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Abstract

A cardinality constrained knapsack problem is a continuous knapsack problem in
which no more than a specified number of nonnegative variables are allowed to be
positive. This structure occurs, for example, in areas such as finance, location, and
scheduling. Traditionally, cardinality constraints are modeled by introducing auxil-
iary 0-1 variables and additional constraints that relate the continuous and the 0-1
variables. We use an alternative approach, in which we keep in the model only the
continuous variables, and we enforce the cardinality constraint through a specialized
branching scheme and the use of strong inequalities valid for the convex hull of the
feasible set in the space of the continuous variables. To derive the valid inequalities,
we extend the concepts of cover and cover inequality, commonly used in 0-1 program-
ming, to this class of problems, and we show how cover inequalities can be lifted to
derive facet-defining inequalities. We present three families of non-trivial facet-defining
inequalities that are lifted cover inequalities. Finally, we report computational results
that demonstrate the effectiveness of lifted cover inequalities and the superiority of the
approach of not introducing auxiliary 0-1 variables over the traditional MIP approach
for this class of problems.

Keywords: mixed-integer programming, knapsack problem, cardinality constrained pro-
gramming, branch-and-cut
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1 Introduction

Let n and K be two positive integers, and N = {1, . . . , n}. For each j ∈ N , let uj be a
positive number. The cardinality constrained knapsack problem (CCKP) is

max
∑
j∈N cjxj∑

j∈N ajxj ≤ b (1)

at most K variables can be positive (2)

xj ≤ uj, j ∈ N (3)

xj ≥ 0, j ∈ N. (4)

We denote by S the set of feasible solutions of CCKP, i.e. S = {x ∈ <n : x satisfies
(1)-(4)}, PS = conv(S), and LPS is the set of feasible solutions of the LP relaxation, i.e.
LPS = {x ∈ <n : x satisfies (1), (3), and (4)}. We assume that:

1. a1 ≥ · · · ≥ an

2. b > 0 and aj ≥ 0 ∀j ∈ N

3. aj is scaled such that uj = 1 and aj ≤ b ∀j ∈ N

4.
∑K
j=1 aj > b

5. 2 ≤ K ≤ n− 1 .

We can assume 1. without loss of generality. Once 2. is assumed, 3. can be assumed without
loss of generality. When 4. does not hold, (1) is redundant. The case K = 1 is discussed in
[13], and when K ≥ n, (2) is redundant.

We now establish the complexity of CCKP.

Theorem 1 CCKP is NP-hard.

Proof We reduce the partition problem [15] to CCKP.
PARTITION
INSTANCE: Two sets of positive integers N = {1, . . . , n} and S = {a1, . . . , an}.
QUESTION: Does N have a subset N ′ such that

∑
i∈N ′ ai = 1

2

∑
i∈N ai?

The solution to PARTITION is “yes” iff the optimal value to CCKP(K):

max
∑
j∈N ajxj +

∑
j∈N xj∑

j∈N ajxj ≤ 1
2

∑
j∈N aj

at most K variables can be positive

0 ≤ xj ≤ 1, j ∈ N
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is 1
2

∑
j∈N aj +K for some K ∈ {1, . . . , n}. Thus, by solving CCKP(1), . . .,CCKP(n), we can

solve PARTITION. 2

Constraint (2) is present in a large number of applications, such as portfolio optimization
[6, 27], p-median [10], synthesis of process networks [5, 28], etc. It is usually modeled by
introducing 0-1 variables yj, j ∈ N , and the constraints

xj ≤ ujyj, j ∈ N, (5)∑
j∈N yj ≤ K, (6)

see [8, 22].
Rather than introducing auxiliary 0-1 variables and the inequalities (5) and (6) to model

(2), we keep only the continuous variables, and we enforce (6) algorithmically, directly in
the branch-and-cut algorithm by using a specialized branching scheme and strong inequal-
ities valid for PS (which is defined in the space of the continuous variables). The idea of
dispensing with auxiliary 0-1 variables to model certain combinatorial constraints on contin-
uous variables and enforcing the combinatorial constraints directly in the branch-and-bound
algorithm through a specialized branching scheme, was pioneered by Beale and Tomlin [3, 4]
in the context of special ordered sets (SOS) of types I and II.

For several NP-hard combinatorial optimization problems, branch-and-cut has proven
to be more effective than a branch-and-bound algorithm that does not account for the
polyhedral structure of the convex hull of the set of feasible solutions of the problem, see
[7, 16, 17, 19, 21, 24, 26, 30, 33]. In this paper we study the facetial structure of PS, with the
purpose of using strong inequalities valid for PS as cuts in a branch-and-cut scheme without
auxiliary 0-1 variables for the cardinality constrained optimization problem (CCOP):

max
∑
j∈N cjxj∑

j∈N aijxj ≤ bi, i ∈M (7)

x satisfies (2)-(4),

where M = {1, . . . ,m} and m is a positive integer.
Some potential benefits of this approach are [12]:

• Faster LP relaxations. Adding the auxiliary 0-1 variables and the new constraints
substantially increases the size of the model. Also, the inclusion of variable upper
bound constraints, such as (5), may turn the LP relaxation into a highly degenerate
problem.

• Less enumeration. It is easy to show that a relaxation of the 0-1 mixed integer problem
may have fractional basic solutions that satisfy (2). In this case, even though the
solution satisfies the cardinality constraint, additional branching may be required.
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This approach has been studied by de Farias [9], and recently it has been used by Bienstock
in the context of portfolio optimization [6], and by de Farias, Johnson, and Nemhauser in the
context of complementarity problems [13], and the generalized assignment problem [11, 14].
It has also been explored in the context of logical programming, see for example [12, 20].

Let N0 and N1 be two disjoint subsets of N and P ⊆ <n. Throughout the paper we
denote P (N0, N1) = P ∩ {x ∈ <n : xj = 0 ∀j ∈ N0 and xj = 1 ∀j ∈ N1}. For a polyhedron
P we denote by V (P ) the set of vertices of P . We make use of the following well-known
result. We drop Assumption 1. here.

Proposition 1 Consider the continuous knapsack problem

max{
∑
j∈N

cjxj :
∑
j∈N

ajxj ≤ b and x ∈ [0, 1]n}. (8)

Suppose that c1
a1
≥ · · · ≥ cn

an
,
∑l−1
j=1 aj < b, and

∑l
j=1 aj ≥ b, for some l ∈ N . Then, x∗ given

by

x∗j =


1 if j = 1, . . . , l − 1
b−
∑l−1

j=1
aj

al
if j = l

0 otherwise.

is an optimal solution to (8). 2

The organization of the paper is as follows. In Section 2 we present the trivial facet-
defining inequalities for PS. We give a necessary and sufficient condition for the trivial
facet-defining inequalities to completely characterize PS. In Section 3 we extend the concepts
of cover and cover inequality, commonly used in 0-1 programming [1, 18, 31], to derive facet-
defining inequalities for lower-dimensional projections of PS. We present three nontrivial
families of facet-defining inequalities for PS that can be obtained by lifting these cover
inequalities. In Section 4 we report computational results that demonstrate the effectiveness
of lifted cover inequalities and the superiority of the approach of not introducing auxiliary
0-1 variables over the traditional MIP approach to solve difficult instances of CCOP. Finally,
in Section 5 we discuss directions for further research.

2 Trivial Facet-Defining Inequalities

In this section we discuss some families of facet-defining inequalities for PS that are easily
implied by the problem, and which we call trivial. We also present a necessary and sufficient
condition for them to completely characterize PS.

The proofs of Propositions 2-4 are easy, and are omitted.

