Emily Riehl

Johns Hopkins University

A synthetic theory of co-categories in homotopy type
theory

joint with Michael Shulman

CT2017 UBC, Vancouver, Canada

Motivation

Why do | study category theory?

Motivation

Why do | study category theory?

— | find category theoretic arguments to be aesthetically appealing.

Motivation

Why do | study category theory?

— | find category theoretic arguments to be aesthetically appealing.

What draws me to homotopy type theory?

Motivation

Why do | study category theory?

— | find category theoretic arguments to be aesthetically appealing.

What draws me to homotopy type theory?

— | find homotopy type theoretic arguments to be aesthetically
appealing.

Plan

|. Homotopy type theory

2. A type theory for synthetic (0o, 1)-categories

3. Segal types and Rezk types

4. The synthetic theory of (oo, 1)-categories

Plan |

|. Homotopy type theory
2. A type theory for synthetic (oo, 1)-categories
3. Segal types and Rezk types

4. The synthetic theory of (oo, 1)-categories

Main takeaway: the dependent Yoneda lemma is a directed analogue of
path induction in HoTT.

0

Homotopy type theory

Homotopy type theory

Homotopy type theory is:
* a formal system for mathematical constructions and proofs

Homotopy type theory

Homotopy type theory is:
* a formal system for mathematical constructions and proofs

* in which the basic objects, types, may be regarded as “spaces” or
oo-groupoids

Homotopy type theory

Homotopy type theory is:
* a formal system for mathematical constructions and proofs
* in which the basic objects, types, may be regarded as “spaces” or
oo-groupoids
¢ and all constructions are automatically “continuous” or
equivalence-invariant.

Homotopy type theory

Homotopy type theory is:
* a formal system for mathematical constructions and proofs
* in which the basic objects, types, may be regarded as “spaces” or
oo-groupoids
¢ and all constructions are automatically “continuous” or
equivalence-invariant.

h t t th
Homotopy type theory is { omotopy (type theory)

Homotopy type theory

Homotopy type theory is:
* a formal system for mathematical constructions and proofs
* in which the basic objects, types, may be regarded as “spaces” or
oo-groupoids
¢ and all constructions are automatically “continuous” or
equivalence-invariant.

h t t th
Homotopy type theory is omotopy (type theory)
(homotopy type) theory

Homotopy type theory q

Homotopy type theory is:
* aformal system for mathematical constructions and proofs
* in which the basic objects, types, may be regarded as “spaces” or
oo-groupoids
¢ and all constructions are automatically “continuous” or
equivalence-invariant.

h t t th
Homotopy type theory is omotopy (type theory)
(homotopy type) theory

Types A can be regarded simultaneously as both mathematical
constructions and mathematical assertions, a conception also known as
propositions as types;

Homotopy type theory q

Homotopy type theory is:
* aformal system for mathematical constructions and proofs

* in which the basic objects, types, may be regarded as “spaces” or
oo-groupoids

¢ and all constructions are automatically “continuous” or
equivalence-invariant.

h t t th
Homotopy type theory is { omotopy (type theory)

(homotopy type) theory

Types A can be regarded simultaneously as both mathematical
constructions and mathematical assertions, a conception also known as
propositions as types; accordingly, a term a : A can be regarded as a
proof of the proposition A.

Types, terms, and type constructors

Homotopy type theory has:
* types A B, ...

Types, terms, and type constructors

Homotopy type theory has:
* types A B, ...
s termsx: A y:B

Types, terms, and type constructors

Homotopy type theory has:
* types A B, ...
s termsx: A y:B
* dependent types x : A B(x) type, x,y : A B(x,y) type

Types, terms, and type constructors

Homotopy type theory has:
* types A B, ...
s termsx: A y:B
* dependent types x : A - B(x) type, x,y : A F B(x,y) type

Type constructors build new types and terms from given ones:

Types, terms, and type constructors

Homotopy type theory has:
* types A B, ...
s termsx: A y:B
* dependent types x : A - B(x) type, x,y : A F B(x,y) type

Type constructors build new types and terms from given ones:
* products A x B, coproducts A 4 B, function types A — B,

Types, terms, and type constructors

Homotopy type theory has:
* types A B, ...
s termsx: A y:B
* dependent types x : A - B(x) type, x,y : A F B(x,y) type

Type constructors build new types and terms from given ones:
* products A x B, coproducts A 4 B, function types A — B,

* dependent sums) ., B(x), dependent products [],., B(x), and
identity types x,y t A x =4 y.

