
Relating Chomsky Normal Form and Greibach Normal
Form by Exponential Transposition

Jürgen Koslowski

Department of Theoretical Computer Science
Technical University Braunschweig

CT 2011, Vancouver, July 22
(last updated 2011-06-18)

http://www.iti.cs.tu-bs.de/̃ koslowj/RESEARCH

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 1 / 25

Overview

Overview

. We will look at familiar concepts

− context-free grammars (CFG’s) initially,
− push-down automata (PDA’s) later on

from a slightly different angle.

. This angle was initially suggested by work of Walters [1988], but can
be exploited further.

. At issue is the use of node-labeled trees in the theory of formal
languages.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 2 / 25

Overview

Overview

. We will look at familiar concepts

− context-free grammars (CFG’s) initially,
− push-down automata (PDA’s) later on

from a slightly different angle.

. This angle was initially suggested by work of Walters [1988], but can
be exploited further.

. At issue is the use of node-labeled trees in the theory of formal
languages.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 2 / 25

Overview

Overview

. We will look at familiar concepts

− context-free grammars (CFG’s) initially,

− push-down automata (PDA’s) later on

from a slightly different angle.

. This angle was initially suggested by work of Walters [1988], but can
be exploited further.

. At issue is the use of node-labeled trees in the theory of formal
languages.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 2 / 25

Overview

Overview

. We will look at familiar concepts

− context-free grammars (CFG’s) initially,
− push-down automata (PDA’s) later on

from a slightly different angle.

. This angle was initially suggested by work of Walters [1988], but can
be exploited further.

. At issue is the use of node-labeled trees in the theory of formal
languages.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 2 / 25

Overview

Overview

. We will look at familiar concepts

− context-free grammars (CFG’s) initially,
− push-down automata (PDA’s) later on

from a slightly different angle.

. This angle was initially suggested by work of Walters [1988], but can
be exploited further.

. At issue is the use of node-labeled trees in the theory of formal
languages.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 2 / 25

Overview

Overview

. We will look at familiar concepts

− context-free grammars (CFG’s) initially,
− push-down automata (PDA’s) later on

from a slightly different angle.

. This angle was initially suggested by work of Walters [1988], but can
be exploited further.

. At issue is the use of node-labeled trees in the theory of formal
languages.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 2 / 25

Overview

Overview

. We will look at familiar concepts

− context-free grammars (CFG’s) initially,
− push-down automata (PDA’s) later on

from a slightly different angle.

. This angle was initially suggested by work of Walters [1988], but can
be exploited further.

. At issue is the use of node-labeled trees in the theory of formal
languages.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 2 / 25

History: the man took the book

History: the man took the book

In his 1956 article “Three models for the description of language” (IRE
Transactions on Information Theory (2): 113–124) Noam Chomsky
published the first derivation tree as figure (22) with labeled nodes

Sentence

VP

NP

bookthe

Verb

took

NP

manthe

it shows the equivalence of two grammar-
derivations displayed earlier (figure (21));

it conveys the same phrase structure of
“the man took the book” as the initially
employed block diagram (figure (17)).

Other such trees are used later to show the existence of non-equivalent
derivations for certain sentences. However, they are employed just to aid
visualization, not as an object of study in their own right.

Note the distinction between leaves and (capitalized) inner nodes.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 3 / 25

History: the man took the book

History: the man took the book

In his 1956 article “Three models for the description of language” (IRE
Transactions on Information Theory (2): 113–124) Noam Chomsky
published the first derivation tree as figure (22) with labeled nodes

Sentence

VP

NP

bookthe

Verb

took

NP

manthe

it shows the equivalence of two grammar-
derivations displayed earlier (figure (21));

it conveys the same phrase structure of
“the man took the book” as the initially
employed block diagram (figure (17)).

Other such trees are used later to show the existence of non-equivalent
derivations for certain sentences. However, they are employed just to aid
visualization, not as an object of study in their own right.

Note the distinction between leaves and (capitalized) inner nodes.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 3 / 25

History: the man took the book

History: the man took the book

In his 1956 article “Three models for the description of language” (IRE
Transactions on Information Theory (2): 113–124) Noam Chomsky
published the first derivation tree as figure (22) with labeled nodes

Sentence

VP

NP

bookthe

Verb

took

NP

manthe

it shows the equivalence of two grammar-
derivations displayed earlier (figure (21));

it conveys the same phrase structure of
“the man took the book” as the initially
employed block diagram (figure (17)).

Other such trees are used later to show the existence of non-equivalent
derivations for certain sentences. However, they are employed just to aid
visualization, not as an object of study in their own right.

Note the distinction between leaves and (capitalized) inner nodes.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 3 / 25

History: the man took the book

History: the man took the book

In his 1956 article “Three models for the description of language” (IRE
Transactions on Information Theory (2): 113–124) Noam Chomsky
published the first derivation tree as figure (22) with labeled nodes

Sentence

VP

NP

bookthe

Verb

took

NP

manthe

it shows the equivalence of two grammar-
derivations displayed earlier (figure (21));

it conveys the same phrase structure of
“the man took the book” as the initially
employed block diagram (figure (17)).

Other such trees are used later to show the existence of non-equivalent
derivations for certain sentences. However, they are employed just to aid
visualization, not as an object of study in their own right.

Note the distinction between leaves and (capitalized) inner nodes.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 3 / 25

History: the man took the book

History: the man took the book

In his 1956 article “Three models for the description of language” (IRE
Transactions on Information Theory (2): 113–124) Noam Chomsky
published the first derivation tree as figure (22) with labeled nodes

Sentence

VP

NP

bookthe

Verb

took

NP

manthe

it shows the equivalence of two grammar-
derivations displayed earlier (figure (21));

it conveys the same phrase structure of
“the man took the book” as the initially
employed block diagram (figure (17)).

Other such trees are used later to show the existence of non-equivalent
derivations for certain sentences. However, they are employed just to aid
visualization, not as an object of study in their own right.

Note the distinction between leaves and (capitalized) inner nodes.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 3 / 25

History: the man took the book

History: the man took the book

In his 1956 article “Three models for the description of language” (IRE
Transactions on Information Theory (2): 113–124) Noam Chomsky
published the first derivation tree as figure (22) with labeled nodes

Sentence

VP

NP

bookthe

Verb

took

NP

manthe

it shows the equivalence of two grammar-
derivations displayed earlier (figure (21));

it conveys the same phrase structure of
“the man took the book” as the initially
employed block diagram (figure (17)).

Other such trees are used later to show the existence of non-equivalent
derivations for certain sentences.

However, they are employed just to aid
visualization, not as an object of study in their own right.

Note the distinction between leaves and (capitalized) inner nodes.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 3 / 25

History: the man took the book

History: the man took the book

In his 1956 article “Three models for the description of language” (IRE
Transactions on Information Theory (2): 113–124) Noam Chomsky
published the first derivation tree as figure (22) with labeled nodes

Sentence

VP

NP

bookthe

Verb

took

NP

manthe

it shows the equivalence of two grammar-
derivations displayed earlier (figure (21));

it conveys the same phrase structure of
“the man took the book” as the initially
employed block diagram (figure (17)).

Other such trees are used later to show the existence of non-equivalent
derivations for certain sentences. However, they are employed just to aid
visualization, not as an object of study in their own right.

Note the distinction between leaves and (capitalized) inner nodes.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 3 / 25

History: the man took the book

History: the man took the book

In his 1956 article “Three models for the description of language” (IRE
Transactions on Information Theory (2): 113–124) Noam Chomsky
published the first derivation tree as figure (22) with labeled nodes

Sentence

VP

NP

bookthe

Verb

took

NP

manthe

it shows the equivalence of two grammar-
derivations displayed earlier (figure (21));

it conveys the same phrase structure of
“the man took the book” as the initially
employed block diagram (figure (17)).

Other such trees are used later to show the existence of non-equivalent
derivations for certain sentences. However, they are employed just to aid
visualization, not as an object of study in their own right.

Note the distinction between leaves and (capitalized) inner nodes.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 3 / 25

History: the man took the book

On the finite vocabulary (= alphabet) VP of his phrase-structure
grammar (= semi-Thue rewriting system F + axioms), Chomsky remarks

In every interesting case there will be a terminal vocabulary VT (VT ⊆ VP) that

exactly characterizes the terminal strings, in the sense that every terminal string

is a string in VT and no symbol of VT is rewritten in any of the rules of F .

Chomsky’s work inspired John Backus of the Algol 58 project in 1959 to
develop most of the prevailing BNF-type presentation of CFG’s:

the alphabet is partitioned into “terminals” and “nonterminals”;

one nonterminal serves as axiom (rather than a finite set of words).

This was fine-tuned by Peter Naur for the Revised Report on ALGOL 60,
who also coined the name “Backus Normal Form”. In 1964 Donald Knuth
observed that this was not a normal form in any sense and suggested the
term “Backus-Naur Form”, saving the acronym.

Node-labeled trees in the 1960’s also formed the basis for the new field of
tree grammars/automata/languages, see Thatcher’s survey of 1973.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 4 / 25

History: the man took the book

On the finite vocabulary (= alphabet) VP of his phrase-structure
grammar (= semi-Thue rewriting system F + axioms), Chomsky remarks

In every interesting case there will be a terminal vocabulary VT (VT ⊆ VP) that

exactly characterizes the terminal strings, in the sense that every terminal string

is a string in VT and no symbol of VT is rewritten in any of the rules of F .

Chomsky’s work inspired John Backus of the Algol 58 project in 1959 to
develop most of the prevailing BNF-type presentation of CFG’s:

the alphabet is partitioned into “terminals” and “nonterminals”;

one nonterminal serves as axiom (rather than a finite set of words).

This was fine-tuned by Peter Naur for the Revised Report on ALGOL 60,
who also coined the name “Backus Normal Form”. In 1964 Donald Knuth
observed that this was not a normal form in any sense and suggested the
term “Backus-Naur Form”, saving the acronym.

Node-labeled trees in the 1960’s also formed the basis for the new field of
tree grammars/automata/languages, see Thatcher’s survey of 1973.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 4 / 25

History: the man took the book

On the finite vocabulary (= alphabet) VP of his phrase-structure
grammar (= semi-Thue rewriting system F + axioms), Chomsky remarks

In every interesting case there will be a terminal vocabulary VT (VT ⊆ VP) that

exactly characterizes the terminal strings, in the sense that every terminal string

is a string in VT and no symbol of VT is rewritten in any of the rules of F .

Chomsky’s work inspired John Backus of the Algol 58 project in 1959 to
develop most of the prevailing BNF-type presentation of CFG’s:

the alphabet is partitioned into “terminals” and “nonterminals”;

one nonterminal serves as axiom (rather than a finite set of words).

This was fine-tuned by Peter Naur for the Revised Report on ALGOL 60,
who also coined the name “Backus Normal Form”. In 1964 Donald Knuth
observed that this was not a normal form in any sense and suggested the
term “Backus-Naur Form”, saving the acronym.

Node-labeled trees in the 1960’s also formed the basis for the new field of
tree grammars/automata/languages, see Thatcher’s survey of 1973.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 4 / 25

History: the man took the book

On the finite vocabulary (= alphabet) VP of his phrase-structure
grammar (= semi-Thue rewriting system F + axioms), Chomsky remarks

In every interesting case there will be a terminal vocabulary VT (VT ⊆ VP) that

exactly characterizes the terminal strings, in the sense that every terminal string

is a string in VT and no symbol of VT is rewritten in any of the rules of F .

Chomsky’s work inspired John Backus of the Algol 58 project in 1959 to
develop most of the prevailing BNF-type presentation of CFG’s:

the alphabet is partitioned into “terminals” and “nonterminals”;

one nonterminal serves as axiom (rather than a finite set of words).

This was fine-tuned by Peter Naur for the Revised Report on ALGOL 60,
who also coined the name “Backus Normal Form”. In 1964 Donald Knuth
observed that this was not a normal form in any sense and suggested the
term “Backus-Naur Form”, saving the acronym.

Node-labeled trees in the 1960’s also formed the basis for the new field of
tree grammars/automata/languages, see Thatcher’s survey of 1973.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 4 / 25

History: the man took the book

On the finite vocabulary (= alphabet) VP of his phrase-structure
grammar (= semi-Thue rewriting system F + axioms), Chomsky remarks

In every interesting case there will be a terminal vocabulary VT (VT ⊆ VP) that

exactly characterizes the terminal strings, in the sense that every terminal string

is a string in VT and no symbol of VT is rewritten in any of the rules of F .

Chomsky’s work inspired John Backus of the Algol 58 project in 1959 to
develop most of the prevailing BNF-type presentation of CFG’s:

the alphabet is partitioned into “terminals” and “nonterminals”;

one nonterminal serves as axiom (rather than a finite set of words).

This was fine-tuned by Peter Naur for the Revised Report on ALGOL 60,
who also coined the name “Backus Normal Form”. In 1964 Donald Knuth
observed that this was not a normal form in any sense and suggested the
term “Backus-Naur Form”, saving the acronym.

Node-labeled trees in the 1960’s also formed the basis for the new field of
tree grammars/automata/languages, see Thatcher’s survey of 1973.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 4 / 25

History: the man took the book

On the finite vocabulary (= alphabet) VP of his phrase-structure
grammar (= semi-Thue rewriting system F + axioms), Chomsky remarks

In every interesting case there will be a terminal vocabulary VT (VT ⊆ VP) that

exactly characterizes the terminal strings, in the sense that every terminal string

is a string in VT and no symbol of VT is rewritten in any of the rules of F .

Chomsky’s work inspired John Backus of the Algol 58 project in 1959 to
develop most of the prevailing BNF-type presentation of CFG’s:

the alphabet is partitioned into “terminals” and “nonterminals”;

one nonterminal serves as axiom (rather than a finite set of words).

This was fine-tuned by Peter Naur for the Revised Report on ALGOL 60,
who also coined the name “Backus Normal Form”.

In 1964 Donald Knuth
observed that this was not a normal form in any sense and suggested the
term “Backus-Naur Form”, saving the acronym.

Node-labeled trees in the 1960’s also formed the basis for the new field of
tree grammars/automata/languages, see Thatcher’s survey of 1973.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 4 / 25

History: the man took the book

On the finite vocabulary (= alphabet) VP of his phrase-structure
grammar (= semi-Thue rewriting system F + axioms), Chomsky remarks

In every interesting case there will be a terminal vocabulary VT (VT ⊆ VP) that

exactly characterizes the terminal strings, in the sense that every terminal string

is a string in VT and no symbol of VT is rewritten in any of the rules of F .

Chomsky’s work inspired John Backus of the Algol 58 project in 1959 to
develop most of the prevailing BNF-type presentation of CFG’s:

the alphabet is partitioned into “terminals” and “nonterminals”;

one nonterminal serves as axiom (rather than a finite set of words).

This was fine-tuned by Peter Naur for the Revised Report on ALGOL 60,
who also coined the name “Backus Normal Form”. In 1964 Donald Knuth
observed that this was not a normal form in any sense and suggested the
term “Backus-Naur Form”, saving the acronym.