Proposition 2 PS is full-dimensional. 2
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Proposition 3 Let N0, N1 ⊆ N with N0 ∩ N1 = ∅, and suppose that S(N0, N1) 6= ∅. Any
vertex of LPS(N0, N1) has at most one fractional component. Moreover, a point with a
fractional component can be a vertex of LPS(N0, N1) only if it satisfies (1) at equality. Also,
the vertices of PS(N0, N1) are the vertices of LPS(N0, N1) that satisfy (2). 2

Proposition 4 Inequality (1) is facet-defining iff
∑K−1
j=1 aj + an ≥ b. Inequality (3) is facet-

defining iff aj < b, j ∈ N . Inequality (4) is facet-defining ∀j ∈ N . 2

Example 1 Let n = 4, K = 2, and (1) be

6x1 + 4x2 + 3x3 + x4 ≤ 6. (9)

Then, xj ≤ 1 ∀j ∈ {2, 3, 4}, xj ≥ 0 ∀j ∈ {1, 2, 3, 4}, and (9) are facet-defining. Note that
(9) is stronger than x1 ≤ 1, which, therefore, is not facet-defining. 2

We now give a necessary and sufficient condition for PS = LPS.

Proposition 5 PS = LPS iff
∑n
j=n−K+1 aj ≥ b.

Proof If
∑n
j=n−K+1 aj < b, then x̂ given by

x̂j =


1 if n−K + 1 ≤ j ≤ n

min{1, b−
∑n

s=n−K+1
as

aj
} if j = n−K

0 otherwise

is a vertex of LPS that does not satisfy (2).
From Proposition 3, we know that any vertex of LPS that does not satisfy (2) must have

at least K components equal to 1. Because an−K+1, . . . , an are the K smallest knapsack
coefficients, this implies that LPS has a vertex that does not satisfy (2) only if

∑n
j=n−K+1 aj <

b. 2

When PS 6= LPS, all vertices of LPS that do not satisfy (2) can be cut off by a single
inequality. This inequality is presented in the next proposition.

Proposition 6 The inequality

∑
j∈N

xj ≤ K (10)

is facet-defining iff a1 +
∑n
j=n−K+2 aj ≤ b and

∑n−1
j=n−K aj ≤ b.
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Proof If a1 +
∑n
j=n−K+2 aj > b, x1 = 0 ∀x ∈ S such that

∑
j∈N xj = K. This means that

(10) defines a facet only if a1 +
∑n
j=n−K+2 aj ≤ b. If

∑n−1
j=n−K aj > b, xn = 1 ∀x ∈ S such that∑

j∈N xj = K. Thus, (10) defines a facet only if
∑n−1
j=n−K aj ≤ b.

It is easy to show that when a1 +
∑n
j=n−K+2 aj ≤ b, and

∑n−1
j=n−K aj ≤ b, S has n linearly

independent points that satisfy (10) at equality. 2

Example 2 Let n = 5, K = 2, and (1) be

4x1 + 3x2 + 2x3 + x4 + x5 ≤ 6. (11)

Then,
∑5
j=1 xj ≤ 2 is facet-defining. On the other hand, (10) does not define a facet for PS

in Example 1 2

Proposition 7 Inequality (10) cuts off all vertices of LPS that do not satisfy (2).

Proof Let x̂ be a vertex of LPS that does not satisfy (2), i.e. x̂ has more than K positive
components. From Proposition 3 we know that at least K of these positive components are
equal to 1. Therefore,

∑
j∈N x̂j > K. 2

We now give a necessary and sufficient condition for the system defined by (1), (3), (4),
and (10) to define PS.

Proposition 8 PS = LPS ∩ {x : x satisfies (10)} iff a1 +
∑
j∈T−{t} aj ≤ b ∀T ⊆ N − {1}

such that |T | = K,
∑
j∈T aj < b, and at = min{aj : j ∈ T} (in case there are two different

indices t for which at = min{aj : j ∈ T}, choose one arbitrarily).

Proof Let T ⊆ N−{1} be such that |T | = K,
∑
j∈T aj < b, and let at = min{aj : j ∈ T}. By

Assumption 4. of Section 1,
∑K
j=1 aj > b. Thus, a1 > at. Suppose that a1 +

∑
j∈T−{t} aj > b.

Then, x̂ given by

x̂j =



1 if j ∈ T − {t}
b−
∑

r∈T ar

a1−at if j = 1
a1+
∑

r∈T−{t} ar−b
a1−at if j = t

0 otherwise

is a vertex of LPS ∩ {x : x satisfies (10)} that does not satisfy (2).
Suppose that LPS∩{x : x satisfies (10)} has a vertex x̃ that does not satisfy (2). Because

there are no other inequalities in the description of LPS∩{x : x satisfies (10)} besides (1), (3),
(4), and (10), x̃ can have at most two fractional components. Therefore, it must have at least
K − 1 components equal to 1. Because of (10), x̃ cannot have more than K − 1 components
equal to 1. This means that x̃ has two fractional components and K − 1 components equal
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to 1. Let the fractional components be x̃u and x̃v, and let U be the set of indices of all
components of x̃ that are equal to 1. Then,

x̃u + x̃v = 1 (12)

and

aux̃u + avx̃v = b−
∑
j∈U

aj. (13)

The system defined by (12) and (13) has a unique solution only if au 6= av. Suppose, without
loss of generality, that au < av. Then, clearly b − ∑

j∈U aj − au > 0. If 1 6∈ U , define
T = U ∪ {u}. If 1 ∈ U , define T = (U − {1}) ∪ {u, v}. In any case,

∑
j∈T aj < b, |T | = K,

and 1 6∈ T . However, because b −∑j∈U aj − av < 0 and av ≤ a1, if at = min{aj : j ∈ T},
a1 +

∑
j∈T−{t} aj > b. 2

3 Sequentially Lifted Cover Inequalities

In this section we study facet-defining inequalities for PS that are derived by applying
the sequential lifting procedure [25, 32] to a family of inequalities that define facets for
PS(N0, N1) for some N0, N1 ⊂ N with N0 ∩ N1 = ∅. We call these inequalities cover
inequalities. They are defined by sets of indices that we call covers. Our definition of a cover
is based on the similar concept used in 0-1 programming [1, 18, 31]. A major difference is
that in our case the cover inequalities are valid for LPS, whereas in 0-1 programming they are
not valid for the feasible set of the LP relaxation. However, by lifting our cover inequalities,
we obtain facet-defining inequalities for PS that are not valid for LPS, and therefore can
be used as cuts in a branch-and-cut scheme to solve CCOP. We present three families of
facet-defining inequalities for PS obtained by lifting cover inequalities in a specific order.

Definition Let C, N0, and N1 be three disjoint subsets of N with N = C ∪ N0 ∪ N1 and
|C| = K − |N1|. If

∑
j∈C aj > b −∑j∈N1

aj, we say that C is a cover for PS(N0, N1), and
that

∑
j∈C

ajxj ≤ b−
∑
j∈N1

aj (14)

is a cover inequality for PS(N0, N1). 2

It is easy to show that

Proposition 9 Inequality (14) is valid and facet-defining for PS(N0, N1). 2
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Example 1 (Continued) The set {1} is a cover for PS({2, 3}, {4}), and the cover inequality
is

6x1 ≤ 5. (15)

2

Inequality (14) can be sequentially lifted to generate facet-defining inequalities for PS.
The lifting procedure is based on Lemma 1, which is adapted from [32], Theorem 1; see [9]
for a proof.

Lemma 1 Let P ⊂ <d be a polytope. Define lj = min{zj : z ∈ P} and uj = max{zj : z ∈
P}, j = 1, . . . , d. Let z̃ ∈ P , and suppose that

d−1∑
j=1

αjzj ≤ β, (16)

is a valid inequality for P
⋂{z ∈ <d : zd = z̃d}. Define

αmax
d =

 min{
∑d−1

j=1
αjzj−β

z̃d−zd
: z ∈ V (P ) and zd > z̃d} if z̃d < ud

∞ if z̃d = ud

and

αmin
d =

 max{
∑d−1

j=1
αjzj−β

z̃d−zd
: z ∈ V (P ) and zd < z̃d} if z̃d > ld

−∞ if z̃d = ld.

Then

d−1∑
j=1

αjzj + αdzd ≤ β + αdz̃d (17)

is a valid inequality for P if and only if αmin
d ≤ αd ≤ αmax

d . Moreover, if (16) defines a
face of P

⋂{z ∈ <d : zd = z̃d} of dimension t, and αd = αmind > −∞, or αd = αmaxd < ∞,
then (17) defines a face of P of dimension at least t+ 1. 2

In our case, when z̃d = 1, αmax
d = ∞, and the lifting coefficient is given by αmin

d . When

z̃d = 0, αmin
d = −∞, and the lifting coefficient is given by αmax

d . As lifting is always possible
when z̃d ∈ {0, 1}, we will fix variables at 0 and 1 only. We leave it as an open question whether
it is possible to derive additional facet-defining inequalities by fixing variables at fractional
values.

