On the local cartesian closure of exact completions

Jacopo Emmenegger

Stockholms Universitet, Sweden

Category Theory 2017, July 17, Vancouver

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Overview

Background.

- Weak simple products and internal projectives.
- ► Local cartesian closure from closure under relations.
- Applications: categories of constructive sets and homotopy categories.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

A projective cover of a category $\mathbb E$ is a full subcategory $\mathbb P$ such that:

1. every $X \in \mathbb{P}$ is (regular) projective,

2. for every $A \in \mathbb{E}$ there is $X \rightarrow A$ with $X \in \mathbb{P}$.

A category has enough projectives if and only if it has a projective cover.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

If \mathbb{E} has finite limits, then \mathbb{P} has weak finite limits.

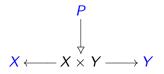
A projective cover of a category $\mathbb E$ is a full subcategory $\mathbb P$ such that:

1. every $X \in \mathbb{P}$ is (regular) projective,

2. for every $A \in \mathbb{E}$ there is $X \rightarrow A$ with $X \in \mathbb{P}$.

A category has enough projectives if and only if it has a projective cover.

If \mathbb{E} has finite limits, then \mathbb{P} has weak finite limits. Let $X, Y, Z \in \mathbb{P}$,



▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

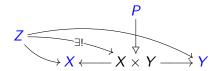
by (2).

A projective cover of a category $\mathbb E$ is a full subcategory $\mathbb P$ such that:

- 1. every $X \in \mathbb{P}$ is (regular) projective,
- 2. for every $A \in \mathbb{E}$ there is $X \rightarrow A$ with $X \in \mathbb{P}$.

A category has enough projectives if and only if it has a projective cover.

If \mathbb{E} has finite limits, then \mathbb{P} has weak finite limits. Let $X, Y, Z \in \mathbb{P}$,



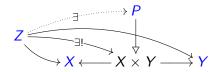
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

A projective cover of a category $\mathbb E$ is a full subcategory $\mathbb P$ such that:

- 1. every $X \in \mathbb{P}$ is (regular) projective,
- 2. for every $A \in \mathbb{E}$ there is $X \rightarrow A$ with $X \in \mathbb{P}$.

A category has enough projectives if and only if it has a projective cover.

If \mathbb{E} has finite limits, then \mathbb{P} has weak finite limits. Let $X, Y, Z \in \mathbb{P}$,



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

by (1).

P will be denoted as $X \times^{w} Y$.

Exact completions

Theorem (Carboni–Vitale)

Exact categories with enough projectives are the exact completion of any of their projective covers. Conversely, any category with weak finite limits is a projective cover of an exact category, namely its exact completion.

Fix $\mathbb E$ exact with enough projectives, and $\mathbb P$ a projective cover of it.

Proposition

For $X_1, \ldots, X_n \in \mathbb{P}$,

$$\mathsf{Sub}_{\mathbb{E}}(X_1 \times \cdots \times X_n) \cong (\mathbb{P}/(X_1, \ldots, X_n))_{\mathsf{po}}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Cartesian closed exact completions

If \mathbb{E} is cartesian closed then it has exponentials and right adjoints $\forall_A \text{ to } \times A \colon \text{Sub}_{\mathbb{E}}(I) \to \text{Sub}_{\mathbb{E}}(I \times A).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Hence \mathbb{P} has

- weak exponentials,
- ▶ right adjoints to \times^w_X : $(\mathbb{P}/J)_{po} \to (\mathbb{P}/(J, X))_{po}$

Cartesian closed exact completions

If \mathbb{E} is cartesian closed then it has exponentials and right adjoints \forall_A to $\times A$: $Sub_{\mathbb{E}}(I) \rightarrow Sub_{\mathbb{E}}(I \times A)$.

Hence ${\mathbb P}$ has

- weak exponentials,
- ▶ right adjoints to \times_X^w : $(\mathbb{P}/J)_{po} \to (\mathbb{P}/(J, X))_{po}$

Proposition (Carboni-Rosolini)

 \mathbb{E} is cartesian closed if and only if \mathbb{P} has weak exponentials and $\times^{w} X$ is left adjoint for every J, X.