Node-labeled trees in the 1960’s also formed the basis for the new field of
tree grammars/automata/languages, see Thatcher’s survey of 1973.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 4 / 25

History: the man took the book

On the finite vocabulary (= alphabet) VP of his phrase-structure
grammar (= semi-Thue rewriting system F + axioms), Chomsky remarks

In every interesting case there will be a terminal vocabulary VT (VT ⊆ VP) that

exactly characterizes the terminal strings, in the sense that every terminal string

is a string in VT and no symbol of VT is rewritten in any of the rules of F .

Chomsky’s work inspired John Backus of the Algol 58 project in 1959 to
develop most of the prevailing BNF-type presentation of CFG’s:

the alphabet is partitioned into “terminals” and “nonterminals”;

one nonterminal serves as axiom (rather than a finite set of words).

This was fine-tuned by Peter Naur for the Revised Report on ALGOL 60,
who also coined the name “Backus Normal Form”. In 1964 Donald Knuth
observed that this was not a normal form in any sense and suggested the
term “Backus-Naur Form”, saving the acronym.

Node-labeled trees in the 1960’s also formed the basis for the new field of
tree grammars/automata/languages, see Thatcher’s survey of 1973.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 4 / 25

Background and motivation Grammars and normal forms

Background on grammars and normal forms

Definition

A context-free grammar G = 〈N,T, S , 〉 consists of disjoint finite sets
N of nonterminals and T of terminals, an axiom S ∈ N , and a finite
relation N (T + N)∗ of so-called productions.

G is said to be in

. weak Chomsky normal form (wCNF), if N (T + N∗);

. Chomsky normal form (CNF), if N
(
T + N2

)
+ {ε};

. Greibach normal form (GNF), if N (T ×N∗) + {ε};

with the technical provision for CNF and GNF that Y ε implies Y = S ,
and in this case S must not appear on the right side of other productions.

The derivation relation (N + T)∗ (N + T)∗ consists of all pairs
〈αY β, αωβ〉 with Y ω and α, β ∈ (N + T)∗ .

The words w ∈ T∗ with S ∗ w constitute the language generated by G ,
where ∗ is the reflexive transitive hull of .

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 5 / 25

Background and motivation Grammars and normal forms

Background on grammars and normal forms

Definition

A context-free grammar G = 〈N,T, S , 〉 consists of disjoint finite sets
N of nonterminals and T of terminals, an axiom S ∈ N , and a finite
relation N (T + N)∗ of so-called productions. G is said to be in

. weak Chomsky normal form (wCNF), if N (T + N∗);

. Chomsky normal form (CNF), if N
(
T + N2

)
+ {ε};

. Greibach normal form (GNF), if N (T ×N∗) + {ε};
with the technical provision for CNF and GNF that Y ε implies Y = S ,
and in this case S must not appear on the right side of other productions.

The derivation relation (N + T)∗ (N + T)∗ consists of all pairs
〈αY β, αωβ〉 with Y ω and α, β ∈ (N + T)∗ .

The words w ∈ T∗ with S ∗ w constitute the language generated by G ,
where ∗ is the reflexive transitive hull of .

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 5 / 25

Background and motivation Grammars and normal forms

Background on grammars and normal forms

Definition

A context-free grammar G = 〈N,T, S , 〉 consists of disjoint finite sets
N of nonterminals and T of terminals, an axiom S ∈ N , and a finite
relation N (T + N)∗ of so-called productions. G is said to be in

. weak Chomsky normal form (wCNF), if N (T + N∗);

. Chomsky normal form (CNF), if N
(
T + N2

)
+ {ε};

. Greibach normal form (GNF), if N (T ×N∗) + {ε};
with the technical provision for CNF and GNF that Y ε implies Y = S ,
and in this case S must not appear on the right side of other productions.

The derivation relation (N + T)∗ (N + T)∗ consists of all pairs
〈αY β, αωβ〉 with Y ω and α, β ∈ (N + T)∗ .

The words w ∈ T∗ with S ∗ w constitute the language generated by G ,
where ∗ is the reflexive transitive hull of .

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 5 / 25

Background and motivation Grammars and normal forms

Background on grammars and normal forms

Definition

A context-free grammar G = 〈N,T, S , 〉 consists of disjoint finite sets
N of nonterminals and T of terminals, an axiom S ∈ N , and a finite
relation N (T + N)∗ of so-called productions. G is said to be in

. weak Chomsky normal form (wCNF), if N (T + N∗);

. Chomsky normal form (CNF), if N
(
T + N2

)
+ {ε};

. Greibach normal form (GNF), if N (T ×N∗) + {ε};
with the technical provision for CNF and GNF that Y ε implies Y = S ,
and in this case S must not appear on the right side of other productions.

The derivation relation (N + T)∗ (N + T)∗ consists of all pairs
〈αY β, αωβ〉 with Y ω and α, β ∈ (N + T)∗ .

The words w ∈ T∗ with S ∗ w constitute the language generated by G ,
where ∗ is the reflexive transitive hull of .

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 5 / 25

Background and motivation Grammars and normal forms

Background on grammars and normal forms

Definition

A context-free grammar G = 〈N,T, S , 〉 consists of disjoint finite sets
N of nonterminals and T of terminals, an axiom S ∈ N , and a finite
relation N (T + N)∗ of so-called productions. G is said to be in

. weak Chomsky normal form (wCNF), if N (T + N∗);

. Chomsky normal form (CNF), if N
(
T + N2

)
+ {ε};

. Greibach normal form (GNF), if N (T ×N∗) + {ε};

with the technical provision for CNF and GNF that Y ε implies Y = S ,
and in this case S must not appear on the right side of other productions.

The derivation relation (N + T)∗ (N + T)∗ consists of all pairs
〈αY β, αωβ〉 with Y ω and α, β ∈ (N + T)∗ .

The words w ∈ T∗ with S ∗ w constitute the language generated by G ,
where ∗ is the reflexive transitive hull of .

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 5 / 25

Background and motivation Grammars and normal forms

Background on grammars and normal forms

Definition

A context-free grammar G = 〈N,T, S , 〉 consists of disjoint finite sets
N of nonterminals and T of terminals, an axiom S ∈ N , and a finite
relation N (T + N)∗ of so-called productions. G is said to be in

. weak Chomsky normal form (wCNF), if N (T + N∗);

. Chomsky normal form (CNF), if N
(
T + N2

)
+ {ε};

. Greibach normal form (GNF), if N (T ×N∗) + {ε};
with the technical provision for CNF and GNF that Y ε implies Y = S ,
and in this case S must not appear on the right side of other productions.

The derivation relation (N + T)∗ (N + T)∗ consists of all pairs
〈αY β, αωβ〉 with Y ω and α, β ∈ (N + T)∗ .

The words w ∈ T∗ with S ∗ w constitute the language generated by G ,
where ∗ is the reflexive transitive hull of .

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 5 / 25

Background and motivation Grammars and normal forms

Background on grammars and normal forms

Definition

A context-free grammar G = 〈N,T, S , 〉 consists of disjoint finite sets
N of nonterminals and T of terminals, an axiom S ∈ N , and a finite
relation N (T + N)∗ of so-called productions. G is said to be in

. weak Chomsky normal form (wCNF), if N (T + N∗);

. Chomsky normal form (CNF), if N
(
T + N2

)
+ {ε};

. Greibach normal form (GNF), if N (T ×N∗) + {ε};
with the technical provision for CNF and GNF that Y ε implies Y = S ,
and in this case S must not appear on the right side of other productions.

The derivation relation (N + T)∗ (N + T)∗ consists of all pairs
〈αY β, αωβ〉 with Y ω and α, β ∈ (N + T)∗ .

The words w ∈ T∗ with S ∗ w constitute the language generated by G ,
where ∗ is the reflexive transitive hull of .

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 5 / 25

Background and motivation Grammars and normal forms

Background on grammars and normal forms

Definition

A context-free grammar G = 〈N,T, S , 〉 consists of disjoint finite sets
N of nonterminals and T of terminals, an axiom S ∈ N , and a finite
relation N (T + N)∗ of so-called productions. G is said to be in

. weak Chomsky normal form (wCNF), if N (T + N∗);

. Chomsky normal form (CNF), if N
(
T + N2

)
+ {ε};

. Greibach normal form (GNF), if N (T ×N∗) + {ε};
with the technical provision for CNF and GNF that Y ε implies Y = S ,
and in this case S must not appear on the right side of other productions.

The derivation relation (N + T)∗ (N + T)∗ consists of all pairs
〈αY β, αωβ〉 with Y ω and α, β ∈ (N + T)∗ .

The words w ∈ T∗ with S ∗ w constitute the language generated by G ,
where ∗ is the reflexive transitive hull of .

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 5 / 25

Background and motivation Grammars and normal forms

Traditional tree descriptions of normal-form productions:

Y

X n−1. . .X 1X 0

resp.
Y

a

(weak Chomsky)

Y

X 1X 0

resp.
S

ε

resp.
Y

a

(Chomsky)

Y

X n−1. . .X 1X 0a

resp.
S

ε

(Greibach)

Strictly speaking, the tree for S ε is not correct; it should be just a leaf
with nonterminal S . However, this is hard to distinguish from cases,
where the derivation is not yet finished.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 6 / 25

Background and motivation Grammars and normal forms

Traditional tree descriptions of normal-form productions:

Y

X n−1. . .X 1X 0

resp.
Y

a

(weak Chomsky)

Y

X 1X 0

resp.
S

ε

resp.
Y

a

(Chomsky)

Y

X n−1. . .X 1X 0a

resp.
S

ε

(Greibach)

Strictly speaking, the tree for S ε is not correct; it should be just a leaf
with nonterminal S . However, this is hard to distinguish from cases,
where the derivation is not yet finished.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 6 / 25

Background and motivation Grammars and normal forms

Traditional tree descriptions of normal-form productions:

Y

X n−1. . .X 1X 0

resp.
Y

a

(weak Chomsky)

Y

X 1X 0

resp.
S

ε

resp.
Y

a

(Chomsky)

Y

X n−1. . .X 1X 0a

resp.
S

ε

(Greibach)

Strictly speaking, the tree for S ε is not correct; it should be just a leaf
with nonterminal S . However, this is hard to distinguish from cases,
where the derivation is not yet finished.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 6 / 25

Background and motivation Grammars and normal forms

Traditional tree descriptions of normal-form productions:

Y

X n−1. . .X 1X 0

resp.
Y

a

(weak Chomsky)

Y

X 1X 0

resp.
S

ε

resp.
Y

a

(Chomsky)

Y

X n−1. . .X 1X 0a

resp.
S

ε

(Greibach)

Strictly speaking, the tree for S ε is not correct; it should be just a leaf
with nonterminal S . However, this is hard to distinguish from cases,
where the derivation is not yet finished.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 6 / 25

Background and motivation Alternatives?

Alternatives?

Is it really necessary to lump terminals and nonterminals together into the
set V := T + N on which to form the free monoid?

No! First recall

Definition (Multigraphs)

Let D be the free category on the graph with object set N + {∗} with
n + 1 arrows di , i < n , and c from n to ∗ , n ∈ N . The category of
multigraphs now is the functor-category mgph := [Dop, set] .

For Dop G set call the elements of G∗ and of Gn , n ∈ N , objects,
resp., multiarrows. If f ∈ Gn satisfies fdi = Xi , i < n , and fc = Y ,
besides the notation Y ϕ X0X1 . . .Xn−1 we also use the circuit diagram

ϕ

Y

X0 X1 . . . Xn−1

Nodes correspond multiarrows;

“wires” correspond to objects;

the direction is from top to bottom.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 7 / 25

Background and motivation Alternatives?

Alternatives?

Is it really necessary to lump terminals and nonterminals together into the
set V := T + N on which to form the free monoid? No!

First recall

Definition (Multigraphs)

Let D be the free category on the graph with object set N + {∗} with
n + 1 arrows di , i < n , and c from n to ∗ , n ∈ N . The category of
multigraphs now is the functor-category mgph := [Dop, set] .

For Dop G set call the elements of G∗ and of Gn , n ∈ N , objects,
resp., multiarrows. If f ∈ Gn satisfies fdi = Xi , i < n , and fc = Y ,
besides the notation Y ϕ X0X1 . . .Xn−1 we also use the circuit diagram

ϕ

Y

X0 X1 . . . Xn−1

Nodes correspond multiarrows;

“wires” correspond to objects;

the direction is from top to bottom.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 7 / 25

Background and motivation Alternatives?

Alternatives?

Is it really necessary to lump terminals and nonterminals together into the
set V := T + N on which to form the free monoid? No! First recall

Definition (Multigraphs)

Let D be the free category on the graph with object set N + {∗} with
n + 1 arrows di , i < n , and c from n to ∗ , n ∈ N . The category of
multigraphs now is the functor-category mgph := [Dop, set] .

For Dop G set call the elements of G∗ and of Gn , n ∈ N , objects,
resp., multiarrows. If f ∈ Gn satisfies fdi = Xi , i < n , and fc = Y ,
besides the notation Y ϕ X0X1 . . .Xn−1 we also use the circuit diagram

ϕ

Y

X0 X1 . . . Xn−1

Nodes correspond multiarrows;

“wires” correspond to objects;

the direction is from top to bottom.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 7 / 25

Background and motivation Alternatives?

Alternatives?

Is it really necessary to lump terminals and nonterminals together into the
set V := T + N on which to form the free monoid? No! First recall

Definition (Multigraphs)

Let D be the free category on the graph with object set N + {∗} with
n + 1 arrows di , i < n , and c from n to ∗ , n ∈ N . The category of
multigraphs now is the functor-category mgph := [Dop, set] .

For Dop G set call the elements of G∗ and of Gn , n ∈ N , objects,
resp., multiarrows. If f ∈ Gn satisfies fdi = Xi , i < n , and fc = Y ,
besides the notation Y ϕ X0X1 . . .Xn−1 we also use the circuit diagram

ϕ

Y

X0 X1 . . . Xn−1

Nodes correspond multiarrows;

“wires” correspond to objects;

the direction is from top to bottom.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 7 / 25

Background and motivation Alternatives?

Alternatives?

Is it really necessary to lump terminals and nonterminals together into the
set V := T + N on which to form the free monoid? No! First recall

Definition (Multigraphs)

Let D be the free category on the graph with object set N + {∗} with
n + 1 arrows di , i < n , and c from n to ∗ , n ∈ N . The category of
multigraphs now is the functor-category mgph := [Dop, set] .

For Dop G set call the elements of G∗ and of Gn , n ∈ N , objects,
resp., multiarrows.

If f ∈ Gn satisfies fdi = Xi , i < n , and fc = Y ,
besides the notation Y ϕ X0X1 . . .Xn−1 we also use the circuit diagram

ϕ

Y

X0 X1 . . . Xn−1

Nodes correspond multiarrows;

“wires” correspond to objects;

the direction is from top to bottom.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 7 / 25

Background and motivation Alternatives?

Alternatives?

Is it really necessary to lump terminals and nonterminals together into the
set V := T + N on which to form the free monoid? No! First recall

Definition (Multigraphs)

Let D be the free category on the graph with object set N + {∗} with
n + 1 arrows di , i < n , and c from n to ∗ , n ∈ N . The category of
multigraphs now is the functor-category mgph := [Dop, set] .

