Graphical calculus in symmetric monoidal $(\infty-)$ categories with duals

Jun Yoshida

Graduate School of Mathematical Sciences, the University of Tokyo

July 21, 2017, CT2017, UBC, Vancouver

Intro di	lction

Operads of surfaces with strips

Labelings and graphical calculus

Reference

Contents

1 Introduction

- Review on string calculus
- An extension
- Answer from quantum topology: planar algebras
- Goal of the talk
- Operads of surfaces with strips
 - Relative objects in smooth category
 - Cobordisms of arrangements

- Operads for surfaces with strings
- Algebraic description
- \bullet Bonus: Lifts to $\infty\text{-contexts}$
- 3 Labelings and graphical calculus
 - Labelings
 - Classification
 - Graphical calculus
 - Key results
 - Main Theorem

Reference

Introduction	Operads of surfaces with strips

Introduction

1 Introduction

- Review on string calculus
- An extension
- Answer from quantum topology: planar algebras
- Goal of the talk

Introduction	Operads of surface
0000	

Labelings and graphical calculus

Reference

Review on string calculus

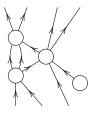
Definition 1

A planar graph $\eta: \Gamma \hookrightarrow \mathbb{R}^2$ (with outer-edges) is said to be progressive if for each edge e of Γ , the composition

$$e \xrightarrow{\eta} \mathbb{R}^2 \xrightarrow{\operatorname{proj}_2} \mathbb{R} = y$$
-axis

is strictly increasing along the orientation of the edge e.

s with strips



Introduction	
00000	

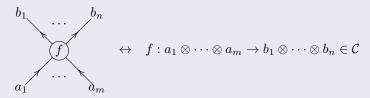
Review on string calculus

 \mathcal{C} : a monoidal category.

Proposition 2 ([Joyal and Street, 1991])

For a planar progressive graph Γ , consider a labeling in C subject to the following rules:

- each edge of Γ is labeled by an object of C;
- each vertex of Γ is labeled by a morphism of C so that



Then, Γ together with the labeling determines a morphism in C. Moreover, the resulting morphism is invariant under isotopies of planar progressive graphs.

roduction ●○○	Operads of surfaces with strips 00000	Labelings and graphical calculus 000000	Reference
	An ext	ension	
Slogan			
	$\underbrace{\text{String calculus in } \mathcal{C}}_{\text{string calculus in }} A \text{ class}$	ss of graphs + labeling rules	
Question	n		
ls it pos <mark>calculus</mark>		r graphs to obtain <mark>new graphic</mark>	al
_	(ations and an end of the liter	

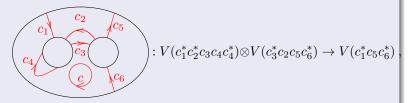
Anser YES!! Let's enjoy more geometry and more duality.

Answer from quantum topology: planar algebras

Definition 3 (modified from [Jones, 1999])

Let C be a set with an involution $(\cdot)^* : C \to C$. Then, a C-colored planar algebra V in a symmetric monoidal category \mathcal{V} consists of

- an object $V(c_1 \dots c_m) \in \mathcal{V}$ for each cycllic sequence in C;
- operations corresponding to labeled pictures such as



which is compatible with the substitutions of disks.

Introduction ○○○○●	Operads of surfac	es with strips	Labelings and graphical calculus	Reference
		Goal of	the talk	
Bad	news!			
		f planar algeb	ras is more or less algebraic	; i.e. by

8 / 23

<u>Goal</u>

generators and relations.

• To define an operad of planar algebras in a purely geometric way.

But... WE NEED MORE GEOMETRY

- Bonus: a priori higher coherence problems.
- ullet Graphical calculus in symmetric monoidal ∞ -categories with duals.