If \mathbb{E} is cartesian closed, there is a simple product functor Π_A :

and both exponentials and \forall_A can be defined from it.

```
Definition (Carboni-Rosolini)
```

A weak simple product for $J \leftarrow Y \rightarrow X$ is given by

- an object $W \to J$ in \mathbb{P}/J and
- ► a weak evaluation W×^w X → Y in P/(J, X) which factors through W × X.

which is weakly terminal among such pairs.

If $\mathbb E$ is cartesian closed, then $\mathbb P$ has weak simple products for any span.

Claim (Carboni-Rosolini)

If \mathbb{P} has weak simple products for any span, then \mathbb{E} is cartesian closed.

Weak simple products give rise to:

- 1. weak exponentials,
- 2. a functor $\Pi_X^w \colon (\mathbb{P}/(J,X))_{\mathsf{po}} \to (\mathbb{P}/J)_{\mathsf{po}}$ for every J, X.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Claim (Carboni-Rosolini)

If \mathbb{P} has weak simple products for any span, then \mathbb{E} is cartesian closed.

Weak simple products give rise to:

- 1. weak exponentials,
- 2. a functor $\Pi_X^w \colon (\mathbb{P}/(J,X))_{po} \to (\mathbb{P}/J)_{po}$ for every J, X.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Proposition

For any $X \in \mathbb{P}$ the following are equivalent.

- 1. $\times^{w} X \dashv \Pi_X^{w}$ for every $J \in \mathbb{P}$.
- 2. $J \times X$ is projective for every $J \in \mathbb{P}$.
- 3. X is internally projective.

Theorem (Carboni-Rosolini, fixed)

If objects in \mathbb{P} are internally projective (i.e. if projectives are closed under binary products), then \mathbb{E} is cartesian closed if and only if \mathbb{P} has weak simple products.

Applications:

• Top_{ex} , $(Top_0)_{ex}$ and equilogical spaces, the effective topos.

Every ex/lex completion, in particular M. Menni's characterisation of ex/lex completions that are toposes.

Theorem (Carboni-Rosolini, fixed)

If objects in \mathbb{P} are internally projective (i.e. if projectives are closed under binary products), then \mathbb{E} is cartesian closed if and only if \mathbb{P} has weak simple products.

Applications:

- ▶ Top_{ex} , $(Top_0)_{ex}$ and equilogical spaces, the effective topos.
- Every ex/lex completion, in particular M. Menni's characterisation of ex/lex completions that are toposes.

Non-applications:

- Any topos where not every projective is internally projective, e.g. presheaves on the poset of natural numbers with two distinct infinity points (T. Trimble).
- Setoids as the ex/wlex completion of types in Martin-Löf type theory: types are closed under pullback iff UIP holds.
- ► The ex/wlex completions of homotopy categories (for l.c.c.).

Closure under relations

Spans with domain $Z \times^w X$ can be seen as families, indexed by Z, of total (pseudo-)relations with domain X and codomain Y.

The following are equivalent:

- 1. $Z \times^{w} X \to Y$ factors through some $Z \times X \xrightarrow{f} Y$,
- 2. $R \cong G_f$, i.e. the relations indexed by Z are functional.

(日) (四) (日) (日) (日)

Closure under relations

Spans with domain $Z \times^w X$ can be seen as families, indexed by Z, of total (pseudo-)relations with domain X and codomain Y.

The following are equivalent:

- 1. $Z \times^{w} X \to Y$ factors through some $Z \times X \xrightarrow{f} Y$,
- 2. $R \cong G_f$, i.e. the relations indexed by Z are functional.

In a weak simple product for $J \leftarrow Y \rightarrow X$, the weak evaluation $W \times^w X \rightarrow Y$ factors through $W \times X$.

So it collects codes for just functional relations, whereas spans correspond to arbitrary relations.

Fullness in Constructive Set Theory (CZF)

Let $\operatorname{Rel}(A, B)$ denote the class of total relations with domain A and codomain B.

