Emily Riehl

Johns Hopkins University

A synthetic theory of ∞-categories in homotopy type theory

joint with Michael Shulman

CT2017 UBC, Vancouver, Canada

Motivation

Why do I study category theory?

Motivation

Why do I study category theory?

- I find category theoretic arguments to be aesthetically appealing.

Motivation

Why do I study category theory?

- I find category theoretic arguments to be aesthetically appealing.

What draws me to homotopy type theory?

Motivation

Why do I study category theory?

- I find category theoretic arguments to be aesthetically appealing.

What draws me to homotopy type theory?

- I find homotopy type theoretic arguments to be aesthetically appealing.

Plan

I. Homotopy type theory
2. A type theory for synthetic $(\infty, 1)$-categories
3. Segal types and Rezk types
4. The synthetic theory of $(\infty, 1)$-categories

Plan

I. Homotopy type theory
2. A type theory for synthetic $(\infty, 1)$-categories
3. Segal types and Rezk types
4. The synthetic theory of $(\infty, 1)$-categories

Main takeaway: the dependent Yoneda lemma is a directed analogue of path induction in HoTT.

Homotopy type theory

Homotopy type theory

Homotopy type theory is:

- a formal system for mathematical constructions and proofs

Homotopy type theory

Homotopy type theory is:

- a formal system for mathematical constructions and proofs
- in which the basic objects, types, may be regarded as "spaces" or ∞-groupoids

Homotopy type theory

Homotopy type theory is:

- a formal system for mathematical constructions and proofs
- in which the basic objects, types, may be regarded as "spaces" or ∞-groupoids
- and all constructions are automatically "continuous" or equivalence-invariant.

Homotopy type theory

Homotopy type theory is:

- a formal system for mathematical constructions and proofs
- in which the basic objects, types, may be regarded as "spaces" or ∞-groupoids
- and all constructions are automatically "continuous" or equivalence-invariant.

Homotopy type theory is $\{$ homotopy (type theory)

Homotopy type theory

Homotopy type theory is:

- a formal system for mathematical constructions and proofs
- in which the basic objects, types, may be regarded as "spaces" or ∞-groupoids
- and all constructions are automatically "continuous" or equivalence-invariant.

Homotopy type theory is $\left\{\begin{array}{l}\text { homotopy (type theory) } \\ \text { (homotopy type) theory }\end{array}\right.$

Homotopy type theory

Homotopy type theory is:

- a formal system for mathematical constructions and proofs
- in which the basic objects, types, may be regarded as "spaces" or ∞-groupoids
- and all constructions are automatically "continuous" or equivalence-invariant.

Homotopy type theory is $\left\{\begin{array}{l}\text { homotopy (type theory) } \\ (\text { homotopy type) theory }\end{array}\right.$
Types A can be regarded simultaneously as both mathematical constructions and mathematical assertions, a conception also known as propositions as types;

Homotopy type theory

Homotopy type theory is:

- a formal system for mathematical constructions and proofs
- in which the basic objects, types, may be regarded as "spaces" or ∞-groupoids
- and all constructions are automatically "continuous" or equivalence-invariant.

Homotopy type theory is $\left\{\begin{array}{l}\text { homotopy (type theory) } \\ (\text { homotopy type) theory }\end{array}\right.$
Types A can be regarded simultaneously as both mathematical constructions and mathematical assertions, a conception also known as propositions as types; accordingly, a term a : A can be regarded as a proof of the proposition A.

Types, terms, and type constructors

Homotopy type theory has:

- types A, B, ...

Types, terms, and type constructors

Homotopy type theory has:

- types A, B, ...
- terms x : A, y : B

Types, terms, and type constructors

Homotopy type theory has:

- types A, B, ...
- terms x : $A, y: B$
- dependent types $x: A \vdash B(x)$ type, $x, y: A \vdash B(x, y)$ type

Types, terms, and type constructors

Homotopy type theory has:

- types A, B, ...
- terms x : A, y : B
- dependent types $x: A \vdash B(x)$ type, $x, y: A \vdash B(x, y)$ type

Type constructors build new types and terms from given ones:

Types, terms, and type constructors

Homotopy type theory has:

- types A, B, ...
- terms x : A, y : B
- dependent types $x: A \vdash B(x)$ type, $x, y: A \vdash B(x, y)$ type

Type constructors build new types and terms from given ones:

- products $A \times B$, coproducts $A+B$, function types $A \rightarrow B$,

Types, terms, and type constructors

Homotopy type theory has:

- types A, B, ...
- terms $x: A, y: B$
- dependent types $x: A \vdash B(x)$ type, $x, y: A \vdash B(x, y)$ type

Type constructors build new types and terms from given ones:

- products $A \times B$, coproducts $A+B$, function types $A \rightarrow B$,
- dependent sums $\sum_{x: A} B(x)$, dependent products $\prod_{x: A} B(x)$, and identity types $x, y: A \vdash x=A$.

Types, terms, and type constructors

Homotopy type theory has:

- types A, B, ...
- terms x : $A, y: B$
- dependent types $x: A \vdash B(x)$ type, $x, y: A \vdash B(x, y)$ type

Type constructors build new types and terms from given ones:

- products $A \times B$, coproducts $A+B$, function types $A \rightarrow B$,
- dependent sums $\sum_{x: A} B(x)$, dependent products $\prod_{x: A} B(x)$, and identity types $x, y: A \vdash x=A$.

