The canonical intensive quality of a pre-cohesive topos

Francisco Marmolejo Instituto de Matemáticas
Universidad Nacional Autónoma de México

Joint work with
Matías Menni

Monday, July 17, 2017

The canonical intensive quality of a pre-cohesive topos

Francisco Marmolejo Instituto de Matemáticas
Universidad Nacional Autónoma de México

Joint work with
Matías Menni

Monday, July 17, 2017
and help from F.W. Lawvere

Axiomatic Cohesion

I. Categories of space as cohesive backgrounds
II. Cohesion versus non-cohesion; quality types
III. Extensive quality; intensive quality in its rarefied and condensed aspects; the canonical qualities form and substance
IV. Non-cohesion within cohesion via constancy on infinitesimals

V . The example of reflexive graphs and their atomic numbers
VI. Sufficient cohesion and the Grothendieck condition
VII. Weak generation of a subtopos by a quotient topos

Axiomatic Cohesion

I. Categories of space as cohesive backgrounds
II. Cohesion versus non-cohesion; quality types
III. Extensive quality; intensive quality in its rarefied and condensed aspects; the canonical qualities form and substance
IV. Non-cohesion within cohesion via constancy on infinitesimals

V . The example of reflexive graphs and their atomic numbers
VI. Sufficient cohesion and the Grothendieck condition
VII. Weak generation of a subtopos by a quotient topos
"I look forward to further work on each of these aspects"

Axiomatic Cohesion

\mathcal{E} and \mathcal{S} are toposes.

Axiomatic Cohesion

\mathcal{E} and \mathcal{S} are toposes.
$p: \mathcal{E} \rightarrow \mathcal{S}$ geometric morphism.

Axiomatic Cohesion

\mathcal{E} and \mathcal{S} are toposes.
$p: \mathcal{E} \rightarrow \mathcal{S}$ geometric morphism.
\mathcal{E} is pre-cohesive over \mathcal{S} if

Axiomatic Cohesion

\mathcal{E} and \mathcal{S} are toposes.
$p: \mathcal{E} \rightarrow \mathcal{S}$ geometric morphism.
\mathcal{E} is pre-cohesive over \mathcal{S} if

Axiomatic Cohesion

\mathcal{E} and \mathcal{S} are toposes.
$p: \mathcal{E} \rightarrow \mathcal{S}$ geometric morphism.
\mathcal{E} is pre-cohesive over \mathcal{S} if

i) p^{*} full and faithful

Axiomatic Cohesion

\mathcal{E} and \mathcal{S} are toposes.
$p: \mathcal{E} \rightarrow \mathcal{S}$ geometric morphism.
\mathcal{E} is pre-cohesive over \mathcal{S} if

i) p^{*} full and faithful
ii) $p_{!}$preserves finite products

Axiomatic Cohesion

\mathcal{E} and \mathcal{S} are toposes.
$p: \mathcal{E} \rightarrow \mathcal{S}$ geometric morphism.
\mathcal{E} is pre-cohesive over \mathcal{S} if

i) p^{*} full and faithful
ii) $p_{!}$preserves finite products
iii) $\theta: p_{*} \rightarrow p_{!}$is epi

Axiomatic Cohesion

\mathcal{E} and \mathcal{S} are toposes.
$p: \mathcal{E} \rightarrow \mathcal{S}$ geometric morphism.
\mathcal{E} is pre-cohesive over \mathcal{S} if

i) p^{*} full and faithful
ii) $p_{!}$preserves finite products
iii) $\theta: p_{*} \rightarrow p_{!}$is epi
(the Nullstellensatz)

Axiomatic Cohesion

\mathcal{E} and \mathcal{S} are toposes.
$p: \mathcal{E} \rightarrow \mathcal{S}$ geometric morphism.
\mathcal{E} is pre-cohesive over \mathcal{S} if

i) p^{*} full and faithful
ii) $p_{!}$preserves finite products
iii) $\theta: p_{*} \rightarrow p_{!}$is epi
(the Nullstellensatz)

Continuity Axiom: iv) $p_{!}\left(E^{p^{*} S}\right) \rightarrow\left(p_{!} E\right)^{S}$ iso.