It can be easily shown that
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Proposition 10 Suppose we lift the cover inequality (14) with respect to xj, j ∈ N0 ∪ N1,
in a certain order. Let r, s ∈ N0, and αr and αs be the lifting coefficients of xr and xs,
respectively, where the inequality has been lifted with respect to xr immediately before xs.
Suppose we exchange the lifting order of xr and xs but we keep the lifting order of the
variables lifted before xr and xs. If α′r and α′s are the new lifting coefficients of xr and xs,
respectively, then αr ≥ α′r and αs ≤ α′s.

Likewise, if u, v ∈ N1, αu and αv are the lifting coefficients of xu and xv, respectively, and
the inequality has been lifted with respect to xu immediately before xv, then the new lifting
coefficients α′u and α′v of xu and xv, respectively, obtained by exchanging the lifting order of
xu and xv, but keeping the lifting order of the variables lifted earlier, are such that αu ≤ α′u
and αv ≥ α′v. 2

Given a cover inequality that is facet-defining for PS(N0, N1) with N0 6= ∅, we show next
how the inequality can be lifted with respect to a variable xl, l ∈ N0, to give a facet-defining
inequality for PS(N0 − {l}, N1) that is not valid for LPS(N0 − {l}, N1).

Proposition 11 Let C, N0, and N1 be three disjoint subsets of N with N = C ∪ N0 ∪ N1

and |C| = K−|N1|. Suppose N0 6= ∅ and C is a cover for PS(N0, N1). Let i ∈ C and l ∈ N0

be such that

ai = min{aj : j ∈ C} (18)

(in case there are several coefficients satisfying (18), choose one arbitrarily) and

∑
j∈C−{i}

aj + al < b−
∑
j∈N1

aj. (19)

Then,

∑
j∈C

ajxj + (b−
∑
j∈N1

aj −
∑

j∈C−{i}
aj)xl ≤ b−

∑
j∈N1

aj (20)

defines a facet of PS(N0 − {l}, N1).

Proof We prove the proposition by lifting (14) with respect to xl. Let αl be the lifting
coefficient, i.e.

αl = min{
b−∑j∈N1

aj −
∑
j∈C ajxj

xl
: x ∈ V (PS(N0 − {l}, N1)) and xl > 0}.

Let x̂ ∈ V (PS(N0 − {l}, N1)) with x̂l > 0. Since at most K variables can be positive and
x̂l > 0, at most K − 1 components x̂j, j ∈ C, of x̂ can be positive. Thus,

∑
j∈C

ajx̂ ≤
∑

j∈C−{i}
aj.
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Because of (19), x̂ must then satisfy (1) strictly at inequality. Thus, from Proposition 3, x̂l
cannot be fractional, and therefore must be equal to 1. This means that

αl = (b−
∑
j∈N1

aj)−max{
∑
j∈C

ajxj : x ∈ V (PS(N0−{l}, N1)) and xl = 1} = b−
∑
j∈N1

aj−
∑

j∈C−{i}
aj.

2

Example 1 (Continued) Lifting (15) with respect to x2, we obtain

6x1 + 5x2 ≤ 5, (21)

which defines a facet of PS({3}, {4}). Now we apply Lemma 1 to complete the lifting. Lifting
(21) with respect to x4, the lifting coefficient is

α4 = max{6x1 + 5x2 − 5

1− x4

: x ∈ V (PS({3}, ∅)) and x4 < 1}.

If x̂ ∈ V (PS({3}, ∅)) is such that x̂4 < 1 and

α4 =
6x̂1 + 5x̂2 − 5

1− x̂4

,

then clearly x̂1 > 0. Because of Proposition 3, x̂1 = 1 if x̂4 is fractional. However, from (9),
x̂1 = 1⇒ x̂4 = 0. Therefore, x̂4 = 0. So,

α4 = 6x̂1 + 5x̂2 − 5.

From Proposition 1, x̂1 = 1
3

and x̂2 = 1. Therefore, α4 = 2, and

6x1 + 5x2 + 2x4 ≤ 7 (22)

defines a facet of PS({3}, ∅). The lifting coefficient of x3 is

α3 = min{7− 6x1 − 5x2 − 2x4

x3

: x ∈ V (PS) and x3 > 0}.

If x̃ ∈ V (PS) is such that x̃3 > 0 and

α3 =
7− 6x̃1 − 5x̃2 − 2x̃4

x̃3

,

then at most one of x̃1, x̃2, and x̃4 can be positive. If x̃3 = 1, either x̃4 = 1 and α3 = 5, or,
because of Proposition 1, x̃2 = 3

4
, and α3 = 3.25. If x̃3 is fractional, then x̃2 = 1, and α3 = 3.

Therefore, α3 = 3, and

6x1 + 5x2 + 3x3 + 2x4 ≤ 7 (23)

10



defines a facet of PS. 2

Note that Proposition 11 still holds when
∑
j∈C−{i} aj + al = b − ∑j∈N1

aj. But then,
αl = al. In this case, one could have started with PS(N0−{l}, N1) as the projected polytope,
and C ∪{l} as the cover. Also, if

∑
j∈C−{i} aj +al > b−∑j∈N1

aj, and (14) is lifted first with
respect to xl, the lifting coefficient is al. In the same way, if (14) is lifted first with respect to
a variable xk with k ∈ N1, the lifting coefficient is ak. Therefore, when studying sequentially
lifted cover inequalities for PS, it suffices to start with (20). Inequality (20) resembles the
fundamental complementarity inequalities defined in [13].

An immediate consequence of Proposition 11 is that

Corollary 1 Let C ⊂ N be such that |C| = K and
∑
j∈C aj > b. Let i ∈ C and l ∈ N − C

be such that ai = min{aj : j ∈ C} and
∑
j∈C−{i} aj + al < b. Then,

∑
j∈C

ajxj + (b−
∑

j∈C−{i}
aj)xl ≤ b (24)

is valid for PS. 2

Example 1 (Continued) The inequality

4x2 + 3x3 + 2x4 ≤ 6 (25)

is valid for PS by Corollary 1. Note that (25) cuts off the point x̂ given by x̂1 = 0, x̂2 = 1
2
,

x̂3 = x̂4 = 1, which is a vertex of LPS, and therefore, (25) is not valid for LPS.
Inequality (25) defines a facet of PS({1}, ∅). Lifting (25) with respect to x1, we obtain

24

5
x1 + 4x2 + 3x3 + 2x4 ≤ 6, (26)

which defines a facet of PS. 2

Another consequence of Proposition 11 is

Theorem 2 The inequality

n∑
j=1

max{aj, b−
K−1∑
j=1

aj}xj ≤ b (27)

defines a facet of PS.

Proof When
∑K−1
j=1 aj + an ≥ b, (27) and (1) coincide, and from Proposition 2, (27) is

facet-defining. When
∑K−1
j=1 aj + an < b, from Proposition 11,

K∑
j=1

ajxj + (b−
K−1∑
j=1

aj)xn ≤ b (28)

11



defines a facet of PS(N − {1, . . . , K, n}, ∅). We now lift (28) with respect to xj, j ∈ N −
{1, . . . , K, n}, in any order. Let l ∈ N −{1, . . . , K, n}, and suppose we lift (28) with respect
to xl first. The lifting coefficient is

αl = min{
b−∑K

j=1 ajxj − (b−∑K−1
i=1 ai)xn

xl
: x ∈ V (PS(N−{1, . . . , K, n, l}, ∅)) and xl > 0}.

(29)
If max{al, b−

∑K−1
j=1 aj} = b−∑K−1

j=1 aj, then any K − 1 variables among x1, . . . , xK and
xn can be positive when xl is positive. Because of Assumption 1. in Section 1, x̂ given by

x̂j =

{
1 if j ∈ {1, . . . , K − 1, l}
0 otherwise

is an optimal solution to (29), and so αl = b−∑K−1
j=1 aj.

