

Johns Hopkins University

A synthetic theory of ∞ -categories in homotopy type theory

joint with Michael Shulman

CT2017 UBC, Vancouver, Canada

Why do I study category theory?

Why do I study category theory?

- I find category theoretic arguments to be aesthetically appealing.

Why do I study category theory?

- I find category theoretic arguments to be aesthetically appealing.

What draws me to homotopy type theory?

Why do I study category theory?

- I find category theoretic arguments to be aesthetically appealing.

What draws me to homotopy type theory?

— I find homotopy type theoretic arguments to be aesthetically appealing.

2. A type theory for synthetic $(\infty,1)\text{-categories}$

3. Segal types and Rezk types

4. The synthetic theory of $(\infty, 1)$ -categories

- I. Homotopy type theory
- 2. A type theory for synthetic $(\infty, 1)$ -categories
- 3. Segal types and Rezk types
- 4. The synthetic theory of $(\infty, 1)$ -categories

Main takeaway: the dependent Yoneda lemma is a directed analogue of path induction in HoTT.

Homotopy type theory is:

• a formal system for mathematical constructions and proofs

Homotopy type theory is:

- a formal system for mathematical constructions and proofs
- in which the basic objects, types, may be regarded as "spaces" or $\infty\mbox{-}groupoids$

Homotopy type theory is:

- a formal system for mathematical constructions and proofs
- in which the basic objects, types, may be regarded as "spaces" or ∞ -groupoids
- and all constructions are automatically "continuous" or equivalence-invariant.

Homotopy type theory is:

- a formal system for mathematical constructions and proofs
- in which the basic objects, types, may be regarded as "spaces" or ∞ -groupoids
- and all constructions are automatically "continuous" or equivalence-invariant.

```
Homotopy type theory is \begin{cases} homotopy (type theory) \\ \end{pmatrix}
```

Homotopy type theory is:

- a formal system for mathematical constructions and proofs
- in which the basic objects, types, may be regarded as "spaces" or $\infty\mbox{-}groupoids$
- and all constructions are automatically "continuous" or equivalence-invariant.

Homotopy type theory is {homotopy (type theory) (homotopy type) theory

Homotopy type theory is:

- a formal system for mathematical constructions and proofs
- in which the basic objects, types, may be regarded as "spaces" or $\infty\mbox{-}groupoids$
- and all constructions are automatically "continuous" or equivalence-invariant.

Homotopy type theory is { homotopy (type theory) (homotopy type) theory

Types A can be regarded simultaneously as both mathematical constructions and mathematical assertions, a conception also known as propositions as types;

Homotopy type theory is:

- a formal system for mathematical constructions and proofs
- in which the basic objects, types, may be regarded as "spaces" or $\infty\mbox{-}groupoids$
- and all constructions are automatically "continuous" or equivalence-invariant.

```
Homotopy type theory is 
{ homotopy (type theory)
(homotopy type) theory
```

Types A can be regarded simultaneously as both mathematical constructions and mathematical assertions, a conception also known as propositions as types; accordingly, a term a : A can be regarded as a proof of the proposition A.

Homotopy type theory has:

• types A, B, ...

Homotopy type theory has:

- types A, B, ...
- terms *x* : *A*, *y* : *B*

Homotopy type theory has:

- types A, B, ...
- terms *x* : *A*, *y* : *B*
- dependent types $x : A \vdash B(x)$ type, $x, y : A \vdash B(x, y)$ type

Homotopy type theory has:

- types A, B, ...
- terms *x* : *A*, *y* : *B*
- dependent types $x : A \vdash B(x)$ type, $x, y : A \vdash B(x, y)$ type

Type constructors build new types and terms from given ones:

Homotopy type theory has:

- types A, B, ...
- terms *x* : *A*, *y* : *B*
- dependent types $x : A \vdash B(x)$ type, $x, y : A \vdash B(x, y)$ type

Type constructors build new types and terms from given ones:

• products $A \times B$, coproducts A + B, function types $A \rightarrow B$,

Homotopy type theory has:

- types A, B, ...
- terms *x* : *A*, *y* : *B*
- dependent types $x : A \vdash B(x)$ type, $x, y : A \vdash B(x, y)$ type

Type constructors build new types and terms from given ones:

- products $A \times B$, coproducts A + B, function types $A \rightarrow B$,
- dependent sums $\sum_{x:A} B(x)$, dependent products $\prod_{x:A} B(x)$, and identity types $x, y : A \vdash x =_A y$.

Homotopy type theory has:

- types A, B, ...
- terms *x* : *A*, *y* : *B*
- dependent types $x : A \vdash B(x)$ type, $x, y : A \vdash B(x, y)$ type

Type constructors build new types and terms from given ones:

- products $A \times B$, coproducts A + B, function types $A \rightarrow B$,
- dependent sums $\sum_{x:A} B(x)$, dependent products $\prod_{x:A} B(x)$, and identity types $x, y : A \vdash x =_A y$.