Quality type

Quality type

Quality type

Quality type

Quality type

"A quality type is a category of cohesion in one extreme sense"

Canonical Quality Type

\mathcal{L} the full subcategory of \mathcal{E} of those objects X for which $\theta_{X}: p_{*} \rightarrow p_{!}$is iso

Canonical Quality Type

\mathcal{L} the full subcategory of \mathcal{E} of those objects X for which $\theta_{X}: p_{*} \rightarrow p_{!}$is iso

Canonical Quality Type

Reflexive Graphs

Sets

Canonical Quality Type

p!
connected
components

Reflexive Graphs

Sets

Canonical Quality Type

p_{1}
connected discrete
components

Reflexive Graphs

Canonical Quality Type

$$
\begin{array}{cc}
p_{!} & p^{*} \\
\text { connected } & \text { discrete } \\
\text { components } &
\end{array}
$$

Reflexive Graphs

Canonical Quality Type

Reflexive Graphs

Canonical Quality Type

$$
\begin{array}{cccc}
p_{!} & p^{*} & p_{*} & p^{!} \\
\text {connected } & \text { discrete } & \text { points } & \text { codiscrete } \\
\text { components } & & &
\end{array}
$$

$\mathcal{L} \xrightarrow{s^{*}}$ Reflexive Graphs

Canonical Quality Type

Theorem from Axiomatic Cohesion

Theorem

Any category of cohesion satisfying reasonable completeness conditions has a canonical intensive quality s whose codomain is the subcategory $s^{*}: \mathcal{L} \rightarrow \mathcal{E}$ consisting of those X for which the $\operatorname{map} \theta_{X}: p_{*} X \rightarrow p_{!} X$ is an isomorphism. Moreover, s^{*} has a left adjoint $s_{!}$and a coproduct-preserving right adjoint s_{*}.

Theorem from Axiomatic Cohesion

Theorem

Any category of cohesion satisfying reasonable completeness conditions has a canonical intensive quality s whose codomain is the subcategory $s^{*}: \mathcal{L} \rightarrow \mathcal{E}$ consisting of those X for which the $\operatorname{map} \theta_{X}: p_{*} X \rightarrow p_{!} X$ is an isomorphism. Moreover, s^{*} has a left adjoint $s_{!}$and a coproduct-preserving right adjoint s_{*}.

Thus \mathcal{L} is a topos.
(Algebras for a left exact comonad.)

Reflexive Graphs Again

Reflexive Graphs

Reflexive Graphs Again

$\mathcal{L} \xrightarrow{s^{*}}$ Reflexive Graphs

Reflexive Graphs Again

Reflexive Graphs Again

Reflexive Graphs Again

Reflexive Graphs Again

The Actual Construction of the Adjoints

$s_{!}: \mathcal{E} \rightarrow \mathcal{L}$.

$$
\begin{aligned}
& p^{*} p_{*} X \xrightarrow{p^{*} \theta_{X}} p^{*} p_{!} X \\
& \beta_{X} \mid \\
& X
\end{aligned}
$$

a pushout.

The Actual Construction of the Adjoints

For the right adjoint $s_{*}: \mathcal{E} \rightarrow \mathcal{L}$ we need $\phi: p^{*} \rightarrow p^{!}$.

a pullback.

Theorem

Let $p: \mathcal{E} \rightarrow \mathcal{S}$ be an essential and local geometric morphism between toposes such that the Nullstellensatz holds. Then then the inclusion $s^{*}: \mathcal{L} \rightarrow \mathcal{E}$ of Leibniz objects has a right adjoint. It follows that \mathcal{L} is a topos and p induces an hyperconnected essential geometric morphism $s: \mathcal{E} \rightarrow \mathcal{L}$.

Basically consequence of

Basically consequence of

Lemma If $p: \mathcal{E} \rightarrow \mathcal{S}$ satisfies the Nullstellensatz, then the image of $s^{*}: \mathcal{L} \rightarrow \mathcal{E}$ is closed under subobjects.

Basically consequence of

Lemma If $p: \mathcal{E} \rightarrow \mathcal{S}$ satisfies the Nullstellensatz, then the image of $s^{*}: \mathcal{L} \rightarrow \mathcal{E}$ is closed under subobjects.

As a consequence

$$
s_{*}\left(\Omega_{\mathcal{E}}\right)=\Omega_{\mathcal{L}}
$$

Proof. $L \in \mathcal{L}, m: X>L$ in \mathcal{E}.

$$
\begin{gathered}
p_{*} X \xrightarrow{\theta_{X}} p_{!} X \\
p^{*} m \mid \\
p_{*} L \xrightarrow[\theta_{L}]{\simeq} p_{!} L
\end{gathered}
$$

$p: \mathcal{E} \rightarrow \mathcal{S}$ essential and local.
The Nullstellensatz holds.