For Dop G set call the elements of G∗ and of Gn , n ∈ N , objects,
resp., multiarrows. If f ∈ Gn satisfies fdi = Xi , i < n , and fc = Y ,
besides the notation Y ϕ X0X1 . . .Xn−1 we also use the circuit diagram

ϕ

Y

X0 X1 . . . Xn−1

Nodes correspond multiarrows;

“wires” correspond to objects;

the direction is from top to bottom.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 7 / 25

Background and motivation Alternatives?

Alternatives?

Is it really necessary to lump terminals and nonterminals together into the
set V := T + N on which to form the free monoid? No! First recall

Definition (Multigraphs)

Let D be the free category on the graph with object set N + {∗} with
n + 1 arrows di , i < n , and c from n to ∗ , n ∈ N . The category of
multigraphs now is the functor-category mgph := [Dop, set] .

For Dop G set call the elements of G∗ and of Gn , n ∈ N , objects,
resp., multiarrows. If f ∈ Gn satisfies fdi = Xi , i < n , and fc = Y ,
besides the notation Y ϕ X0X1 . . .Xn−1 we also use the circuit diagram

ϕ

Y

X0 X1 . . . Xn−1

Nodes correspond multiarrows;

“wires” correspond to objects;

the direction is from top to bottom.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 7 / 25

Background and motivation Alternatives?

Alternatives?

Is it really necessary to lump terminals and nonterminals together into the
set V := T + N on which to form the free monoid? No! First recall

Definition (Multigraphs)

Let D be the free category on the graph with object set N + {∗} with
n + 1 arrows di , i < n , and c from n to ∗ , n ∈ N . The category of
multigraphs now is the functor-category mgph := [Dop, set] .

For Dop G set call the elements of G∗ and of Gn , n ∈ N , objects,
resp., multiarrows. If f ∈ Gn satisfies fdi = Xi , i < n , and fc = Y ,
besides the notation Y ϕ X0X1 . . .Xn−1 we also use the circuit diagram

ϕ

Y

X0 X1 . . . Xn−1

Nodes correspond multiarrows;

“wires” correspond to objects;

the direction is from top to bottom.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 7 / 25

Background and motivation Alternatives?

Alternatives?

Is it really necessary to lump terminals and nonterminals together into the
set V := T + N on which to form the free monoid? No! First recall

Definition (Multigraphs)

Let D be the free category on the graph with object set N + {∗} with
n + 1 arrows di , i < n , and c from n to ∗ , n ∈ N . The category of
multigraphs now is the functor-category mgph := [Dop, set] .

For Dop G set call the elements of G∗ and of Gn , n ∈ N , objects,
resp., multiarrows. If f ∈ Gn satisfies fdi = Xi , i < n , and fc = Y ,
besides the notation Y ϕ X0X1 . . .Xn−1 we also use the circuit diagram

ϕ

Y

X0 X1 . . . Xn−1

Nodes correspond multiarrows;

“wires” correspond to objects;

the direction is from top to bottom.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 7 / 25

Background and motivation Alternatives?

Alternatives?

Is it really necessary to lump terminals and nonterminals together into the
set V := T + N on which to form the free monoid? No! First recall

Definition (Multigraphs)

Let D be the free category on the graph with object set N + {∗} with
n + 1 arrows di , i < n , and c from n to ∗ , n ∈ N . The category of
multigraphs now is the functor-category mgph := [Dop, set] .

For Dop G set call the elements of G∗ and of Gn , n ∈ N , objects,
resp., multiarrows. If f ∈ Gn satisfies fdi = Xi , i < n , and fc = Y ,
besides the notation Y ϕ X0X1 . . .Xn−1 we also use the circuit diagram

ϕ

Y

X0 X1 . . . Xn−1

Nodes correspond multiarrows;

“wires” correspond to objects;

the direction is from top to bottom.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 7 / 25

Background and motivation Alternatives?

Definition (Bob Walters, 1988)

For a set T consider the multigraph T〈0〉 with one object M , default
multiarrows M µn Mn, n ∈ N , and multiarrows M a M0, a ∈ T .

A CFG à la Walters over T is a faithful multigraph morphism G γ
T〈0〉

with G finite, together with a distinguished object G -object S .

Comparison with a traditional CFG in wCNF shows that

objects of G correspond to nonterminals;

the 0-ary multiarrows M a M0 correspond to terminals, while
M µ0 M0 corresponds to the empty word ε ;

the γ -assignments of T〈0〉 -multiarrows to G -multiarrows
correspond to productions.

Faithfulness prevents multiple copies of productions from occurring.

To describe the language generated by γ as directly as possible, we take a
different approach from that of Walters.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 8 / 25

Background and motivation Alternatives?

Definition (Bob Walters, 1988)

For a set T consider the multigraph T〈0〉 with one object M , default
multiarrows M µn Mn, n ∈ N , and multiarrows M a M0, a ∈ T .

A CFG à la Walters over T is a faithful multigraph morphism G γ
T〈0〉

with G finite,

together with a distinguished object G -object S .

Comparison with a traditional CFG in wCNF shows that

objects of G correspond to nonterminals;

the 0-ary multiarrows M a M0 correspond to terminals, while
M µ0 M0 corresponds to the empty word ε ;

the γ -assignments of T〈0〉 -multiarrows to G -multiarrows
correspond to productions.

Faithfulness prevents multiple copies of productions from occurring.

To describe the language generated by γ as directly as possible, we take a
different approach from that of Walters.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 8 / 25

Background and motivation Alternatives?

Definition (Bob Walters, 1988)

For a set T consider the multigraph T〈0〉 with one object M , default
multiarrows M µn Mn, n ∈ N , and multiarrows M a M0, a ∈ T .

A CFG à la Walters over T is a faithful multigraph morphism G γ
T〈0〉

with G finite, together with a distinguished object G -object S .

Comparison with a traditional CFG in wCNF shows that

objects of G correspond to nonterminals;

the 0-ary multiarrows M a M0 correspond to terminals, while
M µ0 M0 corresponds to the empty word ε ;

the γ -assignments of T〈0〉 -multiarrows to G -multiarrows
correspond to productions.

Faithfulness prevents multiple copies of productions from occurring.

To describe the language generated by γ as directly as possible, we take a
different approach from that of Walters.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 8 / 25

Background and motivation Alternatives?

Definition (Bob Walters, 1988)

For a set T consider the multigraph T〈0〉 with one object M , default
multiarrows M µn Mn, n ∈ N , and multiarrows M a M0, a ∈ T .

A CFG à la Walters over T is a faithful multigraph morphism G γ
T〈0〉

with G finite, together with a distinguished object G -object S .

Comparison with a traditional CFG in wCNF shows that

objects of G correspond to nonterminals;

the 0-ary multiarrows M a M0 correspond to terminals, while
M µ0 M0 corresponds to the empty word ε ;

the γ -assignments of T〈0〉 -multiarrows to G -multiarrows
correspond to productions.

Faithfulness prevents multiple copies of productions from occurring.

To describe the language generated by γ as directly as possible, we take a
different approach from that of Walters.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 8 / 25

Background and motivation Alternatives?

Definition (Bob Walters, 1988)

For a set T consider the multigraph T〈0〉 with one object M , default
multiarrows M µn Mn, n ∈ N , and multiarrows M a M0, a ∈ T .

A CFG à la Walters over T is a faithful multigraph morphism G γ
T〈0〉

with G finite, together with a distinguished object G -object S .

Comparison with a traditional CFG in wCNF shows that

objects of G correspond to nonterminals;

the 0-ary multiarrows M a M0 correspond to terminals, while
M µ0 M0 corresponds to the empty word ε ;

the γ -assignments of T〈0〉 -multiarrows to G -multiarrows
correspond to productions.

Faithfulness prevents multiple copies of productions from occurring.

To describe the language generated by γ as directly as possible, we take a
different approach from that of Walters.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 8 / 25

Background and motivation Alternatives?

Definition (Bob Walters, 1988)

For a set T consider the multigraph T〈0〉 with one object M , default
multiarrows M µn Mn, n ∈ N , and multiarrows M a M0, a ∈ T .

A CFG à la Walters over T is a faithful multigraph morphism G γ
T〈0〉

with G finite, together with a distinguished object G -object S .

Comparison with a traditional CFG in wCNF shows that

objects of G correspond to nonterminals;

the 0-ary multiarrows M a M0 correspond to terminals, while
M µ0 M0 corresponds to the empty word ε ;

the γ -assignments of T〈0〉 -multiarrows to G -multiarrows
correspond to productions.

Faithfulness prevents multiple copies of productions from occurring.

To describe the language generated by γ as directly as possible, we take a
different approach from that of Walters.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 8 / 25

Background and motivation Alternatives?

Definition (Bob Walters, 1988)

For a set T consider the multigraph T〈0〉 with one object M , default
multiarrows M µn Mn, n ∈ N , and multiarrows M a M0, a ∈ T .

A CFG à la Walters over T is a faithful multigraph morphism G γ
T〈0〉

with G finite, together with a distinguished object G -object S .

Comparison with a traditional CFG in wCNF shows that

objects of G correspond to nonterminals;

the 0-ary multiarrows M a M0 correspond to terminals, while
M µ0 M0 corresponds to the empty word ε ;

the γ -assignments of T〈0〉 -multiarrows to G -multiarrows
correspond to productions.

Faithfulness prevents multiple copies of productions from occurring.

To describe the language generated by γ as directly as possible, we take a
different approach from that of Walters.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 8 / 25

Background and motivation Alternatives?

Definition (Bob Walters, 1988)

For a set T consider the multigraph T〈0〉 with one object M , default
multiarrows M µn Mn, n ∈ N , and multiarrows M a M0, a ∈ T .

A CFG à la Walters over T is a faithful multigraph morphism G γ
T〈0〉

with G finite, together with a distinguished object G -object S .

Comparison with a traditional CFG in wCNF shows that

objects of G correspond to nonterminals;

the 0-ary multiarrows M a M0 correspond to terminals, while
M µ0 M0 corresponds to the empty word ε ;

the γ -assignments of T〈0〉 -multiarrows to G -multiarrows
correspond to productions.

Faithfulness prevents multiple copies of productions from occurring.

To describe the language generated by γ as directly as possible, we take a
different approach from that of Walters.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 8 / 25

Background and motivation The generated language

The generated language

. Freely extend γ to a multifunctor G∗ γ∗
T∗〈0〉 (in analogy to

forming the free category over a graph).

. The γ∗ - image of the hom-set 〈S , ε〉G∗ in 〈M,M0〉T∗〈0〉 consists of
certain tree-like composite diagrams with some leaves in T .

. The yields of these diagrams, i.e., the words formed by their leaves,
constitute the language generated by γ .

We would like to identify words generated in this fashion with their
diagrams. Hence we consider T〈0〉 as a “reflexive multigraph1” with the
default multiarrows being distinguished.

The intention is to have the default multiarrows obey certain identifications
in the free multicategory T∗〈0〉 ; hence its construction needs to be revised:

1not to be confused with the graph-theoretic notion of this name
Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 9 / 25

Background and motivation The generated language

The generated language

. Freely extend γ to a multifunctor G∗ γ∗
T∗〈0〉 (in analogy to

forming the free category over a graph).

. The γ∗ - image of the hom-set 〈S , ε〉G∗ in 〈M,M0〉T∗〈0〉 consists of
certain tree-like composite diagrams with some leaves in T .

. The yields of these diagrams, i.e., the words formed by their leaves,
constitute the language generated by γ .

We would like to identify words generated in this fashion with their
diagrams. Hence we consider T〈0〉 as a “reflexive multigraph1” with the
default multiarrows being distinguished.

The intention is to have the default multiarrows obey certain identifications
in the free multicategory T∗〈0〉 ; hence its construction needs to be revised:

1not to be confused with the graph-theoretic notion of this name
Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 9 / 25

Background and motivation The generated language

The generated language

. Freely extend γ to a multifunctor G∗ γ∗
T∗〈0〉 (in analogy to

forming the free category over a graph).

. The γ∗ - image of the hom-set 〈S , ε〉G∗ in 〈M,M0〉T∗〈0〉 consists of
certain tree-like composite diagrams with some leaves in T .

. The yields of these diagrams, i.e., the words formed by their leaves,
constitute the language generated by γ .

We would like to identify words generated in this fashion with their
diagrams. Hence we consider T〈0〉 as a “reflexive multigraph1” with the
default multiarrows being distinguished.

The intention is to have the default multiarrows obey certain identifications
in the free multicategory T∗〈0〉 ; hence its construction needs to be revised:

1not to be confused with the graph-theoretic notion of this name
Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 9 / 25

Background and motivation The generated language

The generated language

. Freely extend γ to a multifunctor G∗ γ∗
T∗〈0〉 (in analogy to

forming the free category over a graph).

. The γ∗ - image of the hom-set 〈S , ε〉G∗ in 〈M,M0〉T∗〈0〉 consists of
certain tree-like composite diagrams with some leaves in T .

. The yields of these diagrams, i.e., the words formed by their leaves,
constitute the language generated by γ .

We would like to identify words generated in this fashion with their
diagrams. Hence we consider T〈0〉 as a “reflexive multigraph1” with the
default multiarrows being distinguished.

The intention is to have the default multiarrows obey certain identifications
in the free multicategory T∗〈0〉 ; hence its construction needs to be revised:

1not to be confused with the graph-theoretic notion of this name
Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 9 / 25

Background and motivation The generated language

The generated language

. Freely extend γ to a multifunctor G∗ γ∗
T∗〈0〉 (in analogy to

forming the free category over a graph).

. The γ∗ - image of the hom-set 〈S , ε〉G∗ in 〈M,M0〉T∗〈0〉 consists of
certain tree-like composite diagrams with some leaves in T .

. The yields of these diagrams, i.e., the words formed by their leaves,
constitute the language generated by γ .

We would like to identify words generated in this fashion with their
diagrams.

Hence we consider T〈0〉 as a “reflexive multigraph1” with the
default multiarrows being distinguished.

The intention is to have the default multiarrows obey certain identifications
in the free multicategory T∗〈0〉 ; hence its construction needs to be revised:

1not to be confused with the graph-theoretic notion of this name
Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 9 / 25

Background and motivation The generated language

The generated language

. Freely extend γ to a multifunctor G∗ γ∗
T∗〈0〉 (in analogy to

forming the free category over a graph).

. The γ∗ - image of the hom-set 〈S , ε〉G∗ in 〈M,M0〉T∗〈0〉 consists of
certain tree-like composite diagrams with some leaves in T .

. The yields of these diagrams, i.e., the words formed by their leaves,
constitute the language generated by γ .

We would like to identify words generated in this fashion with their
diagrams. Hence we consider T〈0〉 as a “reflexive multigraph1” with the
default multiarrows being distinguished.

The intention is to have the default multiarrows obey certain identifications
in the free multicategory T∗〈0〉 ; hence its construction needs to be revised:

1not to be confused with the graph-theoretic notion of this name
Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 9 / 25

Background and motivation The generated language

The generated language

. Freely extend γ to a multifunctor G∗ γ∗
T∗〈0〉 (in analogy to

forming the free category over a graph).

. The γ∗ - image of the hom-set 〈S , ε〉G∗ in 〈M,M0〉T∗〈0〉 consists of
certain tree-like composite diagrams with some leaves in T .

. The yields of these diagrams, i.e., the words formed by their leaves,
constitute the language generated by γ .

We would like to identify words generated in this fashion with their
diagrams. Hence we consider T〈0〉 as a “reflexive multigraph1” with the
default multiarrows being distinguished.

