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1 Introduction

Consider the following two matrix problems:
- Given the invariant factors of two nonsingular n×n matrices A and B over
a principal ideal domain R, what can be said about the invariant factors of
AB?
- Given the eigenvalues of two complex n× n Hermitian matrices A and B,
what can be said about the eigenvalues of A+B?

In the past 15 or 20 years, several people have observed a remarkable
formal analogy between results known for these two problems, and there is
a feeling that they are in some sense the same.

Our goal here is to establish a connection between the two problems. This
is done by relating both to the fundamental problem of describing the decom-
position of the tensor product of two irreducible polynomial representations
of GLn(C) into a direct sum of irreducible polynomial representations.

A central role is played by the combinatorial Littlewood-Richardson rule,
originally found in connection with the problem of representing the product
of two Schur polynomials as a linear combination of Schur polynomials.

The connection between the invariant factor problem and the group rep-
resentation problem has been made by R.C. Thompson [25], using work by
P. Hall, J.A. Green and T. Klein [16]. To pass to the Hermitian eigenvalue
problem we use a result of G.J. Heckman [11] concerning representations of
compact Lie groups.

In the last sections we collect some additional results and remarks con-
cerning the Littlewood-Richardson rule and matrix spectral problems.

Notation. Throughout the paper n is a fixed positive integer, and the
symbol Λ+ denotes the set of all n-tuples, α = (α1, . . . , αn), of nonincreasing
nonnegative integers, α1 ≥ . . . ≥ αn ≥ 0.

Given α and β in Λ+, we denote by LR(α, β) the set of all γ ∈ Λ+ that
can be obtained from α and β according to the Littlewood-Richardson rule
(LR rule, for short; see e.g. [8, App.A.1]). According to our conventions, the
elements of LR(α, β) are n-tuples. The conjugate of α ∈ Λ+ is denoted by
α̃; so α̃t := max{i : t ≤ αi}.
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2 Invariant Factors

LetR be a principal ideal domain (PID), p a fixed nonzero prime element
of R, and Rp the corresponding local domain. There are some problems in-
volving modules and matrices over R, or Rp, which turn out to be equivalent
and have solutions in terms of the LR rule. Let us focus on three of them,
that we briefly identify as the problems on: module extensions, products of
matrices, and 2-by-2 block matrices.

In the first one we have three finitely generated torsion R-modules, M ,
N , K, and an exact sequence

0 → N
ι→M

π→ K → 0 . (1)

We are asked to find out the relations between the invariant factors of the
modules, imposed by the exactness of the sequence. Obviously, for our pur-
poses we may think N is a submodule of M , K is M/N , and ι and π are
the inclusion and the projection maps. So the problem is to find all essen-
tially distinct ways a module N can be extended to a supermodule M with
prescribed invariant factors.

The ‘product problem’ consists in describing the invariant factors of a
product of two nonsingular matrices A and B overR in terms of the invariant
factors of A and B.

The third one, known among matrix theorists as the “Carlson problem”,
is the following: given two square matrices, S and T , of orders s and t
respectively, with s + t = n, with entries on a field F, we are required to
describe all possibilities for the similarity invariant polynomials of[

S X
0 T

]
, (2)

whereX runs over the set of s×tmatrices with entries in F. This is equivalent
to characterizing, over the polynomial ring F[z], the invariant factors of[

S(z) X(z)
0 T (z)

]
, (3)

where S(z) = zI − S, T (z) = zI − T and X(z) runs over the set of s × t
matrices over F[z]. The obvious generalization of this problem is to charac-
terize the invariant factors of a matrix of the type (2) but, this time, with S
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and T fixed nonsingular matrices over R and X running over the set of s× t
R-matrices.

All these problems are “localizable”. For the matrix product problem,
say, this means that, if we solve the problem when A and B are viewed as
matrices over Rp, i.e., if we characterize the power-of-p elementary divisors
of a matrix product, for each individual prime p, then we get a solution to
the general problem, by just merging together chains of prime power elemen-
tary divisors. This is done by R. Thompson in [25] (see also [3], for products
of possibly singular matrices). Localization and primary decompositions are
well-understood techniques both in abstract commutative algebra and mod-
ule theory (e.g. [1, 13]) as well as in the more concrete matrix equivalence
setting (e.g. [9, 25]). So in what follows we only consider the local case.

On the basis of previous work by P. Hall and J.A. Green, T. Klein [16]
proved the following:

Result 1. There exists a p-module M and a submodule N over R with
invariant factors pα1 , . . . , pαn and pγ1 , . . . , pγn, respectively, such that
M/N has invariant factors pβ1 , . . . , pβn if and only if γ ∈ LR(α, β).

As explained at length in [25], using the concept of relations matrix for a
module, a matrix result follows from the Klein theorem:

Result 2. There exist nonsingular n×n matrices Ap and Bp over the
local domain Rp with invariant factors pα1 , . . . , pαn and pβ1 , . . . , pβn,
respectively, such that ApBp has invariant factors pγ1 , . . . , pγn if and
only if γ ∈ LR(α, β).