Operads of surfaces with strips

Introduction

- Operads of surfaces with strips
 - Relative objects in smooth category
 - Cobordisms of arrangements
 - Operads for surfaces with strings
 - Algebraic description
 - Bonus: Lifts to ∞-contexts

Introduction	

Operads of surfaces with strips ●○○○○ Labelings and graphical calculus

Reference

Relative objects in smooth category

Write $[n] := \{ 0 < 1 < \cdots < n \}$ the totally ordered set with (n+1)-elements.

Definition 4

An arrangement of manifolds of shape [n] is a functor

 $\mathcal{X}:[n]\to\mathbf{Emb}$

into the category of smooth manifolds (possibly with corners) and smooth embeddings.

 $\rightsquigarrow i < j \Rightarrow X(i)$ "is" a submanifold of X(j).

Notation

- The ambient manifold $|\mathcal{X}| := \mathcal{X}(\max[n]) = \mathcal{X}(n)$.
- The dimension dim $\mathcal{X} := (\dim \mathcal{X}(n), \dots, \dim \mathcal{X}(0)).$

Introduction	Operads of surfaces with strips
00000	0000

Labelings and graphical calculus

Reference

Cobordisms of arrangements

Definition 5

For a non-increasing sequence $d_n \ge \cdots \ge d_0$ of integers, define a symmetric monoidal category $\operatorname{ArrCob}_{(d_n,\ldots,d_0)}$ as follows:

object arrangements \mathcal{Y} of closed oriented manifolds of shape [n] of dimension $(d_n - 1, \dots, d_0 - 1)$.

morphism diffeomorphism classes of arrangements \mathcal{W} of compact oriented manifolds with boundaries of shape [n] of dimension (d_n, \ldots, d_0) together with a diffeomorphism

 $\partial \mathcal{W} \cong -\mathcal{Y}_0 \amalg \mathcal{Y}_1$.

composition gluing (POSSIBLE!!!).

 \otimes -structure disjoint union II.

For our purpose, $ArrCob_{(2,1)}$!

Intro	duction
000	00

Operads for surfaces with strings

Definition 6

```
Define wide subcategories
```

```
\mathbf{PlTang} \subset \mathbf{SrfTang} \subset \mathbf{ArrCob}_{(2,1)}
```

to consist of the following morphisms:

• morphisms in **SrfTang** are those $\mathcal{W} : \mathcal{Y}_0 \to \mathcal{Y}_1$ such that $\pi_0(|\mathcal{Y}_1|) \to \pi_0(|\mathcal{W}|)$ is bijective;

• morphisms in **PlTang** satisfy in addition that the surface |W| is of genus 0.

Proposition 7

The subcategories **SrfTang** and **PlTang** are closed under monoidal products. Moreover, these categories are freely generated by colored operads as symmetric monoidal categories.

Introduction 00000	Operads of surfaces wi ○○●○		Labelings and graphical calculus	Reference
	Alg	ebraic desc	ription	
	dept	th = 1	depth = 0	
	index = 0	index = 1	index = 1	
	index = 2	index = 1	index = 0	
Remark				

The number of strings may varied except for *cup* and *cap*.

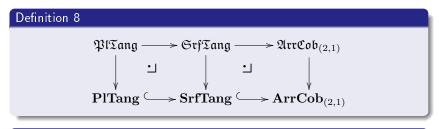
Introduction	
00000	

Bonus: Lifts to ∞ -contexts

Bonus! A construction similar to ∞ -category $\mathfrak{C}ob_d$ of cobordisms in [Lurie, 2009] works for arranged cobordisms.

 \rightsquigarrow One obtains a symmetric monoidal $\infty\text{-category}~\mathfrak{ArrCob}_{(2,1)}$ together with a 1-truncation

$$\mathfrak{ArrCob}_{(2,1)} o \mathbf{ArrCob}_{(2,1)}$$
 .



Proposition 9

FITang and StfTang are ∞ -operads in the sense in [Lurie, 2014].