Propositions as types:

$A \times B$	A and B
A + B	A or B
$A \rightarrow B$	A implies B

$$\begin{array}{c|c} \sum_{x:A} B(x) & \exists x.B(x) \\ \prod_{x:A} B(x) & \forall x.B(x) \\ x =_A y & x \text{ equals} \end{array}$$

Formation rules for dependent sums and products

 $\frac{x: A \vdash B(x) \text{ type}}{\sum_{x:A} B(x) \text{ type}}$

 $\frac{\mathbf{x}: \mathbf{A} \vdash \mathbf{B}(\mathbf{x}) \text{ type}}{\prod_{\mathbf{x}:\mathbf{A}} \mathbf{B}(\mathbf{x}) \text{ type}}$

Formation rules for dependent sums and products

$$\frac{x : A \vdash B(x) \text{ type}}{\sum_{x:A} B(x) \text{ type}} \qquad \frac{x : A \vdash B(x) \text{ type}}{\prod_{x:A} B(x) \text{ type}}$$

$$\frac{(a, u) : \sum_{x:A} B(x)}{B(a) \to \sum_{x:A} B(x)} \qquad f: \prod_{x:A} B(x)$$
Semantics
$$\begin{cases} (a, u) : \sum_{x:A} B(x) & f: \prod_{x:A} B(x) \\ B(a) \to \sum_{x:A} B(x) & f: \prod_{x:A} B(x) \\ B(a) \to \sum_{x:A} B(x) & f: \prod_{x:A} B(x) \\ B(a) \to \sum_{x:A} B(x) & f: \prod_{x:A} B(x) \\ B(a) \to \sum_{x:A} B(x) & f: \prod_{x:A} B(x) \\ A & f: \prod_{x:A}$$

Formation rules for dependent sums and products

$$\frac{x : A \vdash B(x) \text{ type}}{\sum_{x:A} B(x) \text{ type}} \qquad \frac{x : A \vdash B(x) \text{ type}}{\prod_{x:A} B(x) \text{ type}}$$
Semantics
$$\begin{cases} (a, u) : \sum_{x:A} B(x) & f : \prod_{x:A} B(x) \\ B(a) \longrightarrow \sum_{x:A} B(x) & \sum_{x:A} B(x) \\ B(a) \longrightarrow \sum_{x:A} B(x) & \sum_{x:A} B(x) \\ f : \prod_{x:A} B(x) & g(x) \\ A(x) & g(x) & g(x) \\ f : f & g(x) \\ g(x) & g(x) g(x$$

In the case $x : A \vdash B$ type, the dependent sum becomes $A \times B$ while the dependent product becomes $A \rightarrow B$.

Formation rules for dependent sums and products

In the case $x : A \vdash B$ type, the dependent sum becomes $A \times B$ while the dependent product becomes $A \rightarrow B$.

Propositions as types: If B(x) is a proposition depending on x : A

Formation rules for dependent sums and products

$$\frac{x : A \vdash B(x) \text{ type}}{\sum_{x:A} B(x) \text{ type}} \qquad \frac{x : A \vdash B(x) \text{ type}}{\prod_{x:A} B(x) \text{ type}}$$
Semantics
$$\begin{cases} (a, u) : \sum_{x:A} B(x) & f : \prod_{x:A} B(x) \\ B(a) \longrightarrow \sum_{x:A} B(x) & \sum_{x:A} B(x) \\ \vdots & \vdots & \vdots \\ 1 & \cdots & A & A \end{cases}$$

In the case $x : A \vdash B$ type, the dependent sum becomes $A \times B$ while the dependent product becomes $A \rightarrow B$.

Propositions as types: If B(x) is a proposition depending on x: A then (a, u) proves $\exists x.B(x)$ (constructively!)

Formation rules for dependent sums and products

$$\frac{x : A \vdash B(x) \text{ type}}{\sum_{x:A} B(x) \text{ type}} \qquad \frac{x : A \vdash B(x) \text{ type}}{\prod_{x:A} B(x) \text{ type}}$$
Semantics
$$\begin{cases} (a, u) : \sum_{x:A} B(x) & f : \prod_{x:A} B(x) \\ B(a) \longrightarrow \sum_{x:A} B(x) & \sum_{x:A} B(x) \\ B(a) \longrightarrow \sum_{x:A} B(x) & \sum_{x:A} B(x) \\ A & A & A \\ f &$$

In the case $x : A \vdash B$ type, the dependent sum becomes $A \times B$ while the dependent product becomes $A \rightarrow B$.

Propositions as types: If B(x) is a proposition depending on x: A then (a, u) proves $\exists x.B(x)$ (constructively!) while f proves $\forall x.B(x)$.

Formation rule for identity types

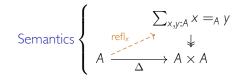
 $\frac{x, y : A}{x =_A y \text{ type}}$

Formation and introduction rules for identity types

$$\frac{x, y : A}{x =_A y \text{ type}} \qquad \qquad \frac{x : A}{\text{refl}_x : \prod_{x:A} x =_A x}$$

Formation and introduction rules for identity types

$$\frac{x, y : A}{x =_A y \text{ type}} \qquad \qquad \frac{x : A}{\text{refl}_x : \prod_{x:A} x =_A x}$$



Formation and introduction rules for identity types

$$\frac{x, y : A}{x =_A y \text{ type}} \qquad \qquad \frac{x : A}{\text{refl}_x : \prod_{x:A} x =_A x}$$

Semantics
$$\begin{cases} \sum_{x,y:A} x =_A y \\ \stackrel{\text{refl}_x}{\longrightarrow} A \xrightarrow{\times} A \end{cases}$$

Indiscernability of identicals: If B(x) is a type family dependent on x : A,

$$\phi: \prod_{x,y:A} \prod_{p:x=_{A}y} B(x) \to B(y).$$

Formation and introduction rules for identity types

$$\frac{x, y : A}{x =_A y \text{ type}} \qquad \qquad \frac{x : A}{\text{refl}_x : \prod_{x:A} x =_A x}$$

Semantics
$$\begin{cases} \sum_{x,y:A} x =_A y \\ \stackrel{\text{refl}_x}{\longrightarrow} A \xrightarrow{} A \times A \end{cases}$$

Indiscernability of identicals: If B(x) is a type family dependent on x : A,

$$\phi: \prod_{x,y:A} \prod_{p:x=AY} B(x) \to B(y).$$

Thus, if $x =_A y$ then $B(x) \to B(y)$.