In section 5 we suggest a simple alternative to the relations matrix approach
to show the equivalence of the product problem to the module extension
problem and the 2- by-2 block matrix problem. This latter problem is also
localizable and, in the local case, the answer is:

Result 3. There exist matrices S, T and X over Rp, with dimensions
as above, S and T nonsingular, such that S, T and (2) have invariant
factors pα1 , . . . , pαs, pβ1 , . . . , pβt and pγ1 , . . . , pγn, respectively, if and
only if γ ∈ LR(α, β).

(Here we add n− s zeros to the α’s and n− t zeros to the β’s.)
An interesting fact is that the answer to these problems is independent

of the base ring, or the field F. The formulation of the 2-by-2-block matrix
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problem in terms of module extensions is more or less clear for module the-
oretically inclined people who perceive (2) as a concrete module extension.
This formulation has been explicitly made in [5], and therefore Result 3 is
at hand by way of the Hall-Green-Klein result. However, the ‘Carlson prob-
lem’, as presented in [5], is a quest for inequalities relating the exponents of
the involved elementary divisors. For many years, Robert Thompson had a
very intense and fruitful activity on this problem, whereby a huge system of
such inequalities has been produced [25] involving the αi, βi and γi which is
believed to completely characterize the assertion γ ∈ LR(α, β).

3 The Main Result

An n × n Hermitian matrix A has n real eigenvalues that we always
represent in nonincreasing order, say α1 ≥ . . . ≥ αn. The n-tuple α =
(α1, . . . , αn) is called the spectrum of A.

Theorem 3.1 . Let α, β, γ ∈ Λ+. If γ ∈ LR(α, β) there exist n× n Hermi-
tian matrices A and B with eigenvalues α1, . . . , αn and β1, . . . , βn such that
A+B has eigenvalues γ1, . . . , γn.

Taking into account the comments in section 2, our theorem has some obvious
corollaries relating eigenvalues of Hermitian matrices with invariant factors
of module extensions, matrix products and partitioned matrices (2) over Rp.
We only state the result concerning the matrix product case:

Corollary 3.2 . Let α, β, γ ∈ Λ+. If there exist nonsingular n× n matrices
Ap and Bp over Rp with invariant factors pα1 , . . . , pαn and pβ1 , . . . , pβn, re-
spectively, such that ApBp has invariant factors pγ1 , . . . , pγn, then there exist
n×n Hermitian matrices A and B with eigenvalues α1, . . . , αn and β1, . . . , βn

such that A+B has eigenvalues γ1, . . . , γn.

Before proving the theorem, let us briefly review some basic concepts
and notations on the finite-dimensional irreducible representations of GLn =
GLn(C) and their relationship with the LR rule (see, e.g., [8]). A complex
representation of dimension m of GLn is a complex-analytic group homo-
morphism ρ : GLn → GL(V ), where V is an m-dimensional complex vector
space. For simplicity we will sometimes call V itself a representation of GLn.
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For each α ∈ Λ+ let Vα denote the irreducible polynomial representation
of GLn with highest weight α relative to the maximal torus of GLn of diagonal
matrices (as usual, these weights are identified with the elements of Λ+). It
is well-known that {Vα : α ∈ Λ+} is a full set of irreducible polynomial
complex representations of GLn. For α and β in Λ+, the tensor product
representation Vα ⊗ Vβ has the following fundamental decomposition into
irreducible components:

Vα ⊗ Vβ
∼=

⊕
γ

NαβγVγ , (4)

where γ runs over Λ+, and Nαβγ is the number of ways the sequence γ
can be obtained from α and β according to the Littlewood-Richardson rule.
Therefore, the irreducible representation Vγ occurs in the right-hand side of
(4) if and only if γ ∈ LR(α, β).

We now turn our attention to the group Un of n × n unitary matrices
and its continuous representations [17]. Un is a connected and (maximal)
compact subgroup of GLn. If ρ is a representation of GLn, then its restriction
to Un is a representation of this group. By Weyl’s so-called “unitarian trick”
(cf. [27], [8, p.129]), the restriction of the representation Vα to Un, also
denoted by Vα, remains irreducible. Moreover, the Vα’s are pairwise non-
isomorphic representations of Un. It follows that the decomposition (4) for
tensor products remains valid for Un.

Let us go back to the eigenvalues of a sum of two Hermitian matrices.
Let un be the Lie algebra of Un, i.e., the elements of un are the n × n
skew-Hermitian matrices. Un acts on un via the adjoint representation

Adu(X) = uXu−1, u ∈ Un, X ∈ un .