Propositions as types:

$A \times B$	A and B	$\sum_{x: A} B(x)$	$\exists x \cdot B(x)$
$A+B$	A or B	$\prod_{x: A} B(x)$	$\forall x \cdot B(x)$
$A \rightarrow B$	A implies B	$x=A y$	x equals y

Dependent sums and products

Formation rules for dependent sums and products

$$
\frac{x: A \vdash B(x) \text { type }}{\sum_{x: A} B(x) \text { type }} \quad \frac{x: A \vdash B(x) \text { type }}{\prod_{x: A} B(x) \text { type }}
$$

Dependent sums and products

Formation rules for dependent sums and products

$$
\frac{x: A \vdash B(x) \text { type }}{\sum_{x: A} B(x) \text { type }} \quad \frac{x: A \vdash B(x) \text { type }}{\prod_{x: A} B(x) \text { type }}
$$

Semantics $\left\{\begin{array}{cc}(a, u): \sum_{x: A} B(x) \\ B(a) & \rightarrow \sum_{x: A} B(x) \\ \cdots & \downarrow \\ 1 & \downarrow \\ 1 & A\end{array}\right.$

$$
\begin{gathered}
f: \prod_{x: A} B(x) \\
\sum_{x: A} B(x) \\
\downarrow \uparrow_{f} \\
A
\end{gathered}
$$

Dependent sums and products

Formation rules for dependent sums and products

$$
\frac{x: A \vdash B(x) \text { type }}{\sum_{x: A} B(x) \text { type }} \quad \frac{x: A \vdash B(x) \text { type }}{\prod_{x: A} B(x) \text { type }}
$$

Semantics $\left\{\begin{array}{l}(a, u): \sum_{x: A} B(x) \\ B(a) \longrightarrow \sum_{x: A} B(x) \\ u^{\hat{\top}} \downarrow \sim A \\ 1 \cdots a\end{array}\right.$

$$
\begin{gathered}
f: \prod_{x: A} B(x) \\
\sum_{x: A} B(x) \\
\not \uparrow_{f} \\
A
\end{gathered}
$$

In the case $x: A \vdash B$ type, the dependent sum becomes $A \times B$ while the dependent product becomes $A \rightarrow B$.

Dependent sums and products

Formation rules for dependent sums and products

$$
\frac{x: A \vdash B(x) \text { type }}{\sum_{x: A} B(x) \text { type }} \quad \frac{x: A \vdash B(x) \text { type }}{\prod_{x: A} B(x) \text { type }}
$$

$$
\begin{gathered}
f: \prod_{x: A} B(x) \\
\sum_{x: A} B(x) \\
\not \uparrow_{f} \\
A
\end{gathered}
$$

In the case $x: A \vdash B$ type, the dependent sum becomes $A \times B$ while the dependent product becomes $A \rightarrow B$.

Propositions as types: If $B(x)$ is a proposition depending on $x: A$

Dependent sums and products

Formation rules for dependent sums and products

$$
\frac{x: A \vdash B(x) \text { type }}{\sum_{x: A} B(x) \text { type }} \quad \frac{x: A \vdash B(x) \text { type }}{\prod_{x: A} B(x) \text { type }}
$$

Semantics $\left\{\begin{array}{cc}(a, u): \sum_{x: A} B(x) \\ B(a) & \rightarrow \sum_{x: A} B(x) \\ u^{\top} \downarrow & \downarrow \\ 1 & \forall \\ 1 & A\end{array}\right.$

$$
\begin{gathered}
f: \prod_{x: A} B(x) \\
\sum_{x: A} B(x) \\
\downarrow \uparrow_{f} \\
A
\end{gathered}
$$

In the case $x: A \vdash B$ type, the dependent sum becomes $A \times B$ while the dependent product becomes $A \rightarrow B$.

Propositions as types: If $B(x)$ is a proposition depending on x : A then (a, u) proves $\exists x \cdot B(x)$ (constructively!)

Dependent sums and products

Formation rules for dependent sums and products

$$
\frac{x: A \vdash B(x) \text { type }}{\sum_{x: A} B(x) \text { type }} \quad \frac{x: A \vdash B(x) \text { type }}{\prod_{x: A} B(x) \text { type }}
$$

$$
\begin{gathered}
f: \prod_{x: A} B(x) \\
\sum_{x: A} B(x) \\
\not \hat{1}_{f} \\
A
\end{gathered}
$$

In the case $x: A \vdash B$ type, the dependent sum becomes $A \times B$ while the dependent product becomes $A \rightarrow B$.

Propositions as types: If $B(x)$ is a proposition depending on x : A then (a, u) proves $\exists x \cdot B(x)$ (constructively!) while f proves $\forall x \cdot B(x)$.

Identity types
Formation rule for identity types

$$
\frac{x, y: A}{x=A y \text { type }}
$$

Identity types

Formation and introduction rules for identity types

$$
\frac{x, y: A}{x=A y \text { type }}
$$

$$
\frac{x: A}{\operatorname{refl}_{x}: \prod_{x: A} x=A x}
$$

Identity types

Formation and introduction rules for identity types

$$
\frac{x, y: A}{x=A y \text { type }}
$$

$$
\frac{x: A}{\operatorname{refl}_{x}: \prod_{x: A} x=A x}
$$

Identity types

Formation and introduction rules for identity types

$$
\frac{x, y: A}{x={ }_{A} y \text { type }} \quad \frac{x: A}{\operatorname{refl}_{x}: \prod_{x: A} x=A_{A} x}
$$

Indiscernability of identicals: If $B(x)$ is a type family dependent on $x: A$,

$$
\phi: \prod_{x, y: A} \prod_{p: x=A y} B(x) \rightarrow B(y) .
$$

Identity types

Formation and introduction rules for identity types

$$
\frac{x, y: A}{x={ }_{A} y \text { type }} \quad \frac{x: A}{r e f I_{x}: \prod_{x: A} x={ }_{A} x}
$$

Indiscernability of identicals: If $B(x)$ is a type family dependent on $x: A$,

$$
\phi: \prod_{x, y: A} \prod_{p: x=A y} B(x) \rightarrow B(y) .
$$

Thus, if $x=_{A} y$ then $B(x) \rightarrow B(y)$.

Path induction

The identity type family is freely generated by the terms refl $x: x=A x$.

Path induction

The identity type family is freely generated by the terms refl $x: x=A x$.

Path induction: If $B(x, y, p)$ is a type family dependent on x, y : A and $P: x=A y$, then there is a function

$$
\text { path-ind: }\left(\prod_{x: A} B\left(x, x, \text { refl }_{x}\right)\right) \rightarrow\left(\prod_{x, y: A} \prod_{p: x=A y} B(x, y, p)\right)
$$

Path induction

The identity type family is freely generated by the terms refl $x: x=A x$.

