The canonical intensive quality of a pre-cohesive topos

Francisco Marmolejo Instituto de Matemáticas Universidad Nacional Autónoma de México

> Joint work with Matías Menni

Monday, July 17, 2017

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The canonical intensive quality of a pre-cohesive topos

Francisco Marmolejo Instituto de Matemáticas Universidad Nacional Autónoma de México

> Joint work with Matías Menni

Monday, July 17, 2017

and help from F.W. Lawvere

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- I. Categories of space as cohesive backgrounds
- II. Cohesion versus non-cohesion; quality types
- III. Extensive quality; intensive quality in its rarefied and condensed aspects; the canonical qualities form and substance

- IV. Non-cohesion within cohesion via constancy on infinitesimals
- V. The example of reflexive graphs and their atomic numbers
- VI. Sufficient cohesion and the Grothendieck condition
- VII. Weak generation of a subtopos by a quotient topos

- I. Categories of space as cohesive backgrounds
- II. Cohesion versus non-cohesion; quality types
- III. Extensive quality; intensive quality in its rarefied and condensed aspects; the canonical qualities form and substance

- IV. Non-cohesion within cohesion via constancy on infinitesimals
- V. The example of reflexive graphs and their atomic numbers
- VI. Sufficient cohesion and the Grothendieck condition
- VII. Weak generation of a subtopos by a quotient topos

"I look forward to further work on each of these aspects"

 ${\mathcal E}$ and ${\mathcal S}$ are toposes.

 ${\mathcal E}$ and ${\mathcal S}$ are toposes.

 $p: \mathcal{E} \to \mathcal{S}$ geometric morphism.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$\begin{split} \mathcal{E} \mbox{ and } \mathcal{S} \mbox{ are toposes.} \\ p \colon \mathcal{E} \to \mathcal{S} \mbox{ geometric morphism.} \\ \mathcal{E} \mbox{ is pre-cohesive over } \mathcal{S} \mbox{ if} \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$\begin{split} \mathcal{E} \mbox{ and } \mathcal{S} \mbox{ are toposes.} \\ p \colon \mathcal{E} \to \mathcal{S} \mbox{ geometric morphism.} \\ \mathcal{E} \mbox{ is pre-cohesive over } \mathcal{S} \mbox{ if} \end{split}$$

イロト イポト イヨト イヨト

э

$$\begin{split} \mathcal{E} \mbox{ and } \mathcal{S} \mbox{ are toposes.} \\ p \colon \mathcal{E} \to \mathcal{S} \mbox{ geometric morphism.} \\ \mathcal{E} \mbox{ is pre-cohesive over } \mathcal{S} \mbox{ if} \end{split}$$

i) p^* full and faithful

イロン 不同と イヨン イヨン

э

$$\begin{split} \mathcal{E} \mbox{ and } \mathcal{S} \mbox{ are toposes.} \\ p \colon \mathcal{E} \to \mathcal{S} \mbox{ geometric morphism.} \\ \mathcal{E} \mbox{ is pre-cohesive over } \mathcal{S} \mbox{ if} \end{split}$$

i) p* full and faithful
ii) p₁ preserves finite products

イロト 不得下 イヨト イヨト

э

$$\begin{split} \mathcal{E} \mbox{ and } \mathcal{S} \mbox{ are toposes.} \\ p \colon \mathcal{E} \to \mathcal{S} \mbox{ geometric morphism.} \\ \mathcal{E} \mbox{ is pre-cohesive over } \mathcal{S} \mbox{ if} \end{split}$$

 $\begin{array}{c|c} & & i \end{pmatrix} p^* \text{ full and faithful} \\ & & ii \end{pmatrix} p_1 \text{ preserves finite products} \\ & & iii \end{pmatrix} \theta : p_* \to p_1 \text{ is epi} \end{array}$

$$\begin{split} \mathcal{E} \mbox{ and } \mathcal{S} \mbox{ are toposes.} \\ p \colon \mathcal{E} \to \mathcal{S} \mbox{ geometric morphism.} \\ \mathcal{E} \mbox{ is pre-cohesive over } \mathcal{S} \mbox{ if} \end{split}$$

i) p^* full and faithful ii) $p_!$ preserves finite products iii) $\theta: p_* \to p_!$ is epi (the Nullstellensatz)

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

$$\begin{split} \mathcal{E} \mbox{ and } \mathcal{S} \mbox{ are toposes.} \\ p \colon \mathcal{E} \to \mathcal{S} \mbox{ geometric morphism.} \\ \mathcal{E} \mbox{ is pre-cohesive over } \mathcal{S} \mbox{ if} \end{split}$$