The dual of the adjoint representation is called the coadjoint representation.
We identify un with its dual u∗n in the usual way, using a Un-invariant

inner product. With this identification the coadjoint representation of Un is
equivalent to the adjoint representation, and therefore, identifying un with
1
i
un, we can look at the orbits of Un in the coadjoint representation as con-

jugation orbits in the space of Hermitian matrices, i.e., classes of unitarily
similar Hermitian matrices. These are parametrized by nonincreasing se-
quences α = (α1, . . . , αn) of real numbers, the spectra of the matrices in each
class. Denote by Oα the orbit, or class, corresponding to the sequence α. We
are now ready to enter the core of the
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Proof of Theorem 3.1. Let A,B ∈ un with spectra α and β. We are interested
in the set

Oα +Oβ = {M +N : M ∈ Oα, N ∈ Oβ}
= {uAu−1 + vBv−1 : u, v ∈ Un}

which, being Un-invariant, is a union of orbits.
Identifying un with its diagonal embedding {(X,X) : X ∈ un} in un⊕un,

every linear functional on un ⊕ un can be restricted to un. Since u∗n ⊕ u∗n
∼=

(un ⊕ un)∗, this restriction gives rise to a projection q : u∗n ⊕ u∗n → u∗n.
Let ϕ and ψ be elements of u∗n corresponding to Hermitian matrices A

and B. Then it is easy to see that A + B is the element of un correspond-
ing to q(ϕ, ψ) under the above mentioned identification. Therefore, given a
spectrum γ, the orbit Oγ occurs in the sum Oα +Oβ if and only if it occurs
in q(Oα × Oβ) = q(Oαβ), where Oαβ denotes the Un × Un-coadjoint orbit in
u∗n ⊕ u∗n corresponding to the orbit associated with the spectrum (α, β) in
the adjoint representation of Un × Un in its Lie algebra un ⊕ un.

We now relate the problem of projection of orbits with the problem of the
irreducible decomposition of the tensor product of irreducible representations
of Un. Given α, β, γ ∈ Λ+, denote by Vαβ the exterior tensor product Vα ×Vβ.
This is the irreducible representation of Un ×Un with highest weight (α, β).
Identifying Un with the diagonal subgroup of Un × Un, we may consider
the restriction of Vαβ to Un, which is nothing but the usual tensor product
representation Vα ⊗ Vβ.

The situation we have here is considered in G.J. Heckman’s paper [11] for
an arbitrary compact connected Lie group (Un×Un in our case) and a closed
connected subgroup (here, the diagonal subgroup of Un × Un). Heckman is
concerned with the following problem: Given an irreducible representation
of the group, what can be said about the decomposition into irreducible
representations of its restriction to the subgroup? He gives several results
on this question, by relating the restriction problem to the projection of
coadjoint orbits. His Theorem 7.5 [11, p.352] implies the following:

If α and β each have distinct coordinates, and if Vγ occurs in the de-
composition of Vαβ |Un

into irreducible representations, then Oγ occurs
in q(Oαβ).

Thus if α, β ∈ Λ+ each have distinct coordinates, and γ ∈ LR(α, β), by
Heckman’s theorem above the orbit Oγ occurs in Oα +Oβ.
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Introduce the notation Sp(α, β) for the set of nonincreasing sequences γ
of n real numbers which are spectra of sums of two n×n Hermitian matrices
with spectra α and β. Then our conclusion reduces to the simple formula

LR(α, β) ⊆ Sp(α, β) ∩ Zn , (5)

in the case α, β ∈ Λ+ each have distinct coordinates. To lift this restriction
on α and β we first prove a lemma telling that LR(α, β) is a homogeneous
set.

Lemma 3.3 . For α, β, γ ∈ Λ+, and r a natural number

γ ∈ LR(α, β) ⇒ rγ ∈ LR(rα, rβ) .

Proof of the lemma. There are many equivalent ways of describing the LR
rule. To get an easy proof of our claim we adopt the rule as given in [8, p.456],
namely: γ ∈ LR(α, β) iff the Young diagram for α can be expanded to the
Young diagram for γ by a strict β- expansion (see [8, p.456] for definitions).
Let xit denote the number of boxes labelled with ‘t’ occurring in row i of
the expanded diagram. Then γ ∈ LR(α, β) iff there exist n2 integers xit

satisfying the inequalities

xit ≥ 0 (6)∑n
i=1 xit = βt (7)∑n

t=1 xit = γi − αi (8)∑k−1
i=1 xit ≥

∑k
i=1 xi,t+1 , (9)

αi +
∑τ−1

t=1 xit ≥ αi+1 +
∑τ

t=1 xi+1,t (10)

where i, t, τ and k run over {1, . . . , n}; this goes with the convention xit = 0
for i > n or t > n. (Compare with [26, p.71]. The left hand side of (9) is
zero for k = 1; an easy induction on k shows that (6)&(9) imply xit = 0
for i < t.) Note that (10) expresses Pieri’s condition that there are no two
boxes in the same column with the same label ‘τ ’; and (9) means that the
expansion is strict. The lemma follows from the fact that the system (6)-(10)
behaves well under multiplication of all parameters by r.