Types, terms, and type constructors

Homotopy type theory has:
* types A B, ...
s termsx: A y:B
* dependent types x : A B(x) type, x,y : A B(x,y) type

Type constructors build new types and terms from given ones:
* products A x B, coproducts A 4 B, function types A — B,

* dependent sums) ., B(x), dependent products [],., B(x), and
identity types x,y : A x =4 V.

Propositions as types:

AxB | AandB Y oeaB) | IxB(x)
A+B| AorB [1.4B(x) | ¥x.B(x)
A — B | A implies B X=aAYy |xequalsy

Dependent sums and products

Formation rules for dependent sums and products
x: AF B(x) type x: AF B(x) type
> " B(x) type [18() type
x:A x:A

Dependent sums and products

Formation rules for dependent sums and products

x Ak B(x) type x: AF B(x) type
Z B(x) type H B(x) type
x:A x:A
(a,u) >4 B(x) f:LeaB(x)
Semantics B(CI) — EX:A B(X) ZX:A B(X)
AT I

125 A A

Dependent sums and products

Formation rules for dependent sums and products

x A F B(x) type x: AF B(x) type
Z B(x) type H B(x) type
x:A x:A
(Cl, u) : ZX:A B(X) f: HX:A B(X)
Semantics § B(a) — Y, B(x) > en B(X)
AT I
1 -3 A A

In the case x : A = B type, the dependent sum becomes A x B while
the dependent product becomes A — B.

Dependent sums and products

Formation rules for dependent sums and products

x A F B(x) type x: AF B(x) type
Z B(x) type H B(x) type
x:A x:A

(Cl, u) : ZX:A B(X) f: HX:A B(X)

AT I

1 -3 A A

In the case x : A = B type, the dependent sum becomes A x B while
the dependent product becomes A — B.

Propositions as types: If B(x) is a proposition depending on x : A

Dependent sums and products

Formation rules for dependent sums and products

x A F B(x) type x: AF B(x) type
Z B(x) type H B(x) type
x:A x:A

(Cl, u) : ZX:A B(X) f: HX:A B(X)

AT I

1 -3 A A

In the case x : A = B type, the dependent sum becomes A x B while
the dependent product becomes A — B.

Propositions as types: If B(x) is a proposition depending on x : A then
(a,u) proves Ix.B(x) (constructively!)

Dependent sums and products

Formation rules for dependent sums and products

x A F B(x) type x: AF B(x) type
> B(x) type [T8(x) type
x:A x:A
(07 u) : ZX:A B(X) f: HX:A B(X)
Semantics § - B(a) — 32,4 B(x) 2 A BKX)
AT I
1 -3 A A

In the case x : A = B type, the dependent sum becomes A x B while
the dependent product becomes A — B.

Propositions as types: If B(x) is a proposition depending on x : A then
(a,u) proves Ix.B(x) (constructively!) while f proves Vx.B(x).

|dentity types

Formation rule for identity types

X,y A
X =ny type

|dentity types
Formation and introduction rules for identity types
X,y A XA
X =7y type refl: [T, x=ax

ldentity types

Formation and introduction rules for identity types

X,y A x:A
X =y type refl: [T, x=ax
Zx,y:A X =AY
Semantics refle -7 +

A/T>A><A

Identity types a

Formation and introduction rules for identity types

X,y A x:A
X =pY type refl, : HX:AX = X
Zx,y:A X =AY
Semantics refle -7 ¢

A’/T>A><A

Indiscernability of identicals: If B(x) is a type family dependent on x : A,

¢ HW:A HP:X:AyB(X) — B(y).

