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Plan

1 Motivation: LR coefficients as structure constants versus
combinatorial numbers

2 LR tableaux, Gelfand-Tsetlin patterns (and LR hives)
3 Involution commutators of LR tableaux (and LR hives)

I based on the Schützenberger involution/jeu de taquin
I our involution commutator based on internal Schensted insertion
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Littlewood-Richardson coefficients as structure constants

The ring of symmetric polynomials: the product of Schur polynomials. Let
x = (x1, . . . , xd) be a sequence of indeterminates. Schur polynomials sλ(x)
for all partitions λ with `(λ) ≤ d , form a Z-linear basis for the ring
Λd := Z[x ]Sd of symmetric polynomials in x ,

sµsν =
∑
λ

`(λ)≤d

cλµ νsλ, cλµ ν ∈ Z+
≥0.

Schubert calculus of Grassmannians: the product in the cohomology ring of
Grassmannians. Schur polynomials sλ(x) with λ inside a rectangle
d × (n − d) (0 < d < n) may be interpreted as representatives of Schubert
classes σλ

.

Schubert classes {σλ}λ⊆n×(n−d) form a Z-linear basis for the cohomology
ring H∗(G (d , n)) of the Grassmannian G (d , n) (the set of all complex
d-dimensional linear subspaces of Cn), and

σµσν =
∑

λ⊆d×(n−d)

cλµ νσλ.
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Littlewood-Richardson coefficients as structure constants

These numbers cλµ,ν also arise as tensor product multiplicities.

I general linear group GLd(C). Schur polynomials sλ(x) may be
interpreted as irreducible characters of GLd(C). The decomposition of
the tensor product of two irreducible polynomial representations V µ

and V ν of GLd(C) into irreducible representations of GLd(C), is given
by

V µ ⊗ V ν =
⊕
`(λ)≤d

V λ⊕c
λ
µ ν .

I Uq(gld) the quantum group of gld : gld -crystal bases. Let Bλ denote
the crystal basis of the irreducible representation Vλ of Uq(gld). Bλ
can be taken to be the set of all SSYTs of shape λ, in the alphabet
{1, . . . , d}, equipped with crystal operators. The decomposition of the
tensor product of gld -crystals is given by

Bµ ⊗ Bν ∼=
⊕
λ

T∈LR(λ/µ,ν)

Bλ(T ),

with Bλ(T ) ∼= Bλ.
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Positivity of Littlewood-Richardson coefficients in matrix existence problems.
There exist d × d non singular matrices A, B and C = AB, over a discrete
valuation ring, with Smith invariants µ, ν and λ respectively iff cλµ ν > 0.

The commutativity of Littlewood-Richardson coefficients

cλµν = cλνµ

cλµν > 0 iff cλνµ > 0.
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Our structure coefficients are combinatorial numbers

The structure coefficient cλµ,ν is

the cardinality of an explicit set of combinatorial objects.

It is possible to determine cλµ,ν > 0 without determining its exact
value.

We are interested in exploiting symmetry properties of these
combinatorial objects.

In particular, we are interested in exhibiting the commutativity
symmetry

cλµ,ν = cλν,µ.
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Littlewood-Richardson coefficients as numbers which
count

The Littlewood-Richardson (LR) rule (D.E. Littlewood and A. Richardson
34; M.-P. Schützenberger 77; G.P. Thomas 74) states that the coefficients
appearing in the expansion of a product of Schur polynomials sµ and sν

sµ(x) sν(x) =
∑
λ

cλµν sλ(x)

are given by

cλµν = #{T ∈ LR(λ/µ, ν)} = #LR(λ/µ, ν)

cλν,µ = #{T ∈ LR(λ/ν, µ)} = #LR(λ/ν, µ).

LR(λ/µ, ν) the set of Littlewood-Richardson tableaux of shape λ/µ and
weight ν.