Lemma

If $X \in \mathcal{E}$ is separated for the topology induced by $p_{*} \dashv p^{!}$, then $s^{*} s_{*} X$ is discrete.

Lemma

If $X \in \mathcal{E}$ is separated for the topology induced by $p_{*} \dashv p^{!}$, then $s^{*} s_{*} X$ is discrete.

Lemma
$X \in \mathcal{E}$ is Leibniz if and only if $\beta_{X}: p^{*} p_{*} X \rightarrow X$ has a retraction.

Lemma

If $X \in \mathcal{E}$ is separated for the topology induced by $p_{*} \dashv p^{!}$, then $s^{*} s_{*} X$ is discrete.

Lemma

$X \in \mathcal{E}$ is Leibniz if and only if $\beta_{X}: p^{*} p_{*} X \rightarrow X$ has a retraction.

Lemma
Let Ω be the subobject classifier of \mathcal{E}. Then $s^{*} s_{*} \Omega$ is discrete if and only if $p: \mathcal{E} \rightarrow \mathcal{S}$ is an equivalence.

Proposition

Boolean objects in \mathcal{E} are discrete.
Thus, \mathcal{E} Boolean implies that $p: \mathcal{E} \rightarrow \mathcal{S}$ is an equivalence.

Proposition

Boolean objects in \mathcal{E} are discrete.
Thus, \mathcal{E} Boolean implies that $p: \mathcal{E} \rightarrow \mathcal{S}$ is an equivalence.

Proposition

\mathcal{L} Boolean implies that $p: \mathcal{E} \rightarrow \mathcal{S}$ is an equivalence.

Pre-cohesive presheaf topos

\mathcal{C} a small category whose idempotents split.

Pre-cohesive presheaf topos

\mathcal{C} a small category whose idempotents split.

Proposition

$p:$ Con $^{\text {Cop }} \rightarrow$ Con is precohesive if and only if \mathcal{C} has a terminal object and every object has a point.

Pre-cohesive presheaf topos

\mathcal{C} a small category whose idempotents split.

Proposition

$p:$ Con $^{\text {Cop }} \rightarrow$ Con is precohesive if and only if \mathcal{C} has a terminal object and every object has a point.

Lemma
For any X in Con $^{\mathcal{C}^{\text {op }}}$, the counit $s^{*}\left(s_{*} X\right) \rightarrow X$ is

$$
\left(s^{*}\left(s_{*} X\right)\right) C=\{x \in Q C \mid \text { for all } a, b: 1 \rightarrow C, x \cdot a=x \cdot b\}
$$

for every $C \in \mathcal{C}$.
\mathcal{C} with terminal and every object has a point
\mathcal{C} with terminal and every object has a point
The lemma gives no information as to the nature of \mathcal{L} for $p: \mathbf{C o n}^{\text {Cop }} \rightarrow$ Con.
\mathcal{C} with terminal and every object has a point
The lemma gives no information as to the nature of \mathcal{L} for $p:$ Con $^{\text {Cop }} \rightarrow$ Con.

Proposition

\mathcal{L} is a presheaf topos.

\mathcal{C} with terminal and every object has a point

The lemma gives no information as to the nature of \mathcal{L} for $p:$ Con $^{\text {Cop }} \rightarrow$ Con.

Proposition

\mathcal{L} is a presheaf topos.
$s:$ Con $^{\text {Cop }} \rightarrow \mathcal{L}$ is essentially the geometric morphism
$r: \mathbf{C o n}^{\mathcal{C}{ }^{\circ P}} \rightarrow \boldsymbol{C o n}^{(\mathcal{C} / \equiv)^{\mathrm{op}}}$

\mathcal{C} with terminal and every object has a point

The lemma gives no information as to the nature of \mathcal{L} for $p:$ Con $^{\text {Cop }} \rightarrow$ Con.

Proposition

\mathcal{L} is a presheaf topos.
$s:$ Con $^{\text {Cop }} \rightarrow \mathcal{L}$ is essentially the geometric morphism
$r: \mathbf{C o n}^{{ }^{\text {Op }}} \rightarrow \boldsymbol{C o n}^{(\mathcal{C} / \equiv)^{\text {op }}}$
induced by $r: \mathcal{C} \rightarrow \mathcal{C} / \equiv$.

\mathcal{C} with terminal and every object has a point

The lemma gives no information as to the nature of \mathcal{L} for $p: \mathbf{C o n}^{\mathcal{C} \text { ค }} \rightarrow$ Con.