Returning to the proof of the theorem, given γ ∈ Λ+ define Jγ = γ +
(n− 1, n− 2, . . . , 1, 0). It is obvious that

γ ∈ LR(α, β) ⇒ JJγ ∈ LR(Jα, Jβ) . (11)
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In fact, the conclusion Jγ ∈ LR(Jα, β) is trivial in view of (6)-(10); and then
(11) follows from LR(α, β) = LR(β, α). If ‖ · ‖ denotes the infinity norm, we
have

‖JJγ − γ‖ = 2(n− 1) .

Let us now prove (5) for arbitrary α, β ∈ Λ+. For γ ∈ LR(α, β) and each
natural number N , consider the rational n-tuples

αN :=
1

N
JNα, βN :=

1

N
JNβ and γN :=

1

N
JJNγ .

By Lemma 3.3 and (11) above, JJNγ ∈ LR(JNα, JNβ) . As the n-tuples
JNα and JNβ each have distinct coordinates, JJNγ lies in Sp(JNα, JNβ).
Therefore γN ∈ Sp(αN , βN) . Compute now the distances

‖γN − γ‖ = ‖JJNγ −Nγ‖/N = 2(n− 1)/N

‖αN − α‖ = ‖βN − β‖ = (n− 1)/N .

Hence the n-tuple sequences αN , βN and γN converge to α, β and γ, respec-
tively. The compactness of Un gives that γ ∈ Sp(α, β), as desired.

G. J. Heckman (private communication) has informed us that the restric-
tion can also be lifted by adapting the argument [11, section 7].

4 Further Results

Given α and β in Λ+, put E(α, β) := Sp(α, β) ∩ Zn, i.e., E(α, β) is the set
of γ ∈ Λ+ for which there exist n × n Hermitian matrices A and B with
spectra α and β, such that A+ B has spectrum γ. Moreover let H(α, β) be
the set of those γ ∈ Λ+ satisfying the so-called Horn inequalities . These are
inequalities of the type

γk1 + · · ·+ γkr ≤ αi1 + · · ·+ αir + βj1 + · · ·+ βjr , (12)

where the i’s, j’s and k’s run over a finite set of 3r-tuples of integers defined
by an intricate recursive condition (see [12]). We point out that the so-called
Lidskii inequalities (from V.I. Lidskii), namely

γi1 + · · ·+ γir ≤ αi1 + · · ·+ αir + β1 + · · ·+ βr , (13)
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for all 1 ≤ i1 < . . . < ir ≤ n and 1 ≤ r ≤ n, with equality if r = n, form a
subsystem of Horn’s inequalities. Note that the Lidskii inequalities may be
condensed in the formula

γ − α � β ,

where γ−α is the coordinatewise difference, and � denotes the majorization
of Hardy-Littlewood-Polya (see, e.g., [4]). Clearly these definitions as well
as the following comments may be partly extended to nonincreasing real n-
tuples, α, β, γ. But we are mainly interested in the integer case, and anyway
from context it will be clear which extensions are allowable.

The relations between the three sets LR(α, β), E(α, β) and H(α, β) have
been extensively considered in the past few decades. In 1962, A. Horn [12]
conjectured that E(α, β) ⊆ H(α, β), i.e., the eigenvalues of sums of Hermitian
matrices satisfy the inequalities we now associate with his name; he in fact
proved equality for small values of n (n ≤ 4). The conjecture that

LR(α, β) = E(α, β) = H(α, β) (14)

has been, for many years, a leitmotiv in the work of Robert Thompson. We
send the reader to his excelent and very well-documented survey on this and
other related problems [26]. There, Thompson tells how the set LR(α, β)
appears in this context and reports on the thesis of S. Johnson [14]. In our
notation, Johnson and Thompson (see [14], [25, p.433] and also [26, p.73])
presented the result

LR(α, β) ⊆ H(α, β) . (15)

On the other hand, our Theorem 3.1 asserts that

LR(α, β) ⊆ E(α, β) .

In spite of B.V. Lidskii’s announcement [19] (see discussion in [26, Lecture
6]), these are the only inclusions we have for granted. Let us report some
particular cases for which a sound proof of (14) is available.

Lemma 4.1 . Let δ = (δ1, . . . , δn) be an n-tuple of nonnegative integers, and
β ∈ Λ+. Define m := β1. The following conditions are pairwise equivalent:

(a) δ � β;
(b) There exists an n×m 0-1 matrix Z with row sum vector δ and column

sum vector β̃, satisfying, for 1 ≤ k ≤ n and 1 ≤ t < m,∑n
i=k zit ≥

∑n
i=k zi,t+1 ; (16)
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(c) There exists an n × n (lower triangular) matrix X, with nonnegative
integer entries, with row sum vector δ and column sum vector β, satisfying,
for 1 ≤ k ≤ n and 1 ≤ t < n,∑k−1

i=1 xit ≥
∑k

i=1 xi,t+1 . (17)

Proof. (b)⇔(c). Recall a version of the LR rule (see [16]) according to
which γ ∈ LR(α, β) iff there exists an n × m 0-1 matrix Z with row sum
vector γ − α and column sum vector β̃, satisfying (16) and

αi +
∑τ

t=1 zit ≥ αi+1 +
∑τ

t=1 zi+1,t , (18)

for the relevant values of i, t, k, τ . Choose any α ∈ Λ+ having big enough
gaps, αi − αi+1, so that the inequalities (18) become redundant. E.g., take
αi − αi+1 ≥ m for all i < n. Then define γ := α + δ. In either case, (b) or
(c), we have that γ ∈ Λ+. So (b) is equivalent to γ ∈ LR(α, β); and so is
(c), because (10) is redundant in system (6)-(10).