Suppose now that max{al, b −
∑K−1
j=1 aj} = al. Let x∗ be an optimal solution to (29).

Assume that x∗n > 0. Because
∑K−2
j=1 aj + al + an < b, by repeating the argument above,

the optimal value of (29) is αl = b − ∑K−2
j=1 aj − an, in which case, αl > al. Assume now

that x∗n = 0. Since x∗l > 0, one of x∗1, . . . , x
∗
K must be 0. Suppose that x∗r = 0, where

r ∈ {1, . . . , K}. If
∑r−1
j=1 aj +

∑K
j=r+1 aj + al < b, then αl = b−∑r−1

j=1 aj −
∑K
j=r+1 aj > al. If∑r−1

j=1 aj +
∑K
j=r+1 aj + al ≥ b, then clearly

∑r−1
j=1 ajx

∗
j +

∑K
j=r+1 ajx

∗
j + alx

∗
l = b, which gives

αl = al. Now, since
∑K−1
j=1 aj + al ≥ b, then αl = al.

Therefore, αl = max{al, b −
∑K−1
j=1 aj}. By using a similar argument, it can be shown

that αi = max{ai, b−
∑K−1
j=1 aj} ∀i ∈ N − {1, . . . , K, n, l}. 2

Example 2 (Continued) Inequality (11) is not facet-defining, and it can be replaced with

4x1 + 3x2 + 2x3 + 2x4 + 2x5 ≤ 6.

2

We proved in Proposition 6 that (10) is facet-defining only if a1 +
∑n
j=n−K+2 aj ≤ b.

We next present a family of facet-defining inequalities that are stronger than (10) when
a1 +

∑n
j=n−K+2 aj > b. The family of inequalities is a subclass of the following family of valid

inequalities.

Lemma 2 Let U = {u1, . . . , uK−1} be a subset of N such that au1 ≥ · · · ≥ auK−1
and∑

j∈U aj < b. Let r ∈ N − U be such that ar +
∑
j∈U aj > b. Let {p, q} ⊆ N − (U ∪ {r}) be

such that ap ≥ au1, aq ≥ au1, and

ap + aq +
∑

j∈U−{uK−1}
aj ≤ b. (30)

Let T be a subset of N − (U ∪ {r, p, q}) with aj ≥ au1 ∀j ∈ T . Then,

12



arxr +
∑
j∈T

max{aj, b−
∑
i∈U

ai}xj + (b−
∑
i∈U

ai)
∑

j∈U∪{p,q}
xj ≤ K(b−

∑
j∈U

aj) (31)

defines a facet of PS(N − (U ∪ T ∪ {r, p, q}), ∅).

Proof We start with

arxr ≤ b−
∑
j∈U

aj, (32)

which is a cover inequality for PS(N − (U ∪{r}), U). We first lift (32) with respect to xp, xq,
and xi ∀i ∈ T in this order. The lifting coefficient of xp is the greatest value of αp for which

arxr + αpxp ≤ b−
∑
j∈U

aj (33)

∀x ∈ V (PS(N − (U ∪{p, r}), U)). When xp = 0 there is no restriction to the value of αp. So
suppose xp > 0. Since K−1 variables are fixed at 1 in PS(N−(U ∪{p, r}), U), when xp > 0,
xr = 0. Because of (30) and aq ≥ au1 , ap+

∑
j∈U aj ≤ b. This means that the greatest possible

positive value of xp when xj = 1 ∀j ∈ U is 1, and therefore, αp = b −∑j∈U aj. Likewise,
αq = b − ∑j∈U aj, and αi = b − ∑j∈U aj ∀i ∈ T such that ai +

∑
j∈U aj ≤ b. For i ∈ T

such that ai +
∑
j∈U aj > b, the greatest possible positive value of xi when xj = 1 ∀j ∈ U is

b−
∑

j∈U aj

ai
, and therefore αi = ai. Thus,

arxr +
∑
j∈T

max{aj, b−
∑
i∈U

ai}xj + (b−
∑
j∈U

aj)(xp + xq) ≤ b−
∑
j∈U

aj (34)

defines a facet of PS(N − (U ∪ T ∪ {r, p, q}), U) (the lifting order of xp, xq, and xi, i ∈ T , is
actually irrelevant.)

Next we lift (34) with respect to xu1 , . . . , xuK−1
in this order. The lifting coefficient of

xu1 is

αu1 = max{
arxr +

∑
j∈T max{aj, b−

∑
i∈U ai}xj + (b−∑j∈U aj)(xp + xq)− (b−∑j∈U aj)

1− xu1

:

x ∈ V (PS(N − (U ∪ T ∪ {r, p, q}), {u2, . . . , uK−1})) and xu1 < 1}. (35)

Let x̂ be given by

x̂j =

{
1 if j ∈ (U − {u1}) ∪ {p, q}
0 otherwise.

Since x̂ ∈ V (PS(N − (U ∪ T ∪ {r, p, q}), {u2, . . . , uK−1})), x̂u1 < 1, and

arx̂r +
∑
j∈T max{aj, b−

∑
i∈U ai}x̂j + (b−∑j∈U aj)(x̂p + x̂q)− (b−∑j∈U aj)

1− x̂u1

= b−
∑
j∈U

aj,

13



it follows that

αu1 ≥ b−
∑
j∈U

aj. (36)

Let x∗ ∈ V (PS(N − (U ∪ T ∪ {r, p, q}), {u2, . . . , uK−1})) be such that x∗u1
< 1 and

αu1 =
arx

∗
r +

∑
j∈T max{aj, b−

∑
i∈U ai}x∗j + (b−∑j∈U aj)(x

∗
p + x∗q)− (b−∑j∈U aj)

1− x∗u1

.

Suppose that x∗u1
> 0. Then, since the K − 1 variables xj, j ∈ U , are positive in x∗, at most

one of the variables xj, j ∈ T ∪ {r, p, q}, can be positive in x∗. If x∗j = 0 ∀j ∈ T ∪ {r, p, q},

αu1 =
−(b−∑j∈U aj)

1− x∗u1

< 0,

which is inconsistent with (36). Let F = {j ∈ T : aj > b − ∑
i∈U ai} ∪ {r}. Because

as+
∑
j∈U aj ≤ b when s ∈ {p, q}∪ (T −F ), (1) cannot be satisfied at equality in case x∗s > 0

and x∗u1
< 1. Since we are assuming that x∗u1

is fractional, from Proposition 3 x∗ can be a
vertex of PS(N − (U ∪T ∪{r, p, q}), {u2, . . . , uK−1}) only if it satisfies (1) at equality. Thus,
we must have x∗s = 0 ∀s ∈ {p, q} ∪ (T − F ), and x∗l > 0 for some l ∈ F . From Proposition
3, x∗ cannot have more than one fractional component. Therefore, x∗l = 1 and

x∗u1
=
b− al −

∑
j∈U−{u1} aj

au1

,

or αu1 = au1 ≤ b−∑j∈U aj. So, it is not possible to obtain a solution to (35) better than x̂
when x∗u1

> 0.
Suppose now that x∗u1

= 0, i.e.

