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— I find category theoretic arguments to be aesthetically appealing.

What draws me to homotopy type theory?

— I find homotopy type theoretic arguments to be aesthetically
appealing.
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Main takeaway: the dependent Yoneda lemma is a directed analogue of
path induction in HoTT.
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Homotopy type theory



Homotopy type theory

Homotopy type theory is:
• a formal system for mathematical constructions and proofs

• in which the basic objects, types, may be regarded as “spaces” or
∞-groupoids

• and all constructions are automatically “continuous” or
equivalence-invariant.

Homotopy type theory is
{

homotopy (type theory)
(homotopy type) theory

Types A can be regarded simultaneously as both mathematical
constructions and mathematical assertions, a conception also known as
propositions as types; accordingly, a term a : A can be regarded as a
proof of the proposition A.
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Types, terms, and type constructors
Homotopy type theory has:

• types A, B, …

• terms x : A, y : B

• dependent types x : A ⊢ B(x) type, x, y : A ⊢ B(x, y) type

Type constructors build new types and terms from given ones:
• products A × B, coproducts A + B, function types A → B,
• dependent sums

∑
x:A B(x), dependent products

∏
x:A B(x), and

identity types x, y : A ⊢ x =A y.

Propositions as types:

A × B A and B
∑

x:A B(x) ∃x.B(x)
A + B A or B

∏
x:A B(x) ∀x.B(x)

A → B A implies B x =A y x equals y
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Dependent sums and products
Formation rules for dependent sums and products

x : A ⊢ B(x) type∑
x:A

B(x) type
x : A ⊢ B(x) type∏

x:A

B(x) type

Semantics



f :
∏

x:A B(x)

B(a)
∑

x:A B(x)
∑

x:A B(x)

1 A A

(a, u) :
∑

x:A B(x)

⌟
a

u f

In the case x : A ⊢ B type, the dependent sum becomes A × B while
the dependent product becomes A → B.

Propositions as types: If B(x) is a proposition depending on x : A then
(a, u) proves ∃x.B(x) (constructively!) while f proves ∀x.B(x).
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Identity types
Formation rule for identity types

x, y : A

x =A y type

x : A

reflx :
∏

x:A
x =A x

Semantics


∑

x,y:A x =A y

A A × A

reflx

∆

Indiscernability of identicals: If B(x) is a type family dependent on x : A,

ϕ :
∏

x,y:A

∏
p:x=Ay

B(x) → B(y).

Thus, if x =A y then B(x) → B(y).
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Path induction
The identity type family is freely generated by the terms reflx : x =A x.

Path induction: If B(x, y, p) is a type family dependent on x, y : A and
p : x =A y, then there is a function

path-ind :

(∏
x:A

B(x, x, reflx)

)
→

∏
x,y:A

∏
p:x=Ay

B(x, y, p)

.
Thus, to prove B(x, y, p) it suffices to assume y is x and p is reflx.

The ∞-groupoid structure of A with
• terms x : A as objects
• paths p : x =A y as 1-morphisms
• paths of paths α : p =x=Ay q as 2-morphisms, . . .

arises automatically from the path induction principle.
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A type theory for synthetic
(∞, 1)-categories



The intended model

Set∆op×∆op ⊃ Reedy ⊃ Segal ⊃ Rezk
= = = =

bisimplicial sets types types with types with
composition composition

& univalence

Theorem (Shulman). Homotopy type theory is modeled by the
category of Reedy fibrant bisimplicial sets.

Theorem (Rezk). (∞, 1)-categories are modeled by Rezk spaces aka
complete Segal spaces.
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Shapes in the theory of the directed interval
Our types may depend on other types and also on shapes Φ ⊂ 2n,
polytopes embedded in a directed cube,

defined in a language

⊤,⊥,∧,∨,≡ and 0, 1,≤

satisfying intuitionistic logic and strict interval axioms.