Labelings and graphical calculus

Labelings and graphical calculus

1 Introduction

Operads of surfaces with strips

3 Labelings and graphical calculus

- Labelings
- Classification
- Graphical calculus
- Key results
- Main Theorem

Reference

Introduction 00000	Operads of surfaces with strips 00000	Labelings and graphical calculus ●○○○○○	Reference
	Label	ings	
C: a fix	ed (small) set with involution		
Definitio	on 10		

A C-labeling on an arrangement $\mathcal X$ of shape [1] is just a map

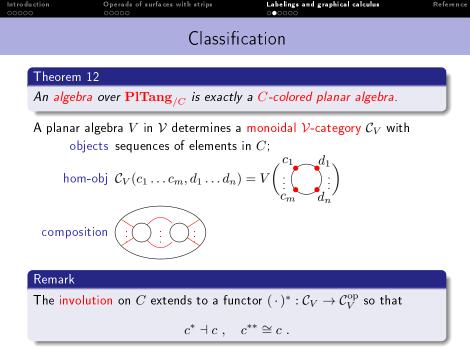
 $\mathcal{X}(0) \to C$.

 $\rightsquigarrow \mathbf{ArrCob}_{(2,1)/C}$: the category of *C*-labeled arranged cobordisms.

Definition 11

Remark

Similarly, one can define $\mathfrak{PITang}_{/C} \subset \mathfrak{SrfTang}_{/C} \subset \mathfrak{ArrCob}_{(2,1)/C}$.



Introduction	Operads of surfaces with strips	Labelings and graphical calculus
		000000

Graphical calculus

Aspect

Graphical calculi in $\ensuremath{\mathcal{C}}$

= monoidal functor $\mathcal{C}_V \to \mathcal{C}$ for some \mathcal{C}_0 -colored planar algebra V.

TODAY: Focus on symmetric monoidal $(\infty-)$ categories with duals: the key ingredient is

Theorem 13 (Cobordism Hypothesis in dim 1, folklore, [Baez and Dolan, 1995], [Lurie, 2009])

For a symmetric monoidal ∞ -category \mathcal{C} , the functor

 $\operatorname{Fun}^{\otimes}(\mathfrak{Cob}_1, \mathcal{C}) \to \operatorname{Core} \mathcal{C} \; ; \quad Z \mapsto Z(+)$

is a categorical equivalence, where the domain is the ∞ -category of symmetric monoidal categories from the category of 1-dim cobordisms, and Core C is the maximal groupoid of C.

Reference

Introduction 00000	Operads of surfaces with strips 00000	Labelings and graphical calculus ○○○●○○	Reference
	Key r	oculto	
	Кеун	esuits	

Lemma 14

For each element $c \in C$, there exists a symmetric monoidal functor

 $\mathfrak{ArrCob}_{(2,1)/C} \to \mathfrak{Cob}_1$

between ∞ -categories which does

- **1** forgets all strings but ones labeled by $c \in C$; and
- **2** forgets the ambient cobordisms.

Introduction	Operads of surfaces with strips	Labelings and graphical calculus	Reference
		000000	

Key results

In particular, we have a functor

 $\psi: \mathfrak{ArrCob}_{(2,1)/C} \to \operatorname{Fun}_0(C, \mathfrak{Cob}_1) ,$

where $\operatorname{Fun}_0(C, \mathfrak{Cob}_1)$ is the ∞ -category of functors which values the empty except for finitely many points in C.

In addition, for every map $\lambda: C \to \operatorname{Fun}^{\otimes}(\mathfrak{Cob}_1, \mathcal{C})$, we have

$$\Psi: \mathfrak{ArrCob}_{(2,1)/C} \xrightarrow{(\lambda,\varphi)} \operatorname{Fun}^{\otimes}(\mathfrak{Cob}_{1}, \mathcal{C}) \times \operatorname{Fun}_{0}(C, \mathfrak{Cob}_{1})$$
$$\xrightarrow{\operatorname{eval}} \operatorname{Fun}_{0}(C, \mathcal{C}) \xrightarrow{\otimes} \mathcal{C} .$$

Example 15

By Cobordism Hypothesis, we may choose a map

$$\mathcal{C}_0 \hookrightarrow \operatorname{Core} \mathcal{C} \to \operatorname{Fun}^{\otimes}(\mathfrak{Cob}_1, \mathcal{C})$$
.