Path induction: If $B(x, y, p)$ is a type family dependent on x, y : A and $P: x=A y$, then there is a function

$$
\text { path-ind: }\left(\prod_{x: A} B\left(x, x, \text { refl }_{x}\right)\right) \rightarrow\left(\prod_{x, y: A} \prod_{p: x=A y} B(x, y, p)\right) .
$$

Thus, to prove $B(x, y, p)$ it suffices to assume y is x and p is refl ${ }_{x}$.

Path induction

The identity type family is freely generated by the terms refl $x_{x}: x=A x$.

Path induction: If $B(x, y, p)$ is a type family dependent on x, y : A and $p: x=A y$, then there is a function

$$
\text { path-ind: }:\left(\prod_{x: A} B\left(x, x, \text { refl }_{x}\right)\right) \rightarrow\left(\prod_{x, y: A} \prod_{p: x=A y} B(x, y, p)\right)
$$

Thus, to prove $B(x, y, p)$ it suffices to assume y is x and p is refl x.

The ∞-groupoid structure of A with

- terms x : A as objects
- paths $p: x=A$ y as 1 -morphisms
- paths of paths $\alpha: p=x=a y q$ as 2-morphisms,...
arises automatically from the path induction principle.

(2)

A type theory for synthetic $(\infty, 1)$-categories

The intended model

| Set $^{\Delta^{\circ P} \times \triangle^{\circ P}}$ | \supset Reedy | \supset | Segal | \supset |
| :---: | :---: | :---: | :---: | :---: | | $\\|$ |
| :---: |
| bisimplicial sets |

The intended model

Theorem (Shulman). Homotopy type theory is modeled by the category of Reedy fibrant bisimplicial sets.

The intended model

Theorem (Shulman). Homotopy type theory is modeled by the category of Reedy fibrant bisimplicial sets.

Theorem (Rezk). ($\infty, 1$)-categories are modeled by Rezk spaces aka complete Segal spaces.

Shapes in the theory of the directed interval

Our types may depend on other types and also on shapes $\Phi \subset 2^{n}$, polytopes embedded in a directed cube,

Shapes in the theory of the directed interval

Our types may depend on other types and also on shapes $\Phi \subset 2^{n}$, polytopes embedded in a directed cube, defined in a language

$$
\top, \perp, \wedge, \vee, \equiv \quad \text { and } \quad 0,1, \leq
$$

satisfying intuitionistic logic and strict interval axioms.

Shapes in the theory of the directed interval

Our types may depend on other types and also on shapes $\Phi \subset \mathbb{2}^{n}$, polytopes embedded in a directed cube, defined in a language

$$
\top, \perp, \wedge, \vee, \equiv \quad \text { and } \quad 0,1, \leq
$$

satisfying intuitionistic logic and strict interval axioms.

$$
\begin{gathered}
\Delta^{n}:=\left\{\left(t_{1}, \ldots, t_{n}\right): 2^{n} \mid t_{n} \leq \cdots \leq t_{1}\right\} \quad \text { e.g. } \quad \Delta^{1}:=2 \\
\Delta^{2}:=\left\{\begin{array}{l}
(t, t) /\left.\right|_{(0,0) \frac{(1,1)}{(t, 0)}(1,0)} ^{(1, t)}
\end{array}\right.
\end{gathered}
$$

Shapes in the theory of the directed interval

Our types may depend on other types and also on shapes $\Phi \subset 2^{n}$, polytopes embedded in a directed cube, defined in a language

$$
\top, \perp, \wedge, \vee, \equiv \quad \text { and } \quad 0,1, \leq
$$

satisfying intuitionistic logic and strict interval axioms.

$$
\begin{gathered}
\Delta^{n}:=\left\{\left(t_{1}, \ldots, t_{n}\right): 2^{n} \mid t_{n} \leq \cdots \leq t_{1}\right\} \quad \text { e.g. } \quad \Delta^{1}:=2 \\
\Delta^{2}:=\left\{\begin{array}{l}
(0, t) /(1,1) \frac{(1, t)}{(t, 0)}(1,0)
\end{array}\right. \\
\partial \Delta^{2}:=\left\{\left(t_{1}, t_{2}\right): 2^{2} \mid\left(t_{2} \leq t_{1}\right) \wedge\left(\left(0=t_{2}\right) \vee\left(t_{2}=t_{1}\right) \vee\left(t_{1}=1\right)\right)\right\}
\end{gathered}
$$

Shapes in the theory of the directed interval

Our types may depend on other types and also on shapes $\Phi \subset 2^{n}$, polytopes embedded in a directed cube, defined in a language

$$
\top, \perp, \wedge, \vee, \equiv \quad \text { and } \quad 0,1, \leq
$$

satisfying intuitionistic logic and strict interval axioms.

$$
\begin{aligned}
& \Delta^{n}:=\left\{\left(t_{1}, \ldots, t_{n}\right): 2^{n} \mid t_{n} \leq \cdots \leq t_{1}\right\} \quad \text { e.g. } \quad \Delta^{1}:=2 \\
& \Delta^{2}:=\left\{\begin{array}{l}
(0,0) \frac{(1,1)}{(t, 0)}(1,0) \\
(1, t)
\end{array}\right. \\
& \partial \Delta^{2}:=\left\{\left(t_{1}, t_{2}\right): 2^{2} \mid\left(t_{2} \leq t_{1}\right) \wedge\left(\left(0=t_{2}\right) \vee\left(t_{2}=t_{1}\right) \vee\left(t_{1}=1\right)\right)\right\} \\
& \Lambda_{1}^{2}:=\left\{\left(t_{1}, t_{2}\right): 2^{2} \mid\left(t_{2} \leq t_{1}\right) \wedge\left(\left(0=t_{2}\right) \vee\left(t_{1}=1\right)\right)\right\}
\end{aligned}
$$

Shapes in the theory of the directed interval

Our types may depend on other types and also on shapes $\Phi \subset 2^{n}$, polytopes embedded in a directed cube, defined in a language

$$
\top, \perp, \wedge, \vee, \equiv \quad \text { and } \quad 0,1, \leq
$$

satisfying intuitionistic logic and strict interval axioms.

