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Review on string calculus

De�nition 1

A planar graph η : Γ ↪→ R2 (with outer-edges) is said to be progressive if
for each edge e of Γ, the composition

e
η
−→ R2

proj2−−−→ R = y-axis

is strictly increasing along the orientation of the edge e.
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Review on string calculus

C: a monoidal category.

Proposition 2 ([Joyal and Street, 1991])

For a planar progressive graph Γ, consider a labeling in C subject to the
following rules:

each edge of Γ is labeled by an object of C;
each vertex of Γ is labeled by a morphism of C so that

b1 · · ·
bn

f

a1

· · ·
am

__ ??

?? __
↔ f : a1 ⊗ · · · ⊗ am → b1 ⊗ · · · ⊗ bn ∈ C

Then, Γ together with the labeling determines a morphism in C.
Moreover, the resulting morphism is invariant under isotopies of planar
progressive graphs.
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An extension

Slogan

String calculus in C = A class of graphs + labeling rules

Question

Is it possible to consider whole planar graphs to obtain new graphical
calculus?

Anser YES!! Let's enjoy more geometry and more duality.
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Answer from quantum topology: planar algebras

De�nition 3 (modi�ed from [Jones, 1999])

Let C be a set with an involution ( · )∗ : C → C. Then, a C-colored
planar algebra V in a symmetric monoidal category V consists of

an object V (c1 . . . cm) ∈ V for each cycllic sequence in C;

operations corresponding to labeled pictures such as

oo
c2

c3
//

HHc4

��c1
JJc5

TT c6
<
c

: V (c∗1c
∗
2c3c4c

∗
4)⊗V (c∗3c2c5c

∗
6)→ V (c∗1c5c

∗
6) ,

which is compatible with the substitutions of disks.

7 / 23



Introduction Operads of surfaces with strips Labelings and graphical calculus Reference

Goal of the talk

Bad news!

The present de�nition of planar algebras is more or less algebraic; i.e. by
generators and relations.

But... WE NEED MORE GEOMETRY!!!!WE NEED MORE GEOMETRY!!!!WE NEED MORE GEOMETRY!!!!

Goal

To de�ne an operad of planar algebras in a purely geometric way.

Bonus: a priori higher coherence problems.

Graphical calculus in symmetric monoidal ∞-categories with duals.
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Relative objects in smooth category

Write [n] := {0 < 1 < · · · < n} the totally ordered set with
(n+ 1)-elements.

De�nition 4

An arrangement of manifolds of shape [n] is a functor

X : [n]→ Emb

into the category of smooth manifolds (possibly with corners) and
smooth embeddings.

 i < j ⇒ X(i) �is� a submanifold of X(j).

Notation

The ambient manifold |X | := X (max[n]) = X (n).

The dimension dimX := (dimX (n), . . . ,dimX (0)).
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Cobordisms of arrangements

De�nition 5

For a non-increasing sequence dn ≥ · · · ≥ d0 of integers, de�ne a
symmetric monoidal category ArrCob(dn,...,d0) as follows:

object arrangements Y of closed oriented manifolds of shape [n]
of dimension (dn − 1, . . . , d0 − 1).

morphism di�eomorphism classes of arrangements W of compact
oriented manifolds with boundaries of shape [n] of
dimension (dn, . . . , d0) together with a di�eomorphism

∂W ∼= −Y0 q Y1 .

composition gluing (POSSIBLE!!!).

⊗-structure disjoint union q.

For our purpose, ArrCob(2,1) !
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Operads for surfaces with strings

De�nition 6

De�ne wide subcategories

PlTang ⊂ SrfTang ⊂ ArrCob(2,1)

to consist of the following morphisms:

morphisms in SrfTang are those W : Y0 → Y1 such that
π0(|Y1|)→ π0(|W|) is bijective;

morphisms in PlTang satisfy in addition that the surface |W| is of
genus 0.

Proposition 7

The subcategories SrfTang and PlTang are closed under monoidal
products. Moreover, these categories are freely generated by colored
operads as symmetric monoidal categories.
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Algebraic description

depth = 1 depth = 0

index = 0 index = 1 index = 1

index = 2 index = 1 index = 0

Remark

The number of strings may varied except for cup and cap.
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Bonus: Lifts to ∞-contexts

Bonus! A construction similar to ∞-category Cobd of cobordisms in
[Lurie, 2009] works for arranged cobordisms.