αu1 = −(b−
∑
j∈U

aj) + max{arxr +
∑
j∈T

max{aj, b−
∑
i∈U

ai}xj + (b−
∑
j∈U

aj)(xp + xq) :

x ∈ V (PS(N − (U ∪ T ∪ {r, p, q}), {u2, . . . , uK−1})) and xu1 = 0}. (37)

If xi = 0 ∀i ∈ F in an optimal solution to (37), then since the objective function coefficients
of xi, i ∈ {p, q} ∪ (T − F ), in (37) are all equal to b−∑j∈U aj, and (30) implies that two of
these variables can be positive and equal to 1, then αu1 = b−∑j∈U aj. Finally, assume that
xl > 0 for some l ∈ F in an optimal solution to (37). Because

b−∑j∈U aj
at

≥ al
al

and al+ai+
∑
j∈U−{u1} aj > b ∀i ∈ (T−F )∪{p, q}, it follows from Proposition 1 that for some

v ∈ (T − F ) ∪ {p, q} (37) has an optimal solution with xv = 1 and xl =
b−
∑

j∈U−{u1}
aj−av

al
,

which gives αu1 = (b−∑j∈U aj)− (av − au1) ≤ b−∑j∈U aj. In any case, αu1 ≤ b−∑j∈U aj,
and therefore αu1 = b −∑j∈U aj. By repeating this same argument, it can be shown that
αu2 = · · · = αuK−1

= b−∑j∈U aj (the lifting order of xj, j ∈ U , is actually irrelevant). 2

As a consequence of Lemma 2, we have that

14



Theorem 3 Suppose
∑n
j=n−K+2 aj < b,

∑n−1
j=n−K aj ≤ b, and a1 +

∑n
j=n−K+2 aj > b. Then,

a1x1 +
n−K−1∑
j=2

max{aj, b−
n∑

i=n−K+2

ai}xj +(b−
n∑

i=n−K+2

ai)
n∑

j=n−K
xj ≤ K(b−

n∑
j=n−K+2

aj) (38)

defines a facet of PS.

Proof U = {n−K+2, . . . , n}, r = 1, p = n−K, q = n−K+1, and T = {2, . . . , n−K−1}.
2

Note that when a1 +
∑n
j=n−K+2 aj > b, (38) is stronger than (10).

Example 3 Let n = 4, K = 2, and (1) be

6x1 + 3x2 + 2x3 + x4 ≤ 6.

Then,

6x1 + 5x2 + 5x3 + 5x4 ≤ 10 (39)

defines a facet of PS. Inequality (39) is stronger than
∑4
j=1 xj ≤ 2. 2

Next, we present a family of valid inequalities that under certain conditions is facet-
defining for PS. The family of inequalities is particularly useful when the constraint matrix
is not dense, a situation that is common in applications.

Proposition 12 Let C, N0, and N1 be three disjoint subsets of N with N = C ∪ N0 ∪ N1

and |C| = K − |N1|. Assume that C is a cover for PS(N0, N1), and

ap = min{aj : j ∈ C} (40)

(in case there is more than one knapsack coefficient satisfying (40), choose one arbitrarily).
Suppose that

∑
j∈C−{p}

aj < b−
∑
j∈N1

aj, (41)

and al = 0 for some l ∈ N0. Then,

∑
j∈C

ajxj + ∆
∑
j∈N0

xj +
∑
j∈N1

αjxj ≤ b+
∑
j∈N1

(αj − aj) (42)

is valid for PS, where ∆ = b−∑j∈C−{p} aj −
∑
j∈N1

aj, and

αj =

{
∆ + aj if ap > ∆ + aj
max{ap, aj} otherwise.

(43)
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Proof We prove the proposition by lifting
∑
j∈C ajxj ≤ b − ∑j∈N1

aj with respect to xl,
xj, j ∈ N1, and xj, j ∈ N0 − {l}, in this order. From Proposition 11,

∑
j∈C

ajxj + ∆xl ≤ b−
∑
j∈N1

aj (44)

is facet-defining for PS(N0 − {l}, N1).
We now lift (44) with respect to xj, j ∈ N1. Let r ∈ N1, and suppose we lift (44) with

respect to xr first. The lifting coefficient, αr, is

αr = max{
∑
j∈C ajxj + ∆xl − (b−∑j∈N1

aj)

1− xr
: x ∈ V (PS(N0 − {l}, N1 − {r})) and xr < 1}.

(45)
Let x∗ be an optimal solution to (45). Suppose ap > ∆ + ar. Then,

∑
j∈C

aj > b−
∑
j∈N1

aj + ar. (46)

If x∗r = 0,

αr =
∑
j∈C

ajx
∗
j + ∆x∗l − (b−

∑
j∈N1

aj).

Because |C| + |N1| = K and x∗r = 0, it is possible to satisfy (2) and have all components
x∗j , j ∈ C, and x∗l positive. Since al = 0, clearly x∗l = 1. On the other hand,

∑
j∈C

ajxj + arxr ≤ b−
∑
j∈N1

aj + ar ∀x ∈ V (PS(N0 − {l}, N1 − {r})),

and (46) imply that
∑
j∈C ajx

∗
j = b−∑j∈N1

aj + ar, and therefore,

αr = ∆ + ar.

Assume now that x∗r > 0. Since x∗r < 1, x∗r is fractional, and from Proposition 3,

∑
j∈C

ajx
∗
j + arx

∗
r = b−

∑
j∈N1

aj + ar. (47)

Because of (41), (47) can be satisfied only if x∗j > 0 ∀j ∈ C. Since x∗ cannot have more than
one fractional component, x∗j = 1 ∀j ∈ C. However, this is not possible when (46) holds.
Therefore, x∗r = 0, and so ap > ∆ + ar ⇒ αr = ∆ + ar.

Suppose now ap ≤ ∆ + ar, i.e.
∑
j∈C aj ≤ b−∑j∈N1

aj + ar. If x∗r = 0,

αr =
∑
j∈C

aj + ∆− (b−
∑
j∈N1

aj) = ap.
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If x∗r > 0, by repeating the argument for the case ap > ∆ + ar and x∗r > 0, we obtain x∗j = 1
∀j ∈ C, which, together with (2), implies that x∗l = 0, and

αr =

∑
j∈C aj − b+

∑
j∈N1

aj

1−
b−
∑

j∈N1−{r}
aj−
∑

j∈C aj

ar

= ar.

Therefore, ap ≤ ∆ + ar ⇒ αr = max{ap, ar}. By an argument similar to the one used to
calculate αr, it can be shown that αj satisfies (43) for all other j ∈ N1 − {r}.

Next, we lift

∑
j∈C

ajxj + ∆xl +
∑
j∈N1

αjxj ≤ b+
∑
j∈N1

(αj − aj) (48)

with respect to xj, j ∈ N0 − {l}. First we lift (48) with respect to the variables xj with
aj = 0, and we show that their lifting coefficients are αj = ∆. Note that ap > ∆, and
therefore aj = 0⇒ ap > ∆ + aj.

Let T ⊂ N0 − {l} be such that aj = 0 ∀j ∈ T , and suppose

∑
j∈C

ajxj + ∆xl + ∆
∑
j∈T

xj +
∑
j∈N1

αjxj ≤ b+
∑
j∈N1

(αj − aj) (49)

defines a facet for PS(N0 − (T ∪ {l}), ∅). Let t ∈ N0 − (T ∪ {l}). We lift (49) next with
respect to xt. Let x̂ be an optimal solution to

αt = min{
b−∑j∈N1

aj +
∑
j∈N1

αj −
∑
j∈C ajxj −∆xl −∆

∑
j∈T xj −

∑
j∈N1

αjxj
xt

:

x ∈ V (PS(N0 − (T ∪ {l, t}), ∅)) and xt > 0}. (50)

Since at = 0, we can assume that x̂t = 1. Also, because x̃ given by

x̃j =

{
1 if j ∈ (C − {p}) ∪N1 ∪ {t}
0 otherwise

is a feasible solution to (50) with objective function value ∆,

αt ≤ ∆. (51)

Suppose x̂j > 0 ∀j ∈ T ∪ {l}. Because aj = 0 ∀j ∈ T ∪ {l}, x̂j = 1 ∀j ∈ T ∪ {l}.
Therefore,

αt = b−
∑
j∈N1

aj +
∑
j∈N1

αj −
∑
j∈C

ajx̂j −∆(|T |+ 1)−
∑
j∈N1

αjx̂j.

Let C ′ = {j ∈ C : x̂j > 0} and N ′1 = {j ∈ N1 : x̂j > 0}. Since xl > 0 and xt > 0,
|N ′1|+ |C ′|+ |T | ≤ K − 2. Because |N1|+ |C| = K,

|N1 −N ′1|+ |C − C ′| ≥ |T |+ 2. (52)
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Assume now that
∑
j∈C ajx̂j +

∑
j∈N1

ajx̂j < b. From Proposition 3, x̂j ∈ {0, 1} ∀j ∈ C ∪N1.
It follows that,

αt = b−
∑
j∈N1

aj +
∑

j∈N1−N ′1

αj −
∑
j∈C′

aj −∆(|T |+ 1) =

b−
∑
j∈N1

aj+
∑

j∈N1−N ′1

αj−
∑
j∈C′

aj−b+
∑
j∈C

aj−ap+
∑
j∈N1

aj−∆|T | =
∑

j∈N1−N ′1

αj+
∑

j∈C−C′
aj−ap−∆|T |.