Identity types a

Formation and introduction rules for identity types

X,y A x:A
X =pY type refl, : HX:AX = X
Zx,y:A X =AY
Semantics refle -7 ¢

A’/T>A><A

Indiscernability of identicals: If B(x) is a type family dependent on x : A,

¢ HW:A HP:X:AyB(X) — B(y).

Thus, if x =4 y then B(x) — B(y).

Path induction ‘

The identity type family is freely generated by the terms refl, : x =4 x.

Path induction ‘

The identity type family is freely generated by the terms refl, : x =4 x.

Path induction: If B(x, y, p) is a type family dependent on x,y : A and
p 1 x =4 y, then there is a function

path-ind : <HB(X,X, reﬂx)) — H H B(x,y,p)
x:A

X,y:A D:X=ay

Path induction ‘

The identity type family is freely generated by the terms refl, : x =4 x.

Path induction: If B(x, y, p) is a type family dependent on x,y : A and
p 1 x =4 y, then there is a function

path-ind : <HB(X,X, reﬂx)) — H H B(x,y,p)
X:A

X,y:A D:X=ay

Thus, to prove B(x, y, p) it suffices to assume y is x and p is refl,.

Path induction ‘

The identity type family is freely generated by the terms refl, : x =4 x.

Path induction: If B(x, y, p) is a type family dependent on x,y : A and
p 1 x =4 y, then there is a function

path-ind : (HB(X,X, reﬂx)) — H H B(x,y,p)
X:A

X,Y:A PIX=py

Thus, to prove B(x, y, p) it suffices to assume y is x and p is refl,.

The oo-groupoid structure of A with
* terms x : A as objects
* paths p : x =4 y as |-morphisms
* paths of paths o : p =,—,, g as 2-morphisms, ...

arises automatically from the path induction principle.

@

A type theory for synthetic
(00, 1)-categories

The intended model

Sethxb%® D Reedy D Segal D Rezk
Il l I I
bisimplicial sets types types with types with
composition composition

& univalence

The intended model

Sethxb%® D Reedy D Segal D Rezk
Il l I I
bisimplicial sets types types with types with
composition composition

& univalence

Theorem (Shulman). Homotopy type theory is modeled by the
category of Reedy fibrant bisimplicial sets.

J

The intended model '

Sethxb%® D Reedy D Segal D Rezk
Il l I I
bisimplicial sets types types with types with
composition composition
& univalence
Theorem (Shulman). Homotopy type theory is modeled by the
category of Reedy fibrant bisimplicial sets. J

Theorem (Rezk). (00, 1)-categories are modeled by Rezk spaces aka
complete Segal spaces.

Shapes in the theory of the directed interval

Our types may depend on other types and also on shapes & C 27,
polytopes embedded in a directed cube,

Shapes in the theory of the directed interval

Our types may depend on other types and also on shapes & C 27,
polytopes embedded in a directed cube, defined in a language

T, 1L,AV, = and 0,1,<

satisfying intuitionistic logic and strict interval axioms.

Shapes in the theory of the directed interval

Our types may depend on other types and also on shapes & C 27,
polytopes embedded in a directed cube, defined in a language

T, 1L,AV, = and 0,1,<

satisfying intuitionistic logic and strict interval axioms.

A = {(t,) : 2" [ty <<t} eg Al=2
(L)

A? = (t’t)/ ‘ (L.0)

(0,0) 0 (1,0)

Shapes in the theory of the directed interval

Our types may depend on other types and also on shapes & C 27,

polytopes embedded in a directed cube, defined in a language
T, 1L,AV, = and 0,1,<

satisfying intuitionistic logic and strict interval axioms.