A set $F \subset \operatorname{Rel}(A, B)$ is full in $\operatorname{Rel}(A, B)$ if

$$\forall R \in \mathsf{Rel}(A, B) \exists S \in F \ S \subseteq R.$$

Fullness Axiom (P. Aczel)

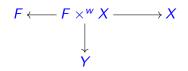
For every two sets A and B there is a set F full in Rel(A, B).

For any $f: A \rightarrow B$, $G_f \in \text{Rel}(A, B)$. So there is $S \in F$ such that $S \subseteq G_f$. But then $S = G_f$.

Hence a full set contains all functional relations.

In fact, the Fullness Axiom implies that the class of functions between two sets is itself a set.

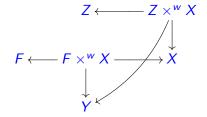
An object F is full for X and Y if there is an arrow $F \times^w X \to Y$ such that



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

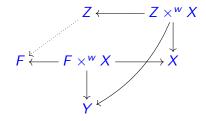
An object F is full for X and Y if there is an arrow $F \times^w X \to Y$ such that

for any object Z and arrow $Z \times^w X \to Y$ there are

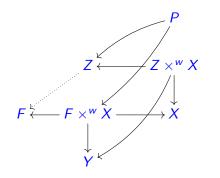


▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

An object F is full for X and Y if there is an arrow $F \times^w X \to Y$ such that for any object Z and arrow $Z \times^w X \to Y$ there are an arrow $Z \to F$,



An object *F* is full for *X* and *Y* if there is an arrow $F \times^w X \to Y$ such that for any object *Z* and arrow $Z \times^w X \to Y$ there are an arrow $Z \to F$, a weak pullback *P* of $Z \to F \leftarrow F \times^w X$

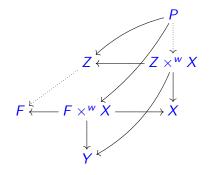


An object *F* is full for *X* and *Y* if there is an arrow $F \times^w X \to Y$ such that

for any object Z and arrow $Z \times^w X \to Y$ there are an arrow $Z \to F$,

a weak pullback *P* of $Z \rightarrow F \leftarrow F \times^w X$

and an arrow $P \to Z \times^w X$ in $\mathbb{P}/(Z, X, Y)$.

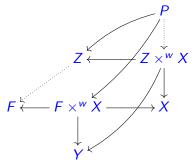


An object *F* is full for *X* and *Y* if there is an arrow $F \times^w X \to Y$ such that

for any object Z and arrow $Z \times^w X \to Y$ there are an arrow $Z \to F$,

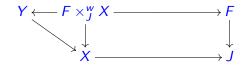
a weak pullback P of $Z \rightarrow F \leftarrow F \times^w X$

and an arrow $P \to Z \times^w X$ in $\mathbb{P}/(Z, X, Y)$.



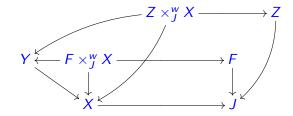
Say that \mathbb{P} is closed for relations, or r-closed, if it has a full object for any pair of objects.

An arrow $F \to J$ is locally full for $Y \to X \to J$ if there is an arrow $F \times^w_I X \to Y$ in \mathbb{P}/X such that,

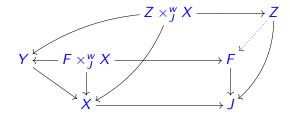


▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

An arrow $F \to J$ is locally full for $Y \to X \to J$ if there is an arrow $F \times_J^w X \to Y$ in \mathbb{P}/X such that, for any other $Z \to J$ and $Z \times_J^w X \to Y$ in \mathbb{P}/X , there are

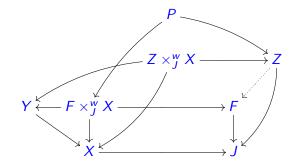


An arrow $F \to J$ is locally full for $Y \to X \to J$ if there is an arrow $F \times_J^w X \to Y$ in \mathbb{P}/X such that, for any other $Z \to J$ and $Z \times_J^w X \to Y$ in \mathbb{P}/X , there are an arrow $Z \to F$ in \mathbb{P}/J ,

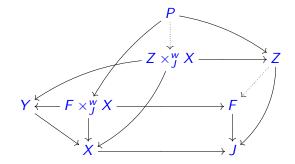


|▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ | 圖|| の�?