(b)⇒(a) follows from the Gale-Ryser theorem [4, p.176].
(a)⇒(c). It is obvious that

β = b1 + · · ·+ bm , (19)

where bj ∈ Λ+ is the n-tuple (1, . . . , 1, 0, . . . , 0) with β̃j ones. By the Gale-
Ryser theorem, there exists an n ×m 0-1 matrix Z with row sum vector δ
and column sum vector β̃. Let us fix j ∈ {1, . . . ,m}. In column j of Z there
are β̃j 1’s which occur, say, in rows fj(1), . . . , fj(β̃j), written in increasing
order; define an n × n 0-1 matrix X(j) having precisely β̃j ones: one in
each position (fj(t), t). It is easily seen that X(j) is a solution to the system
(6)-(9) with β replaced by bj, and γ − α replaced by a permutation of bj.
Trivially, the matrix X := X(1) + · · ·+X(m) has the same row sum vector
as Z and, by (19), β is the column sum vector of X. So X is a solution to
(6)-(9).

The line of thought of the previous proof yields a quantitative refinement
involving the Kostka numbers Kµλ , as defined, e.g., in [8, p.56], namely:
the number of ways to fill in the Young diagram of µ with λi symbols ‘i’,
for i = 1, . . . , n, such that the resulting tableau has nondecreasing rows and
strictly increasing columns. Here µ is supposed to lie in Λ+ but the λi’s
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may be given in any order: this follows from the commutativity of the tensor
product and from the fact that

V(λ1) ⊗ · · · ⊗ V(λn)
∼=

⊕
µ

KµλVµ ,

where, as usual, (k) denotes the n-tuple (k, 0, . . . , 0) . (See also [8, p.456], [2,
Theorem 2.23].)

Theorem 4.2 . Let α, β, γ ∈ Λ+. If

αi ≥ γi+1 , for i = 1, . . . , n− 1 , (20)

the irreducible representation Vγ occurs in the irreducible decomposition of
Vα ⊗ Vβ with multiplicity Kβ̃,γ−α. If αi − αi+1 ≥ β1 for 1 ≤ i < n, then

Vα ⊗ Vβ
∼=

⊕
γ

Kβ̃,γ−αVγ . (21)

Proof. Let δ := γ − α. The number of matrices Z satisfying item (b)
of Lemma 4.1, and the inequalities (18), is precisely the Nαβγ of (4). The
condition (20) makes (18) redundant, so that Nαβγ is the number of ways to
fill in the Young diagram of β̃ with δn−i+1 symbols ‘i’, for i = 1, . . . , n, such
that the resulting tableau has non decreasing rows and strictly increasing
columns. This proves the first part of the theorem. For the second part
observe that the ‘big gap’ condition αi − αi+1 ≥ β1 implies (20), for all
γ ∈ LR(α, β).

Remark 4.3 . Lemma 4.1 is related to [21, 18]. Note that in [18, Theorem
3.1] the symbol λ−τ denotes, in our componentwise-difference notation, the
partition (λ̃− τ̃ )̃ .

The equivalence of (b) and (c) of the next theorem is proved by V.I. Lidskii
[20] in case αi − αi+1 ≥ β1 for 1 ≤ i < n.

Theorem 4.4 . If α, β, γ ∈ Λ+ satisfy (20), then the following conditions
are pairwise equivalent:

(a) γ ∈ LR(α, β);
(b) γ ∈ E(α, β);
(c) α, β, γ satisfy the Lidskii inequalities;
(d) α, β, γ satisfy the Horn inequalities.

Moreover, if αi − αi+1 ≥ β1 for 1 ≤ i < n, then (14) holds.
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Proof. The equivalence of (a), (b) and (c) is an easy matter, using Theo-
rems 3.1, 4.1, 4.2, and the Lidskii-Wielandt theorem [20, 28]. The Johnson-
Thompson result quoted in (15) gives (a)⇒(d); however, under the stringent
condition (20), the following simple argument shows that the Lidskii inequal-
ities imply the Horn inequalities. Let (12) be an inequality of the latter type.
This means that i := (i1, . . . , ir), j := (j1, . . . , jr) and k := (k1, . . . , kr) are
integer r-tuples satisfying Horn’s recursion, that is, (i; j; k) belongs to the
set T n

r defined in [12, p.236]. The definition of T n
r implies iv + j1 ≤ kv + 1

and, therefore, iv ≤ kv for v ∈ {1, . . . , r}. Denote the set {v : iv = kv} by
{u1, . . . , us}, with the u’s in increasing order. As