A= {(tr,...,) : 2" [<<t} eg Al=2
(L)

A? = (t’t)/ ‘ (L.0)

(0,0) 0 (1,0)

OA? = {(tl,tg) . 22 ‘ (tg < tl) VAN ((0 = tg) V (tg = tl) V (tl =

Shapes in the theory of the directed interval

Our types may depend on other types and also on shapes & C 27,
polytopes embedded in a directed cube, defined in a language

T, 1L,AV, = and 0,1,<

satisfying intuitionistic logic and strict interval axioms.

A= {(tr,...,) : 2" [<<t} eg Al=2
(L)

o)

(0,0) 0 (1,0)

OA? = {(tl,tg) . 22 ‘ (tg < tl) VAN ((0 = tg) V (tg = tl) vV (tl = 1))}
A% = (tl,tg) : 22 ‘ (tz < tl) A ((0 = tg) V (tl = 1))}

Shapes in the theory of the directed interval

Our types may depend on other types and also on shapes & C 27,
polytopes embedded in a directed cube, defined in a language

T, 1L,AV, = and 0,1,<

satisfying intuitionistic logic and strict interval axioms.

A= {(tr,...,) : 2" [<<t} eg Al=2
(L)

R B [

(0,0) 0 (1,0)

={(t1,2) : 22 [(e <) A ((0=1t2) V (2 = t1) V (1 = 1))}
={(t1,2) : 2° | (2 1)) A((0 =t2) V (11 = 1))}

Because ¢ A 1) implies @, there are shape inclusions A? C A% C A2,

Extension types '

shape inclusion: @ :== {t € 2" | ¢} and ¥ = {t € 2" | ¢/} so that ¢
implies 1, i.e., so that ® C .

Extension types '

shape inclusion: ® = {t € 2" | ¢} and ¥ = {t € 2" | ¢} so that ¢
implies 1, i.e., so that & C W.

Formation rule for extension types
® C ¥ shape A type a:® = A

o 25 A
r type
b

Extension types

shape inclusion: ® = {t € 2" | ¢} and ¥ = {t € 2" | ¢} so that ¢

implies 1, i.e., so that ® C .

Formation rule for extension types

® C ¥ shape A type a:® = A

d - A
r type
T

-

o 2 A
Aterm:{ y 7 defines
v

f: ¥ — Asothat f(t) =a(t) fort: ®.

Extension types .

shape inclusion: @ :== {t € 2" | ¢} and ¥ = {t € 2" | ¢/} so that ¢
implies 1, i.e., so that ® C .

Formation rule for extension types
® C U shape A type a:®—A

® —— A
r type
T

-
-

o 2 A
Aterm:{ y 7 defines
v

f: ¥ — Asothat f(t) =a(t) fort: ®.

The simplicial type theory allows us to prove equivalences between
extension types along composites or products of shape inclusions.

)

Segal types and Rezk types

Hom types

Formation rule for extension types

® C ¥ shape U F A type a:® A

d = A
Y 7 type

-

v

The hom type for A depends on two terms in A:
X,y A homa(x,y)

Hom types ‘

Formation rule for extension types

® C ¥ shape U F A type a:® A

o 25 A
r type
b

The hom type for A depends on two terms in A:
X,y A homa(x,y)

OA' © Alshape Atype (x,y] : 0AY = A

oat 1, 4
homa(x,y) == r type

-

Al

Hom types ‘

Formation rule for extension types

® C ¥ shape U F A type a:® A

d = A
r type
7

The hom type for A depends on two terms in A:
X,y : A homa(x,y)

OA' © Alshape Atype (x,y] : 0AY = A

oat 1, 4
homa(x,y) == r type

-
-

Al

Aterm f: homa(x,y) defines an arrow from x to .

Segal types have unique binary composites ‘

A type A is Segal iff every composable pair of arrows has a unique
composite

Segal types have unique binary composites

A type A is Segal iff every composable pair of arrows has a unique
composite, i.e.,, for every f: homa(x,y) and g : homa(y, z) the type

T e is contractible.