Continuity Axiom: iv) $p_!(E^{p^*S}) \to (p_!E)^S$ iso.

$$\begin{array}{c} \mathcal{E} \\ \uparrow \\ \uparrow \\ \uparrow \\ P^* \begin{pmatrix} \neg \\ \neg \\ \neg \\ P \\ \end{pmatrix} \\ \mathcal{S} \end{array}$$
 $p: \mathcal{E} \to \mathcal{S} \text{ is a quality type if}$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

$$\mathcal{E}$$

$$p^* \left(\neg p_* \right)$$

$$\mathcal{S}$$

 $p: \mathcal{E} \to \mathcal{S}$ is a quality type if p^* is full and faithful,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 $\begin{pmatrix} & \\ \neg p^* \\ \neg p^* \end{pmatrix} \begin{pmatrix} p : \mathcal{E} \to \mathcal{S} \text{ is a quality type if} \\ p^* \text{ is full and faithful,} \\ p_! \dashv p^* \text{ exists} \end{pmatrix}$

 $\begin{pmatrix} \neg p^* \\ \neg p^* \\ \neg p_* \end{pmatrix} \begin{pmatrix} p : \mathcal{E} \to \mathcal{S} \text{ is a quality type if} \\ p^* \text{ is full and faithful,} \\ p_! \dashv p^* \text{ exists} \\ \text{and } \theta : p_* \to p_! \text{ is iso.} \end{pmatrix}$

"A quality type is a category of cohesion in one extreme sense"

 \mathcal{L} the full subcategory of \mathcal{E} of those objects X for which $\theta_X : p_* \to p_!$ is iso

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 \mathcal{L} the full subcategory of \mathcal{E} of those objects X for which $\theta_X : p_* \to p_!$ is iso

イロト 不得 トイヨト イヨト 三日

Reflexive Graphs

Sets

(ロ)、(型)、(E)、(E)、 E) の(の)

P! connected components

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

▲□▶ ▲圖▶ ★ 臣▶ ★ 臣▶ = 臣 = の Q @

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

・ロト ・ 日 ト ・ モ ト ・ モ ト

æ

・ロト ・聞ト ・ヨト ・ヨト

æ

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Theorem from Axiomatic Cohesion

Theorem

Any category of cohesion satisfying reasonable completeness conditions has a canonical intensive quality *s* whose codomain is the subcategory $s^* : \mathcal{L} \to \mathcal{E}$ consisting of those *X* for which the map $\theta_X : p_*X \to p_!X$ is an isomorphism. Moreover, s^* has a left adjoint *s*₁ and a coproduct-preserving right adjoint *s*_{*}.

Theorem from Axiomatic Cohesion

Theorem

Any category of cohesion satisfying reasonable completeness conditions has a canonical intensive quality *s* whose codomain is the subcategory $s^* : \mathcal{L} \to \mathcal{E}$ consisting of those *X* for which the map $\theta_X : p_*X \to p_!X$ is an isomorphism. Moreover, s^* has a left adjoint $s_!$ and a coproduct-preserving right adjoint s_* .

Thus \mathcal{L} is a topos. (Algebras for a left exact comonad.)

Reflexive Graphs Again

Reflexive Graphs

Reflexive Graphs Again

▲ロト ▲圖ト ▲温ト ▲温ト

æ

・ロト ・聞ト ・ヨト ・ヨト

æ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

The Actual Construction of the Adjoints

 $s_!: \mathcal{E} \to \mathcal{L}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

a pushout.

The Actual Construction of the Adjoints

For the right adjoint $s_*: \mathcal{E} \to \mathcal{L}$ we need $\phi: p^* \to p^!$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

a pullback.

Theorem

Let $p: \mathcal{E} \to \mathcal{S}$ be an essential and local geometric morphism between toposes such that the Nullstellensatz holds. Then then the inclusion $s^*: \mathcal{L} \to \mathcal{E}$ of Leibniz objects has a right adjoint. It follows that \mathcal{L} is a topos and p induces an hyperconnected essential geometric morphism $s: \mathcal{E} \to \mathcal{L}$.