Proposition

\mathcal{L} is a presheaf topos.
$s:$ Con $^{\text {Cop }} \rightarrow \mathcal{L}$ is essentially the geometric morphism
$r: \mathbf{C o n}^{{ }^{\text {Op }}} \rightarrow \boldsymbol{C o n}^{(\mathcal{C} / \equiv)^{\text {op }}}$
induced by $r: \mathcal{C} \rightarrow \mathcal{C} / \equiv$.

$$
C \xrightarrow[g]{\stackrel{f}{\Longrightarrow}} D
$$

\mathcal{C} with terminal and every object has a point

The lemma gives no information as to the nature of \mathcal{L} for $p:$ Con $^{\text {Cop }} \rightarrow$ Con.

Proposition

\mathcal{L} is a presheaf topos.
$s:$ Con $^{\text {Cop }} \rightarrow \mathcal{L}$ is essentially the geometric morphism
$r: \mathbf{C o n}^{\mathcal{C}}{ }^{\mathrm{OP}} \rightarrow \boldsymbol{C o n}^{(\mathcal{C} / \equiv)^{\mathrm{op}}}$
induced by $r: \mathcal{C} \rightarrow \mathcal{C} / \equiv$.

$$
C \xrightarrow[g]{\stackrel{f}{\Longrightarrow}} D
$$

$f \equiv g$ if $f=g$ or both f and g are constant

$s:$ Con $^{\text {Cop }} \rightarrow \mathcal{L}$ is in general not local.
$s_{!}: \mathcal{L} \rightarrow \mathbf{C o n}^{\mathcal{C}^{\text {op }}}$ does not in general preserve finite products.

Sites

Theorem

A bounded essential connected geometric morphism $p: \mathcal{E} \rightarrow$ Con satisfies the Nullstellensatz iff \mathcal{E} has a connected and locally connected site of definition (\mathcal{C}, J) such that every object of \mathcal{C} has a point.

Sites

Theorem

A bounded essential connected geometric morphism $p: \mathcal{E} \rightarrow$ Con satisfies the Nullstellensatz iff \mathcal{E} has a connected and locally connected site of definition (\mathcal{C}, J) such that every object of \mathcal{C} has a point.

The site (\mathcal{C}, J) is locally connected if each J-covering sieve on C is connected as a full subcategory of \mathcal{C} / C. If furthermore \mathcal{C} has a terminal object, then we say that (\mathcal{C}, J) is connected and locally connected.

(\mathcal{C}, J) connected and locally connected

Theorem

Let \mathcal{C} / \equiv be the category that results from identifying all the points, and let $r: \mathcal{C} \rightarrow \mathcal{C} / \equiv$ be the quotient functor. If $r_{+} J$ is the largest topology on \mathcal{C} / \equiv such that r reflects covers, then

$$
\mathcal{L}(\operatorname{Sh}(\mathcal{C}, J)) \simeq \operatorname{Sh}\left(\mathcal{C} / \equiv, r_{+} J\right)
$$

(\mathcal{C}, J) connected and locally connected

Theorem

Let \mathcal{C} / \equiv be the category that results from identifying all the points, and let $r: \mathcal{C} \rightarrow \mathcal{C} / \equiv$ be the quotient functor. If $r_{+} J$ is the largest topology on \mathcal{C} / \equiv such that r reflects covers, then

$$
\mathcal{L}(\operatorname{Sh}(\mathcal{C}, J)) \simeq \operatorname{Sh}\left(\mathcal{C} / \equiv, r_{+} J\right)
$$

A sieve S on C in the category \mathcal{C} / \equiv is in $\left(r_{+} J\right) C$ if and only if the sieve

$$
\{g: \operatorname{dom} g \rightarrow C \text { in } \mathcal{C} \mid r(g) \in S\}
$$

is in JC.

Even if (\mathcal{C}, J) is subcanonical, $\left(\mathcal{C} / \equiv, r_{+} \mathcal{C}\right)$ is not subcanonical in general.

Even if (\mathcal{C}, J) is subcanonical, $\left(\mathcal{C} / \equiv, r_{+} \mathcal{C}\right)$ is not subcanonical in general.

One can use Giraud's theorem to produce a subcanonical site from $\operatorname{Sh}\left(\mathcal{C} / \equiv, r_{+} J\right)$.

Even if (\mathcal{C}, J) is subcanonical, $\left(\mathcal{C} / \equiv, r_{+} \mathcal{C}\right)$ is not subcanonical in general.

