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Axiomatic Cohesion

E and S are toposes.

p : E → S geometric morphism.
E is pre-cohesive over S if

E

S

p! ap∗ ap∗ p!a

i) p∗ full and faithful

ii) p! preserves finite products

iii) θ : p∗ → p! is epi
(the Nullstellensatz)

Continuity Axiom: iv) p!(E
p∗S)→ (p!E )S iso.
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L the full subcategory of E of those objects X for which
θX : p∗ → p! is iso
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Theorem from Axiomatic Cohesion

Theorem
Any category of cohesion satisfying reasonable completeness
conditions has a canonical intensive quality s whose codomain is
the subcategory s∗ :L → E consisting of those X for which the
map θX : p∗X → p!X is an isomorphism. Moreover, s∗ has a left
adjoint s! and a coproduct-preserving right adjoint s∗.

Thus L is a topos.
(Algebras for a left exact comonad.)
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The Actual Construction of the Adjoints

s! : E → L.

p∗p∗X p∗p!X

X s∗s!X

p∗θX

βX

a pushout.



The Actual Construction of the Adjoints

For the right adjoint s∗ : E → L we need φ : p∗ → p!.

s∗s∗X X

p∗p∗X p!p∗X

ηX

φp∗X

a pullback.



Theorem
Let p : E → S be an essential and local geometric morphism
between toposes such that the Nullstellensatz holds. Then then
the inclusion s∗ : L → E of Leibniz objects has a right adjoint. It
follows that L is a topos and p induces an hyperconnected
essential geometric morphism s : E → L.



Basically consequence of

Lemma If p : E → S satisfies the Nullstellensatz, then the image of
s∗ : L → E is closed under subobjects.

As a consequence
s∗(ΩE) = ΩL.
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Proof. L ∈ L, m :X // // L in E .

p∗X p!X

p∗L p!L

θX //

��
p∗m

��
p!m

��

θL

' //



p : E → S essential and local.
The Nullstellensatz holds.

Lemma
If X ∈ E is separated for the topology induced by p∗ a p!, then
s∗s∗X is discrete.

Lemma
X ∈ E is Leibniz if and only if βX : p∗p∗X → X has a retraction.

Lemma
Let Ω be the subobject classifier of E . Then s∗s∗Ω is discrete if
and only if p : E → S is an equivalence.
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Pre-cohesive presheaf topos

C a small category whose idempotents split.

Proposition
p :ConC

op → Con is precohesive if and only if C has a terminal
object and every object has a point.

Lemma
For any X in ConC

op
, the counit s∗(s∗X )→ X is

(s∗(s∗X ))C = {x ∈ QC | for all a, b : 1→ C , x · a = x · b}

for every C ∈ C.
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C with terminal and every object has a point

The lemma gives no information as to the nature of L
for p :ConC

op → Con.

Proposition
L is a presheaf topos.

s :ConC
op → L is essentially the geometric morphism

r :ConC
op → Con(C/≡)

op

induced by r : C → C/≡.

C D
f

g

f ≡ g if f = g or both f and g are constant

C D

1

f

g
p

q
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s :ConC
op → L is in general not local.

s! :L → ConC
op

does not in general preserve finite products.



Sites

Theorem
A bounded essential connected geometric morphism p : E → Con
satisfies the Nullstellensatz iff E has a connected and locally
connected site of definition (C, J) such that every object of C has a
point.

The site (C, J) is locally connected if each J-covering sieve on C is
connected as a full subcategory of C/C . If furthermore C has a
terminal object, then we say that (C, J) is connected and locally
connected.
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(C, J) connected and locally connected

Theorem
Let C/≡ be the category that results from identifying all the
points, and let r : C → C/≡ be the quotient functor. If r+J is the
largest topology on C/≡ such that r reflects covers, then

L(Sh(C, J)) ' Sh(C/≡, r+J).

A sieve S on C in the category C/≡ is in (r+J)C if and only if the
sieve

{g : domg → C in C|r(g) ∈ S}

is in JC .
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Even if (C, J) is subcanonical,
(C/≡, r+C) is not subcanonical in general.

One can use Giraud’s theorem to produce a subcanonical site from
Sh(C/≡, r+J).

If, furthermore, one assumes that every representable is separable,
then one application of ( )+ construction suffices.
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Closed intervals and piecewise linear functions

The category C.

Objects: [a, b] with a ≤ b, a, b ∈ R.

Morphisms: Continuous functions f : [a, b]→ [c , d ],
such that f is piecewise linear.

The topology is given by a basis K :
for a = b, only the total sieve covers.
for a < b, the covering families are of the form

{[ri , ri+1] �
� // [a, b]|a = r0 < · · · < rk = b is a partition of [a, b]}

p : Sh(C,K )→ Con is cohesive.
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The category D.

Objects: open intervals (a, b), with a ≤ b ∈ R.

Morphisms: f : (a, b)→ (c , d) clases of equivalence
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There is an obvious functor F : C → D
Sh(D,F+K ) = L(Sh(C,K )) and it is subcanonical.



Since the sites are subcanonical, F! : Sh(C,K )→ Sh(D,F+K )
preserves representables.

F! preserves colimits.

So

ConC
op

ConD
op

Sh(C, J) Sh(D,F+J)

F! //

F!

//

OO OO

commutes.
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