$$
\begin{gathered}
\Delta^{n}:=\left\{\left(t_{1}, \ldots, t_{n}\right): 2^{n} \mid t_{n} \leq \cdots \leq t_{1}\right\} \quad \text { e.g. } \quad \Delta^{1}:=2 \\
\Delta^{2}:=\left\{\begin{array}{l}
(t, t) /(1,1) \\
(0,0) \frac{(1, t)}{(t, 0)}(1,0)
\end{array}\right.
\end{gathered}
$$

$$
\begin{aligned}
\partial \Delta^{2} & :=\left\{\left(t_{1}, t_{2}\right): 2^{2} \mid\left(t_{2} \leq t_{1}\right) \wedge\left(\left(0=t_{2}\right) \vee\left(t_{2}=t_{1}\right) \vee\left(t_{1}=1\right)\right)\right\} \\
\Lambda_{1}^{2} & :=\left\{\left(t_{1}, t_{2}\right): 2^{2} \mid\left(t_{2} \leq t_{1}\right) \wedge\left(\left(0=t_{2}\right) \vee\left(t_{1}=1\right)\right)\right\}
\end{aligned}
$$

Because $\phi \wedge \psi$ implies ϕ, there are shape inclusions $\Lambda_{1}^{2} \subset \partial \Delta^{2} \subset \Delta^{2}$.

Extension types

shape inclusion: $\Phi:=\left\{t \in \mathbb{Z}^{n} \mid \phi\right\}$ and $\Psi=\left\{t \in \mathbb{Z}^{n} \mid \psi\right\}$ so that ϕ implies ψ, i.e., so that $\Phi \subset \Psi$.

Extension types

shape inclusion: $\Phi:=\left\{t \in 2^{n} \mid \phi\right\}$ and $\Psi=\left\{t \in \mathcal{Z}^{n} \mid \psi\right\}$ so that ϕ implies ψ, ie., so that $\Phi \subset \Psi$.

Formation rule for extension types

$$
\frac{\Phi \subset \Psi \text { shape } \quad \text { A type } \quad a: \Phi \rightarrow A}{\left\langle\begin{array}{l}
\Phi \xrightarrow{a} A \\
\searrow \\
\Psi
\end{array}\right\rangle \text { type }}
$$

Extension types

shape inclusion: $\Phi:=\left\{t \in 2^{n} \mid \phi\right\}$ and $\Psi=\left\{t \in \mathcal{Z}^{n} \mid \psi\right\}$ so that ϕ implies ψ, i.e., so that $\Phi \subset \Psi$.

Formation rule for extension types

$$
\frac{\Phi \subset \Psi \text { shape } \quad \text { A type } \quad a: \Phi \rightarrow A}{\left\langle\begin{array}{l}
\Phi \xrightarrow{a} A \\
\searrow \\
\Psi
\end{array}\right\rangle \text { type }}
$$

A term $f:\left\langle\begin{array}{ll}\Phi \xrightarrow{a} A \\ \searrow & \ldots-> \\ \Psi\end{array}\right\rangle$ defines

$$
f: \Psi \rightarrow \text { A so that } f(t) \equiv a(t) \text { for } t: \Phi
$$

Extension types

shape inclusion: $\Phi:=\left\{t \in \mathbb{Z}^{n} \mid \phi\right\}$ and $\Psi=\left\{t \in \mathbb{Z}^{n} \mid \psi\right\}$ so that ϕ implies ψ, i.e., so that $\Phi \subset \Psi$.

Formation rule for extension types

A term $f:\left\langle\begin{array}{ll}\Phi \xrightarrow{a} A \\ \searrow & \ldots->\end{array}\right\rangle$ defines

$$
f: \Psi \rightarrow \text { A so that } f(t) \equiv a(t) \text { for } t: \Phi .
$$

The simplicial type theory allows us to prove equivalences between extension types along composites or products of shape inclusions.

Segal types and Rezk types

Hom types

Formation rule for extension types

The hom type for A depends on two terms in A :

$$
x, y: A \vdash \operatorname{hom}_{A}(x, y)
$$

How types

Formation rule for extension types

$$
\frac{\Phi \subset \Psi \text { shape } \quad \Psi \vdash A \text { type } \quad a: \Phi \rightarrow A}{\left\langle\begin{array}{l}
\Phi \xrightarrow{a} A \\
\downarrow \\
\Psi
\end{array}\right\rangle \text { type }}
$$

The how type for A depends on two terms in A :

$$
x, y: A \vdash \operatorname{hom}_{A}(x, y)
$$

$$
\frac{\partial \Delta^{1} \subset \Delta^{1} \text { shape }}{} \quad \text { A type }[x, y]: \partial \Delta^{1} \rightarrow A ~\left(\begin{array}{c}
\partial \Delta^{1} \xrightarrow{[x, y]} \text {, } A \\
\Delta^{1}
\end{array}, \ldots-m^{\prime}(x, y):=\right.\text { type }
$$

Hom types

Formation rule for extension types

The hom type for A depends on two terms in A :

$$
x, y: A \vdash \operatorname{hom}_{A}(x, y)
$$

A term f : $\operatorname{hom}_{A}(x, y)$ defines an arrow from x to y.

Segal types have unique binary composites

A type A is Segal iff every composable pair of arrows has a unique composite

Segal types have unique binary composites

A type A is Segal iff every composable pair of arrows has a unique composite, i.e., for every $f: \operatorname{hom}_{A}(x, y)$ and $g: \operatorname{hom}_{A}(y, z)$ the type

$$
\left\langle\begin{array}{c}
\Lambda_{1}^{2} \xrightarrow{[f, g]} A \\
\downarrow \\
\Delta^{2}
\end{array}\right\rangle,-,-T \quad \text { is contractible. }
$$

Segal types have unique binary composites

A type A is Segal iff every composable pair of arrows has a unique composite, i.e., for every $f: \operatorname{hom}_{A}(x, y)$ and $g: \operatorname{hom}_{A}(y, z)$ the type

$$
\left\langle\begin{array}{c}
\Lambda_{1}^{2} \xrightarrow{[[f, g]} A \\
\downarrow \\
\Delta^{2}
\end{array}\right\rangle \quad \text { is contractible. }
$$

Prop. A Reedy fibrant bisimplicial set A is Segal if and only if $A^{\Delta^{2}} \rightarrow A^{\Lambda_{1}^{2}}$ is a Reedy trivial fibration.

