			= Y	U	$= \rho_1(\mathbf{Y})$. U	T)	IJ	=)	(Y., =	T.		
r	-	-					$\nu \cup 0$	- P1('	$\mu \cup$	•)	U		·μ, □ ▶	• ν — • ₽ >	<		э

23 / 26

Internal and External insertion on skew-tableaux

For skew tableaux there are two types of row insertion: external and internal. External insertion is similar to Schensted's original procedure.

Sagan-Stanley internal insertion operator $\bar{\phi}_i$ on $Y \cup T$, Y Yamanouchi tableau, T a skew-tableau:

- Definition of internal insertion operator φ
 _i on Y_μ ∪ T. Need (i, μ_i + 1) to be an inner corner of T:
 - ▶ $\overline{\phi}_i$ bumps the entry, say x, in the inner corner cell $(i, \mu_i + 1)$ of T, and replaces it with *i*, and then inserts (externally as in the Schensted procedure) the bumped element x in the sutableau consisting of the last n i rows of T.

Internal insertion Knuth relations on skew-tableaux

Elementary Knuth transformations on words:

$$kij \equiv kji = \boxed{\frac{i \ j}{k}}, \quad i < k \le j, \quad ijk \equiv jik = \boxed{\frac{i \ k}{j}}, \quad i \le k < j.$$

Lemma

(A. 2016) $Y \cup T$ with *n* rows. Whenever the compositions are defined it holds:

$$\bar{\phi}_k \bar{\phi}_i \bar{\phi}_n (Y \cup T) = \bar{\phi}_k \bar{\phi}_n \bar{\phi}_i (Y \cup T), \quad 1 \le i < k \le n, \\ \bar{\phi}_i \bar{\phi}_n \bar{\phi}_k (Y \cup T) = \bar{\phi}_n \bar{\phi}_i \bar{\phi}_k (Y \cup T), \quad 1 \le i \le k < n.$$

Proposition

(A. 2016; Internal insertion Knuth relations on skew-tableaux.) $Y \cup T$ with n rows.

$$\begin{split} \bar{\phi}_k \bar{\phi}_i \bar{\phi}_j (Y \cup T) &= \bar{\phi}_k \bar{\phi}_j \bar{\phi}_i (Y \cup T), \quad 1 \leq i < k \leq j \leq n, \\ \bar{\phi}_i \bar{\phi}_j \bar{\phi}_k (Y \cup T) &= \bar{\phi}_j \bar{\phi}_i \bar{\phi}_k (Y \cup T), \quad 1 \leq i \leq k < j \leq n. \end{split}$$

Proof.

The action of $\overline{\phi}_k \overline{\phi}_i \overline{\phi}_j$ and $\overline{\phi}_k \overline{\phi}_j \overline{\phi}_i$ ($\overline{\phi}_i \overline{\phi}_j \overline{\phi}_k$ and $\overline{\phi}_j \overline{\phi}_i \overline{\phi}_k$) on $Y \cup T$ inserts Knuth equivalent words in the subtableau consisting of the last n - j rows of $Y \cup T$.

(A. 99; A., King, Terada, 2016) Involution commutator ρ_3

(ロ)、(型)、(注)、(注)、(注)、(注)、(26/26)