Basically consequence of

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Basically consequence of

Lemma If $p: \mathcal{E} \to \mathcal{S}$ satisfies the Nullstellensatz, then the image of $s^*: \mathcal{L} \to \mathcal{E}$ is closed under subobjects.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Basically consequence of

Lemma If $p: \mathcal{E} \to \mathcal{S}$ satisfies the Nullstellensatz, then the image of $s^*: \mathcal{L} \to \mathcal{E}$ is closed under subobjects.

As a consequence

$$s_*(\Omega_{\mathcal{E}}) = \Omega_{\mathcal{L}}.$$

Proof. $L \in \mathcal{L}$, $m: X \longrightarrow L$ in \mathcal{E} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $p: \mathcal{E} \to \mathcal{S}$ essential and local. The Nullstellensatz holds.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

 $p: \mathcal{E} \to \mathcal{S}$ essential and local. The Nullstellensatz holds.

Lemma

If $X \in \mathcal{E}$ is separated for the topology induced by $p_* \dashv p^!$, then s^*s_*X is discrete.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 $p: \mathcal{E} \to \mathcal{S}$ essential and local. The Nullstellensatz holds.

Lemma

If $X \in \mathcal{E}$ is separated for the topology induced by $p_* \dashv p^!$, then s^*s_*X is discrete.

Lemma

 $X \in \mathcal{E}$ is Leibniz if and only if $\beta_X : p^*p_*X \to X$ has a retraction.

 $p: \mathcal{E} \to \mathcal{S}$ essential and local. The Nullstellensatz holds.

Lemma

If $X \in \mathcal{E}$ is separated for the topology induced by $p_* \dashv p^!$, then s^*s_*X is discrete.

Lemma

 $X \in \mathcal{E}$ is Leibniz if and only if $\beta_X : p^* p_* X \to X$ has a retraction.

Lemma

Let Ω be the subobject classifier of \mathcal{E} . Then $s^*s_*\Omega$ is discrete if and only if $p: \mathcal{E} \to \mathcal{S}$ is an equivalence.

Proposition

Boolean objects in \mathcal{E} are discrete. Thus, \mathcal{E} Boolean implies that $p: \mathcal{E} \to \mathcal{S}$ is an equivalence.

(ロ)、(型)、(E)、(E)、 E) の(の)

Proposition

Boolean objects in \mathcal{E} are discrete. Thus, \mathcal{E} Boolean implies that $p: \mathcal{E} \to \mathcal{S}$ is an equivalence.

Proposition

 \mathcal{L} Boolean implies that $p: \mathcal{E} \to \mathcal{S}$ is an equivalence.

Pre-cohesive presheaf topos

 $\ensuremath{\mathcal{C}}$ a small category whose idempotents split.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Pre-cohesive presheaf topos

 $\ensuremath{\mathcal{C}}$ a small category whose idempotents split.

Proposition

 $p: \mathbf{Con}^{\mathcal{C}^{op}} \to \mathbf{Con}$ is precohesive if and only if \mathcal{C} has a terminal object and every object has a point.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Pre-cohesive presheaf topos

 $\ensuremath{\mathcal{C}}$ a small category whose idempotents split.

Proposition

 $p: \mathbf{Con}^{\mathcal{C}^{op}} \to \mathbf{Con}$ is precohesive if and only if \mathcal{C} has a terminal object and every object has a point.

Lemma

For any X in $\mathbf{Con}^{\mathcal{C}^{\mathrm{op}}}$, the counit $s^*(s_*X) \to X$ is

 $(s^*(s_*X))C = \{x \in QC \mid \text{for all } a, b : 1 \rightarrow C, x \cdot a = x \cdot b\}$

for every $C \in C$.

▲□▶▲圖▶▲≣▶▲≣▶ ▲□▶

The lemma gives no information as to the nature of \mathcal{L} for $p: \mathbf{Con}^{\mathcal{C}^{\mathsf{op}}} \to \mathbf{Con}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The lemma gives no information as to the nature of \mathcal{L} for $p: \mathbf{Con}^{\mathcal{C}^{\mathsf{op}}} \to \mathbf{Con}$.

Proposition

 $\ensuremath{\mathcal{L}}$ is a presheaf topos.

The lemma gives no information as to the nature of \mathcal{L} for $p: \mathbf{Con}^{\mathcal{C}^{\mathrm{op}}} \to \mathbf{Con}$.

Proposition

 $\ensuremath{\mathcal{L}}$ is a presheaf topos.