Segal types have unique binary composites

A type A is Segal iff every composable pair of arrows has a unique composite, i.e., for every $f: \operatorname{hom}_{A}(x, y)$ and $g: \operatorname{hom}_{A}(y, z)$ the type

$$
\left\langle\begin{array}{c}
\Lambda_{1}^{2} \xrightarrow{[f, g]} A \\
\downarrow \\
\Delta^{2}
\end{array}\right\rangle \quad \text { is contractible. }
$$

Prop. A Reedy fibrant bisimplicial set A is Segal if and only if $A^{\Delta^{2}} \rightarrow A^{\Lambda_{1}^{2}}$ is a Reedy trivial fibration.

Notation. Let compg,f $:\left\langle\begin{array}{cc}\Lambda_{1}^{2} \xrightarrow{[f, g]} \\ \searrow & ,-, \bar{T} \\ \Delta^{2}\end{array}\right\rangle$ denote the unique
inhabitant

Segal types have unique binary composites

A type A is Segal iff every composable pair of arrows has a unique composite, i.e., for every $f: \operatorname{hom}_{A}(x, y)$ and $g: \operatorname{hom}_{A}(y, z)$ the type

$$
\left\langle\begin{array}{c}
\Lambda_{1}^{2} \xrightarrow{[f, g]} A \\
\searrow \\
\Delta^{2}
\end{array}\right\rangle,-,-\pi=\quad \text { is contractible. }
$$

Prop. A Reedy fibrant bisimplicial set A is Segal if and only if $A^{\Delta^{2}} \rightarrow A^{\Lambda_{1}^{2}}$ is a Reedy trivial fibration.

Notation. Let compg,f $:\left\langle\begin{array}{cc}\Lambda_{1}^{2} \xrightarrow{[f, g]} \\ \downarrow & ,-, \bar{T} \\ \Delta^{2}\end{array}\right\rangle$ denote the unique
inhabitant and write $g \circ f: \operatorname{hom}_{A}(x, z)$ for its inner face, the composite of f and g.

Identity arrows

For any x : A, the constant function defines a term

$$
\mathrm{id}_{x}:=\lambda t . x: \operatorname{hom}_{A}(x, x):=\left\langle\begin{array}{c}
\partial \Delta^{1} \xrightarrow{\stackrel{[x, x]}{\longrightarrow}} A \\
\downarrow^{1} \\
\Delta^{1}
\end{array}\right\rangle,
$$

which we denote by id_{x} and call the identity arrow.

Identity arrows

For any x : A, the constant function defines a term
which we denote by id_{x} and call the identity arrow.
For any f : $\operatorname{hom}_{A}(x, y)$ in a Segal type A, the term
witnesses the unit axiom $f=f \circ \mathrm{id}_{x}$.

Associativity of composition

Let A be a Segal type with arrows

$$
f: \operatorname{hom}_{A}(x, y), \quad g: \operatorname{hom}_{A}(y, z), \quad h: \operatorname{hom}_{A}(z, w) .
$$

Associativity of composition
Let A be a Segal type with arrows

$$
f: \operatorname{hom}_{A}(x, y), \quad g: \operatorname{hom}_{A}(y, z), \quad h: \operatorname{hom}_{A}(z, w)
$$

Prop.

$$
h \circ(g \circ f)=(h \circ g) \circ f .
$$

Associativity of composition

Let A be a Segal type with arrows

$$
f: \operatorname{hom}_{A}(x, y), \quad g: \operatorname{hom}_{A}(y, z), \quad h: \operatorname{hom}_{A}(z, w)
$$

Prop.

$$
h \circ(g \circ f)=(h \circ g) \circ f
$$

Proof: Consider the composable arrows in the Segal type $\Delta^{1} \rightarrow \mathrm{~A}$:

Associativity of composition

Let A be a Segal type with arrows

$$
f: \operatorname{hom}_{A}(x, y), \quad g: \operatorname{hom}_{A}(y, z), \quad h: \operatorname{hom}_{A}(z, w) .
$$

Prop.

$$
h \circ(g \circ f)=(h \circ g) \circ f
$$

Proof: Consider the composable arrows in the Segal type $\Delta^{1} \rightarrow A$:

Composing defines a term in the type $\Delta^{2} \rightarrow\left(\Delta^{1} \rightarrow A\right)$

Associativity of composition

Let A be a Segal type with arrows

$$
f: \operatorname{hom}_{A}(x, y), \quad g: \operatorname{hom}_{A}(y, z), \quad h: \operatorname{hom}_{A}(z, w) .
$$

Prop.

$$
h \circ(g \circ f)=(h \circ g) \circ f
$$

Proof: Consider the composable arrows in the Segal type $\Delta^{1} \rightarrow$ A:

Composing defines a term in the type $\Delta^{2} \rightarrow\left(\Delta^{1} \rightarrow A\right)$ which yields a term $\ell: \operatorname{hom}_{A}(x, w)$ so that $\ell=h \circ(g \circ f)$ and $\ell=(h \circ g) \circ f$.

Isomorphisms

An arrow f : $\operatorname{hom}_{A}(x, y)$ in a Segal type is an isomorphism if it has a two-sided inverse g : $\operatorname{hom}_{A}(y, x)$. However, the type

$$
\sum_{g: \operatorname{hom}_{A}(y, x)}\left(g \circ f=i d_{x}\right) \times\left(f \circ g=i d_{y}\right)
$$

has higher-dimensional structure and is not a proposition.

