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Abstract. Anomalous diffusive transport, described by fractional differ-
ential equations, arises in a large variety of physical problems. We con-
sider a fractional diffusion equation subjected to reflecting boundary con-
ditions. The formulation of these boundaries has sparked a controversial
discussion, with questions arising about the most appropriate boundary
from the physical point of view. Therefore, we start to present different
physical formulations regarding the boundaries. Numerical methods are
then proposed to solve these diffusive models, and it is shown how the
presence of boundaries changes the general structure of the problem and
of the numerical method, due to the non-locality of the problem. In the
end, the impact of the different boundaries on the solutions is analysed.

1 Introduction

Anomalous diffusive transport related to Lévy flights can be formulated via frac-
tional differential equations [10]. It frequently happens that we have to apply
boundary conditions when considering experimental devices and attempting to
check a model for mass transport in a given medium. Due to non-locality, it is
not obvious how to incorporate a boundary condition in a scenario based on Lévy
flights, since the long jumps pose certain difficulties when boundary conditions
are involved. In fact, the presence of certain boundaries modifies the nonlocal
spatial operator since they cannot be uncoupled from the fractional partial dif-
ferential equation. In literature, when discussing Lévy flights in the one dimen-
sional half-space the boundary conditions mainly considered have been absorb-
ing or reflecting boundaries. Absorbing boundary conditions have been imposed
by assuming zero outside the problem domain. However, regarding reflecting
boundary conditions several formulations have been proposed [1,3–9].

The proper formulation of physically meaningful reflecting boundary con-
ditions for fractional diffusion equations requires careful consideration of the
nonlocal operator. In this work we discuss two types of boundaries that appear
respectively in [9] and [2], showing the impact of both formulations on the numer-
ical method and on the solution. In [9] the influence of a reflective wall is modelled
within the framework of space-time fractional partial differential equations. The
jumps do not interact with the wall and they are as in a free space. This is
modelled by a fractional differential equation that involves a non-local opera-
tor which kernel takes into account the boundary condition. In [2] the physical
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boundary conditions are derived using a mass balance approach and the reflect-
ing boundary condition is formulated in terms of a fractional derivative.

2 The Models

The diffusive model associated to Lévy flights is defined in the whole real line and
the governing equation involves Riemann-Liouville fractional derivatives [10]. We
consider the assymetric case, that is, the diffusive operator is defined only with
the left Riemann-Liouville fractional derivative.

2.1 Open Domain

We start with the open domain and then describe how to evolve to the situation
of having a reflecting boundary condition.

The left Riemann-Liouville fractional derivative of order α, when 1 < α < 2,
for x ∈ IR, is given by

∂αu

∂xα
(x, t) =

1
Γ (2 − α)

∂2

∂x2

∫ x

−∞
u(ξ, t)(x − ξ)1−αdξ. (1)

The fractional differential equation describing the diffusive model under consid-
eration in the open domain, for 1 < α < 2, can be stated as

∂u(x, t)
∂t

= D
∂αu

∂xα
(x, t), (2)

where D is the diffusive parameter and the parameter α is related to the tail of
the solution. In this scenario of having an open domain we assume that we have
an initial condition u(x, 0) = u0(x), x ∈ IR, and that the solution goes to zero
when |x| goes to infinity.

In the next sections, we describe how this problem changes in the presence
of a boundary at x = 0 and defined in the domain x > 0.

2.2 The Symmetric Boundary Wall

In this section we present how to formulate the diffusive problem with a left
reflecting wall. The formulation of the boundary is according to [9], where a
symmetric diffusive problem on a semi-infinite domain is considered. Physically,
when considering a trajectory of the particle in [0,∞) with the reflecting bound-
ary condition at x = 0, the jumps that end at x < 0 are reflected. Therefore,
the model under study consists on a reflecting wall restraining the diffusing
particles to a semi-infinite domain. This barrier can be viewed as a force field
applied to the particles. It is assumed that the particles arriving at the bound-
ary are bounced back as in elastic collisions, that is, if they reach the position
x = −a with a > 0, then they will end at x = a, describing the mirror trajectory
with respect to the wall. In a porous medium such a boundary may represent
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a wall permeable to the fluid, but impermeable to the tracer. Mathematically,
we have a problem defined in x > 0 by Eq. (2) and subjected to the wall condi-
tion, u(x, t) = u(−x, t), for x < 0. Taking in consideration this wall condition,
the left Riemann-Liouville fractional derivative (1) becomes a different opera-
tor, for x > 0, that we define as the reflecting left Riemann-Liouville fractional
derivative,