-
-
-

A2

Segal types have unique binary composites

A type A is Segal iff every composable pair of arrows has a unique
composite, i.e.,, for every f: homa(x,y) and g : homa(y, z) the type

T e is contractible.

-
-
-

A2

Prop. A Reedy fibrant bisimplicial set A is Segal if and only if
AD® L AM s a Reedy trivial fibration.

Segal types have unique binary composites ‘

A type A is Segal iff every composable pair of arrows has a unique
composite, i.e.,, for every f: homa(x,y) and g : homa(y, z) the type

T /,/7 is contractible.

-

A2

Prop. A Reedy fibrant bisimplicial set A is Segal if and only if
AD® L AM s a Reedy trivial fibration.

Notation. Let COMPpgf < T //,w > denote the unique
A2

inhabitant

Segal types have unique binary composites

A type A is Segal iff every composable pair of arrows has a unique
composite, i.e.,, for every f: homa(x,y) and g : homa(y, z) the type

T /,/7 is contractible.

P

A2

4

Prop. A Reedy fibrant bisimplicial set A is Segal if and only if
AD® L AM s a Reedy trivial fibration.

Notation. Let COMPpgf < T //n > denote the unique
A2

inhabitant and write g o f : homa(x, z) for its inner face, the composite

of fand g.

ldentity arrows

For any x : A, the constant function defines a term

[xx]

OAT —— A
id, == At.x : homa(x, x) = r ,
Al

which we denote by id, and call the identity arrow.

ldentity arrows

For any x : A, the constant function defines a term

[xx]

OAT —— A
id, == At.x : homa(x, x) = r ,
Al

which we denote by id, and call the identity arrow.

For any f: homa(x,y) in a Segal type A, the term

A% [id,f] A
)\(s,t).f(t):< ; /,i >
Az

witnesses the unit axiom f = fo id,.

Associativity of composition
Let A be a Segal type with arrows

f:homa(x,y), g:homa(y,z), h:homa(z,w).

Associativity of composition
Let A be a Segal type with arrows

f:homa(x,y), g:homa(y,z), h:homa(z,w).

Prop. ho(gof)=(hog)of.

Associativity of composition
Let A be a Segal type with arrows

f:homa(x,y), g:homa(y,z), h:homa(z,w).

Prop. ho(gof)=(hog)of.
Proof. Consider the composable arrows in the Segal type Al — A:

Associativity of composition
Let A be a Segal type with arrows

f:homa(x,y), g:homa(y,z), h:homa(z,w).

Prop. ho(gof)=(hog)of.
Proof. Consider the composable arrows in the Segal type Al — A:

Composing defines a term in the type A% — (Al — A)

Associativity of composition ‘

Let A be a Segal type with arrows
f:homa(x,y), g:homa(y,z), h:homa(z,w).

Prop. ho(gof)=(hog)of.
Proof. Consider the composable arrows in the Segal type Al — A:

Composing defines a term in the type A% — (Al — A) which yields a
term (: homa(x,w) sothat { =ho (gof)and ¢ = (hog)of.

Isomorphisms

An arrow [: homa(x,y) in a Segal type is an isomorphism if it has a
two-sided inverse g: homa(y, x). However, the type

Y. (gof=id) x (fog=id)
g: homa(y,x)

has higher-dimensional structure and is not a proposition.

lsomorphisms ‘

An arrow [: homa(x,y) in a Segal type is an isomorphism if it has a
two-sided inverse g: homa(y, x). However, the type

Y. (gof=id) x (fog=id)
g: homa(y,x)

has higher-dimensional structure and is not a proposition. Instead define

isiso(f) = Z gof=idy | x Z foh=id,

g: homa(y,x) h: homp (y,x)

lsomorphisms ‘

An arrow [: homa(x,y) in a Segal type is an isomorphism if it has a
two-sided inverse g: homa(y, x). However, the type

Y (gof=id) x (fog=id,)

g: homa(y,x)

has higher-dimensional structure and is not a proposition. Instead define

isiso(f) = Z gof=idy | x Z foh=id,

g: homa(y,x) h: homp (y,x)

For x,y : A, the type of isomorphisms from x to y is:

Xpy = Z isiso(f).

frhoma (x.y)

Rezk types

By path induction, to define a map
id-to-iso: (x =ay) = (x Zay)
forall x,y : A it suffices to define

id-to-iso(refly) = id.