The connection to the cohomology of Grassmannians was made by L.
Lesieur (1947).
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Littlewood-Richardson tableaux (D.E. Littlewood and A.
Richardson, 1934) or ballot tableaux

A Young tableau T of shape λ/µ is said to be a Littlewood-Richardson
tableau if

I it is semistandard (SSYT)
1 the entries in each row of λ/µ are weakly increasing from left to right,

and
2 the entries in each column of λ/µ are strictly increasing from top to

bottom,
I and satisfy the lattice permutation property or ballot condition

1 the content of each initial segment of the reading word, right to left
across rows and top to bottom, is a partition.

1 1 2
1 2

1 3
2112131

1 1 1
2 2

1 3
1112231

1 1 1
1 2

2 3
1112132

one has 3 candidates 1,2,3 each receiving 4,2,1 votes respectively. A particular ordering of
the votes is then a sequence of length 7 where at any stage candidate 1 has at least many
votes as candidate 2, and candidate 2 has at least many votes as candidate 3.
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2
1

1

1
2

1

1
1

2
c42131, 21 = 2

1 1
1

2

1 1
2

1
c42121, 31 = 2
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The split of LR tableaux into Gelfand-Tsetlin patterns led
to hives

I.M. Gelfand, A.V. Zelevinsky (1986), A.D. Berenstein, A.V.Zelevinsky
(1989)

T =

1 1
1 1 2 2

1 1 2
1 2 2 3
3

µ = 75300 ν = 75200 λ = 99641

Gµ =

7
5

3
0

0

7
5

1
0

6
3

0
4

1
1

Gν =

7
5

2
0

0

7
5

1
0

6
3

0

4
22

Gλ =

9 9 6 4 1
9 8 4 1
9 6 2
7 5
7

Tµ =
1 2 2 2 3 3 4
2 3 3 4 4
4 5 5

Tν =
1 1 2 2 3 3 4
2 2 3 4 4
4 5

Tλ =

1 1 1 1 1 1 1 3 3
2 2 2 2 2 3 4 4 5
3 3 4 4 5 5
4 5 5 5
5

2 ⊆ 42 ⊆ 630 ⊆ 13 / 26



Interlock the three GT patterns

7
5

3
0

0

7
5

1
0

6
3

0
4

1
1

7
5

2
0

0

7
5

1
0

6
3

0

4
22

9 9 6 4 1

9 8 4 1

9 6 2

7 5

7

A hive in the edge representation form, R.C. King, C. Tollu, F. Toumazet
(2006), is a labelling of all edges of a planar, equilateral triangular graph
satisfying the triangle and the betweeness conditions

α β

γ
α + β = γ

β α

γ

;
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Edge and vertex representation of a hive A. Knutson, T.
Tao (1999), and A.S. Buch (2000)

7
5

3
0

0

7
5

1
0

6
3

0
4

1

1

7

5

2

0

0

7

5

1

0

6

3

0

4

22

9 9 6 4 1

9 8 4 1

9 6 2

7 5

7

0

7

12

15

15

15

9

16

21

22

22

18

24

27

27

24

28

29

28

29

29

−

+

+

− +

−

+

−

− +

−+ ≥ 0
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Interlocking GT-pairs and tensor product of gln-crystals

The crystal basis Bλ of the irreducible representation Vλ of Uq(gln), can be taken to be

the set of all SSYTs of shape λ, in the alphabet [n], equipped with crystal operators.