Isomorphisms

An arrow f : $\operatorname{hom}_{A}(x, y)$ in a Segal type is an isomorphism if it has a two-sided inverse g : $\operatorname{hom}_{A}(y, x)$. However, the type

$$
\sum_{g: \operatorname{hom}_{A}(y, x)}\left(g \circ f=i d_{x}\right) \times\left(f \circ g=i d_{y}\right)
$$

has higher-dimensional structure and is not a proposition. Instead define

$$
\text { isiso }(f):=\left(\sum_{g: \operatorname{hom}_{A}(y, x)} g \circ f=\mathrm{id}_{x}\right) \times\left(\sum_{h: \operatorname{hom}_{A}(y, x)} f \circ h=i d_{y}\right) .
$$

Isomorphisms

An arrow f : $\operatorname{hom}_{A}(x, y)$ in a Segal type is an isomorphism if it has a two-sided inverse g : $\operatorname{hom}_{A}(y, x)$. However, the type

$$
\sum_{g: \operatorname{hom}_{A}(y, x)}\left(g \circ f=i d_{x}\right) \times\left(f \circ g=i d_{y}\right)
$$

has higher-dimensional structure and is not a proposition. Instead define

$$
\text { isiso }(f):=\left(\sum_{g: \operatorname{hom}_{A}(y, x)} g \circ f=i d_{x}\right) \times\left(\sum_{h: \operatorname{hom}_{A}(y, x)} f \circ h=i d_{y}\right) \text {. }
$$

For x, y : A, the type of isomorphisms from x to y is:

$$
x \cong_{A} y:=\sum_{f: \operatorname{hom}_{A}(x, y)} \text { isiso }(f) .
$$

Rezk types

By path induction, to define a map

$$
\text { id-to-iso : }(x=A y) \rightarrow\left(x \cong_{A} y\right)
$$

for all x, y : A it suffices to define

$$
\text { id-to-iso }\left(\text { refl }_{x}\right):=i d_{x} .
$$

Rezk types

By path induction, to define a map

$$
\text { id-to-iso : }(x=A y) \rightarrow\left(x \cong_{A} y\right)
$$

for all x, y : A it suffices to define

$$
\text { id-to-iso }\left(\operatorname{refl}_{x}\right):=i d_{x} .
$$

A Segal type A is Rezk if every isomorphism is an identity

Rezk types

By path induction, to define a map

$$
\text { id-to-iso : }(x=A y) \rightarrow\left(x \cong_{A} y\right)
$$

for all x, y : A it suffices to define

$$
\text { id-to-iso }\left(\text { refl }_{x}\right):=i d_{x} .
$$

A Segal type A is Rezk if every isomorphism is an identity, i.e., if the map

$$
\text { id-to-iso : }\left(x={ }_{A} y\right) \rightarrow\left(x \cong_{A} y\right)
$$

is an equivalence.

Discrete types

Similarly by path induction define

$$
\text { id-to-arr: } \prod(x=A y) \rightarrow \operatorname{hom}_{A}(x, y) \quad \text { by } \quad i d-t o-a r r\left(\left.r e f\right|_{X}\right):=i d_{x} .
$$

Discrete types

Similarly by path induction define
id-to-arr: $\prod_{x, y: A}(x=A y) \rightarrow \operatorname{hom}_{A}(x, y) \quad$ by $\quad i d-t o-\operatorname{arr}\left(\right.$ refl $\left._{x}\right):=\mathrm{id}_{x}$.

A type A is discrete if id-to-arr is an equivalence for all x, y : A.

Discrete types

Similarly by path induction define
id-to-arr: $\prod_{x, y: A}(x=A y) \rightarrow \operatorname{hom}_{A}(x, y) \quad$ by $\quad i d-t o-\operatorname{arr}\left(\operatorname{refl}_{x}\right):=\mathrm{id}_{x}$.

A type A is discrete if id-to-arr is an equivalence for all x, y : A.

Prop. A type is discrete if and only if it is Rezk and all of its arrows are isomorphisms.

Discrete types

Similarly by path induction define
id-to-arr: $\prod_{x, y: A}(x=A y) \rightarrow \operatorname{hom}_{A}(x, y) \quad$ by $\quad i d-t o-\operatorname{arr}\left(\operatorname{refl}_{x}\right):=\mathrm{id}_{x}$.

A type A is discrete if id-to-arr is an equivalence for all x, y : A.

Prop. A type is discrete if and only if it is Rezk and all of its arrows are isomorphisms. If the Rezk types are $(\infty, 1)$-categories, then the discrete types are ∞-groupoids.

Discrete types

Similarly by path induction define
id-to-arr: $\prod_{x, y: A}(x=A y) \rightarrow \operatorname{hom}_{A}(x, y) \quad$ by $\quad i d-t o-\operatorname{arr}\left(\operatorname{refl}_{x}\right):=\mathrm{id}_{x}$.

A type A is discrete if id-to-arr is an equivalence for all x, y : A.

Prop. A type is discrete if and only if it is Rezk and all of its arrows are isomorphisms. If the Rezk types are $(\infty, 1)$-categories, then the discrete types are ∞-groupoids.

Proof:

4

The synthetic theory of
 $(\infty, 1)$-categories

Covariant fibrations I

A type family $x: A \vdash B(x)$ over a Segal type A is covariant if for every $f: \operatorname{hom}_{A}(x, y)$ and $u: B(x)$ there is a unique lift of f with domain u.

Covariant fibrations I

A type family $x: A \vdash B(x)$ over a Segal type A is covariant if for every
$f: \operatorname{hom}_{A}(x, y)$ and $u: B(x)$ there is a unique lift of f with domain u, i.e., if

$$
\sum_{v: B(y)} \operatorname{hom}_{B(f)}(u, v) \text { is contractible. }
$$

Covariant fibrations I

A type family x : A $B(x)$ over a Segal type A is covariant if for every
$f: \operatorname{hom}_{A}(x, y)$ and $u: B(x)$ there is a unique lift of f with domain u, i.e., if

$$
\sum_{v: B(y)} \operatorname{hom}_{B(f)}(u, v) \text { is contractible. }
$$

Recall

$$
\operatorname{hom}_{A}(x, y):=\left\langle\begin{array}{cl}
\partial \Delta^{1} & {[x, y]} \\
\downarrow & ,--> \\
\Delta^{1} &
\end{array}\right\rangle
$$

is the type of arrows in A from x to y.