Path induction

The identity type family is freely generated by the terms $refl_x : x =_A x$.

Path induction

The identity type family is freely generated by the terms $refl_x : x =_A x$.

Path induction: If B(x, y, p) is a type family dependent on x, y : A and $p : x =_A y$, then there is a function

path-ind :
$$\left(\prod_{x:A} B(x, x, \operatorname{refl}_x)\right) \rightarrow \left(\prod_{x,y:A} \prod_{p:x=Ay} B(x, y, p)\right).$$

Path induction

The identity type family is freely generated by the terms $refl_x : x =_A x$.

Path induction: If B(x, y, p) is a type family dependent on x, y : A and $p : x =_A y$, then there is a function

path-ind :
$$\left(\prod_{x:A} B(x, x, \operatorname{refl}_x)\right) \rightarrow \left(\prod_{x,y:A} \prod_{p:x=Ay} B(x, y, p)\right)$$

Thus, to prove B(x, y, p) it suffices to assume y is x and p is refl_x.

Path induction

The identity type family is freely generated by the terms $refl_x : x =_A x$.

Path induction: If B(x, y, p) is a type family dependent on x, y : A and $p : x =_A y$, then there is a function

path-ind :
$$\left(\prod_{x:A} B(x, x, \operatorname{refl}_x)\right) \rightarrow \left(\prod_{x,y:A} \prod_{p:x=_A y} B(x, y, p)\right)$$

Thus, to prove B(x, y, p) it suffices to assume y is x and p is refl_x.

The ∞ -groupoid structure of A with

- terms **x** : A as objects
- paths $p: x =_A y$ as 1-morphisms
- paths of paths $\alpha : p =_{x=_{AY}} q$ as 2-morphisms, ...

arises automatically from the path induction principle.

A type theory for synthetic $(\infty,1)\text{-categories}$

The intended model

$\operatorname{Set}^{\operatorname{A^{op}}\times\operatorname{A^{op}}}$	\supset	$\mathcal{R}eedy$	\supset	Segal	\supset	Rezk
II				Ш		II
bisimplicial sets		types		types with		types with
				composition		composition
						& univalence

The intended model

$\operatorname{Set}^{\operatorname{A^{op}}\times\operatorname{A^{op}}}$	\supset	\mathcal{R} eedy	\supset	Segal	\supset	Rezk
II				Ш		II
bisimplicial sets		types		types with		types with
				composition		composition
						& univalence

Theorem (Shulman). Homotopy type theory is modeled by the category of Reedy fibrant bisimplicial sets.

The intended model

$\operatorname{Set}^{\operatorname{A^{op}}\times\operatorname{A^{op}}}$	\supset	\mathcal{R} eedy	\supset	Segal	\supset	Rezk
II				Ш		II
bisimplicial sets		types		types with		types with
				composition		composition
						& univalence

Theorem (Shulman). Homotopy type theory is modeled by the category of Reedy fibrant bisimplicial sets.

Theorem (Rezk). $(\infty, 1)$ -categories are modeled by Rezk spaces aka complete Segal spaces.

Our types may depend on other types and also on shapes $\Phi \subset 2^n$, polytopes embedded in a directed cube,

Our types may depend on other types and also on shapes $\Phi \subset 2^n$, polytopes embedded in a directed cube, defined in a language

$$op, \bot, \land, \lor, \equiv$$
 and $0, 1, \leq$

satisfying intuitionistic logic and strict interval axioms.

Our types may depend on other types and also on shapes $\Phi \subset 2^n$, polytopes embedded in a directed cube, defined in a language

$$\top, \bot, \wedge, \lor, \equiv \qquad \text{and} \qquad 0, 1, \leq$$

satisfying intuitionistic logic and strict interval axioms.

$$\Delta^{n} \coloneqq \{(t_{1}, \dots, t_{n}) : 2^{n} \mid t_{n} \leq \dots \leq t_{1}\} \quad \text{e.g.} \quad \Delta^{1} \coloneqq 2$$
$$\Delta^{2} \coloneqq \begin{cases} (t,t) & |(1,t)| \\ (0,0) & (t,0) \\ (t,0) & (1,0) \end{cases}$$

Our types may depend on other types and also on shapes $\Phi \subset 2^n$, polytopes embedded in a directed cube, defined in a language

$$op, \bot, \land, \lor, \equiv$$
 and $0, 1, \leq$

satisfying intuitionistic logic and strict interval axioms.

$$\Delta^{n} := \{(t_{1}, \dots, t_{n}) : 2^{n} \mid t_{n} \leq \dots \leq t_{1}\} \quad \text{e.g.} \quad \Delta^{1} := 2$$
$$\Delta^{2} := \begin{cases} (t,t) & |(1,t)| \\ (0,0) & |(1,0)| \\ (0,0) & (t,0)| \end{cases}$$

 $\partial \Delta^2 \coloneqq \{ (t_1, t_2) : 2^2 \mid (t_2 \le t_1) \land ((0 = t_2) \lor (t_2 = t_1) \lor (t_1 = 1)) \}$

Our types may depend on other types and also on shapes $\Phi \subset 2^n$, polytopes embedded in a directed cube, defined in a language

$$op, \bot, \land, \lor, \equiv$$
 and $0, 1, \leq$

satisfying intuitionistic logic and strict interval axioms.

$$\Delta^{n} := \{(t_{1}, \dots, t_{n}) : 2^{n} \mid t_{n} \leq \dots \leq t_{1}\} \quad \text{e.g.} \quad \Delta^{1} := 2$$
$$\Delta^{2} := \begin{cases} (t,t) & |(1,t)| \\ (0,0) & (t,0) \\ (t,0) & (1,0) \end{cases}$$