Note that aj ≥ ap ∀j ∈ C, and that since ap > ∆, αj ≥ ∆ ∀j ∈ N1. Thus, if C − C ′ 6= ∅ or
αj = max{ap, aj} for some j ∈ N1−N ′1, αt ≥ ∆(|T |+ 1)−∆|T | = ∆. If, on the other hand,
C − C ′ = ∅ and αj = aj + ∆ ∀j ∈ N1 −N ′1,

∑
j∈N1−N ′1

αj +
∑

j∈C−C′
aj − ap −∆|T | =

∑
j∈N1−N ′1

aj + ∆ + ∆(|N1 −N ′1| − 1)− ap −∆|T | =

∑
j∈N1−N ′1

aj + b−
∑
j∈C

aj + ap −
∑
j∈N1

aj + ∆(|N1 −N ′1| − 1)− ap −∆|T | ≥

b−
∑
j∈C

aj −
∑
j∈N ′1

aj + ∆(|T |+ 1)−∆|T | > ∆,

where the last inequality follows from
∑
j∈C′ aj +

∑
j∈N ′1 aj < b and C = C ′. Now assume

that
∑
j∈C ajx̂j +

∑
j∈N1

ajx̂j = b. Because of (41), C − C ′ = ∅, and from Proposition 1 we
may assume that x̂j = 1 ∀j ∈ N ′1. Thus,

αt = b−
∑
j∈N1

aj +
∑
j∈N1

αj − b+
∑
j∈N1

ajx̂j −∆(|T |+ 1)−
∑
j∈N1

αjx̂j =∑
j∈N1−N ′1

(αj − aj)−∆(|T |+ 1). (53)

Because C ′ = C, |N1 −N ′1| ≥ 2. So let u ∈ N1 −N ′1. Then,

∑
j∈C

ajx̂j +
∑
j∈N ′1

aj = b⇒
∑
j∈C

aj +
∑
j∈N ′1

aj ≥ b⇒

∑
j∈C

aj +
∑
j∈N ′1

aj + au ≥ b+ au ⇒
∑
j∈C

aj +
∑
j∈N ′1

aj + au +
∑

j∈(N1−N ′1)−{u}
aj ≥ b+ au ⇒

∑
j∈C

aj ≥ b−
∑
j∈N1

aj + au ⇒ ap ≥ ∆ + au ⇒ αu = ∆ + au.

Thus, αj = aj + ∆ ∀j ∈ N1 −N ′1, and therefore, (53) implies that

αt = |N1 −N ′1|∆−∆(|T |+ 1) ≥ ∆,
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where the last inequality follows from (52) and C = C ′. Thus, if x̂j > 0 ∀j ∈ T ∪ {l}, the
objective function of (50) is not better than ∆.

Suppose x̂v = 0 for some v ∈ T ∪ {l}. Because av = 0, x′ given by

x′j =


x̂j if j 6= v and j 6= t
x̂t if j = v
0 if j = t

belongs to PS(N0 − (T ∪ {l, t}), ∅). Thus,

∑
j∈C

ajx
′
j + ∆x′l + ∆

∑
j∈T

x′j +
∑
j∈N1

αjx
′
j + αtx

′
t ≤ b+

∑
j∈N1

(αj − aj), (54)

and

∑
j∈C

ajx̂j + ∆x̂l + ∆
∑
j∈T

x̂j +
∑
j∈N1

αjx̂j + αtx̂t = b+
∑
j∈N1

(αj − aj). (55)

Subtracting (55) from (54), we obtain αt ≥ ∆. Thus, αj = ∆ ∀j ∈ N0 − {l} with aj = 0.
Finally, let R = {j ∈ N0 − {l} : aj = 0}. We now lift

∑
j∈C

ajxj + ∆xl + ∆
∑
j∈R

xj +
∑
j∈N1

αjxj ≤ b+
∑
j∈N1

(αj − aj) (56)

with respect to xj for j ∈ N0 − (R ∪ {l}), and we we show that the lifting coefficients are
greater or equal to ∆ as follows. First note that if i, j ∈ N with ai > 0 and aj = 0, and x̃ is
a feasible solution with x̃i > 0 and x̃j = 0, there is another feasible solution x̃′ that is equal
to x̃, except that x̃′i = 0 and x̃′j = x̃i. If

∑
j∈N αjxj ≤ α0 is a valid inequality for PS that

is satisfied at equality by x̃, then αi ≥ αj. In our case, αj = ∆. Because x̃ may not exist,
we consider a higher dimensional polytope in which x̃ exists, and we use Proposition 10 to
establish the claim.

So, consider the polytope

P̃S = conv({x ∈ [0, 1]n+K−1 :
n∑
j=1

ajxj ≤ b and at most K variables can be positive}).

Clearly PS and P̃S({xn+1, . . . , xn+K−1}, ∅) are isomorphic. Also, it is clear that (56) is facet-
defining for P̃S({xn+1, . . . , xn+K−1} ∪N0 − (R ∪ {l}), ∅), and if we lift (56) with respect to
xn+1, . . . , xn+K−1, we obtain

∑
j∈C

ajxj + ∆xl + ∆
∑
j∈R

xj +
∑
j∈N1

αjxj + ∆
n+K−1∑
j=n+1

xj ≤ b+
∑
j∈N1

(αj − aj), (57)

which is facet-defining for P̃S(N0 − (R ∪ {l}), ∅). Let αj be the lifting coefficient of xj
∀j ∈ N0 − (R ∪ {l}). Let g ∈ N0 − (R ∪ {l}), and x(1) ∈ P̃S be such that x(1)

g > 0 and it
satisfies
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∑
j∈C

ajxj+∆xl+∆
∑
j∈R

xj+
∑
j∈N1

αjxj+∆
n+K−1∑
j=n+1

xj+
∑

j∈N0−(R∪{l})
αjxj ≤ b+

∑
j∈N1

(αj−aj), (58)

at equality. Because at most K variables can be positive, one of x
(1)
j , j ∈ R∪{n+ 1, . . . , n+

K − 1, l} must be 0. Let h ∈ R ∪ {n+ 1, . . . , n+K − 1, l}, and assume that x
(1)
h = 0. Now,

let x(2) ∈ P̃S be given by

x
(2)
j =


x

(1)
j if j 6= g or j 6= h
x(1)
g if j = h

0 if j = g.

Since x(2) satisfies (58), αg ≥ ∆. Thus,

αj ≥ ∆ ∀j ∈ N0 − (R ∪ {l}). (59)

From Proposition 10, it follows that the lifting coefficient of xj, j ∈ N0− (R∪{l}) is greater
or equal to ∆ if (57) is lifted with respect to xj, j ∈ N0 − (R ∪ {l}) before it is lifted with
respect to xn+1, . . . , xn+K−1. This means that (42) is valid for P̃S({xn+1, . . . , xn+K−1}, ∅),
and therefore it is valid for PS. 2

As a consequence of Proposition 12, we have

Theorem 4 If aj ≤ ∆ ∀j ∈ N0, (42) is facet-defining for PS.

Proof Let αj be the lifting coefficient of xj for j ∈ N0, as in the proof of Proposition 12.
We know that αj = ∆ ∀j ∈ N0 such that aj = 0. Let t ∈ N0 with at > 0. If at ≤ ∆, then∑
j∈C−{p} aj +

∑
j∈N1

aj + at ≤ b. This means that the point x∗ given by

x∗j =

{
1 if j ∈ (C − {p}) ∪N1 ∪ {t}
0 otherwise

belongs to PS, and therefore∑
j∈C

ajx
∗
j +

∑
j∈N0

αjx
∗
j +

∑
j∈N1

αjx
∗
j ≤ b+

∑
j∈N1

(αj − aj),

or, ∑
j∈C−{p}

aj + αt +
∑
j∈N1

αj ≤ b+
∑
j∈N1

(αj − aj),

and thus, αt ≤ ∆. However, from (59), we know that αt ≥ ∆. So, αt = ∆, and (42) is
facet-defining for PS. 2
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Example 4 Let n = 5, K = 3, and (1) be given by

5x1 + 5x2 + 3x3 + 0x4 + 0x5 ≤ 9.