∆n := {(t1, . . . , tn) : 2n | tn ≤ · · · ≤ t1} e.g. ∆1 := 2

∆2 :=

 (0,0) (1,0)

(1,1)

(t,0)

(1,t)
(t,t)

∂∆2 := {(t1, t2) : 22 | (t2 ≤ t1) ∧ ((0 = t2) ∨ (t2 = t1) ∨ (t1 = 1))}
Λ2
1 := {(t1, t2) : 22 | (t2 ≤ t1) ∧ ((0 = t2) ∨ (t1 = 1))}

Because ϕ ∧ ψ implies ϕ, there are shape inclusions Λ2
1 ⊂ ∂∆2 ⊂ ∆2.
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Extension types
shape inclusion: Φ := {t ∈ 2n | ϕ} and Ψ = {t ∈ 2n | ψ} so that ϕ
implies ψ, i.e., so that Φ ⊂ Ψ.

Formation rule for extension types

Φ ⊂ Ψ shape A type a : Φ → A⟨
Φ A

Ψ

a ⟩
type

A term f :

⟨
Φ A

Ψ

a ⟩
defines

f : Ψ → A so that f(t) ≡ a(t) for t : Φ.

The simplicial type theory allows us to prove equivalences between
extension types along composites or products of shape inclusions.
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3

Segal types and Rezk types



Hom types
Formation rule for extension types

Φ ⊂ Ψ shape Ψ ⊢ A type a : Φ → A⟨
Φ A
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The hom type for A depends on two terms in A:
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∂∆1 ⊂ ∆1 shape A type [x, y] : ∂∆1 → A
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A term f : homA(x, y) defines an arrow from x to y.

homA(x, y) :=
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Segal types have unique binary composites

A type A is Segal iff every composable pair of arrows has a unique
composite

, i.e., for every f : homA(x, y) and g : homA(y, z) the type

⟨
Λ2
1 A

∆2

[f,g] ⟩
is contractible.

Prop. A Reedy fibrant bisimplicial set A is Segal if and only if
A∆2 ↠ AΛ2

1 is a Reedy trivial fibration.

Notation. Let compg,f :

⟨
Λ2
1 A

∆2

[f,g] ⟩
denote the unique

inhabitant and write g ◦ f : homA(x, z) for its inner face, the composite
of f and g.
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Identity arrows

For any x : A, the constant function defines a term

idx := λt.x : homA(x, x) :=

⟨
∂∆1 A

∆1

[x,x] ⟩
,

which we denote by idx and call the identity arrow.

For any f : homA(x, y) in a Segal type A, the term

λ(s, t).f(t) :

⟨
Λ2
1 A

∆2

[idx,f] ⟩

witnesses the unit axiom f = f ◦ idx.
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Associativity of composition
Let A be a Segal type with arrows

f : homA(x, y), g : homA(y, z), h : homA(z,w).

Prop. h ◦ (g ◦ f) = (h ◦ g) ◦ f.
Proof: Consider the composable arrows in the Segal type ∆1 → A:

y

x z

z

y w

g

f h

g

Composing defines a term in the type ∆2 → (∆1 → A) which yields a
term ℓ : homA(x,w) so that ℓ = h ◦ (g ◦ f) and ℓ = (h ◦ g) ◦ f.
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Isomorphisms
An arrow f : homA(x, y) in a Segal type is an isomorphism if it has a
two-sided inverse g : homA(y, x). However, the type∑

g : homA(y,x)

(g ◦ f = idx)× (f ◦ g = idy)

has higher-dimensional structure and is not a proposition.

Instead define

isiso(f) :=

 ∑
g : homA(y,x)

g ◦ f = idx

×

 ∑
h : homA(y,x)

f ◦ h = idy

.
For x, y : A, the type of isomorphisms from x to y is:

x ∼=A y :=
∑

f:homA(x,y)

isiso(f).
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Rezk types

By path induction, to define a map

id-to-iso : (x =A y) → (x ∼=A y)

for all x, y : A it suffices to define

id-to-iso(reflx) := idx.

A Segal type A is Rezk if every isomorphism is an identity, i.e., if the map

id-to-iso : (x =A y) → (x ∼=A y)

is an equivalence.
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Discrete types
Similarly by path induction define

id-to-arr :
∏
x,y:A

(x =A y) → homA(x, y) by id-to-arr(reflx) := idx.

A type A is discrete if id-to-arr is an equivalence for all x, y : A.