∂α
refu

∂xα
(x, t) :=

1
Γ (2 − α)

∂2

∂x2

∫ ∞

0

u(ξ, t)(x + ξ)1−αdξ

+
1

Γ (2 − α)
∂2

∂x2

∫ x

0

u(ξ, t)(x − ξ)1−αdξ. (3)

Formally when subjected to a reflecting wall we have the following problem,

∂u

∂t
(x, t) = D

∂α
refu

∂xα
(x, t), x > 0, (4)

u(x, t) = u(−x, t), for all x < 0, (5)

with an initial condition u(x, 0) = u0(x), x ≥ 0.

2.3 A Fractional Boundary Condition

Consider the boundary condition as defined in [2], that involves a fractional
derivative of order α − 1. The physical setup is described as having mass con-
centration resting at the boundary instead of having mass leaving the domain.
This means mass is preserved, and moved to the boundary. Unlike the tradi-
tional diffusion setup, this mass can come from far inside the domain, not just
an adjacent grid point.

Let us define the fractional derivative of order m − 1 < α < m, starting at
x = 0, by

∂α
0 u

∂xα
(x, t) =

1
Γ (m − α)

∂m

∂xm

∫ x

0

u(ξ, t)(x − ξ)m−1−αdξ. (6)

Formally when subjected to the fractional Neumann condition we have the
following problem, for 1 < α < 2,

∂u

∂t
(x, t) = D

∂α
0 u

∂xα
(x, t), x > 0, (7)

∂α−1
0 u

∂xα−1
(0, t) = 0, (8)

with an initial condition u(x, 0) = u0(x), x ≥ 0.

3 The Numerical Methods

We start to present an implementation for the case when we have an open domain
and then show how to adjust it to the presence of both types of boundaries.
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3.1 Open Domain

For the problem defined in the whole real line, the domain discretisation is given
by xj = xj−1 + Δx, j ∈ ZZ and the time discretization tn = nΔt, n ≥ 0 integer.

We approximate the left Riemann-Liouville fractional derivative by the well-
known Grünwald-Letnikov approximation. Define the Grünwald-Letnikov coef-
ficients, for all α > 0, using the following recurrence formula

gα
0 = 1, gα

k+1 = −α − k

k + 1
gα

k , k ≥ 0. (9)

The Grünwald-Letnikov approximation, at (xj , tn), is given by [12]

∂αu

∂xα
(xj , tn) ≈ 1

(Δx)α

∞∑
k=0

gα
k u(xj−k+1, tn). (10)

Let Un
j represent the approximate solution of u(xj , tn) in the discrete domain

and define
μα =

DΔt

(Δx)α
.

The Euler explicit method to approximate the fractional diffusion equation will
be now given by

Un+1
j = Un

j + μα

∞∑
k=0

gα
k Un

j−k+1, for all j ∈ ZZ. (11)

The matricial form of the numerical method in the open domain takes in
consideration that the function goes to zero as we go to infinity and we have
Un+1 = (I+ μαA)Un, with Un = [Un

−N , . . . , Un
N ]T , I is the identity matrix and

the matrix A is given by

A =

⎡
⎢⎢⎢⎢⎢⎣

gα
1 gα

0 0 . . . 0 0
gα
2 gα

1 gα
0 . . . 0 0

gα
3 gα

2 gα
1 . . . 0 0

...
...

...
...

...
gα
2N+1 gα

2N gα
2N−1 . . . gα

2 gα
1

⎤
⎥⎥⎥⎥⎥⎦

.