Then,

5x1 + 5x2 + 4x3 + 4x4 + 4x5 ≤ 13

is facet-defining for PS, where C = {1, 2}, N0 = {3, 4}, and N1 = {5}. 2

4 Computational Experience

We tested the performance on difficult instances of CCOP of the

• MIP formulation, in which one introduces in the model auxiliary 0-1 variables, and
models Constraint (2) with Constraints (5) and (6)

• continuous formulation, in which one keeps in the model only the continuous variables,
and enforces Constraint (2) algorithmically through a branch-and-bound algorithm by
using a specialized branching scheme

• continuous formulation through a branch-and-cut algorithm by using a specialized
branching scheme and the lifted cover inequalities introduced in Section 3 as cuts.

The number of knapsack constraints, m, and the number of variables, n, in the instances
of CCOP tested are given in the first column of Table 1. We tested 3 different instances for
each pair m×n. The cardinality of the instances, K, is given in the second column of Table
1. The last column of Table 1 gives the densities of the constraint matrices, which are equal
to

100× number of nonzero coefficients of the knapsack constraints

mn
.

The instances with same m and n had the same cardinality and density.
The instances were randomly generated as follows. The profit coefficients cj, j ∈ N , were

integers uniformly generated between 10 and 25. The knapsack coefficients, aij, i ∈M, j ∈ N ,
were integers uniformly generated between 5 and 20. The m×density indices of the nonzero
knapsack coefficients were uniformly generated between 1 and n. The right-hand-sides of
the knapsack constraints were given by

bi = max{b.3
∑
j∈N

aijc, greatest coefficient of the ith knapsack + 1}, i ∈M.

The values of K and of the densities of the coefficient matrices were chosen by selecting the
hardest values determined by performing preliminary computational tests.
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Table 1: Cardinality and density

m× n K % density
20× 500 150 50
20× 1, 000 300 50
20× 1, 500 450 50
20× 2, 000 600 30
20× 2, 500 750 42
30× 3, 000 1,000 33
30× 3, 500 1,000 28
50× 4, 000 1,000 25
50× 4, 500 2,000 30
50× 5, 000 2,000 20
50× 5, 500 2,000 18
50× 6, 000 2,000 16
50× 6, 500 1,000 15
50× 7, 000 2,000 14
70× 7, 500 2,000 13
70× 8, 000 3,000 25

The continuous formulation was tested using MINTO 3.0 [23] with CPLEX 6.6 as LP
solver. Our motivation for using MINTO was the flexibility that it offers to code alternative
branching schemes, feasibility tests, and separation routines. Initially we implemented the
MIP formulation with MINTO. However, MINTO proved to be too slow when compared to
CPLEX 6.6 to solve the MIPs. Also, CPLEX 6.6 has Gomory cuts, which we thought could
be helpful in reducing the effort required to complete the enumeration [2]. Ultimately, by
using CPLEX 6.6 to run the MIPs, we wanted to give the MIP formulation its best chance,
even though in principle this would be unfair to the continuous formulation.

4.1 Specialized Branching Scheme for the Continuous Formula-
tion

We adopted the specialized branching scheme proposed by Bienstock in [6]. Suppose that
more than K variables are positive in a solution x̃ of the LP relaxation of CCOP, and that
x̃l is one of them. Then, we may divide the solution space by requiring in one branch, which
we call down, that xl = 0, and in the other branch, which we call up, that

∑
j∈N−{l}

xj ≤ K − 1. (60)

Let Sdown = S ∩ {x ∈ <n : xl = 0} and Sup = S ∩ {x ∈ <n : x satisfies (60)}. Clearly
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S = Sdown ∪ Sup, although it may happen that x̃ ∈ Sup.
In general, suppose that at the current node of the enumeration tree the variables xj, j ∈

F , are free, i.e. have not been branched on, and that t variables have been branched up. We
branch at the current node on variable xp by imposing in the down branch that xp = 0, and
in the up branch that ∑

j∈F−{p}
xj ≤ K − t− 1.

Even though the current LP relaxation solution may reoccur in the up branch, this branching
scheme ends within a finite number of nodes, since we can fathom any node that corresponds
to K up branches.

4.2 Cuts for the Continuous Formulation

Since each knapsack constraint of CCOP has a large number of 0 coefficients in the data
we used to test CCOP, the conditions of Proposition 6 are satisfied in general, and (10) is
facet-defining for the convex hull of the feasible sets of the instances tested. Because of this,
we included (10) in the initial formulation (LP relaxation) of the instances of CCOP we
tested, which considerably tightened the model.

Initially, we wanted to use (27) of Theorem 2 in a preprocessing phase to tighten any
inequality in the initial formulation for which

aij < bi −
K−1∑
l=1

ail (61)

for some i ∈ M, j ∈ N . However, we did not detect condition (61) in any of the instances
we tested. Note that the specific way we defined bi, i ∈ M , in the instances was such that
the knapsack inequalities were already tight, in the sense that condition (61) is not satisfied.
On the other hand, in real world instances, where many times models are not tight when
defined, (27) might be useful.

We also wanted initially to use (38) to define the up branches every time it was stronger
than (10), as would happen if the conditions of Theorem 3 were present in at least one of
the knapsack constraints. However, because of the number of 0 coefficients in the data we
tested, in general ai1 +

∑n
j=n−K+2 aij ≤ bi, i ∈M .

We used (42) as a cut. Unlike (27) and (38), (42) proved to be very useful in the instances
we tested, and therefore we used it in our branch-and-cut algorithm.

Given a point x̃ that belongs to the LP relaxation of CCOP and that does not satisfy
(2), to find a violated inequality (42), we have to select disjoint subsets C,N1 ⊂ N , such
that C 6= ∅, |C| + |N1| = K,

∑
j∈C aij +

∑
j∈N1

aij > bi,
∑
j∈C−{p} aij +

∑
j∈N1

aij < bi, with
aip = min{aij : j ∈ C}, aij = 0 for some j ∈ N − (C ∪N1) with x̃ij > 0, and

∑
j∈C

aijx̃j + ∆
∑
j∈N0

x̃j +
∑
j∈N1

αjx̃j > bi +
∑
j∈N1

(αj − aij), (62)
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where N0 = N− (C∪N1). It appears then the separation problem for (42) is difficult. Thus,
we used a heuristic, which we now describe, to solve the separation problem.

Let i ∈ M be such that
∑
j∈N aijx̃i = bi. Because the terms corresponding to j ∈ C in

(42) are aijxj, we require that aij > 0 and x̃j > 0 ∀j ∈ C. Because j ∈ N1 contributes αjxj
to the left-hand-side and αj to the right-hand-side of (42), we require that x̃j = 1 ∀j ∈ N1.
Since C cannot be empty, we first select its elements. We include in C as many j ∈ N with
aij > 0 and x̃j ∈ (0, 1) as possible, up to K elements. If |C| = K, we include in N0 every
j ∈ N −C (in this case N1 = ∅). If |C| < K, we include in N1 all j ∈ N −C with x̃j = 1, in
nonincreasing order of aij until |C| + |N1| = K or there are no more components of x̃ with
x̃j = 1. If |C|+ |N1| < K or if there is no j ∈ N − (C ∪N1) with aij = 0 and x̃j > 0, we fail
to generate a cut for x̃ out of row i. If |C|+ |N1| = K and ∃j ∈ N − (C ∪N1) with aij = 0
and x̃j > 0, we make N0 = N − (C ∪N1). Finally, if (62) holds, we succeed in generating a
cut for x̃ out of row i. Otherwise, we fail.

The following example comes from our preliminary computational experience.