The intention is to have the default multiarrows obey certain identifications
in the free multicategory T∗〈0〉 ; hence its construction needs to be revised:

1not to be confused with the graph-theoretic notion of this name
Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 9 / 25

Background and motivation Identifications in T∗〈0〉

Identifications in T∗〈0〉

µm

µn

M

M M M M M M

= µm+n−1

M

M M M M M M

and µ1

M

M

=

M

M

for m, n ∈ N , m > 0 .

This allows the elimination of µ0 - leaves, e.g.,

µ4

a b µ0 c

M

= µ3

a b c

M

Any generated w ∈ T∗ appears as yield directly underneath µ|w | .

This motivates us to write ε not only for µ0 , but also for µn , n ∈ N .

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 10 / 25

Background and motivation Identifications in T∗〈0〉

Identifications in T∗〈0〉

µm

µn

M

M M M M M M

= µm+n−1

M

M M M M M M

and µ1

M

M

=

M

M

for m, n ∈ N , m > 0 . This allows the elimination of µ0 - leaves, e.g.,

µ4

a b µ0 c

M

= µ3

a b c

M

Any generated w ∈ T∗ appears as yield directly underneath µ|w | .

This motivates us to write ε not only for µ0 , but also for µn , n ∈ N .

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 10 / 25

Background and motivation Identifications in T∗〈0〉

Identifications in T∗〈0〉

µm

µn

M

M M M M M M

= µm+n−1

M

M M M M M M

and µ1

M

M

=

M

M

for m, n ∈ N , m > 0 . This allows the elimination of µ0 - leaves, e.g.,

µ4

a b µ0 c

M

= µ3

a b c

M

Any generated w ∈ T∗ appears as yield directly underneath µ|w | .

This motivates us to write ε not only for µ0 , but also for µn , n ∈ N .

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 10 / 25

Background and motivation Identifications in T∗〈0〉

Identifications in T∗〈0〉

µm

µn

M

M M M M M M

= µm+n−1

M

M M M M M M

and µ1

M

M

=

M

M

for m, n ∈ N , m > 0 . This allows the elimination of µ0 - leaves, e.g.,

µ4

a b µ0 c

M

= µ3

a b c

M

Any generated w ∈ T∗ appears as yield directly underneath µ|w | .

This motivates us to write ε not only for µ0 , but also for µn , n ∈ N .

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 10 / 25

Background and motivation Where’s the beef?

Where’s the beef?

There is an obvious translation between the traditional tree-view and the
multiarrow view of productions, and hence of derivation diagrams:

Y

a

resp.
Y

Xn−1. . .X1X0

corresponds to a

Y

resp. ε

Y

X0 X1 . . . Xn−1

where a ∈ Tε := T + {ε} . The nonterminals are labeling nodes on the
left, but wires on the right!

Besides a certain elegance of the new approach and the better handling of
ε-productions (“peanuts”), how do we “sell” this to computer scientists or
the tree-people (Ents?), who seem to be perfectly happy with the
traditional approach?

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 11 / 25

Background and motivation Where’s the beef?

Where’s the beef?

There is an obvious translation between the traditional tree-view and the
multiarrow view of productions, and hence of derivation diagrams:

Y

a

resp.
Y

Xn−1. . .X1X0

corresponds to a

Y

resp. ε

Y

X0 X1 . . . Xn−1

where a ∈ Tε := T + {ε} .

The nonterminals are labeling nodes on the
left, but wires on the right!

Besides a certain elegance of the new approach and the better handling of
ε-productions (“peanuts”), how do we “sell” this to computer scientists or
the tree-people (Ents?), who seem to be perfectly happy with the
traditional approach?

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 11 / 25

Background and motivation Where’s the beef?

Where’s the beef?

There is an obvious translation between the traditional tree-view and the
multiarrow view of productions, and hence of derivation diagrams:

Y

a

resp.
Y

Xn−1. . .X1X0

corresponds to a

Y

resp. ε

Y

X0 X1 . . . Xn−1

where a ∈ Tε := T + {ε} . The nonterminals are labeling nodes on the
left, but wires on the right!

Besides a certain elegance of the new approach and the better handling of
ε-productions (“peanuts”), how do we “sell” this to computer scientists or
the tree-people (Ents?), who seem to be perfectly happy with the
traditional approach?

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 11 / 25

Background and motivation Where’s the beef?

Where’s the beef?

There is an obvious translation between the traditional tree-view and the
multiarrow view of productions, and hence of derivation diagrams:

Y

a

resp.
Y

Xn−1. . .X1X0

corresponds to a

Y

resp. ε

Y

X0 X1 . . . Xn−1

where a ∈ Tε := T + {ε} . The nonterminals are labeling nodes on the
left, but wires on the right!

Besides a certain elegance of the new approach and the better handling of
ε-productions (“peanuts”),

how do we “sell” this to computer scientists or
the tree-people (Ents?), who seem to be perfectly happy with the
traditional approach?

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 11 / 25

Background and motivation Where’s the beef?

Where’s the beef?

There is an obvious translation between the traditional tree-view and the
multiarrow view of productions, and hence of derivation diagrams:

Y

a

resp.
Y

Xn−1. . .X1X0

corresponds to a

Y

resp. ε

Y

X0 X1 . . . Xn−1

where a ∈ Tε := T + {ε} . The nonterminals are labeling nodes on the
left, but wires on the right!

Besides a certain elegance of the new approach and the better handling of
ε-productions (“peanuts”), how do we “sell” this to computer scientists or
the tree-people (Ents?), who seem to be perfectly happy with the
traditional approach?

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 11 / 25

Normal forms in the multi-setting Inductive datatypes

Normal forms in the multi-setting

It makes sense to adapt the algorithm for transforming a wCNF grammar
into CNF to the multigraph setting.

(We will not present this algorithm.)

ε

ε

a ε

d

b c

S

U V

W X

Y U

S

U V

W X

Y U

Consider derivation diagrams for a CFG à la
Walters in CNF, i.e., elements of 〈S , ε〉G∗
with multiarrows labeled by elements of Tε

and wires labeled by G -objects.

Disregarding for the moment the wire-labels,
these are instances of the inductive datatype
of binary trees with leaves in T :

btree T = tip T | bin(btree T, btree T) = T + btree T × btree T

Some programmers [cf., Bird, deMoor, Ex. 1.13, 1.14] know this to be
isomorphic to the inductive datatype of general trees with all nodes in T :

gtree T = node(T, listl(gtree T)) = T × listl(gtree T)

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 12 / 25

Normal forms in the multi-setting Inductive datatypes

Normal forms in the multi-setting

It makes sense to adapt the algorithm for transforming a wCNF grammar
into CNF to the multigraph setting. (We will not present this algorithm.)

ε

ε

a ε

d

b c

S

U V

W X

Y U

S

U V

W X

Y U

Consider derivation diagrams for a CFG à la
Walters in CNF, i.e., elements of 〈S , ε〉G∗
with multiarrows labeled by elements of Tε

and wires labeled by G -objects.

Disregarding for the moment the wire-labels,
these are instances of the inductive datatype
of binary trees with leaves in T :

btree T = tip T | bin(btree T, btree T) = T + btree T × btree T

Some programmers [cf., Bird, deMoor, Ex. 1.13, 1.14] know this to be
isomorphic to the inductive datatype of general trees with all nodes in T :

gtree T = node(T, listl(gtree T)) = T × listl(gtree T)

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 12 / 25

Normal forms in the multi-setting Inductive datatypes

Normal forms in the multi-setting

It makes sense to adapt the algorithm for transforming a wCNF grammar
into CNF to the multigraph setting. (We will not present this algorithm.)

ε

ε

a ε

d

b c

S

U V

W X

Y U

S

U V

W X

Y U

Consider derivation diagrams for a CFG à la
Walters in CNF, i.e., elements of 〈S , ε〉G∗
with multiarrows labeled by elements of Tε

and wires labeled by G -objects.

Disregarding for the moment the wire-labels,
these are instances of the inductive datatype
of binary trees with leaves in T :

btree T = tip T | bin(btree T, btree T) = T + btree T × btree T

Some programmers [cf., Bird, deMoor, Ex. 1.13, 1.14] know this to be
isomorphic to the inductive datatype of general trees with all nodes in T :

gtree T = node(T, listl(gtree T)) = T × listl(gtree T)

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 12 / 25

Normal forms in the multi-setting Inductive datatypes

Normal forms in the multi-setting

It makes sense to adapt the algorithm for transforming a wCNF grammar
into CNF to the multigraph setting. (We will not present this algorithm.)

ε

ε

a ε

d

b c

S

U V

W X

Y U

S

U V

W X

Y U

Consider derivation diagrams for a CFG à la
Walters in CNF, i.e., elements of 〈S , ε〉G∗
with multiarrows labeled by elements of Tε

and wires labeled by G -objects.

Disregarding for the moment the wire-labels,

these are instances of the inductive datatype
of binary trees with leaves in T :

btree T = tip T | bin(btree T, btree T) = T + btree T × btree T

Some programmers [cf., Bird, deMoor, Ex. 1.13, 1.14] know this to be
isomorphic to the inductive datatype of general trees with all nodes in T :

gtree T = node(T, listl(gtree T)) = T × listl(gtree T)

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 12 / 25

Normal forms in the multi-setting Inductive datatypes

Normal forms in the multi-setting

It makes sense to adapt the algorithm for transforming a wCNF grammar
into CNF to the multigraph setting. (We will not present this algorithm.)

ε

ε

a ε

d

b c

S

U V

W X

Y U

S

U V

W X

Y U

Consider derivation diagrams for a CFG à la
Walters in CNF, i.e., elements of 〈S , ε〉G∗
with multiarrows labeled by elements of Tε

and wires labeled by G -objects.

Disregarding for the moment the wire-labels,

these are instances of the inductive datatype
of binary trees with leaves in T :

btree T = tip T | bin(btree T, btree T) = T + btree T × btree T

Some programmers [cf., Bird, deMoor, Ex. 1.13, 1.14] know this to be
isomorphic to the inductive datatype of general trees with all nodes in T :

gtree T = node(T, listl(gtree T)) = T × listl(gtree T)

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 12 / 25

Normal forms in the multi-setting Inductive datatypes

Normal forms in the multi-setting

It makes sense to adapt the algorithm for transforming a wCNF grammar
into CNF to the multigraph setting. (We will not present this algorithm.)

ε

ε

a ε

d

b c

S

U V

W X

Y U

S

U V

W X

Y U

Consider derivation diagrams for a CFG à la
Walters in CNF, i.e., elements of 〈S , ε〉G∗
with multiarrows labeled by elements of Tε

and wires labeled by G -objects.

Disregarding for the moment the wire-labels,
these are instances of the inductive datatype
of binary trees with leaves in T :

btree T = tip T | bin(btree T, btree T) = T + btree T × btree T

Some programmers [cf., Bird, deMoor, Ex. 1.13, 1.14] know this to be
isomorphic to the inductive datatype of general trees with all nodes in T :

gtree T = node(T, listl(gtree T)) = T × listl(gtree T)

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 12 / 25

Normal forms in the multi-setting Inductive datatypes

Normal forms in the multi-setting

It makes sense to adapt the algorithm for transforming a wCNF grammar
into CNF to the multigraph setting. (We will not present this algorithm.)

ε

ε

a ε

d

b c

S

U V

W X

Y U

S

U V

W X

Y U

Consider derivation diagrams for a CFG à la
Walters in CNF, i.e., elements of 〈S , ε〉G∗
with multiarrows labeled by elements of Tε

and wires labeled by G -objects.

Disregarding for the moment the wire-labels,
these are instances of the inductive datatype
of binary trees with leaves in T :

btree T = tip T | bin(btree T, btree T) = T + btree T × btree T

Some programmers [cf., Bird, deMoor, Ex. 1.13, 1.14] know this to be
isomorphic to the inductive datatype of general trees with all nodes in T :

gtree T = node(T, listl(gtree T)) = T × listl(gtree T)

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 12 / 25

Normal forms in the multi-setting Inductive datatypes

Normal forms in the multi-setting

It makes sense to adapt the algorithm for transforming a wCNF grammar
into CNF to the multigraph setting. (We will not present this algorithm.)

ε

ε

a ε

d

b c

S

U V

W X

Y U

S

U V

W X

Y U

Consider derivation diagrams for a CFG à la
Walters in CNF, i.e., elements of 〈S , ε〉G∗
with multiarrows labeled by elements of Tε

and wires labeled by G -objects.

Disregarding for the moment the wire-labels,
these are instances of the inductive datatype
of binary trees with leaves in T :

btree T = tip T | bin(btree T, btree T) = T + btree T × btree T

Some programmers [cf., Bird, deMoor, Ex. 1.13, 1.14] know this to be
isomorphic to the inductive datatype of general trees with all nodes in T :

gtree T = node(T, listl(gtree T)) = T × listl(gtree T)

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 12 / 25

Normal forms in the multi-setting Inductive datatypes

Normal forms in the multi-setting

It makes sense to adapt the algorithm for transforming a wCNF grammar
into CNF to the multigraph setting. (We will not present this algorithm.)

ε

ε

a ε

d

b c

S

U V

W X

Y U

S

U V

W X

Y U

Consider derivation diagrams for a CFG à la
Walters in CNF, i.e., elements of 〈S , ε〉G∗
with multiarrows labeled by elements of Tε

and wires labeled by G -objects.

Disregarding for the moment the wire-labels,
these are instances of the inductive datatype
of binary trees with leaves in T :

btree T = tip T | bin(btree T, btree T) = T + btree T × btree T

Some programmers [cf., Bird, deMoor, Ex. 1.13, 1.14] know this to be
isomorphic to the inductive datatype of general trees with all nodes in T :

gtree T = node(T, listl(gtree T)) = T × listl(gtree T)

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 12 / 25

Normal forms in the multi-setting Uncurrying

The isomorphism from btree to gtree is just uncurrying:

ε

ε

a ε

d

b c

7→

ε

daa | ε

bb | ε

c

7→

a

dbb | ε

c

a | ε | ε

7→

a

b d

c

. obtain “composite nodes” by collapsing the green wires;

. revert to ordinary nodes by concatenation of labels.

Flattening these diagrams to strings requires parentheses; on the left the
ε-nodes then serve as implicit left application operators.

(a(bc))d 7→ a(b(c), d)

(There is a second (better?) isomorphism utilizing reverse Polish notation.)

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 13 / 25

Normal forms in the multi-setting Uncurrying

The isomorphism from btree to gtree is just uncurrying:

ε

ε

a ε

d

b c

7→

ε

daa | ε

bb | ε

c

7→

a

dbb | ε

c

a | ε | ε

7→

a

b d

c

. obtain “composite nodes” by collapsing the green wires;

. revert to ordinary nodes by concatenation of labels.

Flattening these diagrams to strings requires parentheses; on the left the
ε-nodes then serve as implicit left application operators.

(a(bc))d 7→ a(b(c), d)

(There is a second (better?) isomorphism utilizing reverse Polish notation.)

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 13 / 25

Normal forms in the multi-setting Uncurrying

The isomorphism from btree to gtree is just uncurrying:

ε

ε

a ε

d

b c

7→

ε

daa | ε

bb | ε

c

7→

a

dbb | ε

c

a | ε | ε

7→

a

b d

c

. obtain “composite nodes” by collapsing the green wires;

. revert to ordinary nodes by concatenation of labels.