(u1, . . . , us; 1, . . . , s;u1, . . . , us) ∈ T r
s ,

we have, by the definition of T n
r , that j1 + · · · + js ≤ s(s + 1)/2; therefore,

(j1, . . . , js) = (1, . . . , r). We have

γku1
+ · · ·+ γkus

≤ αiu1
+ · · ·+ αius

+ βj1 + · · ·+ βjs ,

because this is one of the Lidskii inequalities. Then (12) also holds, because
γkv ≤ αiv , in case v 6∈ {u1, . . . , us}.

It is an easy matter to prove (14) when α and β each have only two
distinct entries. We may reduce the problem to the case

α = (a, . . . , a︸ ︷︷ ︸
r

, 0, . . . , 0) and β = (b, . . . , b︸ ︷︷ ︸
s

, 0, . . . , 0) (22)

where a and b are positive and 1 ≤ s ≤ r < n.

Lemma 4.5 . For α and β as above, we have γ ∈ E(α, β) if and only if

γi = 0 , (r + s < i ≤ n) (23)

γi = a , (s < i ≤ r) (24)

γx + γr+s−x+1 = a+ b , (1 ≤ x ≤ s) (25)

(with the convention γi = 0 for i > n).

Proof. Let γ ∈ E(α, β). The inequalities ≤ in (23)-(25) follow from the Weyl
inequalities [12, Theorem 7] and from [12, Theorem 8]. The identities (23)-
(25) are a consequence of this and the trace condition γ1 + · · ·+γn = ra+sb.
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For the converse we have to exhibit Hermitian matrices A and B with
spectra (22) such that A+B have spectrum γ. But this is easy to do, because
(25) reduces our problem to the case n = 2. We omit the details.

Lemma 4.6 . In the same situation, if a and b are positive integers, we have
γ ∈ LR(α, β) if and only if conditions (23)-(25) hold.

Proof. The necessity of (23)-(25) follows as in the previous lemma, using a
tiny part of Thompson’s results [25] (see also [24]). The sufficiency is a nice
exercise that we leave to the reader.

As a matter of fact, the ‘nice exercise’ may go a little further. Denote
by σ an arbitrary (n − r)-tuple of nonnegative integers, (σ1, . . . , σn−r), in
nonincreasing order, such that σi ≤ βi, for 1 ≤ i ≤ n− r, and σ1 ≤ a. Let

γ(σ) := arσ + (β − σ)↓ ,

where arσ denotes the n-tuple (a, . . . , a, σ1, . . . , σn−r) and (β − σ)↓ is β − σ
in nonincreasing order. What is left to the reader is to show that

Vα ⊗ Vβ
∼=

⊕
σ

Vγ(σ) .

LR rules for Eigenvalues. An interesting fact related to the conjecture
(14) is that the eigenvalues of sums of Hermitian matrices satisfy a group of
properties closely resembling the LR rules.

Given Hermitian matrices of order n, A and B, with spectra α and β,
we may assume for our purpose that B = Diag(β1, . . . , βn), and that all
eigenvalues of B are nonnegative. For t ≥ 0 define

βi(t) := min{t, βi}
B(t) := Diag(β1(t), . . . , βn(t))

λi(t) := λi[A+B(t)] ,

where λi(X) denotes the i-th eigenvalue of X. In a natural way the definition
β̃t := max{i : t ≤ βi} may be extended to real values of t ≥ 0, yielding a left
continuous step-function of t, having jumps for t ∈ {β1, . . . , βn}.

The function B(t) satisfies the following obvious properties involving the
partial order ≤∗ induced by the cone of semi- definite Hermitian matrices:
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(a) B(t) is nondecreasing with respect to ≤∗ ;
(b) λ1[B(T )−B(t)] ≤ T − t , for t ≤ T ;
(c) B(t) is ∗concave, i.e., for 0 ≤ ω ≤ 1,

ωB(x) + (1− ω)B(y) ≤∗ B[ωx+ (1− ω)y] .

As B(t) is continuous, each eigenvalue λi(t) is also continuous; in fact, it is
analytic except at a finite number of points: the possible exceptions are the
βi’s and points t′ where A+B(t′) has a multiple eigenvalue (see [15, p.143]).
But even at these exceptional points, λi(t) has left and right derivatives of
all orders. Here, we only need the first left derivative dλi

dt
(t−).

Theorem 4.7 . [LR Rules for Hermitian Matrices] For all t ≥ 0 we
have:

Rule 1. λ1(t) ≥ . . . ≥ λn(t) ≥ 0

Rule 2.
dλi

dt
(t−) ∈ [0, 1]

Rule 3. β̃t =
n∑

i=1

dλi

dt
(t−)

Rule 4.
n∑

i=k

λi(t) is concave for k = 1, . . . , n .