1 11
3

1 1 3
3

1 1 2
3

1 1 1
2

1 3 3
3

1 2 3
3

1 1 3
2

2 3 3
3

1 2 2
3

1 1 2
2

2 2 3
3

1 3 3
2

1 2 3
2

2 2 2
3

1 2 2
2

1

1

1

1

1

1
1

1

1

2

2

2

2

2

2

2

2

2

16 / 26



gln-Littlewood-Richardson rule: the decomposition of Bµ ⊗ Bν

Example

U = 1 2 2
3

V =
2 2
3 4
4

U ⊗ V ∼= (U ← V ) = 1 2 2
3

← 24234 =

1 2 2
2 3

← 4234 =
1 2 2
2 3
4

← 234 =
1 2 2 2
2 3
4

← 34 =

1 2 2 2
2 3
3 4

← 4 = P(U ⊗ V ) =

1 2 2 2
2 3
3 4
4

Q(U ⊗ V ) =

1
1

2 2
3

The map U ⊗ V → (P(U ⊗ V ),Q(U ⊗ V )) gives the gln-isomorphism

Bµ ⊗ Bν ∼=
⊕
λ

T∈LR(λ/µ,ν)

Bλ(T ),

with Bλ(T ) = Bλ × {T} ∼= Bλ. The multiplicity of Bλ in Bµ ⊗ Bν is

#highest (lowest) weight elements of weight λ (revλ) in Bµ ⊗ Bν
= |LR(λ/µ, ν)| = cλµ,ν
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The lowest and the highest weight elements of Bλ in Bµ ⊗ Bν .

The cλµ,ν crystal connected components in Bµ ⊗ Bν with highest weight λ
are distinguished by

I highest weight element Yµ ⊗ Tν , and
I lowest weight element Tµ ⊗ Yrevν ,

where (Tµ,Tν) is the GT-pattern pair of T ∈ LR(λ/µ, ν).
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Involution commutators and the Schützenberger involution

Henriques-Kamnitzer involution LR commutator (arxiv 2004). For each
T ∈ LR(λ/µ, ν) there exists T ∗ ∈ LR(λ/ν, µ) such that the map

B(µ)⊗ B(ν) → B(ν)⊗ B(µ)
U ⊗ V 7→ ξ(V )⊗ ξ(U)

sends
Yµ ⊗ Tν → T ∗ν ⊗ ξYµ, ξTν = T ∗ν
Tµ ⊗ ξYν → Yν ⊗ T ∗µ , ξTµ = T ∗µ .

For each T ∈ LR(λ/µ, ν) there exists T ∗ ∈ LR(λ/ν, µ) such that

T ∗ν = ξTν , T
∗
µ = ξTµ, ξ the Schützenberger involution.

ComHK : LR(λ/µ, ν) → LR(λ/ν, µ)
T → T ∗

is an involution.
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Pak-Vallejo LR commutator bijections (arxiv 2004):

ρ2 : LR(λ/µ, ν) → LR(λ/ν, µ)
T → Q : Qν = ξTν

ρ−12 : LR(λ/µ, ν) → LR(λ/ν, µ)
T → U : Uµ = ξTµ

Conjectured to be an involution ρ2 = ρ−12 ⇔ Q = U. It is exactly the H-K
commutator.
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Example:

T =
1 1

1
1 2 2

1 2 2 3

−→ Tν =
1 1 2 3 4
3 3 4 4
4

−→ ξTν =
1 1 1 1 2
2 2 4 4
3

−→ Q =
1 1 1

1 2
1 2 2 2

1 2 3 3
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Benkart,Sottile-Stroomer switching on ballot tableau
pairs: ρ1

� b → a b , a ≤ b � b → b � , a > b
a � a a

Yµ ∪ T =

1 1 1 1 1 1

2 2 2 2 2

3 1 2 3

4 2 3 4

→

1 1 1 1 1 1

2 2 2 2 2

1 2 3 3

2 3 4 4

1 1 1 1 1 1

2 2 2 2 2

1 2 3 3

2 3 4 4

→

1 1 1 1 1 1

1 2 2 2 2

2 2 3 3

2 3 4 4

→
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Benkart-Sottile-Stroomer switching on ballot tableau
pairs: ρ1

1 1 1 1 1 1

1 2 2 2 2

2 3 3 3

2 2 4 4

→

1 1 1 1 1 1

1 2 2 2 2

2 3 3 3

4 2 2 4

1 1 1 1 1 1

1 2 2 2 2

2 3 3 3

4 2 2 4

→

1 1 1 1 1 1

2 2 2 2 2

1 3 3 3

4 2 2 4

1 1 1 1 1 1

2 2 2 2 2

3 3 1 3

4 2 2 4 = Yν ∪ U = ρ1(Yµ ∪ T ) U ≡ Yµ, Yν ≡ T .
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Internal and External insertion on skew-tableaux
For skew tableaux there are two types of row insertion: external and internal.
External insertion is similar to Schensted’s original procedure.