 $\partial \Delta^2 \coloneqq \{ (t_1, t_2) : 2^2 \mid (t_2 \le t_1) \land ((0 = t_2) \lor (t_2 = t_1) \lor (t_1 = 1)) \}$ $\Lambda_1^2 \coloneqq \{ (t_1, t_2) : 2^2 \mid (t_2 \le t_1) \land ((0 = t_2) \lor (t_1 = 1)) \}$

Our types may depend on other types and also on shapes $\Phi \subset 2^n$, polytopes embedded in a directed cube, defined in a language

$$op, \bot, \land, \lor, \equiv$$
 and $0, 1, \leq$

satisfying intuitionistic logic and strict interval axioms.

$$\Delta^{n} \coloneqq \{(t_{1}, \dots, t_{n}) : 2^{n} \mid t_{n} \leq \dots \leq t_{1}\} \quad \text{e.g.} \quad \Delta^{1} \coloneqq 2$$
$$\Delta^{2} \coloneqq \begin{cases} \underbrace{(t, t)}_{(0, 0)} \underbrace{(1, t)}_{(t, 0)} \\ \underbrace{(0, 0)}_{(t, 0)} \underbrace{(1, 0)}_{(t, 0)} \end{cases}$$

 $\partial \Delta^2 \coloneqq \{ (t_1, t_2) : 2^2 \mid (t_2 \le t_1) \land ((0 = t_2) \lor (t_2 = t_1) \lor (t_1 = 1)) \}$ $\Lambda_1^2 \coloneqq \{ (t_1, t_2) : 2^2 \mid (t_2 \le t_1) \land ((0 = t_2) \lor (t_1 = 1)) \}$

Because $\phi \wedge \psi$ implies ϕ , there are shape inclusions $\Lambda_1^2 \subset \partial \Delta^2 \subset \Delta^2$.

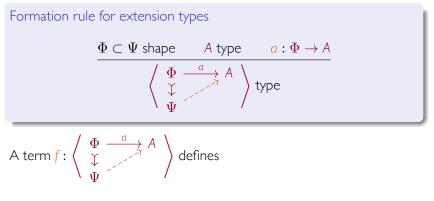
shape inclusion: $\Phi := \{t \in 2^n \mid \phi\}$ and $\Psi = \{t \in 2^n \mid \psi\}$ so that ϕ implies ψ , i.e., so that $\Phi \subset \Psi$.

shape inclusion: $\Phi := \{t \in 2^n \mid \phi\}$ and $\Psi = \{t \in 2^n \mid \psi\}$ so that ϕ implies ψ , i.e., so that $\Phi \subset \Psi$.

Formation rule for extension types

$$\frac{\Phi \subset \Psi \text{ shape } A \text{ type } a : \Phi \to A}{\left\langle \begin{array}{c} \Phi & \xrightarrow{a} \\ \downarrow \\ \Psi \end{array} \right\rangle} \text{ type }$$

shape inclusion: $\Phi := \{t \in 2^n \mid \phi\}$ and $\Psi = \{t \in 2^n \mid \psi\}$ so that ϕ implies ψ , i.e., so that $\Phi \subset \Psi$.



 $f: \Psi \to A$ so that $f(t) \equiv a(t)$ for $t: \Phi$.

shape inclusion: $\Phi := \{t \in 2^n \mid \phi\}$ and $\Psi = \{t \in 2^n \mid \psi\}$ so that ϕ implies ψ , i.e., so that $\Phi \subset \Psi$.

Formation rule for extension types

$$\frac{\Phi \subset \Psi \text{ shape } A \text{ type } a: \Phi \to A}{\left\langle \begin{array}{c} \Phi & \xrightarrow{a} & A \\ \downarrow & & & \end{array} \right\rangle \text{ type}}$$
A term $f: \left\langle \begin{array}{c} \Phi & \xrightarrow{a} & A \\ \downarrow & & & \end{array} \right\rangle \text{ defines}$

 $f: \Psi \to A$ so that $f(t) \equiv a(t)$ for $t: \Phi$.

The simplicial type theory allows us to *prove* equivalences between extension types along composites or products of shape inclusions.

Segal types and Rezk types

Hom types

Formation rule for extension types

$$\frac{\Phi \subset \Psi \text{ shape } \Psi \vdash A \text{ type } a: \Phi \to A}{\left\langle \begin{array}{c} \Phi & \xrightarrow{a} \\ \downarrow \\ \Psi \end{array} \right\rangle \text{ type }}$$

The hom type for A depends on two terms in A:

 $x, y : A \vdash \hom_A(x, y)$

Hom types

Formation rule for extension types

$$\frac{\Phi \subset \Psi \text{ shape } \Psi \vdash A \text{ type } a: \Phi \to A}{\left\langle \begin{array}{c} \Phi & \xrightarrow{a} \\ \downarrow \\ \Psi \end{array} \right\rangle \text{ type }}$$

The hom type for A depends on two terms in A:

 $x, y : A \vdash \hom_A(x, y)$

$$\frac{\partial \Delta^{1} \subset \Delta^{1} \text{ shape } A \text{ type } [x, y] : \partial \Delta^{1} \to A}{\operatorname{hom}_{A}(x, y) \coloneqq} \left\langle \begin{array}{c} \partial \Delta^{1} & \xrightarrow{[x, y]} \\ \vdots \\ \Delta^{1} & \xrightarrow{[x, y]} \end{array} \right\rangle \text{ type }$$

Hom types

Formation rule for extension types

$$\frac{\Phi \subset \Psi \text{ shape } \Psi \vdash A \text{ type } a: \Phi \to A}{\left\langle \begin{array}{c} \Phi & \xrightarrow{a} \\ \downarrow \\ \Psi \end{array} \right\rangle \text{ type }}$$

The hom type for A depends on two terms in A:

 $x, y : A \vdash \hom_A(x, y)$

$$\frac{\partial \Delta^{1} \subset \Delta^{1} \text{ shape } A \text{ type } [x, y] : \partial \Delta^{1} \to A}{\lim_{h \to A} (x, y) := \left\langle \begin{array}{c} \partial \Delta^{1} & \xrightarrow{[x, y]} \\ \downarrow \\ \Delta^{1} & \xrightarrow{[x, y]} \end{array} \right\rangle \text{ type } A$$

A term f: hom_A(x,y) defines an arrow from x to y.