Flattening these diagrams to strings requires parentheses; on the left the
ε-nodes then serve as implicit left application operators.

(a(bc))d 7→ a(b(c), d)

(There is a second (better?) isomorphism utilizing reverse Polish notation.)

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 13 / 25

Normal forms in the multi-setting Uncurrying

The isomorphism from btree to gtree is just uncurrying:

ε

ε

a ε

d

b c

7→

ε

daa | ε

bb | ε

c

7→

a

dbb | ε

c

a | ε | ε

7→

a

b d

c

. obtain “composite nodes” by collapsing the green wires;

. revert to ordinary nodes by concatenation of labels.

Flattening these diagrams to strings requires parentheses; on the left the
ε-nodes then serve as implicit left application operators.

(a(bc))d 7→ a(b(c), d)

(There is a second (better?) isomorphism utilizing reverse Polish notation.)

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 13 / 25

Normal forms in the multi-setting Uncurrying

The isomorphism from btree to gtree is just uncurrying:

ε

ε

a ε

d

b c

7→

ε

daa | ε

bb | ε

c

7→

a

dbb | ε

c

a | ε | ε

7→

a

b d

c

. obtain “composite nodes” by collapsing the green wires;

. revert to ordinary nodes by concatenation of labels.

Flattening these diagrams to strings requires parentheses; on the left the
ε-nodes then serve as implicit left application operators.

(a(bc))d 7→ a(b(c), d)

(There is a second (better?) isomorphism utilizing reverse Polish notation.)

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 13 / 25

Normal forms in the multi-setting Uncurrying

The isomorphism from btree to gtree is just uncurrying:

ε

ε

a ε

d

b c

7→

ε

daa | ε

bb | ε

c

7→

a

dbb | ε

c

a | ε | ε

7→

a

b d

c

. obtain “composite nodes” by collapsing the green wires;

. revert to ordinary nodes by concatenation of labels.

Flattening these diagrams to strings requires parentheses; on the left the
ε-nodes then serve as implicit left application operators.

(a(bc))d 7→ a(b(c), d)

(There is a second (better?) isomorphism utilizing reverse Polish notation.)

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 13 / 25

Normal forms in the multi-setting Uncurrying

The isomorphism from btree to gtree is just uncurrying:

ε

ε

a ε

d

b c

7→

ε

daa | ε

bb | ε

c

7→

a

dbb | ε

c

a | ε | ε

7→

a

b d

c

. obtain “composite nodes” by collapsing the green wires;

. revert to ordinary nodes by concatenation of labels.

Flattening these diagrams to strings requires parentheses; on the left the
ε-nodes then serve as implicit left application operators.

(a(bc))d 7→ a(b(c), d)

(There is a second (better?) isomorphism utilizing reverse Polish notation.)

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 13 / 25

Normal forms in the multi-setting Uncurrying

The isomorphism from btree to gtree is just uncurrying:

ε

ε

a ε

d

b c

7→

ε

daa | ε

bb | ε

c

7→

a

dbb | ε

c

a | ε | ε

7→

a

b d

c

. obtain “composite nodes” by collapsing the green wires;

. revert to ordinary nodes by concatenation of labels.

Flattening these diagrams to strings requires parentheses; on the left the
ε-nodes then serve as implicit left application operators.

(a(bc))d 7→ a(b(c), d)

(There is a second (better?) isomorphism utilizing reverse Polish notation.)

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 13 / 25

Normal forms in the multi-setting Uncurrying

The isomorphism from btree to gtree is just uncurrying:

ε

ε

a ε

d

b c

7→

ε

daa | ε

bb | ε

c

7→

a

dbb | ε

c

a | ε | ε

7→

a

b d

c

. obtain “composite nodes” by collapsing the green wires;

. revert to ordinary nodes by concatenation of labels.

Flattening these diagrams to strings requires parentheses; on the left the
ε-nodes then serve as implicit left application operators.

(a(bc))d 7→ a(b(c), d)

(There is a second (better?) isomorphism utilizing reverse Polish notation.)

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 13 / 25

Normal forms in the multi-setting GNF and currying

a

b d

c

S

X V

U

S

X V

U

Recovering the wire-labels,

the resulting diagram ought
to be interpreted as derivation in a GNF grammar with
conventional productions

S aXV , X bU , U c , V d

Of course, this diagram no longer lives in the reflexive multigraph T〈0〉 ,
but rather in T〈N〉 , where all hom-sets coincide with T + {ε} .

Currying the non-nullary
productions of a GNF and
splitting the results clearly
yields an equivalent CNF:

Not being able to recover
previously collapsed green
wires creates no problems.
The new objects can be
mapped on the old ones.

a

Y

X0 X1 . . . Xn−1

7→

ε

ε

···

ε

a

Y

ϕn−1

ϕ2

Xn−1

ϕ1
X1

ϕ0
X0

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 14 / 25

Normal forms in the multi-setting GNF and currying

a

b d

c

S

X V

U

S

X V

U

Recovering the wire-labels,

the resulting diagram ought
to be interpreted as derivation in a GNF grammar with
conventional productions

S aXV , X bU , U c , V d

Of course, this diagram no longer lives in the reflexive multigraph T〈0〉 ,
but rather in T〈N〉 , where all hom-sets coincide with T + {ε} .

Currying the non-nullary
productions of a GNF and
splitting the results clearly
yields an equivalent CNF:

Not being able to recover
previously collapsed green
wires creates no problems.
The new objects can be
mapped on the old ones.

a

Y

X0 X1 . . . Xn−1

7→

ε

ε

···

ε

a

Y

ϕn−1

ϕ2

Xn−1

ϕ1
X1

ϕ0
X0

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 14 / 25

Normal forms in the multi-setting GNF and currying

a

b d

c

S

X V

U

S

X V

U

Recovering the wire-labels, the resulting diagram ought
to be interpreted as derivation in a GNF grammar with
conventional productions

S aXV , X bU , U c , V d

Of course, this diagram no longer lives in the reflexive multigraph T〈0〉 ,
but rather in T〈N〉 , where all hom-sets coincide with T + {ε} .

Currying the non-nullary
productions of a GNF and
splitting the results clearly
yields an equivalent CNF:

Not being able to recover
previously collapsed green
wires creates no problems.
The new objects can be
mapped on the old ones.

a

Y

X0 X1 . . . Xn−1

7→

ε

ε

···

ε

a

Y

ϕn−1

ϕ2

Xn−1

ϕ1
X1

ϕ0
X0

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 14 / 25

Normal forms in the multi-setting GNF and currying

a

b d

c

S

X V

U

S

X V

U

Recovering the wire-labels, the resulting diagram ought
to be interpreted as derivation in a GNF grammar with
conventional productions

S aXV , X bU , U c , V d

Of course, this diagram no longer lives in the reflexive multigraph T〈0〉 ,
but rather in T〈N〉 ,

where all hom-sets coincide with T + {ε} .

Currying the non-nullary
productions of a GNF and
splitting the results clearly
yields an equivalent CNF:

Not being able to recover
previously collapsed green
wires creates no problems.
The new objects can be
mapped on the old ones.

a

Y

X0 X1 . . . Xn−1

7→

ε

ε

···

ε

a

Y

ϕn−1

ϕ2

Xn−1

ϕ1
X1

ϕ0
X0

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 14 / 25

Normal forms in the multi-setting GNF and currying

a

b d

c

S

X V

U

S

X V

U

Recovering the wire-labels, the resulting diagram ought
to be interpreted as derivation in a GNF grammar with
conventional productions

S aXV , X bU , U c , V d

Of course, this diagram no longer lives in the reflexive multigraph T〈0〉 ,
but rather in T〈N〉 , where all hom-sets coincide with T + {ε} .

Currying the non-nullary
productions of a GNF and
splitting the results clearly
yields an equivalent CNF:

Not being able to recover
previously collapsed green
wires creates no problems.
The new objects can be
mapped on the old ones.

a

Y

X0 X1 . . . Xn−1

7→

ε

ε

···

ε

a

Y

ϕn−1

ϕ2

Xn−1

ϕ1
X1

ϕ0
X0

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 14 / 25

Normal forms in the multi-setting GNF and currying

a

b d

c

S

X V

U

S

X V

U

Recovering the wire-labels, the resulting diagram ought
to be interpreted as derivation in a GNF grammar with
conventional productions

S aXV , X bU , U c , V d

Of course, this diagram no longer lives in the reflexive multigraph T〈0〉 ,
but rather in T〈N〉 , where all hom-sets coincide with T + {ε} .

Currying the non-nullary
productions of a GNF and
splitting the results clearly
yields an equivalent CNF:

Not being able to recover
previously collapsed green
wires creates no problems.
The new objects can be
mapped on the old ones.

a

Y

X0 X1 . . . Xn−1

7→

ε

ε

···

ε

a

Y

ϕn−1

ϕ2

Xn−1

ϕ1
X1

ϕ0
X0

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 14 / 25

Normal forms in the multi-setting GNF and currying

a

b d

c

S

X V

U

S

X V

U

Recovering the wire-labels, the resulting diagram ought
to be interpreted as derivation in a GNF grammar with
conventional productions

S aXV , X bU , U c , V d

Of course, this diagram no longer lives in the reflexive multigraph T〈0〉 ,
but rather in T〈N〉 , where all hom-sets coincide with T + {ε} .

Currying the non-nullary
productions of a GNF and
splitting the results clearly
yields an equivalent CNF:

Not being able to recover
previously collapsed green
wires creates no problems.
The new objects can be
mapped on the old ones.

a

Y

X0 X1 . . . Xn−1

7→

ε

ε

···

ε

a

Y

ϕn−1

ϕ2

Xn−1

ϕ1
X1

ϕ0
X0

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 14 / 25

Normal forms in the multi-setting GNF and currying

a

b d

c

S

X V

U

S

X V

U

Recovering the wire-labels, the resulting diagram ought
to be interpreted as derivation in a GNF grammar with
conventional productions

S aXV , X bU , U c , V d

Of course, this diagram no longer lives in the reflexive multigraph T〈0〉 ,
but rather in T〈N〉 , where all hom-sets coincide with T + {ε} .

Currying the non-nullary
productions of a GNF and
splitting the results clearly
yields an equivalent CNF:

Not being able to recover
previously collapsed green
wires creates no problems.

The new objects can be
mapped on the old ones.

a

Y

X0 X1 . . . Xn−1

7→

ε

ε

···

ε

a

Y

ϕn−1

ϕ2

Xn−1

ϕ1
X1

ϕ0
X0

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 14 / 25

Normal forms in the multi-setting GNF and currying

a

b d

c

S

X V

U

S

X V

U

Recovering the wire-labels, the resulting diagram ought
to be interpreted as derivation in a GNF grammar with
conventional productions

S aXV , X bU , U c , V d

Of course, this diagram no longer lives in the reflexive multigraph T〈0〉 ,
but rather in T〈N〉 , where all hom-sets coincide with T + {ε} .

Currying the non-nullary
productions of a GNF and
splitting the results clearly
yields an equivalent CNF:

Not being able to recover
previously collapsed green
wires creates no problems.
The new objects can be
mapped on the old ones.

a

Y

X0 X1 . . . Xn−1

7→

ε

ε

···

ε

a

Y

ϕn−1

ϕ2

Xn−1

ϕ1
X1

ϕ0
X0

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 14 / 25

The issue of recursiveness

The issue of recursiveness

Conversely, constructing a GNF from a CNF requires uncurrying certain
left-combinations of CNF productions to obtain single GNF productions.

For only finitely many such combinations to exist, the CNF-multigraph G
must not admit left feedback (or not be left-recursive).

Adapting classical grammar techniques, eliminating direct feedback at X
can be achieved by new nonterminals X̄ and X ′ and new productions:

ϕi

X

X Yi

i < n

,

ψj

X

Uj Vj

j < m

7→,

ϕ̄i

ψ̄j

X

Yi

Uj Vj

i < n , j < m

X̄

, [X]

X

X̄ X ′

,

ϕ′i

ϕk,l

X ′

Yi

Yk Yl

i , k, l < n

X ′

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 15 / 25

The issue of recursiveness

The issue of recursiveness

Conversely, constructing a GNF from a CNF requires uncurrying certain
left-combinations of CNF productions to obtain single GNF productions.
For only finitely many such combinations to exist, the CNF-multigraph G
must not admit left feedback (or not be left-recursive).

Adapting classical grammar techniques, eliminating direct feedback at X
can be achieved by new nonterminals X̄ and X ′ and new productions:

ϕi

X

X Yi

i < n

,

ψj

X

Uj Vj

j < m

7→,

ϕ̄i

ψ̄j

X

Yi

Uj Vj

i < n , j < m

X̄

, [X]

X

X̄ X ′

,

ϕ′i

ϕk,l

X ′

Yi

Yk Yl

i , k, l < n

X ′

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 15 / 25

The issue of recursiveness

The issue of recursiveness

Conversely, constructing a GNF from a CNF requires uncurrying certain
left-combinations of CNF productions to obtain single GNF productions.
For only finitely many such combinations to exist, the CNF-multigraph G
must not admit left feedback (or not be left-recursive).

Adapting classical grammar techniques, eliminating direct feedback at X
can be achieved by new nonterminals X̄ and X ′ and new productions:

ϕi

X

X Yi

i < n

,

ψj

X

Uj Vj

j < m

7→,

ϕ̄i

ψ̄j

X

Yi

Uj Vj

i < n , j < m

X̄

, [X]

X

X̄ X ′

,

ϕ′i

ϕk,l

X ′

Yi

Yk Yl

i , k, l < n

X ′

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 15 / 25

The issue of recursiveness

The issue of recursiveness

Conversely, constructing a GNF from a CNF requires uncurrying certain
left-combinations of CNF productions to obtain single GNF productions.
For only finitely many such combinations to exist, the CNF-multigraph G
must not admit left feedback (or not be left-recursive).

Adapting classical grammar techniques, eliminating direct feedback at X
can be achieved by new nonterminals X̄ and X ′ and new productions:

ϕi

X

X Yi

i < n

, ψj

X

Uj Vj

j < m

7→,

ϕ̄i

ψ̄j

X

Yi

Uj Vj

i < n , j < m

X̄

, [X]

X

X̄ X ′

,

ϕ′i

ϕk,l

X ′

Yi

Yk Yl

i , k, l < n

X ′

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 15 / 25

The issue of recursiveness

The issue of recursiveness

Conversely, constructing a GNF from a CNF requires uncurrying certain
left-combinations of CNF productions to obtain single GNF productions.
For only finitely many such combinations to exist, the CNF-multigraph G
must not admit left feedback (or not be left-recursive).

Adapting classical grammar techniques, eliminating direct feedback at X
can be achieved by new nonterminals X̄ and X ′ and new productions:

ϕi

X

X Yi

i < n

, ψj

X

Uj Vj

j < m

7→

,

ϕ̄i

ψ̄j

X

Yi

Uj Vj

i < n , j < m

X̄

, [X]

X

X̄ X ′

,

ϕ′i

ϕk,l

X ′

Yi

Yk Yl

i , k, l < n

X ′

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 15 / 25

The issue of recursiveness

The issue of recursiveness

Conversely, constructing a GNF from a CNF requires uncurrying certain
left-combinations of CNF productions to obtain single GNF productions.
For only finitely many such combinations to exist, the CNF-multigraph G
must not admit left feedback (or not be left-recursive).