Sagan-Stanley internal insertion operator φ̄i on Y ∪T , Y Yamanouchi tableau, T
a skew-tableau:

Y ∪ T =

1 1 1 1 1 1
2 2 1 2 2
3 2© 3 3
1 3 4 4
5 5

φ̄3(Y ∪ T ) =

1 1 1 1 1 1
2 2 1 2 2
3 3© 3 3
1 2© 4 4
3© 5
5©

Definition of internal insertion operator φ̄i on Yµ ∪T . Need (i , µi + 1) to be
an inner corner of T :

I φ̄i bumps the entry, say x , in the inner corner cell (i , µi + 1) of T , and
replaces it with i , and then inserts (externally as in the Schensted
procedure) the bumped element x in the sutableau consisting of the
last n − i rows of T .
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Internal insertion Knuth relations on skew-tableaux
Elementary Knuth transformations on words:

kij ≡ kji = i j
k

, i < k ≤ j , ijk ≡ jik = i k
j , i ≤ k < j .

Lemma
(A. 2016) Y ∪ T with n rows. Whenever the compositions are defined it holds:

φ̄k φ̄i φ̄n(Y ∪ T ) = φ̄k φ̄nφ̄i (Y ∪ T ), 1 ≤ i < k ≤ n,

φ̄i φ̄nφ̄k(Y ∪ T ) = φ̄nφ̄i φ̄k(Y ∪ T ), 1 ≤ i ≤ k < n.

Proposition
(A. 2016; Internal insertion Knuth relations on skew-tableaux.) Y ∪ T with n
rows.

φ̄k φ̄i φ̄j(Y ∪ T ) = φ̄k φ̄j φ̄i (Y ∪ T ), 1 ≤ i < k ≤ j ≤ n,

φ̄i φ̄j φ̄k(Y ∪ T ) = φ̄j φ̄i φ̄k(Y ∪ T ), 1 ≤ i ≤ k < j ≤ n.

Proof.
The action of φ̄k φ̄i φ̄j and φ̄k φ̄j φ̄i (φ̄i φ̄j φ̄k and φ̄j φ̄i φ̄k) on Y ∪ T inserts Knuth
equivalent words in the subtableau consisting of the last n − j rows of Y ∪ T . �
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(A. 99; A., King, Terada, 2016) Involution commutator ρ3

Yµ ∪ T =

1 1 1 1 1 1
2 2 2 2 2
3 1 2 3
4 2 3 4

Tν =

2
2 1

3 2 1
3 3 2 1

∅ ∪ ∅ → 1 1 1 1 1 1 → 1 1 1 1 1 1
2

→ 1 1 1 1 1 1
2 2 2 2 2

1 1 1 1 1 1
2 2 2 2 2
3

→
1 1 1 1 1 1
2 2 2 2 2
3 2

→
1 1 1 1 1 1
2 2 1 2 2
3 2 2

→
1 1 1 1 1 1
2 2 1 2 2
3 2 2 3

1 1 1 1 1 1
2 2 1 2 2
3 2 2 3
4

→
1 1 1 1 1 1
2 2 1 2 2
3 3 2 3
4 2

→
1 1 1 1 1 1
2 2 2 2 2
3 3 1 3
4 2 2

→
1 1 1 1 1 1
2 2 2 2 2
3 3 1 3
4 2 2 4

= Yν ∪ U

26 / 26