A type A is Segal iff every composable pair of arrows has a unique composite

A type A is Segal iff every composable pair of arrows has a unique composite, i.e., for every f: hom_A(x, y) and g : hom_A(y, z) the type

$$\left\langle \begin{array}{c} \Lambda_1^2 \xrightarrow{[f,g]} \\ \chi \\ \Delta^2 \end{array} \right\rangle$$

is contractible.

A type A is Segal iff every composable pair of arrows has a unique composite, i.e., for every f: hom_A(x, y) and g : hom_A(y, z) the type

$$\left\langle \begin{array}{c} \Lambda_1^2 \xrightarrow{[f,g]} A \\ \downarrow \\ \Delta^2 \end{array} \right\rangle$$

is contractible.

Prop. A Reedy fibrant bisimplicial set A is Segal if and only if $A^{\Delta^2} \rightarrow A^{\Lambda_1^2}$ is a Reedy trivial fibration.

A type A is Segal iff every composable pair of arrows has a unique composite, i.e., for every $f: hom_A(x, y)$ and $g: hom_A(y, z)$ the type

$$\left\langle \begin{array}{c} \Lambda_1^2 \xrightarrow{[f,g]} A \\ \downarrow \\ \Delta^2 \end{array} \right\rangle$$

is contractible.

Prop. A Reedy fibrant bisimplicial set A is Segal if and only if $A^{\Delta^2} \rightarrow A^{\Lambda_1^2}$ is a Reedy trivial fibration.

Notation. Let
$$\operatorname{comp}_{g,f} : \left\langle \begin{array}{c} \Lambda_1^2 \xrightarrow{[f,g]} & A \\ \downarrow & & \\ \Delta^2 & & \end{array} \right\rangle$$
 denote the unique

inhabitant

A type A is Segal iff every composable pair of arrows has a unique composite, i.e., for every $f: hom_A(x, y)$ and $g: hom_A(y, z)$ the type

$$\left\langle \begin{array}{c} \Lambda_1^2 \xrightarrow{[f,g]} A \\ \downarrow \\ \Delta^2 \end{array} \right\rangle$$

is contractible.

Prop. A Reedy fibrant bisimplicial set A is Segal if and only if $A^{\Delta^2} \rightarrow A^{\Lambda_1^2}$ is a Reedy trivial fibration.

Notation. Let
$$\operatorname{comp}_{g,f} : \left\langle \begin{array}{c} \Lambda_1^2 \xrightarrow{[f,g]} \\ \downarrow \\ \Delta^2 \end{array} \right\rangle$$
 denote the unique

inhabitant and write $g \circ f$: hom_A(x, z) for its inner face, *the* composite of f and g.

Identity arrows

For any x : A, the constant function defines a term

$$\operatorname{id}_{x} := \lambda t.x : \operatorname{hom}_{A}(x, x) := \left\langle \begin{array}{c} \partial \Delta^{1} \xrightarrow{[x, x]} \\ \downarrow \\ \Delta^{1} \end{array} \right\rangle,$$

which we denote by id_x and call the identity arrow.

Identity arrows

For any x : A, the constant function defines a term

$$\mathsf{id}_{\mathsf{x}} \coloneqq \lambda t.\mathsf{x} : \mathsf{hom}_{\mathsf{A}}(\mathsf{x},\mathsf{x}) \coloneqq \left\langle \begin{array}{c} \partial \Delta^1 & \xrightarrow{[\mathsf{x},\mathsf{x}]} \\ & \chi \\ & & \Delta^1 \end{array} \right\rangle,$$

which we denote by id_x and call the identity arrow.

For any $f: hom_A(x, y)$ in a Segal type A, the term

$$\lambda(\mathbf{s},t).f(t):\left\langle\begin{array}{c}\Lambda_1^2\xrightarrow{[\mathrm{id}_x,f]}&A\\ \vdots\\\Delta^2\end{array}\right\rangle$$

witnesses the unit axiom $f = f \circ id_x$.

Let A be a Segal type with arrows


```
f: hom<sub>A</sub>(x,y), g: hom<sub>A</sub>(y,z), h: hom<sub>A</sub>(z,w).
```

Let A be a Segal type with arrows

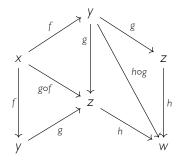
 $f: \hom_A(x, y), \quad g: \hom_A(y, z), \quad h: \hom_A(z, w).$ $h \circ (g \circ f) = (h \circ g) \circ f.$

Prop.

Let A be a Segal type with arrows

f: hom_A(x, y), g: hom_A(y, z), h: hom_A(z, w).

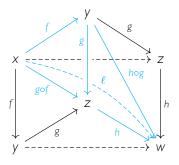
Prop. $h \circ (g \circ f) = (h \circ g) \circ f.$ Proof: Consider the composable arrows in the Segal type $\Delta^1 \to A$:



Let A be a Segal type with arrows

f: hom_A(x,y), g: hom_A(y,z), h: hom_A(z,w).