Adapting classical grammar techniques, eliminating direct feedback at X
can be achieved by new nonterminals X̄ and X ′ and new productions:

ϕi

X

X Yi

i < n

,

ψj

X

Uj Vj

j < m

7→

,

ϕ̄i

ψ̄j

X

Yi

Uj Vj

i < n , j < m

X̄

, [X]

X

X̄ X ′

,

ϕ′i

ϕk,l

X ′

Yi

Yk Yl

i , k, l < n

X ′

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 15 / 25

The issue of recursiveness

Of course, delayed feedback has to be eliminated as well.

This requires a
recursive procedure with some arbitrary ordering on the G -objects:

Once the objects Xi , i < n , have been treated, perform “re-associations”

ϕ

ψ

Xn

Z

U V

Xi 7→

ϕ′

ψ′

Xn

U

V Z

X ′i

until no multiarrows of the form Xn
ϕ Xi Z with i < n are left. Then

eliminate direct feedback at Xn as described above.

This is an expensive operation as it can square the size of the grammar,
i.e., the sum over the symbols in all productions. Uncurrying, like all
classical algorithms, can lead to another squaring in size.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 16 / 25

The issue of recursiveness

Of course, delayed feedback has to be eliminated as well. This requires a
recursive procedure with some arbitrary ordering on the G -objects:

Once the objects Xi , i < n , have been treated, perform “re-associations”

ϕ

ψ

Xn

Z

U V

Xi 7→

ϕ′

ψ′

Xn

U

V Z

X ′i

until no multiarrows of the form Xn
ϕ Xi Z with i < n are left. Then

eliminate direct feedback at Xn as described above.

This is an expensive operation as it can square the size of the grammar,
i.e., the sum over the symbols in all productions. Uncurrying, like all
classical algorithms, can lead to another squaring in size.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 16 / 25

The issue of recursiveness

Of course, delayed feedback has to be eliminated as well. This requires a
recursive procedure with some arbitrary ordering on the G -objects:

Once the objects Xi , i < n , have been treated, perform “re-associations”

ϕ

ψ

Xn

Z

U V

Xi 7→

ϕ′

ψ′

Xn

U

V Z

X ′i

until no multiarrows of the form Xn
ϕ Xi Z with i < n are left. Then

eliminate direct feedback at Xn as described above.

This is an expensive operation as it can square the size of the grammar,
i.e., the sum over the symbols in all productions. Uncurrying, like all
classical algorithms, can lead to another squaring in size.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 16 / 25

The issue of recursiveness

Of course, delayed feedback has to be eliminated as well. This requires a
recursive procedure with some arbitrary ordering on the G -objects:

Once the objects Xi , i < n , have been treated, perform “re-associations”

ϕ

ψ

Xn

Z

U V

Xi 7→

ϕ′

ψ′

Xn

U

V Z

X ′i

until no multiarrows of the form Xn
ϕ Xi Z with i < n are left.

Then
eliminate direct feedback at Xn as described above.

This is an expensive operation as it can square the size of the grammar,
i.e., the sum over the symbols in all productions. Uncurrying, like all
classical algorithms, can lead to another squaring in size.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 16 / 25

The issue of recursiveness

Of course, delayed feedback has to be eliminated as well. This requires a
recursive procedure with some arbitrary ordering on the G -objects:

Once the objects Xi , i < n , have been treated, perform “re-associations”

ϕ

ψ

Xn

Z

U V

Xi 7→

ϕ′

ψ′

Xn

U

V Z

X ′i

until no multiarrows of the form Xn
ϕ Xi Z with i < n are left. Then

eliminate direct feedback at Xn as described above.

This is an expensive operation as it can square the size of the grammar,
i.e., the sum over the symbols in all productions. Uncurrying, like all
classical algorithms, can lead to another squaring in size.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 16 / 25

The issue of recursiveness

Of course, delayed feedback has to be eliminated as well. This requires a
recursive procedure with some arbitrary ordering on the G -objects:

Once the objects Xi , i < n , have been treated, perform “re-associations”

ϕ

ψ

Xn

Z

U V

Xi 7→

ϕ′

ψ′

Xn

U

V Z

X ′i

until no multiarrows of the form Xn
ϕ Xi Z with i < n are left. Then

eliminate direct feedback at Xn as described above.

This is an expensive operation as it can square the size of the grammar,
i.e., the sum over the symbols in all productions.

Uncurrying, like all
classical algorithms, can lead to another squaring in size.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 16 / 25

The issue of recursiveness

Of course, delayed feedback has to be eliminated as well. This requires a
recursive procedure with some arbitrary ordering on the G -objects:

Once the objects Xi , i < n , have been treated, perform “re-associations”

ϕ

ψ

Xn

Z

U V

Xi 7→

ϕ′

ψ′

Xn

U

V Z

X ′i

until no multiarrows of the form Xn
ϕ Xi Z with i < n are left. Then

eliminate direct feedback at Xn as described above.

This is an expensive operation as it can square the size of the grammar,
i.e., the sum over the symbols in all productions. Uncurrying, like all
classical algorithms, can lead to another squaring in size.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 16 / 25

The regular case and automata

The regular case and automata

Interpreting (faithful) morphisms of reflexive(!) graphs, G γ
T〈1〉 with

G finite, as regular T -grammars provided Walters’ motivation.

Thinking of such graph morphisms instead as labeled transition systems,
possibly with ε-transitions, nonterminals turn into states. Specifying initial
and final states results in the notion of finite state automaton (FSA).

Now we can apply currying to the transitions of such an automaton:

S

a

b

c

T final

X

Y

7→

S

a

b ε

c

ε

T final

ε
Da X

Db Y

Dc

This essentially results in a right-linear
and hence regular grammar that is in
CNF iff the automaton does not have
ε-transitions.

Final states provide an externally
imposed mechanism for termination,
as T〈1〉 has no default for this.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 17 / 25

The regular case and automata

The regular case and automata

Interpreting (faithful) morphisms of reflexive(!) graphs, G γ
T〈1〉 with

G finite, as regular T -grammars provided Walters’ motivation.

Thinking of such graph morphisms instead as labeled transition systems,
possibly with ε-transitions, nonterminals turn into states.

Specifying initial
and final states results in the notion of finite state automaton (FSA).

Now we can apply currying to the transitions of such an automaton:

S

a

b

c

T final

X

Y

7→

S

a

b ε

c

ε

T final

ε
Da X

Db Y

Dc

This essentially results in a right-linear
and hence regular grammar that is in
CNF iff the automaton does not have
ε-transitions.

Final states provide an externally
imposed mechanism for termination,
as T〈1〉 has no default for this.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 17 / 25

The regular case and automata

The regular case and automata

Interpreting (faithful) morphisms of reflexive(!) graphs, G γ
T〈1〉 with

G finite, as regular T -grammars provided Walters’ motivation.

Thinking of such graph morphisms instead as labeled transition systems,
possibly with ε-transitions, nonterminals turn into states. Specifying initial
and final states results in the notion of finite state automaton (FSA).

Now we can apply currying to the transitions of such an automaton:

S

a

b

c

T final

X

Y

7→

S

a

b ε

c

ε

T final

ε
Da X

Db Y

Dc

This essentially results in a right-linear
and hence regular grammar that is in
CNF iff the automaton does not have
ε-transitions.

Final states provide an externally
imposed mechanism for termination,
as T〈1〉 has no default for this.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 17 / 25

The regular case and automata

The regular case and automata

Interpreting (faithful) morphisms of reflexive(!) graphs, G γ
T〈1〉 with

G finite, as regular T -grammars provided Walters’ motivation.

Thinking of such graph morphisms instead as labeled transition systems,
possibly with ε-transitions, nonterminals turn into states. Specifying initial
and final states results in the notion of finite state automaton (FSA).

Now we can apply currying to the transitions of such an automaton:

S

a

b

c

T final

X

Y

7→

S

a

b ε

c

ε

T final

ε
Da X

Db Y

Dc

This essentially results in a right-linear
and hence regular grammar that is in
CNF iff the automaton does not have
ε-transitions.

Final states provide an externally
imposed mechanism for termination,
as T〈1〉 has no default for this.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 17 / 25

The regular case and automata

The regular case and automata

Interpreting (faithful) morphisms of reflexive(!) graphs, G γ
T〈1〉 with

G finite, as regular T -grammars provided Walters’ motivation.

Thinking of such graph morphisms instead as labeled transition systems,
possibly with ε-transitions, nonterminals turn into states. Specifying initial
and final states results in the notion of finite state automaton (FSA).

Now we can apply currying to the transitions of such an automaton:

S

a

b

c

T final

X

Y

7→

S

a

b ε

c

ε

T final

ε
Da X

Db Y

Dc

This essentially results in a right-linear
and hence regular grammar that is in
CNF iff the automaton does not have
ε-transitions.

Final states provide an externally
imposed mechanism for termination,
as T〈1〉 has no default for this.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 17 / 25

The regular case and automata

The regular case and automata

Interpreting (faithful) morphisms of reflexive(!) graphs, G γ
T〈1〉 with

G finite, as regular T -grammars provided Walters’ motivation.

Thinking of such graph morphisms instead as labeled transition systems,
possibly with ε-transitions, nonterminals turn into states. Specifying initial
and final states results in the notion of finite state automaton (FSA).

Now we can apply currying to the transitions of such an automaton:

S

a

b

c

T final

X

Y

7→

S

a

b ε

c

ε

T final

ε
Da X

Db Y

Dc

This essentially results in a right-linear
and hence regular grammar that is in
CNF iff the automaton does not have
ε-transitions.

Final states provide an externally
imposed mechanism for termination,
as T〈1〉 has no default for this.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 17 / 25

The regular case and automata

The regular case and automata

Interpreting (faithful) morphisms of reflexive(!) graphs, G γ
T〈1〉 with

G finite, as regular T -grammars provided Walters’ motivation.

Thinking of such graph morphisms instead as labeled transition systems,
possibly with ε-transitions, nonterminals turn into states. Specifying initial
and final states results in the notion of finite state automaton (FSA).

Now we can apply currying to the transitions of such an automaton:

S

a

b

c

T final

X

Y

7→

S

a

b ε

c

ε

T final

ε
Da X

Db Y

Dc

This essentially results in a right-linear
and hence regular grammar that is in
CNF iff the automaton does not have
ε-transitions.

Final states provide an externally
imposed mechanism for termination,
as T〈1〉 has no default for this.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 17 / 25

The regular case and automata PDA’s

Extend the notion of CFG to faithful multigraph morphisms G γ
T〈N〉.

These can be turned into push-down automata (PDA), provided that

. strings(!) of nonterminals are interpreted as (internal) states;

. only left-derivations are considered, which corresponds to the
constrained access to the stack via its top.

The initial state is S , while the canonical final state is ε .

In particular, CFG’s in GNF correspond to push-down automata without
ε-transitions, and the transformation into GNF can be viewed as the
elimination of ε-transitions from a general PDA.

Also note that CFG-induced PDA’s are pure in the sense of having only
one external state. Still they can accept any context-free language.

Conventionally, PDA’s are defined with external states. Eliminating the
stack then leads to FSA’s, also called 0-PDA’s. As seen above, FSA’s can
also be realized by pure PDA’s, where the stack is limited to depth 1.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 18 / 25

The regular case and automata PDA’s

Extend the notion of CFG to faithful multigraph morphisms G γ
T〈N〉.

These can be turned into push-down automata (PDA), provided that

. strings(!) of nonterminals are interpreted as (internal) states;

. only left-derivations are considered, which corresponds to the
constrained access to the stack via its top.

The initial state is S , while the canonical final state is ε .

In particular, CFG’s in GNF correspond to push-down automata without
ε-transitions, and the transformation into GNF can be viewed as the
elimination of ε-transitions from a general PDA.

Also note that CFG-induced PDA’s are pure in the sense of having only
one external state. Still they can accept any context-free language.

Conventionally, PDA’s are defined with external states. Eliminating the
stack then leads to FSA’s, also called 0-PDA’s. As seen above, FSA’s can
also be realized by pure PDA’s, where the stack is limited to depth 1.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 18 / 25

The regular case and automata PDA’s

Extend the notion of CFG to faithful multigraph morphisms G γ
T〈N〉.

These can be turned into push-down automata (PDA), provided that

. strings(!) of nonterminals are interpreted as (internal) states;

. only left-derivations are considered, which corresponds to the
constrained access to the stack via its top.

The initial state is S , while the canonical final state is ε .

In particular, CFG’s in GNF correspond to push-down automata without
ε-transitions, and the transformation into GNF can be viewed as the
elimination of ε-transitions from a general PDA.

Also note that CFG-induced PDA’s are pure in the sense of having only
one external state. Still they can accept any context-free language.

Conventionally, PDA’s are defined with external states. Eliminating the
stack then leads to FSA’s, also called 0-PDA’s. As seen above, FSA’s can
also be realized by pure PDA’s, where the stack is limited to depth 1.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 18 / 25

The regular case and automata PDA’s

Extend the notion of CFG to faithful multigraph morphisms G γ
T〈N〉.

These can be turned into push-down automata (PDA), provided that

. strings(!) of nonterminals are interpreted as (internal) states;

. only left-derivations are considered, which corresponds to the
constrained access to the stack via its top.

The initial state is S , while the canonical final state is ε .

In particular, CFG’s in GNF correspond to push-down automata without
ε-transitions, and the transformation into GNF can be viewed as the
elimination of ε-transitions from a general PDA.

Also note that CFG-induced PDA’s are pure in the sense of having only
one external state. Still they can accept any context-free language.

Conventionally, PDA’s are defined with external states. Eliminating the
stack then leads to FSA’s, also called 0-PDA’s. As seen above, FSA’s can
also be realized by pure PDA’s, where the stack is limited to depth 1.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 18 / 25

The regular case and automata PDA’s

Extend the notion of CFG to faithful multigraph morphisms G γ
T〈N〉.

These can be turned into push-down automata (PDA), provided that

. strings(!) of nonterminals are interpreted as (internal) states;

. only left-derivations are considered, which corresponds to the
constrained access to the stack via its top.

The initial state is S , while the canonical final state is ε .

In particular, CFG’s in GNF correspond to push-down automata without
ε-transitions, and the transformation into GNF can be viewed as the
elimination of ε-transitions from a general PDA.

Also note that CFG-induced PDA’s are pure in the sense of having only
one external state. Still they can accept any context-free language.

Conventionally, PDA’s are defined with external states. Eliminating the
stack then leads to FSA’s, also called 0-PDA’s. As seen above, FSA’s can
also be realized by pure PDA’s, where the stack is limited to depth 1.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 18 / 25

The regular case and automata PDA’s

Extend the notion of CFG to faithful multigraph morphisms G γ
T〈N〉.

These can be turned into push-down automata (PDA), provided that

. strings(!) of nonterminals are interpreted as (internal) states;

. only left-derivations are considered, which corresponds to the
constrained access to the stack via its top.

The initial state is S , while the canonical final state is ε .