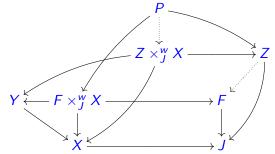
An arrow $F \to J$ is locally full for $Y \to X \to J$ if there is an arrow $F \times_J^w X \to Y$ in \mathbb{P}/X such that, for any other $Z \to J$ and $Z \times_J^w X \to Y$ in \mathbb{P}/X , there are an arrow $Z \to F$ in \mathbb{P}/J , a weak pullback P of $Z \to F \leftarrow F \times_J^w X$



An arrow $F \to J$ is locally full for $Y \to X \to J$ if there is an arrow $F \times_J^w X \to Y$ in \mathbb{P}/X such that, for any other $Z \to J$ and $Z \times_J^w X \to Y$ in \mathbb{P}/X , there are an arrow $Z \to F$ in \mathbb{P}/J , a weak pullback P of $Z \to F \leftarrow F \times_J^w X$ and an arrow $P \to Z \times_J^w X$ in $\mathbb{P}/(Z, X, Y)$.



An arrow $F \to J$ is locally full for $Y \to X \to J$ if there is an arrow $F \times_J^w X \to Y$ in \mathbb{P}/X such that, for any other $Z \to J$ and $Z \times_J^w X \to Y$ in \mathbb{P}/X , there are an arrow $Z \to F$ in \mathbb{P}/J , a weak pullback P of $Z \to F \leftarrow F \times_J^w X$ and an arrow $P \to Z \times_J^w X$ in $\mathbb{P}/(Z, X, Y)$.



Say that \mathbb{P} is locally closed for relations, or locally r-closed, if it has a locally full arrow for any pair of composable arrows.

Lemma

If \mathbb{P} is locally r-closed then, for every $f : A \to B$ in \mathbb{E} , $f^*: Sub_{\mathbb{E}}(B) \to Sub_{\mathbb{E}}(A)$ has a right adjoint \forall_f which satisfies Beck-Chevalley.

Lemma

If \mathbb{P} is locally r-closed, then it has weak exponentials

Theorem

If \mathbb{P} is locally r-closed, then \mathbb{E} is

cartesian closed.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Lemma

If \mathbb{P} is locally r-closed then, for every $f : A \to B$ in \mathbb{E} , $f^*: Sub_{\mathbb{E}}(B) \to Sub_{\mathbb{E}}(A)$ has a right adjoint \forall_f which satisfies Beck-Chevalley.

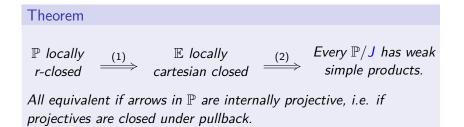
Lemma

If \mathbb{P} is locally r-closed, then it has weak exponentials

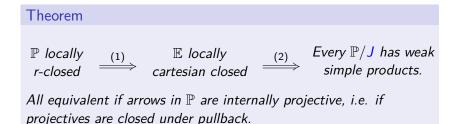
If \mathbb{P} is locally r-closed, then every \mathbb{P}/J is also locally r-closed.

Theorem

If \mathbb{P} is locally r-closed, then \mathbb{E} is locally cartesian closed.



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで



Applications of (1):

- Setoids and types and, more generally, models of a categorical constructive set theory and their choice objects.
- The homotopy category of topological spaces and, more generally, homotopy categories of certain model categories.

Setoids and categories of constructive sets ¹

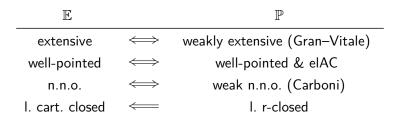
Std	Туре
extensive	weakly extensive
well-pointed	well-pointed & eIAC
n.n.o.	weak n.n.o.
I. cart. closed	I. r-closed

Well-pointed: **1** is strong generator, projective, indecomposable, non-zero. eIAC: every arrow surjective on global elements has a section.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

¹joint work with Erik Palmgren

Setoids and categories of constructive sets ¹

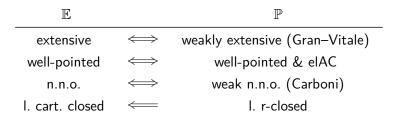


Well-pointed: **1** is strong generator, projective, indecomposable, non-zero. eIAC: every arrow surjective on global elements has a section.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

¹joint work with Erik Palmgren

Setoids and categories of constructive sets ¹



Well-pointed: **1** is strong generator, projective, indecomposable, non-zero. eIAC: every arrow surjective on global elements has a section.