The following result indicates that in the open domain, the approximation
(10) is of order one. This result was given for a function that only depends on
x, but this can be easily adjusted for the case under discussion.

Theorem 1 [12]. Let m − 1 < α < m, u(·, t) ∈ C [α]+m+1(IR), for a fixed t,
such that all the derivatives, in x, up to order [α] + m + 2 belong to L1(IR) and
where [α] represents the integer part of α. Then the fractional Riemann-Liouville
derivative given by (1) satisfies

∂αu

∂xα
(xj , t) =

1
(Δx)α

∞∑
k=0

gα
k u(xj − (k − 1)Δx, t) + O((Δx)).
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Since we have considered an explicit numerical method, we have a condition-
ally stable scheme and the stability conditions can be obtained using the von
Neumann analysis or Fourier analysis [11].

Theorem 2. If the numerical method (11) is von Neumann stable then μα ≤
21−α.

When imposing a boundary the von Neumann stability condition is a neces-
sary condition for the stability of the numerical method with boundaries.

3.2 The Reflective Boundary

The domain discretisation is given by xj = xj−1 + Δx, j ∈ ZZ. When we have
a reflecting boundary condition at x = 0, since the left fractional derivative is
modified to (3), because Un

j−i+1 = Un
−j+i−1, the approximation becomes

δα
refu(xj , t)
(Δx)α

≈ 1
(Δx)α

j+1∑
i=0

gα
i Un

j−i+1 +
1

(Δx)α

∞∑
i=j+2

gα
i Un

j−i+1

=
1

(Δx)α

j+1∑
i=0

gα
i Un

j−i+1 +
1

(Δx)α

∞∑
i=j+2

gα
i Un

i−j−1.

Consider the explicit Euler scheme to approximate Eq. (4) given by

Un+1
j = Un

j + μαδα
refUn

j . (12)

In this case the matricial form of the problem is Un+1 = (I + μαASym)Un,
with Un = [Un

0 , . . . , Un
N ]T , I is the identity matrix and the matrix ASym is

ASym =

⎡
⎢⎢⎢⎢⎢⎣

gα
1 gα

0 + gα
2 gα

3 . . . gα
N−2 gα

N−1

gα
2 gα

1 + gα
3 gα

0 + gα
4 . . . gα

N−1 gα
N

gα
3 gα

2 + gα
4 gα

1 + gα
5 . . . gα

N gα
N+1

...
...

...
...

...
gα
2N+1 gα

2N + gα
N+2 gα

2N−1 + gα
N+3 . . . gα

2 + gα
2N gα

1 + gα
2N+1

⎤
⎥⎥⎥⎥⎥⎦

.

The changes of the entries of the matrix A due to the presence of this reflecting
boundary are displayed in gray color.

This problem is equivalent to a problem defined in the real line and therefore
the stability conditions of the numerical method are similar to those obtained
for the open problem.

3.3 The Fractional Boundary

If we are in a bounded domain and consider the approximation (10) directly in
that domain, we can arrive at the following approximation in the interior points

Un+1
j = Un

j + μα

j+1∑
i=0

gα
i Un

j−i+1, j = 0, . . . , N − 1. (13)
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However in this case we can see that no mass has been moved. To enforce the
boundary condition, we modify the Euler scheme (13) at the point x = 0. Let us
see how we can impose the boundary condition (8). We give here a mathematical
approach, instead of the physical interpretation given in [2].

Taking in consideration the properties of the Riemann-Liouville fractional
derivative the differential Eq. (7) at x = 0 can be written as

∂u

∂t
(0, t) = D

∂

∂x

(
∂α−1
0 u

∂xα−1

)
(0, t).

We can use the Euler approximation for the time derivative, that is,

∂u

∂t
(0, t) ≈ Un+1

0 − Un
0

Δt
.