 $s: \mathbf{Con}^{\mathcal{C}^{\mathrm{op}}} \to \mathcal{L}$ is essentially the geometric morphism $r: \mathbf{Con}^{\mathcal{C}^{\mathrm{op}}} \to \mathbf{Con}^{(\mathcal{C}/\equiv)^{\mathrm{op}}}$

The lemma gives no information as to the nature of \mathcal{L} for $p: \mathbf{Con}^{\mathcal{C}^{\mathrm{op}}} \to \mathbf{Con}$.

Proposition

 $\ensuremath{\mathcal{L}}$ is a presheaf topos.

 $s: \mathbf{Con}^{\mathcal{C}^{\mathrm{op}}} \to \mathcal{L}$ is essentially the geometric morphism $r: \mathbf{Con}^{\mathcal{C}^{\mathrm{op}}} \to \mathbf{Con}^{(\mathcal{C}/\equiv)^{\mathrm{op}}}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

induced by $r: \mathcal{C} \to \mathcal{C} / \equiv$.

The lemma gives no information as to the nature of \mathcal{L} for $p: \mathbf{Con}^{\mathcal{C}^{\mathsf{op}}} \to \mathbf{Con}$.

Proposition

 $\ensuremath{\mathcal{L}}$ is a presheaf topos.

 $s: \mathbf{Con}^{\mathcal{C}^{\mathsf{op}}} \to \mathcal{L}$ is essentially the geometric morphism $r: \mathbf{Con}^{\mathcal{C}^{\mathsf{op}}} \to \mathbf{Con}^{(\mathcal{C}/\equiv)^{\mathsf{op}}}$

induced by $r: \mathcal{C} \to \mathcal{C} / \equiv$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The lemma gives no information as to the nature of \mathcal{L} for $p: \mathbf{Con}^{\mathcal{C}^{\mathsf{op}}} \to \mathbf{Con}$.

Proposition

 $\ensuremath{\mathcal{L}}$ is a presheaf topos.

 $\begin{array}{l} s: \mathbf{Con}^{\mathcal{C}^{\mathrm{op}}} \to \mathcal{L} \text{ is essentially the geometric morphism} \\ r: \mathbf{Con}^{\mathcal{C}^{\mathrm{op}}} \to \mathbf{Con}^{(\mathcal{C}/\equiv)^{\mathrm{op}}} \end{array}$

induced by $r: \mathcal{C} \to \mathcal{C} / \equiv$.

 $f \equiv g$ if f = g or both f and g are constant

 $s: \mathbf{Con}^{\mathcal{C}^{op}} \to \mathcal{L}$ is in general not local. $s_{!}: \mathcal{L} \to \mathbf{Con}^{\mathcal{C}^{op}}$ does not in general preserve finite products.

・ロト・日本・モト・モート ヨー うへで

Sites

Theorem

A bounded essential connected geometric morphism $p : \mathcal{E} \to \mathbf{Con}$ satisfies the Nullstellensatz iff \mathcal{E} has a connected and locally connected site of definition (\mathcal{C}, J) such that every object of \mathcal{C} has a point.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Sites

Theorem

A bounded essential connected geometric morphism $p : \mathcal{E} \to \mathbf{Con}$ satisfies the Nullstellensatz iff \mathcal{E} has a connected and locally connected site of definition (\mathcal{C}, J) such that every object of \mathcal{C} has a point.

The site (\mathcal{C}, J) is locally connected if each *J*-covering sieve on *C* is connected as a full subcategory of \mathcal{C}/\mathcal{C} . If furthermore \mathcal{C} has a terminal object, then we say that (\mathcal{C}, J) is connected and locally connected.

(\mathcal{C}, J) connected and locally connected

Theorem

Let \mathcal{C}/\equiv be the category that results from identifying all the points, and let $r: \mathcal{C} \to \mathcal{C}/\equiv$ be the quotient functor. If r_+J is the largest topology on \mathcal{C}/\equiv such that r reflects covers, then

 $\mathcal{L}(\mathsf{Sh}(\mathcal{C},J)) \simeq \mathsf{Sh}(\mathcal{C}/\equiv,r_+J).$

(\mathcal{C}, J) connected and locally connected

Theorem

Let \mathcal{C}/\equiv be the category that results from identifying all the points, and let $r: \mathcal{C} \to \mathcal{C}/\equiv$ be the quotient functor. If r_+J is the largest topology on \mathcal{C}/\equiv such that r reflects covers, then

$$\mathcal{L}(\mathsf{Sh}(\mathcal{C},J))\simeq\mathsf{Sh}(\mathcal{C}/\equiv,r_+J).$$

A sieve S on C in the category C/\equiv is in $(r_+J)C$ if and only if the sieve

$$\{g: \operatorname{dom} g \to C \text{ in } \mathcal{C} | r(g) \in S\}$$

is in JC.