Rezk types
By path induction, to define a map
id-to-iso: (x =ay) = (x Zay)
forall x,y : A it suffices to define

id-to-iso(refly) = id.

A Segal type A is Rezk if every isomorphism is an identity

Rezk types ‘

By path induction, to define a map
id-to-iso: (x =ay) = (x Zay)
forall x,y : A it suffices to define

id-to-iso(refly) = id.

A Segal type A is Rezk if every isomorphism is an identity, i.e., if the map
id-to-iso: (x =ay) = (x =4 y)

is an equivalence.

Discrete types ‘
Similarly by path induction define

id-to-arr: H(x =4 y) — homa(x,y) by id-to-arr(refly) := idx.
X,y:A

Discrete types ‘
Similarly by path induction define

id-to-arr: H(X =4 y) — homa(x,y) by id-to-arr(refly) := idx.
X,y:A

A type A is discrete if id-to-arr is an equivalence for all x, y : A.

Discrete types ‘
Similarly by path induction define

id-to-arr: H(x =4 y) — homa(x,y) by id-to-arr(refly) := idx.
X,y:A

A type A is discrete if id-to-arr is an equivalence for all x, y : A.

Prop. A type is discrete if and only if it is Rezk and all of its arrows are
isomorphisms.

Discrete types ‘
Similarly by path induction define

id-to-arr: H(X =4 y) — homa(x,y) by id-to-arr(refly) := idx.
X,y:A

A type A is discrete if id-to-arr is an equivalence for all x, y : A.

Prop. A type is discrete if and only if it is Rezk and all of its arrows are
isomorphisms. If the Rezk types are (oo, 1)-categories, then the
discrete types are co-groupoids.

Discrete types ‘
Similarly by path induction define

id-to-arr: H(X =4 y) — homa(x,y) by id-to-arr(refly) := idx.
X,y:A

A type A is discrete if id-to-arr is an equivalence for all x, y : A.

Prop. A type is discrete if and only if it is Rezk and all of its arrows are
isomorphisms. If the Rezk types are (oo, 1)-categories, then the
discrete types are co-groupoids.

Proof:

X=ny id-to-arr N homA (X, y)

XZEpy

@

The synthetic theory of
(00, 1)-categories

Covariant fibrations | “

A type family x : A = B(x) over a Segal type A is covariant if for every
f:homa(x,y) and u : B(x) there is a unique lift of f with domain v.

Covariant fibrations | “

A type family x : A = B(x) over a Segal type A is covariant if for every
f:homa(x,y) and u : B(x) there is a unique lift of f with domain v, i.e., if

ZV:B(” homgp) (u,v) s contractible.

Covariant fibrations | “

A type family x : A F B(x) over a Segal type A is covariant if for every
f: homa(x,y) and u : B(x) there is a unique lift of f with domain v, i.e., if

Zv:B(y) homgy (u,v) s contractible.

Recall
oAl M, 4
homA(x,y) = < I //>‘ >
Al

is the type of arrows in A from x to v.

Covariant fibrations | “

A type family x : A F B(x) over a Segal type A is covariant if for every
f: homa(x,y) and u : B(x) there is a unique lift of f with domain v, i.e., if

Zv:B(y) homgy (u,v) s contractible.

Here

B(f) B(ff —— B

homB(f)(U7 v) = [LV LT where L - ¢
OAY —— Al

is the type of arrows in B from u to v over f.

Covariant fibrations | “

A type family x : A F B(x) over a Segal type A is covariant if for every
f: homa(x,y) and u : B(x) there is a unique lift of f with domain v, i.e., if

ZV:B(y) homgy (u,v) s contractible.