Proof. Rule 1 is trivial. Rule 2 follows from (a), (b) and the inequalities
λi(X + Y ) ≤ λi(X) + λ1(Y ) , valid for Hermitian matrices X and Y ; in fact,
if we let X := A+B(t) and Y := B(T )−B(t), we get for t ≤ T :

0 ≤ λi(T )− λi(t) = λi(X + Y )− λi(X)

≤ λ1[B(T )−B(t)] ≤ T − t .

Rule 3 follows from trace considerations and the formula

tr[B(t)−B(t−∆)] = ∆β̃t ,

for small positive ∆’s. Rule 4 is a consequence of Ky Fan inequalities [7]∑
i≥k

λi(X + Y ) ≥
∑
i≥k

λi(X) +
∑
i≥k

λi(Y ) ,
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and the ∗concavity of B(t):∑
i≥k

λi[ωx+ (1− ω)y] =
∑
i≥k

λi[A+B[ωx+ (1− ω)y]]

≥
∑
i≥k

λi[A+ ωB(x) + (1− ω)B(y)]

≥
∑
i≥k

[ωλi(x) + (1− ω)λi(y)] .

To explain the title we gave to Theorem 4.7, let us say that f : [0,+∞[→
R is an integral piecewise linear function if f is continuous, f(t) has integer
values for integer t, and the graph of f is a polygonal line with vertices of
integer abscissæ. Then the LR rule theorem [in the version [16] adopted
above (18)] may be paraphrased as

The multiplicity Nαβγ in decomposition (4) is the number of n-
tuples, λ(t) = (λ1(t), . . . , λn(t)), of integral piecewise linear func-
tions λi which satisfy the rules 1 to 4 and the boundary conditions
λ(0) = α and λ(β1) = γ.

5 Final Remarks

Remark 5.1 Let us revisit the three problems and results referred to in
section 2. Our aim is to show the ‘equivalence’ of Result 1, Result 2 and
Result 3 in that section, in the sense that, once we know one of the results,
a short and easy argument is enough to get the other two as ‘corollaries’.

For example, we give a simple alternative to the relations matrix approach
of [25] to show the equivalence of Results 1 and 2. Let us associate an
extension of torsion R-modules to the product AB. We view A and B as
mappings,

Rn B→ Rn A→ Rn ,

which give rise to an exact sequence of R-modules

0 → Rn/Im(B)
a→ Rn/Im(AB)

π→ Rn/Im(A) → 0 . (26)
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Here, a is given by a(x + Im(B)) = Ax + Im(AB), and π is induced by
the natural projection of Rn/Im(AB) onto [Rn/Im(AB)]/[Im(A)/Im(AB)].
We then take into account that the invariant factors of A are the invariant
factors of the cokernel Rn/Im(A), etc. Conversely, any sequence (1) can be
presented as (26) because any finitely generated torsion R-module may be
presented as Rm/Im(X) for some nonsingular m×m matrix X.

The first version of the 2-by-2 block matrix problem over a field F [given
just above (2)] gives rise to a result that we state below as Result 4, which
parallels Result 3, where p is now a monic, irreducible polynomial over F.
Note that, in the field case, we cannot escape the obvious degree-dimension
consistency condition: if S and T are square F-matrices, having orders s
and t, and having, respectively, pα1 , . . . , pαs and pβ1 , . . . , pβt as elementary
divisors, then

α1 + · · ·+ αs ≤ s/ deg(p) and β1 + · · ·+ βt ≤ t/ deg(p).

Assuming this, we have:

Result 4. There exist F-matrices, S, T and X, with dimensions as
above, such that the power-of-p elementary divisors of S, T and (2)
are pα1 , . . . , pαs, pβ1 , . . . , pβt and pγ1 , . . . , pγn, respectively, if and only
if γ ∈ LR(α, β).

(Here again we add n− s zeros to the α’s and n− t zeros to the β’s.)
An elementary approach to the localizability of the 2-by-2 block matrix

problem goes as follows, in the case of an arbitrary PID. Given nonsingular
R-matrices S and T , we wish to describe the set ED (S, T ), of all possible
nontrivial elementary divisors of the matrices (2). Clearly, ED (S, T ) remains
the same if we replace S and T by matrices equivalent to S and T , respec-
tively; or by S⊕U , and T ⊕V , where U and V are any unimodular matrices.
So we may assume that S [T ] is a diagonal matrix with the elementary di-
visors of S [of T ] along the main diagonal. In fact we may assume that
S = S1 ⊕ · · · ⊕ Sm, and T = T1 ⊕ · · · ⊕ Tm, where Si and Ti are (possibly
empty) nonsingular matrices, whose determinants are nonnegative powers of
a prime pi, and the involved primes, p1, . . . , pm, are non associate in pairs.
By a well-known reduction principle, (2) is then equivalent to a direct sum[

S1 X1

0 T1

]
⊕ · · · ⊕

[
Sm Xm

0 Tm

]
, (27)
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and therefore ED (S, T ) is the join of ED (S1, T1), . . . ,ED(Sm, Tm). More-
over, ED (Si, Ti) is the set of nontrivial invariant factors of (2), viewed as a
matrix over Rpi

, for each i. That is the precise content of localizing this kind
of problem.