Even if (\mathcal{C}, J) is subcanonical, $(\mathcal{C}/\equiv, r_+\mathcal{C})$ is not subcanonical in general.

・ロト・日本・モト・モート ヨー うへで

Even if (\mathcal{C}, J) is subcanonical, $(\mathcal{C}/\equiv, r_+\mathcal{C})$ is not subcanonical in general.

One can use Giraud's theorem to produce a subcanonical site from $Sh(C/\equiv, r_+J)$.

Even if (\mathcal{C}, J) is subcanonical, $(\mathcal{C}/\equiv, r_+\mathcal{C})$ is not subcanonical in general.

One can use Giraud's theorem to produce a subcanonical site from $Sh(C/\equiv, r_+J)$.

If, furthermore, one assumes that every representable is separable, then one application of () $^+$ construction suffices.

Closed intervals and piecewise linear functions

The category \mathcal{C} .
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The category C. Objects: [a, b] with $a \leq b$, $a, b \in \mathbb{R}$.

The category C. Objects: [a, b] with $a \le b$, $a, b \in \mathbb{R}$. Morphisms: Continuous functions $f : [a, b] \rightarrow [c, d]$,

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The category C. Objects: [a, b] with $a \le b$, $a, b \in \mathbb{R}$. Morphisms: Continuous functions $f : [a, b] \rightarrow [c, d]$, such that f is piecewise linear.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The category C. Objects: [a, b] with $a \le b$, $a, b \in \mathbb{R}$. Morphisms: Continuous functions $f : [a, b] \rightarrow [c, d]$, such that f is piecewise linear.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The topology is given by a basis K:

The category C. Objects: [a, b] with $a \le b$, $a, b \in \mathbb{R}$. Morphisms: Continuous functions $f : [a, b] \rightarrow [c, d]$, such that f is piecewise linear.

The topology is given by a basis K: for a = b, only the total sieve covers.

The category C. Objects: [a, b] with $a \le b$, $a, b \in \mathbb{R}$. Morphisms: Continuous functions $f : [a, b] \rightarrow [c, d]$, such that f is piecewise linear.

The topology is given by a basis K: for a = b, only the total sieve covers. for a < b, the covering families are of the form

 $\{[r_i, r_{i+1}] \hookrightarrow [a, b] | a = r_0 < \cdots < r_k = b \text{ is a partition of } [a, b] \}$

The category C. Objects: [a, b] with $a \le b$, $a, b \in \mathbb{R}$. Morphisms: Continuous functions $f : [a, b] \rightarrow [c, d]$, such that f is piecewise linear.

The topology is given by a basis K: for a = b, only the total sieve covers. for a < b, the covering families are of the form

 $\{[r_i, r_{i+1}] \hookrightarrow [a, b] | a = r_0 < \cdots < r_k = b \text{ is a partition of } [a, b] \}$

 $p: Sh(\mathcal{C}, K) \rightarrow Con$ is cohesive.

Objects: open intervals (a, b), with $a \leq b \in \mathbb{R}$.

Objects: open intervals (a, b), with $a \leq b \in \mathbb{R}$.

Morphisms: $f:(a, b) \rightarrow (c, d)$ clases of equivalence

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Objects: open intervals (a, b), with $a \leq b \in \mathbb{R}$.

Morphisms: $f:(a, b) \rightarrow (c, d)$ clases of equivalence

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 めんゆ

There is an obvious functor $F : \mathcal{C} \to \mathcal{D}$ Sh $(\mathcal{D}, F_+K) = \mathcal{L}(Sh(\mathcal{C}, K))$ and it is subcanonical.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Since the sites are subcanonical, $F_!$: $Sh(\mathcal{C}, \mathcal{K}) \rightarrow Sh(\mathcal{D}, F_+\mathcal{K})$ preserves representables.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Since the sites are subcanonical, $F_!$: $Sh(\mathcal{C}, \mathcal{K}) \rightarrow Sh(\mathcal{D}, F_+\mathcal{K})$ preserves representables.

F₁ preserves colimits.

Since the sites are subcanonical, $F_!$: $Sh(\mathcal{C}, \mathcal{K}) \rightarrow Sh(\mathcal{D}, F_+\mathcal{K})$ preserves representables.

F₁ preserves colimits.

So

commutes.