Here

B(f) B(ff —— B

homgp (u,v) = [V LT where L - i
OAY —— Al

is the type of arrows in B from u to v over f.

Notation. The codomain of the unique lift defines a term f.u : B(y).

Covariant fibrations | “

A type family x : A F B(x) over a Segal type A is covariant if for every
f: homa(x,y) and u : B(x) there is a unique lift of f with domain v, i.e., if

ZV:B(y) homgy (u,v) s contractible.

Here

B(f) B(ff —— B

homgp (u,v) = [V LT where L - i
OAY —— Al

is the type of arrows in B from u to v over f.

Notation. The codomain of the unique lift defines a term f.u : B(y).

Prop. For u : B(x), f : homa(x,y), and g : homa(y, z),

g«(fut) = (gof)su and (idy)«u = u.

Covariant fibrations |l “

A type family x : A = B(x) over a Segal type A is covariant if for every
f: homa(x,y) and u : B(x) there is a unique lift of f with domain v, i.e., if

Z homgp (u,v) s contractible.
v:B(y)

Covariant fibrations |l “

A type family x : A = B(x) over a Segal type A is covariant if for every
f: homa(x,y) and u : B(x) there is a unique lift of f with domain v, i.e., if

Z homgp (u,v) s contractible.
v:B(y)

Prop. If x : A B(x) is covariant then for each x : A the fiber B(x) is
discrete.

Covariant fibrations |l “

A type family x : A = B(x) over a Segal type A is covariant if for every
f: homa(x,y) and u : B(x) there is a unique lift of f with domain v, i.e., if

Z homgp (u,v) s contractible.
v:B(y)

Prop. If x : A B(x) is covariant then for each x : A the fiber B(x) is
discrete.

Prop. Fix a : A. The type family x : A F homa(a, x) is covariant.

Covariant fibrations |l “

A type family x : A = B(x) over a Segal type A is covariant if for every
f: homa(x,y) and u : B(x) there is a unique lift of f with domain v, i.e., if

Z homgp (u,v) s contractible.
v:B(y)

Prop. If x : A B(x) is covariant then for each x : A the fiber B(x) is
discrete.

Prop. Fix a : A. The type family x : A F homa(a, x) is covariant.

For u: homa(a, x) and f: homa(x, y), the transport f.u equals the
composite f o u as terms in homa(a,y).

Covariant fibrations |l “

A type family x : A = B(x) over a Segal type A is covariant if for every
f: homa(x,y) and u : B(x) there is a unique lift of f with domain v, i.e., if

Z homgp (u,v) s contractible.
v:B(y)

Prop. If x : A B(x) is covariant then for each x : A the fiber B(x) is
discrete.

Prop. Fix a : A. The type family x : A F homa(a, x) is covariant.

For u: homa(a, x) and f: homa(x, y), the transport f.u equals the
composite fo u as terms in homa(a,y), ie, fx(u) = fou.

The Yoneda lemma “
Let x : A - B(x) be a covariant family over a Segal type and fix a : A.

The Yoneda lemma

Let x : A - B(x) be a covariant family over a Segal type and fix a : A.

Yoneda lemma. The maps

X:A

ev-id := Ap.4(a,idy) <H homa(a, x) — B(x)) — B(a)
and

yon = AU Affxu : B(a <H homa(a, x) — B(x))

x:A

are inverse equivalences.

The Yoneda lemma “
Let x : A - B(x) be a covariant family over a Segal type and fix a : A.

Yoneda lemma. The maps

ev-id := Ap.4(a,idy) (H homa(a, x) — B(x)) — B(a)

X:A
and
yon == AU\ : B(a (H homa(a, x) — B(x))
Xx:A

are inverse equivalences.

Proof. The transport operation for covariant families is functorial in A
and fiberwise maps between covariant families are automatically natural.