In particular, CFG’s in GNF correspond to push-down automata without
ε-transitions,

and the transformation into GNF can be viewed as the
elimination of ε-transitions from a general PDA.

Also note that CFG-induced PDA’s are pure in the sense of having only
one external state. Still they can accept any context-free language.

Conventionally, PDA’s are defined with external states. Eliminating the
stack then leads to FSA’s, also called 0-PDA’s. As seen above, FSA’s can
also be realized by pure PDA’s, where the stack is limited to depth 1.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 18 / 25

The regular case and automata PDA’s

Extend the notion of CFG to faithful multigraph morphisms G γ
T〈N〉.

These can be turned into push-down automata (PDA), provided that

. strings(!) of nonterminals are interpreted as (internal) states;

. only left-derivations are considered, which corresponds to the
constrained access to the stack via its top.

The initial state is S , while the canonical final state is ε .

In particular, CFG’s in GNF correspond to push-down automata without
ε-transitions, and the transformation into GNF can be viewed as the
elimination of ε-transitions from a general PDA.

Also note that CFG-induced PDA’s are pure in the sense of having only
one external state. Still they can accept any context-free language.

Conventionally, PDA’s are defined with external states. Eliminating the
stack then leads to FSA’s, also called 0-PDA’s. As seen above, FSA’s can
also be realized by pure PDA’s, where the stack is limited to depth 1.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 18 / 25

The regular case and automata PDA’s

Extend the notion of CFG to faithful multigraph morphisms G γ
T〈N〉.

These can be turned into push-down automata (PDA), provided that

. strings(!) of nonterminals are interpreted as (internal) states;

. only left-derivations are considered, which corresponds to the
constrained access to the stack via its top.

The initial state is S , while the canonical final state is ε .

In particular, CFG’s in GNF correspond to push-down automata without
ε-transitions, and the transformation into GNF can be viewed as the
elimination of ε-transitions from a general PDA.

Also note that CFG-induced PDA’s are pure in the sense of having only
one external state.

Still they can accept any context-free language.

Conventionally, PDA’s are defined with external states. Eliminating the
stack then leads to FSA’s, also called 0-PDA’s. As seen above, FSA’s can
also be realized by pure PDA’s, where the stack is limited to depth 1.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 18 / 25

The regular case and automata PDA’s

Extend the notion of CFG to faithful multigraph morphisms G γ
T〈N〉.

These can be turned into push-down automata (PDA), provided that

. strings(!) of nonterminals are interpreted as (internal) states;

. only left-derivations are considered, which corresponds to the
constrained access to the stack via its top.

The initial state is S , while the canonical final state is ε .

In particular, CFG’s in GNF correspond to push-down automata without
ε-transitions, and the transformation into GNF can be viewed as the
elimination of ε-transitions from a general PDA.

Also note that CFG-induced PDA’s are pure in the sense of having only
one external state. Still they can accept any context-free language.

Conventionally, PDA’s are defined with external states. Eliminating the
stack then leads to FSA’s, also called 0-PDA’s. As seen above, FSA’s can
also be realized by pure PDA’s, where the stack is limited to depth 1.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 18 / 25

The regular case and automata PDA’s

Extend the notion of CFG to faithful multigraph morphisms G γ
T〈N〉.

These can be turned into push-down automata (PDA), provided that

. strings(!) of nonterminals are interpreted as (internal) states;

. only left-derivations are considered, which corresponds to the
constrained access to the stack via its top.

The initial state is S , while the canonical final state is ε .

In particular, CFG’s in GNF correspond to push-down automata without
ε-transitions, and the transformation into GNF can be viewed as the
elimination of ε-transitions from a general PDA.

Also note that CFG-induced PDA’s are pure in the sense of having only
one external state. Still they can accept any context-free language.

Conventionally, PDA’s are defined with external states. Eliminating the
stack then leads to FSA’s, also called 0-PDA’s.

As seen above, FSA’s can
also be realized by pure PDA’s, where the stack is limited to depth 1.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 18 / 25

The regular case and automata PDA’s

Extend the notion of CFG to faithful multigraph morphisms G γ
T〈N〉.

These can be turned into push-down automata (PDA), provided that

. strings(!) of nonterminals are interpreted as (internal) states;

. only left-derivations are considered, which corresponds to the
constrained access to the stack via its top.

The initial state is S , while the canonical final state is ε .

In particular, CFG’s in GNF correspond to push-down automata without
ε-transitions, and the transformation into GNF can be viewed as the
elimination of ε-transitions from a general PDA.

Also note that CFG-induced PDA’s are pure in the sense of having only
one external state. Still they can accept any context-free language.

Conventionally, PDA’s are defined with external states. Eliminating the
stack then leads to FSA’s, also called 0-PDA’s. As seen above, FSA’s can
also be realized by pure PDA’s, where the stack is limited to depth 1.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 18 / 25

(Multi-)Graph Comprehension

(Multi-)Graph Comprehension

The familiar bijection for labeled transition systems

G γ
T〈1〉

T〈1〉
Γ rel

(faithful graph morphism)

(graph morphism)

readily carries over to the multi-setting:

G γ
T〈N〉

T〈N〉
Γ rel

(faithful multigraph morphism)

(multigraph morphism)

where the multigraph structure of rel is given by × .

Both bijections remain valid, if T〈1〉 and T〈N〉 are replaced by an arbitrary
graph, resp., multigraph as control. Restricting to finite G imposes
appropriate finiteness conditions on the “denominators”.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 19 / 25

(Multi-)Graph Comprehension

(Multi-)Graph Comprehension

The familiar bijection for labeled transition systems

G γ
T〈1〉

T〈1〉
Γ rel

(faithful graph morphism)

(graph morphism)

readily carries over to the multi-setting:

G γ
T〈N〉

T〈N〉
Γ rel

(faithful multigraph morphism)

(multigraph morphism)

where the multigraph structure of rel is given by × .

Both bijections remain valid, if T〈1〉 and T〈N〉 are replaced by an arbitrary
graph, resp., multigraph as control. Restricting to finite G imposes
appropriate finiteness conditions on the “denominators”.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 19 / 25

(Multi-)Graph Comprehension

(Multi-)Graph Comprehension

The familiar bijection for labeled transition systems

G γ
T〈1〉

T〈1〉
Γ rel

(faithful graph morphism)

(graph morphism)

readily carries over to the multi-setting:

G γ
T〈N〉

T〈N〉
Γ rel

(faithful multigraph morphism)

(multigraph morphism)

where the multigraph structure of rel is given by × .

Both bijections remain valid, if T〈1〉 and T〈N〉 are replaced by an arbitrary
graph, resp., multigraph as control.

Restricting to finite G imposes
appropriate finiteness conditions on the “denominators”.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 19 / 25

(Multi-)Graph Comprehension

(Multi-)Graph Comprehension

The familiar bijection for labeled transition systems

G γ
T〈1〉

T〈1〉
Γ rel

(faithful graph morphism)

(graph morphism)

readily carries over to the multi-setting:

G γ
T〈N〉

T〈N〉
Γ rel

(faithful multigraph morphism)

(multigraph morphism)

where the multigraph structure of rel is given by × .

Both bijections remain valid, if T〈1〉 and T〈N〉 are replaced by an arbitrary
graph, resp., multigraph as control. Restricting to finite G imposes
appropriate finiteness conditions on the “denominators”.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 19 / 25

(Multi-)Graph Comprehension

Closing up under “vertical” composition, we obtain bijections

G γ
T∗〈1〉

T∗〈1〉
Γ rel

(faithful functor)

(lax functor)

Moving to the free monoidal category in the multi-setting yields

G γ
T?〈N〉

T?〈N〉
Γ rel

(faithful strict monoidal functor)

(strict monoidal lax functor)

where G now is a (strict monoidal) category. Again, general (strict
monoidal) categories can serve as controls instead of T∗〈1〉 , resp., T?〈N〉 .

Oplax (monoidal) natural transformations turn out to be the appropriate
type of morphism in the “denominators” to encode simulations.

Instead of rel , matrix categories over other rigs yield further instances of
this phenomenon, like probabilistic or weighted transition systems.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 20 / 25

(Multi-)Graph Comprehension

Closing up under “vertical” composition, we obtain bijections

G γ
T∗〈1〉

T∗〈1〉
Γ rel

(faithful functor)

(lax functor)

Moving to the free monoidal category in the multi-setting yields

G γ
T?〈N〉

T?〈N〉
Γ rel

(faithful strict monoidal functor)

(strict monoidal lax functor)

where G now is a (strict monoidal) category.

Again, general (strict
monoidal) categories can serve as controls instead of T∗〈1〉 , resp., T?〈N〉 .

Oplax (monoidal) natural transformations turn out to be the appropriate
type of morphism in the “denominators” to encode simulations.

Instead of rel , matrix categories over other rigs yield further instances of
this phenomenon, like probabilistic or weighted transition systems.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 20 / 25

(Multi-)Graph Comprehension

Closing up under “vertical” composition, we obtain bijections

G γ
T∗〈1〉

T∗〈1〉
Γ rel

(faithful functor)

(lax functor)

Moving to the free monoidal category in the multi-setting yields

G γ
T?〈N〉

T?〈N〉
Γ rel

(faithful strict monoidal functor)

(strict monoidal lax functor)

where G now is a (strict monoidal) category. Again, general (strict
monoidal) categories can serve as controls instead of T∗〈1〉 , resp., T?〈N〉 .

Oplax (monoidal) natural transformations turn out to be the appropriate
type of morphism in the “denominators” to encode simulations.

Instead of rel , matrix categories over other rigs yield further instances of
this phenomenon, like probabilistic or weighted transition systems.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 20 / 25

(Multi-)Graph Comprehension

Closing up under “vertical” composition, we obtain bijections

G γ
T∗〈1〉

T∗〈1〉
Γ rel

(faithful functor)

(lax functor)

Moving to the free monoidal category in the multi-setting yields

G γ
T?〈N〉

T?〈N〉
Γ rel

(faithful strict monoidal functor)

(strict monoidal lax functor)

where G now is a (strict monoidal) category. Again, general (strict
monoidal) categories can serve as controls instead of T∗〈1〉 , resp., T?〈N〉 .

Oplax (monoidal) natural transformations turn out to be the appropriate
type of morphism in the “denominators” to encode simulations.

Instead of rel , matrix categories over other rigs yield further instances of
this phenomenon, like probabilistic or weighted transition systems.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 20 / 25

(Multi-)Graph Comprehension

Closing up under “vertical” composition, we obtain bijections

G γ
T∗〈1〉

T∗〈1〉
Γ rel

(faithful functor)

(lax functor)

Moving to the free monoidal category in the multi-setting yields

G γ
T?〈N〉

T?〈N〉
Γ rel

(faithful strict monoidal functor)

(strict monoidal lax functor)

where G now is a (strict monoidal) category. Again, general (strict
monoidal) categories can serve as controls instead of T∗〈1〉 , resp., T?〈N〉 .

Oplax (monoidal) natural transformations turn out to be the appropriate
type of morphism in the “denominators” to encode simulations.

Instead of rel , matrix categories over other rigs yield further instances of
this phenomenon, like probabilistic or weighted transition systems.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 20 / 25

Obvious questions

Obvious questions

. What about general grammars with unrestricted productions

V∗ ×N × V∗ V∗ where V := T + N

(the left side has to contain at least one nonterminal)?

These generate all semidecidable languages, which are precisely those
recognizable by Turing machines.

. What about “polygraphs” and consequently “polycategories”?

The well-developed theory of “planar” polycategories and
poly-bicategories, where the poly-2-cells can have finitely many inputs
and outputs, cf., [Cockett, Koslowski, Seely: TAC 11(2)] and
[Koslowski: TAC 14(7)], is based on logical considerations (calculus
of 2-sided sequents) and uses cut along single wires as “vertical”
composition. It would seem to be incomatible with the replacement
process of general grammars.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 21 / 25

Obvious questions

Obvious questions

. What about general grammars with unrestricted productions

V∗ ×N × V∗ V∗ where V := T + N

(the left side has to contain at least one nonterminal)?

These generate all semidecidable languages, which are precisely those
recognizable by Turing machines.

. What about “polygraphs” and consequently “polycategories”?

The well-developed theory of “planar” polycategories and
poly-bicategories, where the poly-2-cells can have finitely many inputs
and outputs, cf., [Cockett, Koslowski, Seely: TAC 11(2)] and
[Koslowski: TAC 14(7)], is based on logical considerations (calculus
of 2-sided sequents) and uses cut along single wires as “vertical”
composition. It would seem to be incomatible with the replacement
process of general grammars.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 21 / 25

Obvious questions

Obvious questions

. What about general grammars with unrestricted productions

V∗ ×N × V∗ V∗ where V := T + N

(the left side has to contain at least one nonterminal)?

These generate all semidecidable languages, which are precisely those
recognizable by Turing machines.

. What about “polygraphs” and consequently “polycategories”?

The well-developed theory of “planar” polycategories and
poly-bicategories, where the poly-2-cells can have finitely many inputs
and outputs, cf., [Cockett, Koslowski, Seely: TAC 11(2)] and
[Koslowski: TAC 14(7)], is based on logical considerations (calculus
of 2-sided sequents) and uses cut along single wires as “vertical”
composition. It would seem to be incomatible with the replacement
process of general grammars.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 21 / 25

Obvious questions

Obvious questions

. What about general grammars with unrestricted productions

V∗ ×N × V∗ V∗ where V := T + N

(the left side has to contain at least one nonterminal)?

These generate all semidecidable languages, which are precisely those
recognizable by Turing machines.

. What about “polygraphs” and consequently “polycategories”?

The well-developed theory of “planar” polycategories and
poly-bicategories, where the poly-2-cells can have finitely many inputs
and outputs, cf., [Cockett, Koslowski, Seely: TAC 11(2)] and
[Koslowski: TAC 14(7)], is based on logical considerations (calculus
of 2-sided sequents) and uses cut along single wires as “vertical”
composition. It would seem to be incomatible with the replacement
process of general grammars.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 21 / 25

Obvious questions

Obvious questions

. What about general grammars with unrestricted productions

V∗ ×N × V∗ V∗ where V := T + N

(the left side has to contain at least one nonterminal)?

These generate all semidecidable languages, which are precisely those
recognizable by Turing machines.

. What about “polygraphs” and consequently “polycategories”?

The well-developed theory of “planar” polycategories and
poly-bicategories, where the poly-2-cells can have finitely many inputs
and outputs, cf., [Cockett, Koslowski, Seely: TAC 11(2)] and
[Koslowski: TAC 14(7)],

is based on logical considerations (calculus
of 2-sided sequents) and uses cut along single wires as “vertical”
composition. It would seem to be incomatible with the replacement
process of general grammars.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 21 / 25

Obvious questions

Obvious questions

. What about general grammars with unrestricted productions

V∗ ×N × V∗ V∗ where V := T + N

(the left side has to contain at least one nonterminal)?

These generate all semidecidable languages, which are precisely those
recognizable by Turing machines.

. What about “polygraphs” and consequently “polycategories”?

The well-developed theory of “planar” polycategories and
poly-bicategories, where the poly-2-cells can have finitely many inputs
and outputs, cf., [Cockett, Koslowski, Seely: TAC 11(2)] and
[Koslowski: TAC 14(7)], is based on logical considerations (calculus
of 2-sided sequents) and uses cut along single wires as “vertical”
composition.