 One obtains a symmetric monoidal ∞-category ArrCob(2,1) together
with a 1-truncation

ArrCob(2,1) → ArrCob(2,1) .

De�nition 8

PlTang //

��
·y

SrfTang //

��
·y

ArrCob(2,1)

��
PlTang �

� // SrfTang �
� // ArrCob(2,1)

Proposition 9

PlTang and SrfTang are ∞-operads in the sense in [Lurie, 2014].
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Labelings

C: a �xed (small) set with involution.

De�nition 10

A C-labeling on an arrangement X of shape [1] is just a map

X (0)→ C .

 ArrCob(2,1)/C : the category of C-labeled arranged cobordisms.

De�nition 11

SrfTang/C //

��
·y

ArrCob(2,1)/C

forget

��
SrfTang �

� // ArrCob(2,1)

PlTang/C //

��
·y

ArrCob(2,1)/C

forget

��
PlTang �

� // ArrCob(2,1)

Remark

Similarly, one can de�ne PlTang/C ⊂ SrfTang/C ⊂ ArrCob(2,1)/C .
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Classi�cation

Theorem 12

An algebra over PlTang/C is exactly a C-colored planar algebra.

A planar algebra V in V determines a monoidal V-category CV with

objects sequences of elements in C;

hom-obj CV (c1 . . . cm, d1 . . . dn) = V

( •c1

•cm

...

•d1

•
dn

...

)

composition ...
...

...

Remark

The involution on C extends to a functor ( · )∗ : CV → Cop
V so that

c∗ a c , c∗∗ ∼= c .
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Graphical calculus

Aspect

Graphical calculi in C
= monoidal functor CV → C for some C0-colored planar algebra V .

TODAY: Focus on symmetric monoidal (∞�)categories with duals: the
key ingredient is

Theorem 13 (Cobordism Hypothesis in dim 1, folklore,
[Baez and Dolan, 1995], [Lurie, 2009])

For a symmetric monoidal ∞-category C, the functor

Fun⊗(Cob1, C)→ Core C ; Z 7→ Z(+)

is a categorical equivalence, where the domain is the ∞-category of
symmetric monoidal categories from the category of 1-dim cobordisms,
and Core C is the maximal groupoid of C.
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Key results

Lemma 14

For each element c ∈ C, there exists a symmetric monoidal functor

ArrCob(2,1)/C → Cob1

between ∞-categories which does

1 forgets all strings but ones labeled by c ∈ C; and

2 forgets the ambient cobordisms.
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Key results

In particular, we have a functor

ψ : ArrCob(2,1)/C → Fun0(C,Cob1) ,

where Fun0(C,Cob1) is the ∞-category of functors which values the
empty except for �nitely many points in C.
In addition, for every map λ : C → Fun⊗(Cob1, C), we have

Ψ : ArrCob(2,1)/C

(λ,ϕ)
−−−→ Fun⊗(Cob1, C)× Fun0(C,Cob1)

eval
−−→ Fun0(C, C)

⊗
−→ C .

Example 15

By Cobordism Hypothesis, we may choose a map

C0 ↪→ Core C → Fun⊗(Cob1, C) .

Hence, we obtain
Ψ : ArrCob(2,1)/C0 → C .
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Main Theorem

Theorem 16

Every symmetric monoidal ∞-category C with duals gives rise to a
C0-colored planar algebra ZC : SrfTang→∞Grpd.

Sketch

For Y =
•c1

•cm

...

•d1

•
dn

..., put

ZC(Y) := MapC(1,Ψ(Y))
∼= MapC(1, cm ⊗ · · · ⊗ c1 ⊗ d1 ⊗ · · · ⊗ dn) ;

For W :
∐n
i=1 Yi → Y with each |Yi| and |Y| connected, put

ZC(W) : ZC
( n∐
i=1

Yi
)

=

n⊗
i=1

MapC(1,Ψ(Yi))→ MapC(1,
⊗
i

Ψ(Yi))

∼= MapC(1,Ψ(
∐
i

Yi))
Ψ(W)
−−−−→ MapC(1,Y) = ZC(Y) .
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