Prop. $h \circ (g \circ f) = (h \circ g) \circ f.$ Proof: Consider the composable arrows in the Segal type $\Delta^1 \to A$:

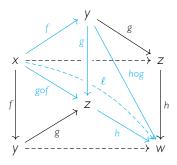


Composing defines a term in the type $\Delta^2 \to (\Delta^1 \to {\sf A})$

Let A be a Segal type with arrows

f: hom_A(x, y), g: hom_A(y, z), h: hom_A(z, w).

Prop. $h \circ (g \circ f) = (h \circ g) \circ f.$ Proof: Consider the composable arrows in the Segal type $\Delta^1 \to A$:



Composing defines a term in the type $\Delta^2 \to (\Delta^1 \to A)$ which yields a term ℓ : hom_A(x, w) so that $\ell = h \circ (g \circ f)$ and $\ell = (h \circ g) \circ f$.

Isomorphisms

An arrow $f: hom_A(x, y)$ in a Segal type is an isomorphism if it has a two-sided inverse $g: hom_A(y, x)$. However, the type

$$\sum_{g: \text{ hom}_A(y,x)} (g \circ f = \text{id}_x) \times (f \circ g = \text{id}_y)$$

has higher-dimensional structure and is not a proposition.

Isomorphisms

An arrow $f: hom_A(x, y)$ in a Segal type is an isomorphism if it has a two-sided inverse $g: hom_A(y, x)$. However, the type

$$\sum_{g: hom_A(y,x)} (g \circ f = id_x) \times (f \circ g = id_y)$$

has higher-dimensional structure and is not a proposition. Instead define

$$isiso(f) := \left(\sum_{g: hom_A(y,x)} g \circ f = id_x\right) \times \left(\sum_{h: hom_A(y,x)} f \circ h = id_y\right)$$

Isomorphisms

An arrow $f: hom_A(x, y)$ in a Segal type is an isomorphism if it has a two-sided inverse $g: hom_A(y, x)$. However, the type

$$\sum_{g: hom_A(y,x)} (g \circ f = id_x) \times (f \circ g = id_y)$$

has higher-dimensional structure and is not a proposition. Instead define

$$isiso(f) := \left(\sum_{g: hom_A(y,x)} g \circ f = id_x\right) \times \left(\sum_{h: hom_A(y,x)} f \circ h = id_y\right)$$

For x, y : A, the type of isomorphisms from x to y is:

$$x \cong_A y \coloneqq \sum_{f:\hom_A(x,y)} isiso(f).$$

Rezk types

6

By path induction, to define a map

id-to-iso: $(x =_A y) \rightarrow (x \cong_A y)$

for all x, y : A it suffices to define

 $id-to-iso(refl_x) \coloneqq id_x$.

Rezk types

6

By path induction, to define a map

id-to-iso: $(x =_A y) \rightarrow (x \cong_A y)$

for all x, y: A it suffices to define

 $id-to-iso(refl_x) \coloneqq id_x$.

A Segal type A is Rezk if every isomorphism is an identity

Rezk types

6

By path induction, to define a map

id-to-iso: $(x =_A y) \rightarrow (x \cong_A y)$

for all x, y : A it suffices to define

 $id-to-iso(refl_x) \coloneqq id_x$.

A Segal type A is Rezk if every isomorphism is an identity, i.e., if the map

id-to-iso: $(x =_A y) \rightarrow (x \cong_A y)$

is an equivalence.

Similarly by path induction define

id-to-arr:
$$\prod_{x,y:A} (x =_A y) \rightarrow \hom_A(x,y)$$
 by id-to-arr(refl_x) := id_x.

Similarly by path induction define

id-to-arr:
$$\prod_{x,y:A} (x =_A y) \rightarrow \hom_A(x,y)$$
 by id-to-arr(refl_x) := id_x.

A type A is discrete if id-to-arr is an equivalence for all x, y : A.

Similarly by path induction define

id-to-arr: $\prod_{x,y:A} (x =_A y) \rightarrow \hom_A(x,y)$ by id-to-arr(refl_x) := id_x.

A type A is discrete if id-to-arr is an equivalence for all x, y : A.

Prop. A type is discrete if and only if it is Rezk and all of its arrows are isomorphisms.

Similarly by path induction define

id-to-arr: $\prod_{x,y:A} (x =_A y) \rightarrow \hom_A(x,y)$ by id-to-arr(refl_x) := id_x.

A type A is discrete if id-to-arr is an equivalence for all x, y : A.

Prop. A type is discrete if and only if it is Rezk and all of its arrows are isomorphisms. If the Rezk types are $(\infty, 1)$ -categories, then the discrete types are ∞ -groupoids.

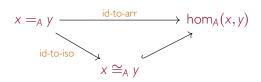
Similarly by path induction define

id-to-arr: $\prod_{x,y:A} (x =_A y) \rightarrow \hom_A(x,y)$ by id-to-arr(refl_x) := id_x.

A type A is discrete if id-to-arr is an equivalence for all x, y : A.

Prop. A type is discrete if and only if it is Rezk and all of its arrows are isomorphisms. If the Rezk types are $(\infty, 1)$ -categories, then the discrete types are ∞ -groupoids.

Proof:



The synthetic theory of $(\infty, 1)$ -categories

6

A type family $x : A \vdash B(x)$ over a Segal type A is covariant if for every $f : \hom_A(x, y)$ and u : B(x) there is a unique lift of f with domain u.