Covariant fibrations I

A type family x : A $B(x)$ over a Segal type A is covariant if for every
$f: \operatorname{hom}_{A}(x, y)$ and $u: B(x)$ there is a unique lift of f with domain u, i.e., if

$$
\sum_{v: B(y)} \operatorname{hom}_{B(f)}(u, v) \text { is contractible. }
$$

Here

$$
\begin{aligned}
& \text { is the type of arrows in } B \text { from } u \text { to } v \text { over } f \text {. }
\end{aligned}
$$

Covariant fibrations I

A type family x : A $B(x)$ over a Segal type A is covariant if for every
$f: \operatorname{hom}_{A}(x, y)$ and $u: B(x)$ there is a unique lift of f with domain u, i.e., if

$$
\sum_{v: B(y)} \operatorname{hom}_{B(f)}(u, v) \text { is contractible. }
$$

Here

$$
\operatorname{hom}_{B(f)}(u, v):=\left\langle\begin{array}{cc}
{[u, v]} & B(f) \\
& \downarrow^{\top} \\
\partial \Delta^{1} & \longrightarrow \Delta^{1}
\end{array}\right\rangle \text { where } \begin{array}{cc}
B(f) \longrightarrow & \left.\begin{array}{c}
\\
\\
\\
\\
\Delta^{1} \longrightarrow \\
\\
\\
\Delta^{1} \longrightarrow
\end{array}\right]
\end{array}
$$

is the type of arrows in B from u to v over f.
Notation. The codomain of the unique lift defines a term $f_{*} u: B(y)$.

Covariant fibrations I

A type family x : A $B(x)$ over a Segal type A is covariant if for every
$f: \operatorname{hom}_{A}(x, y)$ and $u: B(x)$ there is a unique lift of f with domain u, i.e., if

$$
\sum_{v: B(y)} \operatorname{hom}_{B(f)}(u, v) \text { is contractible. }
$$

Here

$$
\begin{aligned}
& \operatorname{hom}_{B(f)}(u, v):=\left\langle\begin{array}{cc}
{[u, v]} & \left.\left.\begin{array}{c}
B(f) \\
\\
\\
\downarrow v^{\top}
\end{array}\right\rangle \text { where } \begin{array}{cc}
B(f) \longrightarrow & \begin{array}{c}
\\
\partial \Delta^{1} \\
\\
\\
\Delta^{1}
\end{array} \\
\Delta^{1} \longrightarrow & \downarrow \\
A
\end{array}\right]
\end{array}\right. \\
& \text { is the type of arrows in } B \text { from } u \text { to } v \text { over } f \text {. }
\end{aligned}
$$

Notation. The codomain of the unique lift defines a term $f_{*} u: B(y)$.
Prop. For $u: B(x), f: \operatorname{hom}_{A}(x, y)$, and $g: \operatorname{hom}_{A}(y, z)$,

$$
g_{*}\left(f_{*} u\right)=(g \circ f)_{* u} \quad \text { and } \quad\left(\mathrm{id}_{x}\right)_{* u}=u .
$$

Covariant fibrations II

A type family x : AトB(x) over a Segal type A is covariant if for every $f: \operatorname{hom}_{A}(x, y)$ and $u: B(x)$ there is a unique lift of f with domain u, i.e., if

$$
\sum_{v: B(y)} \operatorname{hom}_{B(f)}(u, v) \text { is contractible. }
$$

Covariant fibrations II

A type family $x: A \vdash B(x)$ over a Segal type A is covariant if for every $f: \operatorname{hom}_{A}(x, y)$ and $u: B(x)$ there is a unique lift of f with domain u, i.e., if

$$
\sum_{v: B(y)} \operatorname{hom}_{B(f)}(u, v) \text { is contractible. }
$$

Prop. If $x: A \vdash B(x)$ is covariant then for each x : A the fiber $B(x)$ is discrete.

Covariant fibrations II

A type family $x: A \vdash B(x)$ over a Segal type A is covariant if for every $f: \operatorname{hom}_{A}(x, y)$ and $u: B(x)$ there is a unique lift of f with domain u, i.e., if

$$
\sum_{v: B(y)} \operatorname{hom}_{B(f)}(u, v) \text { is contractible. }
$$

Prop. If $x: A \vdash B(x)$ is covariant then for each x : A the fiber $B(x)$ is discrete.

Prop. Fix a : A. The type family $x: \operatorname{A\vdash } \operatorname{hom}_{A}(a, x)$ is covariant.

Covariant fibrations II

A type family $x: A \vdash B(x)$ over a Segal type A is covariant if for every $f: \operatorname{hom}_{A}(x, y)$ and $u: B(x)$ there is a unique lift of f with domain u, i.e., if

$$
\sum_{v: B(y)} \operatorname{hom}_{B(f)}(u, v) \text { is contractible. }
$$

Prop. If $x: A \vdash B(x)$ is covariant then for each x : A the fiber $B(x)$ is discrete.

Prop. Fix a : A. The type family $x: \operatorname{A\vdash } \operatorname{hom}_{A}(a, x)$ is covariant.

For $u: \operatorname{hom}_{A}(a, x)$ and $f: \operatorname{hom}_{A}(x, y)$, the transport $f_{*} u$ equals the composite $f \circ u$ as terms in $\operatorname{hom}_{A}(a, y)$.

Covariant fibrations II

A type family $x: A \vdash B(x)$ over a Segal type A is covariant if for every $f: \operatorname{hom}_{A}(x, y)$ and $u: B(x)$ there is a unique lift of f with domain u, i.e., if

$$
\sum_{v: B(y)} \operatorname{hom}_{B(f)}(u, v) \text { is contractible. }
$$

Prop. If $x: A \vdash B(x)$ is covariant then for each x : A the fiber $B(x)$ is discrete.

Prop. Fix a : A. The type family $x: A \vdash \operatorname{hom}_{A}(a, x)$ is covariant.

For $u: \operatorname{hom}_{A}(a, x)$ and $f: \operatorname{hom}_{A}(x, y)$, the transport $f_{*} u$ equals the composite $f \circ u$ as terms in $\operatorname{hom}_{A}(a, y)$, i.e., $f_{*}(u)=f \circ u$.

The Yoneda lemma

Let $x: A \vdash B(x)$ be a covariant family over a Segal type and fix a : A.

