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Goals

Goal: We want to develop a good theory of limits and colimits for
enriched categories.

And give a few nice examples.
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Review of (Co)Limits

We have a diagram shape (small category) D, and an
environment category E .

A diagram is a functor D : D → E .

A cone is a natural transformation 1→ E(E ,D(−)) in SetD.

The limit limD of D is a universal cone:

E(E , limD) ∼= SetD(1, E(E ,D(−))).

For colimits, switch the direction of the cone around.

E(colimD,E ) ∼= SetD
op

(1, E(D(−),E )).
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Thickening the Cones

When sets are our base, we can analyze any set of morphisms
in a category one at a time. That is, it suffices to look at
points 1→ E(E ,Di ) in our cones.

But in more general base categories, this is no longer the case.
We need to be explicit about the shape of the legs of our
cones.

We will let the shape of the legs of our cones vary with the
objects of the diagrams. These shapes are called weights.

Definition

Let D : D → E be a diagram in a category E enriched in V. Given
a functor of weights W : D → V, the weighted limit limWD, if it
exists, satisfies the following universal property:

E(E , limWD) ∼= VD
(
W (−), E(E ,D(−))

)
.
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Four Examples

1 Powers (over any base).

2 Kernel Pairs (over sets).

3 Limits of Cauchy Sequences (over positive real numbers).

4 Homotopy Pushouts (over topological spaces).
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Powers

Let D = 1 be the walking object.

A diagram D : D → E is just an object of E .

A weight W : D → V is just an object of the base.

The weighted limit limWD is given by

E(E , limWD) ∼= V(W , E(E ,D)),

showing that maps into limWD are W -tuples of maps into D.
Therefore, limWD = DW , the W -power of D.
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Kernel Pairs

Let D = • → • be the walking arrow.

A diagram D : D → E is an arrow A
f−→ B in E .

Take W : D → Set to be 2
!−→ 1.

The weighted limit is then given by

E(E , limWD) ∼= Set•→•(2→ 1, E(E ,A)
f∗−→ E(E ,B)).

Substituting in limWD for E and pushing idlimWD through the
isomorphism gives us

2 E(E ,A)

1 E(E ,B)

! f∗ ,

or, in E ,
limWD ⇒ A→ B,

showing that limWD is the kernel pair.
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Limits of Cauchy Sequences

Let D = {0, 1, 2, . . . ,∞} be the natural numbers, with
D(i , j) =∞.

A diagram D : D → E is a sequence in E .

Let W : D → [0,∞] be i 7→ 1
2i

, with ∞ 7→ 0.

The weighted limit is then given by

E(E , limWD) = [0,∞]D(W (−), E(E ,D(−))),

which means

0 = E(limWD, limWD) = sup
i∈D

(
E(E ,Di )−

1

2i

)
,

so that Di → limWD as a sequence.
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Homotopy Pushouts

Let D = • ← • → •, so that a diagram is a span in E .

Let W : Dop → Top be the cospan ∗ 0−→ [0, 1]
1←− ∗.

The weighted colimit is given by

E(colimWD,E ) ∼= TopD
op

(W (−), E(D(−),E )),

which makes it the initial such cocone:

C B

A colimWD

i

j
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Thanks for Listening!

Thanks for Listening!
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