A type family $x : A \vdash B(x)$ over a Segal type A is covariant if for every $f : \hom_A(x, y)$ and u : B(x) there is a unique lift of f with domain u, i.e., if

 $\sum_{v:B(y)} \hom_{B(f)}(u,v) \quad \text{is contractible.}$

A type family $x : A \vdash B(x)$ over a Segal type A is covariant if for every $f : \hom_A(x, y)$ and u : B(x) there is a unique lift of f with domain u, i.e., if

 $\sum_{v:B(y)} \hom_{B(f)}(u,v) \quad \text{is contractible.}$

Recall

$$\hom_{A}(x,y) \coloneqq \left\langle \begin{array}{c} \partial \Delta^{1} \xrightarrow{[x,y]} \\ \downarrow \\ \Delta^{1} \end{array} \right\rangle$$

is the type of arrows in A from x to y.

A type family $x : A \vdash B(x)$ over a Segal type A is covariant if for every $f : \hom_A(x, y)$ and u : B(x) there is a unique lift of f with domain u, i.e., if

 $\sum_{v:B(y)} \hom_{B(f)}(u, v) \quad \text{is contractible.}$

Here

$$\hom_{\mathcal{B}(f)}(u,v) := \left\langle \begin{array}{c} B(f) \\ \downarrow^{[u,v]} & \downarrow^{\mathcal{F}} \\ \partial \Delta^1 & \longrightarrow & \Delta^1 \end{array} \right\rangle \quad \text{where}$$

is the type of arrows in B from u to v over f.

A type family $x : A \vdash B(x)$ over a Segal type A is covariant if for every $f : \hom_A(x, y)$ and u : B(x) there is a unique lift of f with domain u, i.e., if

 $\sum_{v:B(y)} \hom_{B(f)}(u, v)$ is contractible.

Here

$$\hom_{\mathcal{B}(f)}(u,v) \coloneqq \left\langle \begin{array}{cc} B(f) \\ \downarrow^{[u,v]} & \downarrow^{\mathcal{F}} \\ \partial \Delta^1 & \longrightarrow & \Delta^1 \end{array} \right\rangle \quad \text{where} \quad \begin{array}{c} B(f) & \longrightarrow & B \\ \downarrow^{J} & \downarrow^{J} \\ \Delta^1 & \longrightarrow & A \end{array}$$

is the type of arrows in B from u to v over f.

Notation. The codomain of the unique lift defines a term $f_*u : B(y)$.

A type family $x : A \vdash B(x)$ over a Segal type A is covariant if for every $f : \hom_A(x, y)$ and u : B(x) there is a unique lift of f with domain u, i.e., if

 $\sum_{v:B(y)} \hom_{B(f)}(u, v) \text{ is contractible.}$

Here

$$\hom_{\mathcal{B}(f)}(u,v) \coloneqq \left\langle \begin{array}{cc} B(f) \\ \downarrow & \downarrow \\ \partial \Delta^1 & \longrightarrow & \Delta^1 \end{array} \right\rangle \quad \text{where} \quad \begin{array}{c} B(f) & \longrightarrow & B(f) \\ \downarrow & \downarrow \\ \Delta^1 & \longrightarrow & \Delta^1 \end{array} \right\rangle$$

is the type of arrows in B from u to v over f.

Notation. The codomain of the unique lift defines a term $f_*u : B(y)$. Prop. For u : B(x), $f : hom_A(x, y)$, and $g : hom_A(y, z)$,

 $g_*(f_*u) = (g \circ f)_*u$ and $(id_x)_*u = u$.

A type family $x : A \vdash B(x)$ over a Segal type A is covariant if for every $f : \hom_A(x, y)$ and u : B(x) there is a unique lift of f with domain u, i.e., if

$$\sum_{v:B(y)} \hom_{B(f)}(u, v) \quad \text{is contractible.}$$

A type family $x : A \vdash B(x)$ over a Segal type A is covariant if for every $f : \hom_A(x, y)$ and u : B(x) there is a unique lift of f with domain u, i.e., if

$$\sum_{v:B(y)} \hom_{B(f)}(u, v) \quad \text{is contractible.}$$

Prop. If $x : A \vdash B(x)$ is covariant then for each x : A the fiber B(x) is discrete.

A type family $x : A \vdash B(x)$ over a Segal type A is covariant if for every $f : \hom_A(x, y)$ and u : B(x) there is a unique lift of f with domain u, i.e., if

$$\sum_{v:B(y)} \hom_{B(f)}(u,v) \quad \text{is contractible.}$$

Prop. If $x : A \vdash B(x)$ is covariant then for each x : A the fiber B(x) is discrete.

Prop. Fix a : A. The type family $x : A \vdash \hom_A(a, x)$ is covariant.

A type family $x : A \vdash B(x)$ over a Segal type A is covariant if for every $f : \hom_A(x, y)$ and u : B(x) there is a unique lift of f with domain u, i.e., if

$$\sum_{v:B(y)} \hom_{B(f)}(u,v) \quad \text{is contractible.}$$

Prop. If $x : A \vdash B(x)$ is covariant then for each x : A the fiber B(x) is discrete.

Prop. Fix a : A. The type family $x : A \vdash \hom_A(a, x)$ is covariant.

For u: hom_A(a, x) and f: hom_A(x, y), the transport f_*u equals the composite $f \circ u$ as terms in hom_A(a, y).

A type family $x : A \vdash B(x)$ over a Segal type A is covariant if for every $f : \hom_A(x, y)$ and u : B(x) there is a unique lift of f with domain u, i.e., if

$$\sum_{v:B(y)} \hom_{B(f)}(u,v) \quad \text{is contractible.}$$

Prop. If $x : A \vdash B(x)$ is covariant then for each x : A the fiber B(x) is discrete.

Prop. Fix a : A. The type family $x : A \vdash \hom_A(a, x)$ is covariant.

For $u : \hom_A(a, x)$ and $f : \hom_A(x, y)$, the transport f_*u equals the composite $f \circ u$ as terms in $\hom_A(a, y)$, i.e., $f_*(u) = f \circ u$.