One can use Giraud's theorem to produce a subcanonical site from $\operatorname{Sh}\left(\mathcal{C} / \equiv, r_{+} J\right)$.

If, furthermore, one assumes that every representable is separable, then one application of ()$^{+}$construction suffices.

Closed intervals and piecewise linear functions

The category \mathcal{C}.

Closed intervals and piecewise linear functions

The category \mathcal{C}.
Objects: $[a, b]$ with $a \leq b, a, b \in \mathbb{R}$.

Closed intervals and piecewise linear functions

The category \mathcal{C}.
Objects: $[a, b]$ with $a \leq b, a, b \in \mathbb{R}$.
Morphisms: Continuous functions $f:[a, b] \rightarrow[c, d]$,

Closed intervals and piecewise linear functions

The category \mathcal{C}.
Objects: $[a, b]$ with $a \leq b, a, b \in \mathbb{R}$.
Morphisms: Continuous functions $f:[a, b] \rightarrow[c, d]$,
such that f is piecewise linear.

Closed intervals and piecewise linear functions

The category \mathcal{C}.
Objects: $[a, b]$ with $a \leq b, a, b \in \mathbb{R}$.
Morphisms: Continuous functions $f:[a, b] \rightarrow[c, d]$, such that f is piecewise linear.

The topology is given by a basis K :

Closed intervals and piecewise linear functions

The category \mathcal{C}.
Objects: $[a, b]$ with $a \leq b, a, b \in \mathbb{R}$.
Morphisms: Continuous functions $f:[a, b] \rightarrow[c, d]$, such that f is piecewise linear.

The topology is given by a basis K : for $a=b$, only the total sieve covers.

Closed intervals and piecewise linear functions

The category \mathcal{C}.
Objects: $[a, b]$ with $a \leq b, a, b \in \mathbb{R}$.
Morphisms: Continuous functions $f:[a, b] \rightarrow[c, d]$, such that f is piecewise linear.

The topology is given by a basis K : for $a=b$, only the total sieve covers. for $a<b$, the covering families are of the form

$$
\left\{\left[r_{i}, r_{i+1}\right] \hookrightarrow[a, b] \mid a=r_{0}<\cdots<r_{k}=b \text { is a partition of }[a, b]\right\}
$$

Closed intervals and piecewise linear functions

The category \mathcal{C}.
Objects: $[a, b]$ with $a \leq b, a, b \in \mathbb{R}$.
Morphisms: Continuous functions $f:[a, b] \rightarrow[c, d]$, such that f is piecewise linear.

The topology is given by a basis K : for $a=b$, only the total sieve covers. for $a<b$, the covering families are of the form

$$
\left\{\left[r_{i}, r_{i+1}\right] \hookrightarrow[a, b] \mid a=r_{0}<\cdots<r_{k}=b \text { is a partition of }[a, b]\right\}
$$

$p: \operatorname{Sh}(\mathcal{C}, K) \rightarrow$ Con is cohesive.

The category \mathcal{D}.

The category \mathcal{D}.
Objects: open intervals (a, b), with $a \leq b \in \mathbb{R}$.

The category \mathcal{D}.
Objects: open intervals (a, b), with $a \leq b \in \mathbb{R}$.
Morphisms: $f:(a, b) \rightarrow(c, d)$ clases of equivalence

The category \mathcal{D}.
Objects: open intervals (a, b), with $a \leq b \in \mathbb{R}$.
Morphisms: $f:(a, b) \rightarrow(c, d)$ clases of equivalence

There is an obvious functor $F: \mathcal{C} \rightarrow \mathcal{D}$
$\operatorname{Sh}\left(\mathcal{D}, F_{+} K\right)=\mathcal{L}(\operatorname{Sh}(\mathcal{C}, K))$ and it is subcanonical.

Since the sites are subcanonical, $F_{!}: \operatorname{Sh}(\mathcal{C}, K) \rightarrow \operatorname{Sh}\left(\mathcal{D}, F_{+} K\right)$ preserves representables.

Since the sites are subcanonical, $F_{!}: \operatorname{Sh}(\mathcal{C}, K) \rightarrow \operatorname{Sh}\left(\mathcal{D}, F_{+} K\right)$ preserves representables.
F_{1} preserves colimits.

Since the sites are subcanonical, $F_{!}: \operatorname{Sh}(\mathcal{C}, K) \rightarrow \operatorname{Sh}\left(\mathcal{D}, F_{+} K\right)$ preserves representables.
$F_{!}$preserves colimits.

So

commutes.