In the ‘Carlson problem’, when (2) lives in an arbitrary field F, the same
argument applies to the characteristic matrices zI − S, zI − T and (3). But
we may also work inside F, as follows. Assume, as we may, that S and T are
direct sums of companion matrices of the respective elementary divisors. The
companion blocks may be ordered so that S = S1⊕· · ·⊕Sm, and T = T1⊕· · ·⊕
Tm, where Si and Ti are (possibly empty) F-matrices, whose characteristic
polynomials are nonnegative powers of a monic irreducible polynomial pi,
and the involved primes, p1, . . . , pm, are nonassociate in pairs. By [23], (2) is
similar to a matrix like (27), etc. This explains what localization means for
the ‘Carlson problem’.

Having for granted that the 2-by-2 block matrix problem is an alternative
formulation of the module extension problem, then Result 3 follows by the
Hall-Green-Klein Result 1. Another way of doing things is to directly relate
(as [22] does in particular cases) the 2-by-2 block matrix problem to the
product problem. Let us for example sketch a proof of Result 3 along these
lines. The following factorization[

S X
0 T

]
=

[
I 0
0 T

] [
I X
0 I

] [
S 0
0 I

]
,

where the middle factor is unimodular, has been noticed in [10]. This, com-
bined with Result 2, proves the only if part of Result 3. The converse is not
so obvious: we have to show that any product[

I 0
0 T

]
Ω

[
S 0
0 I

]
, (28)

with a unimodular factor Ω is equivalent, over Rp, to a matrix (2) for some
X. The redeeming trick is

Lemma 5.1 . Over a local principal domain, any unimodular matrix Ω has
an LUL-factorization, Ω = L1UL2, where L1 and L2 are lower triangular,
and U is upper triangular. Besides, the LUL-factorization property for 2-by-
2 unimodular matrices characterizes local principal ideal domains.
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Proof. One of the entries in the first row of Ω is a unit of Rp. If ω11

is not a unit, then ω1j is a unit for some j > 1; adding column j of Ω to
the first colunm, we get a unit in the (1, 1) position. We may then use the
(1, 1) entry as a pivot, to eliminate all other entries in the first column, with
lower triangular row operations. So the first part of the lemma follows by
induction. The rest is a simple exercise.

We may combine the lemma with the simple observation that, the Li’s
being given, there exist L′1, L

′
2, S

′ and T ′, such that[
I 0
0 T

]
L1 = L′1

[
I 0
0 T ′

]
and L2

[
S 0
0 I

]
=

[
S ′ 0
0 I

]
L′2 ,

where the L′i are lower triangular, and S ′ and T ′ are equivalent to S and T ,
respectively. A moment’s thought now shows that (28) is equivalent to (2)
for some X. This completes the proof of Result 3, based on Result 2.

Remark 5.2 A recent paper by Dooley, Repka and Wildberger in this jour-
nal [6] undertakes a deep investigation of the Hermitian sum eigenvalue prob-
lem. An important result of that paper is the proof, using convexity results
of Atiyah, Guillemin and Sternberg, and Kirwan, that the set we have de-
noted by Sp(α, β) is a convex polytope. Later in the paper, the authors
consider a generalization of the eigenvalue problem, namely they study the
convolution of the invariant measures associated to two adjoint orbits of a
compact Lie group. Their description of the support of such a convolution
measure, together with Kirillov’s character formula, allows them an applica-
tion to representation theory and multiplicities occurring in decompositions
of tensor products. This is close to the material in our paper, but Kirillov’s
character formula establishes a correspondence between an irreducible rep-
resentation Vλ and the adjoint orbit Oλ+δ (where δ is the half-sum of the
positive roots), and does not afford a direct link between Vλ and Oλ. It is,
therefore, not clear how that approach might help in establishing Theorem
3.1 and the conjecture discussed in Section 4.

Remark 5.3 After this paper was submitted, we learned of the preprint
“Stable bundles, representation theory and Hermitian operators”, by A. A.
Klyachko, with results closely related to ours, but using very different meth-
ods. In general terms, the relation between the two works is as follows: (1)
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Klyachko’s results imply our Theorem 3.1, but he does not obtain the conjec-
tured identity LR(α, β) = E(α, β), as we don’t. (2) The results of our section
4, where we discuss some cases in which the identity holds, are not consid-
ered in Klyachko’s work. See also “Littlewood-Richardson semigroups”, by
A. Zelevinsky (an abstract of a talk given in April 1997 at a MSRI work-
shop on Representation Theory and Symmetric Functions – available from
http://www.msri.org).

Acknowledgement. We thank Professors R. W. Carter and J. A. Green
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