Hence, we obtain

 $\Psi:\mathfrak{ArrCob}_{(2,1)/\mathcal{C}_0}\to \mathcal{C}$.

Introduction 00000	Operads of surfaces with strips 00000	Labelings and graphical calculus ○○○○●	Reference			
	Main Theorem					
Theorem	ı 16					
	mmetric monoidal ∞ -categoled planar algebra $Z_{\mathcal{C}}:\mathfrak{St}\mathfrak{Ta}$	ry ${\mathcal C}$ with duals gives rise to a $\mathfrak{n}\mathfrak{g} o\infty{f Grpd}.$				
<u>Sketch</u>						
• For	$\mathcal{Y} = \overset{c_1}{\underset{c_m}{\overset{d_1}{\underset{d_n}{\overset{d_1}}{\overset{d_1}}{\overset{d_1}}{\overset{d_1}}{\overset{d_1}}}}}}}}}}}}}}}}}}}}}}}}}} } } $					
	$Z_{\mathcal{C}}(\mathcal{Y}) := \mathcal{M}\!\mathit{ap}_{\mathcal{C}}(\mathbb{1}, \Psi(\mathcal{Y}))$?))				
	$\cong \mathcal{M}\!\mathit{ap}_{\mathcal{C}}(\mathbb{1}, c_m \otimes$	$\cdots \otimes c_1 \otimes d_1 \otimes \cdots \otimes d_n)$;				
 For 	$\mathcal{W}:\coprod_{i=1}^n\mathcal{Y}_i ightarrow\mathcal{Y}$ with each	$ \mathcal{Y}_i $ and $ \mathcal{Y} $ connected, put				
$Z_{\mathcal{C}}$	$(\mathcal{W}): Z_{\mathcal{C}}\left(\coprod_{i=1}^{n} \mathcal{Y}_{i}\right) = \bigotimes_{i=1}^{n} \mathcal{M}ap_{\mathcal{C}}$	$\mathcal{L}_{\mathcal{C}}(\mathbb{1},\Psi(\mathcal{Y}_{i})) \to \mathcal{M}ap_{\mathcal{C}}(\mathbb{1},\bigotimes_{i}\Psi)$	$(\mathcal{Y}_i))$			
	$\cong \mathcal{M}\!\mathit{ap}_{\mathcal{C}}(\mathbbm{1},\Psi($	$ \underbrace{I} \mathcal{Y}_i)) \xrightarrow{\Psi(\mathcal{W})} \mathcal{M}ap_{\mathcal{C}}(\mathbb{1},\mathcal{Y}) = 2 $	$Z_{\mathcal{C}}(\mathcal{Y})$.			
		i				

Reference I

[Baez and Dolan, 1995] Baez, J. C. and Dolan, J. (1995). Higher-dimensional algebra and topological quantum field theory. Journal of Mathematical Physics, 36(11):6073-6105. http://arxiv.org/abs/q-alg/9503002.

[Jones, 1999] Jones, V. F. R. (1999). Planar algebras, I. arXiv:math/9909027.

[Joyal and Street, 1991] Joyal, A. and Street, R. (1991). The geometry of tensor calculus I. Advances in Mathematics, 88(1):55–112.

[Lurie, 2009] Lurie, J. (2009). On the classification of topological field theories. arXiv:0905.0465.

Reference II

```
[Lurie, 2014] Lurie, J. (2014).
Higher algebra.
see Lurie's website http://www.math.harvard.edu/~lurie/.
```