A first order approximation for the first order spatial derivative allow us to write

∂

∂x

(
∂α−1
0 u

∂xα−1

)
(0, t) ≈ 1

Δx

(
∂α−1
0 u

∂xα−1
(x1, t) − ∂α−1

0 u

∂xα−1
(0, t)

)
. (14)

We know the value of the second term on the right hand side of (14), since
this is the boundary condition. Additionally, we can approximate the fractional
derivative at x1 using the Grünwald-Letnikov approximation, that is,

∂α−1
0 u

∂xα−1
(x1, tn) ≈ 1

(Δx)α−1

1∑
k=0

gα−1
k Un

1−k.

Therefore, we obtain

Un+1
0 = Un

0 + μα(gα−1
1 Un

0 + gα−1
0 Un

1 ).

Finally, the numerical method is given by

Un+1
j = Un

j + μα

j+1∑
i=0

gα
j−i+1U

n
i , j = 1, . . . , N,

Un+1
0 = Un

0 + μα(gα−1
1 Un

0 + gα−1
0 Un

1 ).

In this case the matricial form of the problem is Un+1 = (I + μαANeu)Un,
with Un = [Un

0 , . . . , Un
N ]T , I is the identity matrix and the matrix ANeu is given

by

ANeu =

⎡
⎢⎢⎢⎢⎢⎣

gα−1
1 gα−1

0 0 . . . 0 0
gα
2 gα

1 gα
0 . . . 0 0

gα
3 gα

2 gα
1 . . . 0 0

...
...

...
...

...
gα
2N+1 gα

2N gα
2N−1 . . . gα

2 gα
1

⎤
⎥⎥⎥⎥⎥⎦

.

The changes of the entries of the matrix A due to the presence of this boundary
are in the first line and in gray color.
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Theorem 3. If μα ≤ 1/α then the eigenvalues of the matrix iteration I +
μαANeu are less than one.

The previous result can be proved using the Gersghorin theorem.
The numerical experiments show that the stability region is given by the

necessary stability condition μα ≤ 21−α and not by this more restrictive sufficient
stability condition μα ≤ 1/α.

4 The Influence of the Boundaries

We illustrate the effect of the boundaries for different values of α. We consider
the approximation of the solution of the fractional diffusion equation with an
initial condition that is an approximation of the Dirac delta function, that is,

u0(x) =
1

ε
√

π
e−(x−x0)

2/ε2 ,

for a small ε > 0. For all figures we have taken D = 1, ε = 0.1, x0 = 1.
In the next figures we consider two values of α, that is, α = 1.3 in Fig. 1

and α = 1.8 in Fig. 2. As we evolve in time, the effect of the boundaries on the
solution is quite relevant. By the figures we can also see that in the open domain
we have an asymmetric case since we are only considering the left Riemann
Liouville fractional derivative and therefore the wave has a significant heavy tail
on the right hand side, when α is closer to 1.

Near the boundary, the behaviour of the solution with the Neumann bound-
ary can be unexpected at first. However, the steady state general solution of the
fractional diffusion Eq. (2) is the combination of the functions xα−1 and xα−2.
The solution that goes to zero as x goes to infinity is xα−2. This is also the
function that better describes the behaviour we observe in the previous figures,
near the boundary, that is, the solution xα−2 goes to infinity as x goes to zero.

We have seen the consequences of having two types of reflecting boundaries.
Near the boundary the solutions behave very differently, highlighting that they
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Fig. 1. Plots of u(x, t) for x0 = 1, D = 1, α = 1.3. Open domain in green line (− · −);
Symmetric boundary in red line (−−); Neumann boundary in blue line (−). Evolution
in time described from left to right: t = 0.25, 0.5, 0.75, 1.
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Fig. 2. Plots of u(x, t) for x0 = 1, D = 1, α = 1.8. Open domain in green line (− · −);
Symmetric boundary in red line (−−); Neumann Boundary in blue line (−). Evolution
in time. Left to right t = 0.25, 0.5, 0.75, 1.

represent completely different physical phenomena. Far away from the boundary
the behaviour is similar in all three cases: open domain, symmetric reflecting
boundary and the fractional Neumann boundary.
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