The Yoneda lemma “
Let x : A - B(x) be a covariant family over a Segal type and fix a : A.

Yoneda lemma. The maps

ev-id := Ap.4(a,idy) (H homa(a, x) — B(x)) — B(a)

X:A

and

yon == AU\ : B(a (H homa(a, x) = B(x))

Xx:A

are inverse equivalences.

Proof. The transport operation for covariant families is functorial in A
and fiberwise maps between covariant families are automatically natural.
Note. A representable isomorphism ¢ : [],., homa(a, x) = homa (b, x)
induces an identity ev-id(¢) : b =, a if the Segal type A is Rezk.

The dependent Yoneda lemma

From a type-theoretic perspective, the Yoneda lemma is a
“directed” version of the “transport” operation for identity types.
This suggests a "dependently typed” generdlization of the Yoneda
lemma, analogous to the full induction principle for identity types.

The dependent Yoneda lemma

From a type-theoretic perspective, the Yoneda lemma is a
“directed” version of the “transport” operation for identity types.
This suggests a "dependently typed” generdlization of the Yoneda
lemma, analogous to the full induction principle for identity types.

Dependent Yoneda lemma. If A is a Segal type and B(x, y, f) is a
covariant family dependent on x,y : A and f : homa(x, y), then
evaluation at (x, x, id,) defines an equivalence

ev-id : H H B(x,y,f) —>HB(x,x,idX)
x:A

X,YIA ﬁhomA (X’y)

The dependent Yoneda lemma 0

From a type-theoretic perspective, the Yoneda lemma is a
“directed” version of the “transport” operation for identity types.
This suggests a "dependently typed” generdlization of the Yoneda
lemma, analogous to the full induction principle for identity types.

Dependent Yoneda lemma. If A is a Segal type and B(x, y, f) is a
covariant family dependent on x,y : A and f : homa(x, y), then
evaluation at (x, x, id,) defines an equivalence

ev-id : H H B(x,y,f) —>HB(x,x,idX)
x:A

X,YIA ﬁhomA (X’y)

This is useful for proving equivalences between various types of
coherent or incoherent adjunction data.

Dependent Yoneda is directed path induction “

Takeaway: the dependent Yoneda lemma is directed path induction.

Dependent Yoneda is directed path induction “

Takeaway: the dependent Yoneda lemma is directed path induction.

Path induction: If B(x,y, p) is a type family dependent on x,y : A and
p 1 x =4 y, then there is a function

path-ind : <HB(X,X, reﬂx)) — H H B(x,y,p)
Xx:A

X,y:A PIX=pY

Thus, to prove B(x,y, p) it suffices to assume y is x and p is refl,.

Dependent Yoneda is directed path induction “

Takeaway: the dependent Yoneda lemma is directed path induction.

Path induction: If B(x,y, p) is a type family dependent on x,y : A and
p i x =4 Y, then there is a function

path-ind : (HB(X,X, reﬂx)) — H H B(x,y,p)
Xx:A

X,y:A PX=py

Thus, to prove B(x,y, p) it suffices to assume y is x and p is refl,.

Dependent Yoneda Lemma: If B(x, y, f) is a covariant family dependent
on x,y:Aand f:homa(x,y) and A is Segal, then there is a function

id-ind : (H B(x, x,idx)) H H B(x,y,1)
X:A

Xy:A fthomy (x,y)

Thus, to prove B(x,y, p) it suffices to assume y is x and fis id..

References

For considerably more, see:

Emily Riehl and Michael Shulman, A type theory for synthetic
oo-categories, arXiv:1705.07442 J

To explore homotopy type theory:

Homotopy Type Theory: Univalent Foundations of Mathematics,
https://homotopytypetheory.org/book/

Michael Shulman, Homotopy type theory: the logic of space,
arxXiv:1703.03007

Thank you!

	Homotopy type theory
	A type theory for synthetic (,1)-categories
	Segal types and Rezk types
	The synthetic theory of (,1)-categories