The Yoneda lemma

Let $x: A \vdash B(x)$ be a covariant family over a Segal type and fix a : A.
Yoneda lemma. The maps

$$
\mathrm{ev-id}:=\lambda \phi \cdot \phi\left(a, \mathrm{id}_{a}\right):\left(\prod_{x: A} \operatorname{hom}_{A}(a, x) \rightarrow B(x)\right) \rightarrow B(a)
$$

and

$$
\text { yon }:=\lambda u \cdot \lambda x \cdot \lambda f \cdot f_{*} u: B(a) \rightarrow\left(\prod_{x: A} \operatorname{hom}_{A}(a, x) \rightarrow B(x)\right)
$$

are inverse equivalences.

The Yoneda lemma

Let $x: A \vdash B(x)$ be a covariant family over a Segal type and fix a : A.
Yoneda lemma. The maps

$$
\mathrm{ev-id}:=\lambda \phi \cdot \phi\left(a, \mathrm{id}_{a}\right):\left(\prod_{x: A} \operatorname{hom}_{A}(a, x) \rightarrow B(x)\right) \rightarrow B(a)
$$

and

$$
\text { yon }:=\lambda u \cdot \lambda x \cdot \lambda f \cdot f_{*} u: B(a) \rightarrow\left(\prod_{x: A} \operatorname{hom}_{A}(a, x) \rightarrow B(x)\right)
$$

are inverse equivalences.

Proof: The transport operation for covariant families is functorial in A and fiberwise maps between covariant families are automatically natural.

The Yoneda lemma

Let $x: A \vdash B(x)$ be a covariant family over a Segal type and fix a : A.
Yoneda lemma. The maps

$$
\mathrm{ev-id}:=\lambda \phi \cdot \phi\left(a, \mathrm{id}_{a}\right):\left(\prod_{x: A} \operatorname{hom}_{A}(a, x) \rightarrow B(x)\right) \rightarrow B(a)
$$

and

$$
\text { yon }:=\lambda u \cdot \lambda x \cdot \lambda f \cdot f_{*} u: B(a) \rightarrow\left(\prod_{x: A} \operatorname{hom}_{A}(a, x) \rightarrow B(x)\right)
$$

are inverse equivalences.

Proof: The transport operation for covariant families is functorial in A and fiberwise maps between covariant families are automatically natural. Note. A representable isomorphism $\phi: \prod_{x: A} \operatorname{hom}_{A}(a, x) \cong \operatorname{hom}_{A}(b, x)$ induces an identity $\operatorname{ev-id}(\phi): b=A_{A} a$ if the Segal type A is Rezk.

The dependent Yoneda lemma

From a type-theoretic perspective, the Yoneda lemma is a "directed" version of the "transport" operation for identity types. This suggests a "dependently typed" generalization of the Yoneda lemma, analogous to the full induction principle for identity types.

The dependent Yoneda lemma

From a type-theoretic perspective, the Yoneda lemma is a "directed" version of the "transport" operation for identity types. This suggests a "dependently typed" generalization of the Yoneda lemma, analogous to the full induction principle for identity types.

Dependent Yoneda lemma. If A is a Segal type and $B(x, y, f)$ is a covariant family dependent on $x, y: A$ and f : $\operatorname{hom}_{A}(x, y)$, then evaluation at (x, x, id_{x}) defines an equivalence

$$
\text { ev-id : }\left(\prod_{x, y: A: A: \operatorname{hom}_{A}(x, y)} B(x, y, f)\right) \rightarrow \prod_{x: A} B\left(x, x, \mathrm{id}_{x}\right)
$$

The dependent Yoneda lemma

From a type-theoretic perspective, the Yoneda lemma is a "directed" version of the "transport" operation for identity types. This suggests a "dependently typed" generalization of the Yoneda lemma, analogous to the full induction principle for identity types.

Dependent Yoneda lemma. If A is a Segal type and $B(x, y, f)$ is a covariant family dependent on $x, y: A$ and f : $\operatorname{hom}_{A}(x, y)$, then evaluation at (x, x, id_{x}) defines an equivalence

$$
\text { ev-id : }\left(\prod_{x, y,: A: f: \operatorname{hom}_{A}(x, y)} B(x, y, f)\right) \rightarrow \prod_{x: A} B\left(x, x, \mathrm{id}_{x}\right)
$$

This is useful for proving equivalences between various types of coherent or incoherent adjunction data.

Dependent Yoneda is directed path induction

Takeaway: the dependent Yoneda lemma is directed path induction.

Dependent Yoneda is directed path induction

Takeaway: the dependent Yoneda lemma is directed path induction.
Path induction: If $B(x, y, p)$ is a type family dependent on x, y : A and
$P: x=A y$, then there is a function

$$
\text { path-ind: }\left(\prod_{x: A} B\left(x, x, \text { refl }_{x}\right)\right) \rightarrow\left(\prod_{x, y: A} \prod_{p: x=A y} B(x, y, p)\right) .
$$

Thus, to prove $B(x, y, p)$ it suffices to assume y is x and p is refl x.

Dependent Yoneda is directed path induction

Takeaway: the dependent Yoneda lemma is directed path induction.
Path induction: If $B(x, y, p)$ is a type family dependent on x, y : A and
$P: x=A y$, then there is a function

$$
\text { path-ind: }\left(\prod_{x: A} B\left(x, x, \text { refl }_{x}\right)\right) \rightarrow\left(\prod_{x, y: A} \prod_{p: x=A y} B(x, y, p)\right) .
$$

Thus, to prove $B(x, y, p)$ it suffices to assume y is x and p is refl .

Dependent Yoneda Lemma: If $B(x, y, f)$ is a covariant family dependent on x, y : A and $f: \operatorname{hom}_{A}(x, y)$ and A is Segal, then there is a function

$$
\text { id-ind }:\left(\prod_{x: A} B\left(x, x, i d_{x}\right)\right) \rightarrow\left(\prod_{x, y: A f: \operatorname{hom}_{A}(x, y)} B(x, y, f)\right) .
$$

Thus, to prove $B(x, y, p)$ it suffices to assume y is x and f is id ${ }_{x}$.

References

For considerably more, see:

Emily Riehl and Michael Shulman, A type theory for synthetic ∞-categories, arXiv:1705.07442

To explore homotopy type theory:
Homotopy Type Theory: Univalent Foundations of Mathematics, https://homotopytypetheory.org/book/

Michael Shulman, Homotopy type theory: the logic of space, arXiv:1703.03007

Thank you!