It would seem to be incomatible with the replacement
process of general grammars.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 21 / 25

Obvious questions

Obvious questions

. What about general grammars with unrestricted productions

V∗ ×N × V∗ V∗ where V := T + N

(the left side has to contain at least one nonterminal)?

These generate all semidecidable languages, which are precisely those
recognizable by Turing machines.

. What about “polygraphs” and consequently “polycategories”?

The well-developed theory of “planar” polycategories and
poly-bicategories, where the poly-2-cells can have finitely many inputs
and outputs, cf., [Cockett, Koslowski, Seely: TAC 11(2)] and
[Koslowski: TAC 14(7)], is based on logical considerations (calculus
of 2-sided sequents) and uses cut along single wires as “vertical”
composition. It would seem to be incomatible with the replacement
process of general grammars.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 21 / 25

Obvious questions A thought experiment

How can we extend pure PDA’s as above in a finite fashion in order to
handle general grammars?

Even for left derivations, the first subword to which a production can be
applied need not be a prefix of the current stack; in fact the depth of its
occurrence is unbounded. E.g., consider productions AB EF and
CD B, and a current stack of the form AnCD

We can allow to look deeper into the stack, beyond the top element.
As long as the depth is bounded, this does not help.

We can add finitely many external states to examine subwords on the
stack for being left sides of productions. However, his does not help
in remembering the prefix before the first such subword.

We can add the ability to “bend wires out of the way” until we find a
first left hand side of a production, and “bend the wires back” later.
Recall that we only have to deal with finitely many nonterminals.

A combination of the last two ideas indeed will do the trick.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 22 / 25

Obvious questions A thought experiment

How can we extend pure PDA’s as above in a finite fashion in order to
handle general grammars?

Even for left derivations, the first subword to which a production can be
applied need not be a prefix of the current stack; in fact the depth of its
occurrence is unbounded.

E.g., consider productions AB EF and
CD B, and a current stack of the form AnCD

We can allow to look deeper into the stack, beyond the top element.
As long as the depth is bounded, this does not help.

We can add finitely many external states to examine subwords on the
stack for being left sides of productions. However, his does not help
in remembering the prefix before the first such subword.

We can add the ability to “bend wires out of the way” until we find a
first left hand side of a production, and “bend the wires back” later.
Recall that we only have to deal with finitely many nonterminals.

A combination of the last two ideas indeed will do the trick.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 22 / 25

Obvious questions A thought experiment

How can we extend pure PDA’s as above in a finite fashion in order to
handle general grammars?

Even for left derivations, the first subword to which a production can be
applied need not be a prefix of the current stack; in fact the depth of its
occurrence is unbounded. E.g., consider productions AB EF and
CD B, and a current stack of the form AnCD

We can allow to look deeper into the stack, beyond the top element.

As long as the depth is bounded, this does not help.

We can add finitely many external states to examine subwords on the
stack for being left sides of productions. However, his does not help
in remembering the prefix before the first such subword.

We can add the ability to “bend wires out of the way” until we find a
first left hand side of a production, and “bend the wires back” later.
Recall that we only have to deal with finitely many nonterminals.

A combination of the last two ideas indeed will do the trick.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 22 / 25

Obvious questions A thought experiment

How can we extend pure PDA’s as above in a finite fashion in order to
handle general grammars?

Even for left derivations, the first subword to which a production can be
applied need not be a prefix of the current stack; in fact the depth of its
occurrence is unbounded. E.g., consider productions AB EF and
CD B, and a current stack of the form AnCD

We can allow to look deeper into the stack, beyond the top element.

As long as the depth is bounded, this does not help.

We can add finitely many external states to examine subwords on the
stack for being left sides of productions. However, his does not help
in remembering the prefix before the first such subword.

We can add the ability to “bend wires out of the way” until we find a
first left hand side of a production, and “bend the wires back” later.
Recall that we only have to deal with finitely many nonterminals.

A combination of the last two ideas indeed will do the trick.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 22 / 25

Obvious questions A thought experiment

How can we extend pure PDA’s as above in a finite fashion in order to
handle general grammars?

Even for left derivations, the first subword to which a production can be
applied need not be a prefix of the current stack; in fact the depth of its
occurrence is unbounded. E.g., consider productions AB EF and
CD B, and a current stack of the form AnCD

We can allow to look deeper into the stack, beyond the top element.
As long as the depth is bounded, this does not help.

We can add finitely many external states to examine subwords on the
stack for being left sides of productions.

However, his does not help
in remembering the prefix before the first such subword.

We can add the ability to “bend wires out of the way” until we find a
first left hand side of a production, and “bend the wires back” later.
Recall that we only have to deal with finitely many nonterminals.

A combination of the last two ideas indeed will do the trick.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 22 / 25

Obvious questions A thought experiment

How can we extend pure PDA’s as above in a finite fashion in order to
handle general grammars?

Even for left derivations, the first subword to which a production can be
applied need not be a prefix of the current stack; in fact the depth of its
occurrence is unbounded. E.g., consider productions AB EF and
CD B, and a current stack of the form AnCD

We can allow to look deeper into the stack, beyond the top element.
As long as the depth is bounded, this does not help.

We can add finitely many external states to examine subwords on the
stack for being left sides of productions.

However, his does not help
in remembering the prefix before the first such subword.

We can add the ability to “bend wires out of the way” until we find a
first left hand side of a production, and “bend the wires back” later.
Recall that we only have to deal with finitely many nonterminals.

A combination of the last two ideas indeed will do the trick.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 22 / 25

Obvious questions A thought experiment

How can we extend pure PDA’s as above in a finite fashion in order to
handle general grammars?

Even for left derivations, the first subword to which a production can be
applied need not be a prefix of the current stack; in fact the depth of its
occurrence is unbounded. E.g., consider productions AB EF and
CD B, and a current stack of the form AnCD

We can allow to look deeper into the stack, beyond the top element.
As long as the depth is bounded, this does not help.

We can add finitely many external states to examine subwords on the
stack for being left sides of productions. However, his does not help
in remembering the prefix before the first such subword.

We can add the ability to “bend wires out of the way” until we find a
first left hand side of a production, and “bend the wires back” later.

Recall that we only have to deal with finitely many nonterminals.

A combination of the last two ideas indeed will do the trick.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 22 / 25

Obvious questions A thought experiment

How can we extend pure PDA’s as above in a finite fashion in order to
handle general grammars?

Even for left derivations, the first subword to which a production can be
applied need not be a prefix of the current stack; in fact the depth of its
occurrence is unbounded. E.g., consider productions AB EF and
CD B, and a current stack of the form AnCD

We can allow to look deeper into the stack, beyond the top element.
As long as the depth is bounded, this does not help.

We can add finitely many external states to examine subwords on the
stack for being left sides of productions. However, his does not help
in remembering the prefix before the first such subword.

We can add the ability to “bend wires out of the way” until we find a
first left hand side of a production, and “bend the wires back” later.

Recall that we only have to deal with finitely many nonterminals.

A combination of the last two ideas indeed will do the trick.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 22 / 25

Obvious questions A thought experiment

How can we extend pure PDA’s as above in a finite fashion in order to
handle general grammars?

Even for left derivations, the first subword to which a production can be
applied need not be a prefix of the current stack; in fact the depth of its
occurrence is unbounded. E.g., consider productions AB EF and
CD B, and a current stack of the form AnCD

We can allow to look deeper into the stack, beyond the top element.
As long as the depth is bounded, this does not help.

We can add finitely many external states to examine subwords on the
stack for being left sides of productions. However, his does not help
in remembering the prefix before the first such subword.

We can add the ability to “bend wires out of the way” until we find a
first left hand side of a production, and “bend the wires back” later.
Recall that we only have to deal with finitely many nonterminals.

A combination of the last two ideas indeed will do the trick.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 22 / 25

Obvious questions A thought experiment

How can we extend pure PDA’s as above in a finite fashion in order to
handle general grammars?

Even for left derivations, the first subword to which a production can be
applied need not be a prefix of the current stack; in fact the depth of its
occurrence is unbounded. E.g., consider productions AB EF and
CD B, and a current stack of the form AnCD

We can allow to look deeper into the stack, beyond the top element.
As long as the depth is bounded, this does not help.

We can add finitely many external states to examine subwords on the
stack for being left sides of productions. However, his does not help
in remembering the prefix before the first such subword.

We can add the ability to “bend wires out of the way” until we find a
first left hand side of a production, and “bend the wires back” later.
Recall that we only have to deal with finitely many nonterminals.

A combination of the last two ideas indeed will do the trick.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 22 / 25

Obvious questions Polygraphs with linear adjoints

Polygraphs with linear adjoints

Recall that planar poly-bicategories as well as polycategories admit a very
nice notion of so-called linear adjoints, together with a mate calculus.

In analogy with the notion of reflexive (multi-)graph, where implicitly a set
of equations is specified by which to factor the absolutely free
(multi-)category, we consider adjoint polygraphs, which are supposed to
already contain the units and counits of the “free polycategory with linear
adjunctions” over it as distinguished poly-2-cells.

Of course, T〈N〉 needs to be replaced by an obvious polygraph T
〈N〉
〈N〉 ,

where again all hom-sets coincide with T + {ε} .

In machine terms we obtain pure 2-PDA’s, which are more powerful than
pure PDA’s, as they can recognize shuffles of context-free languages
(which need not be context-free anymore).

2-PDA’s with external states are well-known to be equivalent to Turing
machines.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 23 / 25

Obvious questions Polygraphs with linear adjoints

Polygraphs with linear adjoints

Recall that planar poly-bicategories as well as polycategories admit a very
nice notion of so-called linear adjoints, together with a mate calculus.

In analogy with the notion of reflexive (multi-)graph, where implicitly a set
of equations is specified by which to factor the absolutely free
(multi-)category, we consider adjoint polygraphs, which are supposed to
already contain the units and counits of the “free polycategory with linear
adjunctions” over it as distinguished poly-2-cells.

Of course, T〈N〉 needs to be replaced by an obvious polygraph T
〈N〉
〈N〉 ,

where again all hom-sets coincide with T + {ε} .

In machine terms we obtain pure 2-PDA’s, which are more powerful than
pure PDA’s, as they can recognize shuffles of context-free languages
(which need not be context-free anymore).

2-PDA’s with external states are well-known to be equivalent to Turing
machines.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 23 / 25

Obvious questions Polygraphs with linear adjoints

Polygraphs with linear adjoints

Recall that planar poly-bicategories as well as polycategories admit a very
nice notion of so-called linear adjoints, together with a mate calculus.

In analogy with the notion of reflexive (multi-)graph, where implicitly a set
of equations is specified by which to factor the absolutely free
(multi-)category, we consider adjoint polygraphs, which are supposed to
already contain the units and counits of the “free polycategory with linear
adjunctions” over it as distinguished poly-2-cells.

Of course, T〈N〉 needs to be replaced by an obvious polygraph T
〈N〉
〈N〉 ,

where again all hom-sets coincide with T + {ε} .

In machine terms we obtain pure 2-PDA’s, which are more powerful than
pure PDA’s, as they can recognize shuffles of context-free languages
(which need not be context-free anymore).

2-PDA’s with external states are well-known to be equivalent to Turing
machines.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 23 / 25

Obvious questions Polygraphs with linear adjoints

Polygraphs with linear adjoints

Recall that planar poly-bicategories as well as polycategories admit a very
nice notion of so-called linear adjoints, together with a mate calculus.

In analogy with the notion of reflexive (multi-)graph, where implicitly a set
of equations is specified by which to factor the absolutely free
(multi-)category, we consider adjoint polygraphs, which are supposed to
already contain the units and counits of the “free polycategory with linear
adjunctions” over it as distinguished poly-2-cells.

Of course, T〈N〉 needs to be replaced by an obvious polygraph T
〈N〉
〈N〉 ,

where again all hom-sets coincide with T + {ε} .

In machine terms we obtain pure 2-PDA’s, which are more powerful than
pure PDA’s, as they can recognize shuffles of context-free languages
(which need not be context-free anymore).

2-PDA’s with external states are well-known to be equivalent to Turing
machines.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 23 / 25

Obvious questions Polygraphs with linear adjoints

Polygraphs with linear adjoints

Recall that planar poly-bicategories as well as polycategories admit a very
nice notion of so-called linear adjoints, together with a mate calculus.

In analogy with the notion of reflexive (multi-)graph, where implicitly a set
of equations is specified by which to factor the absolutely free
(multi-)category, we consider adjoint polygraphs, which are supposed to
already contain the units and counits of the “free polycategory with linear
adjunctions” over it as distinguished poly-2-cells.

Of course, T〈N〉 needs to be replaced by an obvious polygraph T
〈N〉
〈N〉 ,

where again all hom-sets coincide with T + {ε} .

In machine terms we obtain pure 2-PDA’s, which are more powerful than
pure PDA’s, as they can recognize shuffles of context-free languages
(which need not be context-free anymore).

2-PDA’s with external states are well-known to be equivalent to Turing
machines.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 23 / 25

To do

To do

. Do pure 2-PDA’s suffice to simulate Turing machines for decision
problems?

. Even if they do, external states may still be useful for computational
problems (even for 1-PDA’s).

What is the “right” way of adding
external states, short of grafting them on?

. What about transducers, i.e., how should output be handled?

. Work out the details for polygraph comprehension.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 24 / 25

To do

To do

. Do pure 2-PDA’s suffice to simulate Turing machines for decision
problems?

. Even if they do, external states may still be useful for computational
problems (even for 1-PDA’s).

What is the “right” way of adding
external states, short of grafting them on?

. What about transducers, i.e., how should output be handled?

. Work out the details for polygraph comprehension.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 24 / 25

To do

To do

. Do pure 2-PDA’s suffice to simulate Turing machines for decision
problems?

. Even if they do, external states may still be useful for computational
problems (even for 1-PDA’s). What is the “right” way of adding
external states, short of grafting them on?

. What about transducers, i.e., how should output be handled?

. Work out the details for polygraph comprehension.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 24 / 25

To do

To do

. Do pure 2-PDA’s suffice to simulate Turing machines for decision
problems?

. Even if they do, external states may still be useful for computational
problems (even for 1-PDA’s). What is the “right” way of adding
external states, short of grafting them on?

. What about transducers, i.e., how should output be handled?

. Work out the details for polygraph comprehension.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 24 / 25

To do

To do

. Do pure 2-PDA’s suffice to simulate Turing machines for decision
problems?

. Even if they do, external states may still be useful for computational
problems (even for 1-PDA’s). What is the “right” way of adding
external states, short of grafting them on?

. What about transducers, i.e., how should output be handled?

. Work out the details for polygraph comprehension.

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 24 / 25

To do

Thank you!

Jürgen Koslowski (TU-BS) Chomsky and Greibach normal form CT 2011, Vancouver, July 22 25 / 25

	Overview
	History: the man took the book
	Background and motivation
	Grammars and normal forms
	Alternatives?
	The generated language
	Identifications in T0
	Where's the beef?

	Normal forms in the multi-setting
	Inductive datatypes
	Uncurrying
	GNF and currying

	The issue of recursiveness
	The regular case and automata
	PDA's

	(Multi-)Graph Comprehension
	Obvious questions
	A thought experiment
	Polygraphs with linear adjoints

	To do