Let $x : A \vdash B(x)$ be a covariant family over a Segal type and fix a : A.

Let $x : A \vdash B(x)$ be a covariant family over a Segal type and fix a : A.

Yoneda lemma. The maps

$$\operatorname{ev-id} \coloneqq \lambda \phi.\phi(a, \operatorname{id}_a) : \left(\prod_{x:A} \operatorname{hom}_A(a, x) \to B(x)\right) \to B(a)$$

and

yon :=
$$\lambda u.\lambda x.\lambda f.f_*u: B(a) \to \left(\prod_{x:A} \hom_A(a,x) \to B(x)\right)$$

are inverse equivalences.

and

Let $x : A \vdash B(x)$ be a covariant family over a Segal type and fix a : A.

Yoneda lemma. The maps

ev-id :=
$$\lambda \phi.\phi(a, \mathrm{id}_a) : \left(\prod_{x:A} \hom_A(a, x) \to B(x)\right) \to B(a)$$

yon := $\lambda u.\lambda x.\lambda f.f_*u : B(a) \to \left(\prod_{x:A} \hom_A(a, x) \to B(x)\right)$

are inverse equivalences.

Proof: The transport operation for covariant families is functorial in A and fiberwise maps between covariant families are automatically natural.

Let $x : A \vdash B(x)$ be a covariant family over a Segal type and fix a : A.

Yoneda lemma. The maps

ev-id :=
$$\lambda \phi.\phi(a, \mathrm{id}_a) : \left(\prod_{x:A} \hom_A(a, x) \to B(x)\right) \to B(a)$$

yon :=
$$\lambda u.\lambda x.\lambda f.f_*u : B(a) \to \left(\prod_{x:A} \hom_A(a,x) \to B(x)\right)$$

are inverse equivalences.

Proof: The transport operation for covariant families is functorial in A and fiberwise maps between covariant families are automatically natural. Note. A representable *isomorphism* $\phi : \prod_{x:A} \hom_A(a,x) \cong \hom_A(b,x)$ induces an *identity* $\operatorname{ev-id}(\phi) : b =_A a$ if the Segal type A is Rezk.

The dependent Yoneda lemma

From a type-theoretic perspective, the Yoneda lemma is a "directed" version of the "transport" operation for identity types. This suggests a "dependently typed" generalization of the Yoneda lemma, analogous to the full induction principle for identity types.

The dependent Yoneda lemma

From a type-theoretic perspective, the Yoneda lemma is a "directed" version of the "transport" operation for identity types. This suggests a "dependently typed" generalization of the Yoneda lemma, analogous to the full induction principle for identity types.

Dependent Yoneda lemma. If A is a Segal type and B(x, y, f) is a covariant family dependent on x, y : A and $f : hom_A(x, y)$, then evaluation at (x, x, id_x) defines an equivalence

ev-id:
$$\left(\prod_{x,y:A}\prod_{f:hom_A(x,y)}B(x,y,f)\right) \to \prod_{x:A}B(x,x,id_x)$$

The dependent Yoneda lemma

From a type-theoretic perspective, the Yoneda lemma is a "directed" version of the "transport" operation for identity types. This suggests a "dependently typed" generalization of the Yoneda lemma, analogous to the full induction principle for identity types.

Dependent Yoneda lemma. If A is a Segal type and B(x, y, f) is a covariant family dependent on x, y : A and $f : hom_A(x, y)$, then evaluation at (x, x, id_x) defines an equivalence

ev-id:
$$\left(\prod_{x,y:A}\prod_{f:hom_A(x,y)}B(x,y,f)\right) \rightarrow \prod_{x:A}B(x,x,id_x)$$

This is useful for proving equivalences between various types of coherent or incoherent adjunction data.

Dependent Yoneda is directed path induction

Takeaway: the dependent Yoneda lemma is directed path induction.

Path induction: If B(x, y, p) is a type family dependent on x, y: A and $p: x =_A y$, then there is a function

path-ind :
$$\left(\prod_{x:A} B(x, x, \operatorname{refl}_x)\right) \rightarrow \left(\prod_{x,y:A} \prod_{p:x=Ay} B(x, y, p)\right).$$

Thus, to prove B(x, y, p) it suffices to assume y is x and p is refl_x.

Dependent Yoneda is directed path induction

Takeaway: the dependent Yoneda lemma is directed path induction.

Path induction: If B(x, y, p) is a type family dependent on x, y: A and $p: x =_A y$, then there is a function

path-ind :
$$\left(\prod_{x:A} B(x, x, \operatorname{refl}_x)\right) \rightarrow \left(\prod_{x,y:A} \prod_{p:x=A^y} B(x, y, p)\right).$$

Thus, to prove B(x, y, p) it suffices to assume y is x and p is refl_x.

Dependent Yoneda Lemma: If B(x, y, f) is a covariant family dependent on x, y : A and $f : hom_A(x, y)$ and A is Segal, then there is a function

$$\mathsf{id}\operatorname{-\mathsf{ind}}:\left(\prod_{x:\mathsf{A}}B(x,x,\mathsf{id}_x)\right)\to\left(\prod_{x,y:\mathsf{A}}\prod_{f:\mathsf{hom}_{\mathsf{A}}(x,y)}B(x,y,f)\right).$$

Thus, to prove B(x, y, p) it suffices to assume y is x and f is id_x.

References

For considerably more, see:

Emily Riehl and Michael Shulman, A type theory for synthetic ∞ -categories, arXiv:1705.07442

To explore homotopy type theory:

Homotopy Type Theory: Univalent Foundations of Mathematics, https://homotopytypetheory.org/book/

Michael Shulman, Homotopy type theory: the logic of space, arXiv:1703.03007

Thank you!