Prop. A type is discrete if and only if it is Rezk and all of its arrows are
isomorphisms. If the Rezk types are (∞, 1)-categories, then the
discrete types are ∞-groupoids.

Proof:
x =A y homA(x, y)

x ∼=A y

id-to-arr

id-to-iso
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4

The synthetic theory of
(∞, 1)-categories



Covariant fibrations I

A type family x : A ⊢ B(x) over a Segal type A is covariant if for every
f : homA(x, y) and u : B(x) there is a unique lift of f with domain u.

, i.e., if∑
v:B(y)

homB(f)(u, v) is contractible.

Notation. The codomain of the unique lift defines a term f∗u : B(y).

Prop. For u : B(x), f : homA(x, y), and g : homA(y, z),

g∗(f∗u) = (g ◦ f)∗u and (idx)∗u = u.
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Covariant fibrations II

A type family x : A ⊢ B(x) over a Segal type A is covariant if for every
f : homA(x, y) and u : B(x) there is a unique lift of f with domain u, i.e., if∑

v:B(y)

homB(f)(u, v) is contractible.

Prop. If x : A ⊢ B(x) is covariant then for each x : A the fiber B(x) is
discrete.

Prop. Fix a : A. The type family x : A ⊢ homA(a, x) is covariant.

For u : homA(a, x) and f : homA(x, y), the transport f∗u equals the
composite f ◦ u as terms in homA(a, y)
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Covariant fibrations II

A type family x : A ⊢ B(x) over a Segal type A is covariant if for every
f : homA(x, y) and u : B(x) there is a unique lift of f with domain u, i.e., if∑

v:B(y)

homB(f)(u, v) is contractible.

Prop. If x : A ⊢ B(x) is covariant then for each x : A the fiber B(x) is
discrete.

Prop. Fix a : A. The type family x : A ⊢ homA(a, x) is covariant.

For u : homA(a, x) and f : homA(x, y), the transport f∗u equals the
composite f ◦ u as terms in homA(a, y), i.e., f∗(u) = f ◦ u.



The Yoneda lemma
Let x : A ⊢ B(x) be a covariant family over a Segal type and fix a : A.

Yoneda lemma. The maps

ev-id := λϕ.ϕ(a, ida) :

(∏
x:A

homA(a, x) → B(x)

)
→ B(a)

and

yon := λu.λx.λf.f∗u : B(a) →

(∏
x:A

homA(a, x) → B(x)

)

are inverse equivalences.

Proof: The transport operation for covariant families is functorial in A
and fiberwise maps between covariant families are automatically natural.
Note. A representable isomorphism ϕ :

∏
x:A homA(a, x) ∼= homA(b, x)

induces an identity ev-id(ϕ) : b =A a if the Segal type A is Rezk.
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The dependent Yoneda lemma

From a type-theoretic perspective, the Yoneda lemma is a
“directed” version of the “transport” operation for identity types.
This suggests a “dependently typed” generalization of the Yoneda
lemma, analogous to the full induction principle for identity types.

Dependent Yoneda lemma. If A is a Segal type and B(x, y, f) is a
covariant family dependent on x, y : A and f : homA(x, y), then
evaluation at (x, x, idx) defines an equivalence

ev-id :

∏
x,y:A

∏
f:homA(x,y)

B(x, y, f)

→
∏
x:A

B(x, x, idx)

This is useful for proving equivalences between various types of
coherent or incoherent adjunction data.
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Dependent Yoneda is directed path induction
Takeaway: the dependent Yoneda lemma is directed path induction.

Path induction: If B(x, y, p) is a type family dependent on x, y : A and
p : x =A y, then there is a function

path-ind :

(∏
x:A

B(x, x, reflx)

)
→

∏
x,y:A

∏
p:x=Ay

B(x, y, p)

.
Thus, to prove B(x, y, p) it suffices to assume y is x and p is reflx.

Dependent Yoneda Lemma: If B(x, y, f) is a covariant family dependent
on x, y : A and f : homA(x, y) and A is Segal, then there is a function

id-ind :

(∏
x:A

B(x, x, idx)

)
→

∏
x,y:A

∏
f:homA(x,y)

B(x, y, f)

.
Thus, to prove B(x, y, p) it suffices to assume y is x and f is idx.
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