Well-pointed locally cartesian closed pretoposes with an n.n.o. and enough projectives are finitely axiomatised by a theory called CETCS (Palmgren).

¹joint work with Erik Palmgren

Models of CETCS from choice objects $^{\rm 1}$

Theorem

If \mathbb{P} is weakly lextensive, locally r-closed, well-pointed with elAC and a weak natural numbers object, then \mathbb{E} is a model of CETCS.

All but local r-closure are also necessary conditions.

¹joint work with Erik Palmgren

Models of CETCS from choice objects ¹

Theorem

If \mathbb{P} is weakly lextensive, locally r-closed, well-pointed with elAC and a weak natural numbers object, then \mathbb{E} is a model of CETCS.

All but local r-closure are also necessary conditions. In the presence of small disjoint sums, local r-closure is also a necessary condition.

Theorem

Let \mathbb{E} be well-pointed and with small disjoint sums. Then \mathbb{E} is locally cartesian closed if and only if \mathbb{P} is locally r-closed.

Models of CETCS from choice objects $^{\rm 1}$

Theorem

If \mathbb{P} is weakly lextensive, locally r-closed, well-pointed with elAC and a weak natural numbers object, then \mathbb{E} is a model of CETCS.

All but local r-closure are also necessary conditions. In the presence of small disjoint sums, local r-closure is also a necessary condition.

Theorem

Let \mathbb{E} be well-pointed and with small disjoint sums. Then \mathbb{E} is locally cartesian closed if and only if \mathbb{P} is locally r-closed.

Corollary

Suppose \mathbb{E} has small disjoint sums. Then \mathbb{E} is a model of CETCS if and only if \mathbb{P} is weakly lextensive, locally r-closed, well-pointed with elAC and a weak natural numbers object.

¹joint work with Erik Palmgren

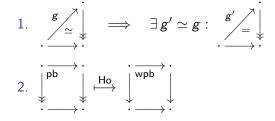
R-closure in homotopy categories

Proposition

Let \mathbb{M} be a right proper model category where every object is cofibrant. If \mathbb{M} is weakly locally cartesian closed, then Ho(\mathbb{M}) is locally r-closed.

If all objects in \mathbb{M} are cofibrant, then its subcategory of fibrant objects \mathbb{M}_f is a path category (van den Berg-Moerdijk). In particular:

ロト (日) (日) (日) (日) (日) (0)



R-closure in homotopy categories

Proposition (Carboni-Rosolini)

Top is weakly locally cartesian closed.

- Top_{Strøm} is a proper model category where every object is fibrant and cofibrant.
- sSet_{Quillen} is a proper model category where every object is cofibrant.

Corollary

- ▶ Ho(**Top**_{Strøm}) is locally r-closed.
- ► Ho(Top_{Quillen}) ~ Ho(sSet_{Quillen}) is locally r-closed.

So their exact completions are locally cartesian closed pretoposes.

This Corollary also follows from results in van den Berg and Moerdijk, *Exact completion of path categories and Algebraic Set Theory*, 2016.

Thank you!

References

- Aczel, Rathjen. *Notes on Constructive Set Theory*. 2001.
- Carboni, Rosolini. Locally cartesian closed exact completions. JPAA, 2000.
- Carboni, Vitale. *Regular and exact completions*. JPAA, 1998.
- E. On the local cartesian closure of exact completions. In preparation.
- E., Palmgren. *Exact completion and constructive theories of sets.* In preparation.
- Gran, Vitale. *On the exact completion of the homotopy category*. Cah. Top. Géo. Dif. Cat., 1998.
- Palmgren. Constructivist and Structuralist Foundations: Bishop's and Lawvere's Theories of Sets. APAL, 2012.