Example 5 Let m = 2, n = 100, and K = 20. The solution of the LP relaxation is x̃
given by x̃1 = x̃11 = x̃17 = x̃22 = x̃43 = x̃45 = x̃56 = x̃57 = x̃60 = x̃61 = x̃62 = x̃64 =
x̃68 = x̃70 = x̃79 = x̃80 = x̃86 = x̃95 = 1, x̃19 = 0.434659, x̃75 = 0.909091, x̃78 = 0.65625, and
x̃j = 0 otherwise. (Note that 3 variables are fractional even though m = 2. This is because
(10) was included in the original formulation.) Let N ′0 = {j ∈ N : x̃j = 0}. Below we give
the terms of one of the knapsack constraints for which x̃j > 0 and aij > 0:

14x1 + 30x11 + 32x19 + 20x22 + 12x45 + 14x56 + 12x61 + 24x70 + 32x75 + 24x79 ≤ 193.

The 18 components of x̃ equal to 1 are all included in N1, i.e. N1 = {1, 11, 17, 22, 43, 45,
56, 57, 60, 61, 62, 64, 68, 70, 79, 80, 86, 95}. The sets C = {19, 75} and N0 = {78} ∪ N ′0,
∆ = 11, and the inequality (42) is

32x19+32x75+11x78+11
∑
j∈N ′0

xj+25x1+32x11+11x17+31x22+11x43+23x45+25x56+11x57+

11x60 + 23x61 + 11x62 + 11x64 + 11x68 + 32x70 + 32x79 + 11x80 + 11x86 + 11x95 ≤ 376. (63)

Since this inequality is violated by x̃, it is included in the formulation at the root node.
Because we fail to generate a cut for x̃ out of the other knapsack inequality, this is the
only cut included at this time, and we re-solve the LP relaxation with (63) included in the
formulation.

2

We search for a cut (42) for x̃ from every knapsack inequality (7) and we include in the
formulation at the current node as many cuts as we can find. In the case where we find cuts,
we re-solve the LP relaxation with the cuts added. Otherwise, we branch. We search for
cuts at every node of the enumeration tree.
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4.3 Branch-and-Bound Alternatives

We performed preliminary tests with MINTO’s pre-processing and node selection alterna-
tives. The ones that performed best were: perform pre-processing and limited probing,
and use best-bound node selection. We then used these options in our computation for the
continuous formulation. For variable selection in Bienstock’s branching scheme we used a
least index rule, i.e. select for branching the positive variable with least index. We used the
default options of CPLEX to test the MIP formulation.

4.4 Computational Results

We used a Sun Ultra 2 with two UltraSPARC 300 MHz CPUs and 256 MB memory to
perform the computational tests. The results are summarized in Table 2. Table 2 gives,
for each pair m × n, the average number of nodes , CPU seconds, and number of cuts for
the MIP and continuous formulations. The second column gives the average number of
nodes over the 3 instances with the same m and n generated by CPLEX 6.6 to solve the
MIP formulation to proven optimality. The next column, Cont. B&B, gives the average
number of nodes generated by MINTO 3.0 to solve the continuous formulation exactly with
Bienstock’s branching scheme without the use of cuts, i.e. through a pure branch-and-bound
approach. The following column, Cont. inc. (42), gives the number of nodes generated by
MINTO 3.0 to solve the continuous formulation exactly with Bienstock’s branching scheme
and (42) as cuts, i.e. through a branch-and-cut approach. The column “% Red.” gives
the percentage reduction in number of nodes by using the continuous formulation and a
branch-and-cut algorithm with (42) as cuts over the MIP formulation. Note that overall, the
percentage reduction in number of nodes by using branch-and-cut over branch-and-bound for
the continuous formulation was 70%. This means that the use of a branch-and-cut approach
to solve the continuous formulation can be considerably more effective than pure branch-
and-bound. The great overall reduction of 97% in the average number of nodes by using the
continuous formulation with a branch-and-cut approach over the MIP approach indicates
that by adding auxiliary 0-1 variables and enforcing (2) through their integrality does not
take as much advantage of the combinatorial structure of the problem as in the continuous
approach, where we fathom a node when (2) is satisfied, and where we branch by using
Bienstock’s scheme. As mentioned in Section 4.2, (10) is usually facet-defining, and thus
using it to define the up branches may considerably help to reduce the upper bound on the
up branches.

The four columns under “Time” in Table 2 have similar meanings to the four columns
under “Nodes”. The overall time reduction by using (42) as cuts in a branch-and-cut scheme
to solve the continuous formulation over pure branch-and-bound was 62%, which indicates
that a branch-and-cut approach may be considerably more efficient to solve the continuous
formulation than branch-and-bound.

Because CPLEX 6.6 is much faster than MINTO 3.0, the overall time reduction of 78%
of branch-and-cut on the continuous formulation over the MIP formulation is significant. We
believe that such a great time reduction is not just the result of the reduction in the number
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of nodes, but also due to the fact that the size of the MIP formulation is 2 times greater
than the continuous formulation, which becomes significant in the larger instances. Also,
the degeneracy introduced by the variable upper bound constraints (5) may be harmful.

The only cuts generated by CPLEX 6.6 with default options were the Gomory cuts.
The column Cuts Gomory at the end of Table 2 gives the average number of Gomory cuts
generated by CPLEX 6.6. As we mentioned in Section 4, initially we tested the MIP approach
with MINTO 3.0. MINTO generated a very large number of lifted flow cover inequalities
(LFCIs), typically tens of thousands, even for the smallest instances. The reason is because
the violation tolerance for LFCIs in MINTO is much smaller than in CPLEX. To verify the
effectiveness of LFCIs in CPLEX we increased their violation tolerance. Our preliminary
tests indicated that even though LFCIs help reduce the integrality gap faster, they are not
effective in closing the gap, and we then kept CPLEX’s default. The average number of
Inequality (42) generated by MINTO is given in the last column of Table 2.

Table 2: Average number of nodes, time, and number of cuts for the MIP and the continuous
formulations

Nodes Time Cuts
m× n Cont. % Cont. % Gomory (42)

MIP B&B inc. (42) Red. MIP B&B inc. (42) Red.
20× 500 36,364 681 531 98 527 17 94 82 12 10
20× 1, 000 109,587 1,360 315 99 2,141 792 208 90 75 23
20× 1, 500 33,761 1,423 229 99 1,746 203 109 93 67 18
20× 2, 000 12,738 2,753 729 94 802 839 318 60 153 72
20× 2, 500 46,873 3,479 1,157 97 9,959 1,558 770 92 148 69
30× 3, 000 196,010 3,927 1,092 99 36,288 3,570 720 98 205 162
30× 3, 500 20,746 161 3 99 14,507 44 12 99 54 6
50× 4, 000 18,529 289 112 99 14,798 57 49 99 97 11
50× 4, 500 26,811 4,230 1,358 94 35,601 19,758 9,505 73 79 91
50× 5, 000 39,776 5,553 1,749 95 53,388 23,570 11,320 78 161 211
50× 5, 500 43,829 6,763 2,129 95 65,423 27,140 12,639 80 134 287
50× 6, 000 49,574 7,981 2,727 94 72,751 28,923 13,547 81 231 320
50× 6, 500 54,251 8,975 3,152 94 85,721 34,188 15,754 81 166 289
50× 7, 000 17,524 163 158 99 24,439 577 715 97 61 15
70× 7, 500 45,279 8,572 1,359 96 96,714 98,576 32,711 66 244 412
70× 8, 000 32,497 9,085 2,168 93 89,238 106,684 31,730 64 315 601
TOTAL 784,149 65,395 18,968 97 604,043 346,496 130,201 78 2,202 2,597

5 Further Research

Given the encouraging computational results in this paper, it is important to study the
following questions on branch-and-cut for CCOP:
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• how can lifted cover inequalities be separated efficiently?

• how can cover inequalities be lifted efficiently in any order, either exactly or approxi-
mately, to obtain strong cuts valid for PS?

• in which order should cover inequalities be lifted?

• are there branching strategies more effective than Bienstock’s [6]? (See [12] for an
alternative branching strategy.)

Note that it is not possible to complement a variable xj with aj < 0, as it is usually done
for the 0-1 knapsack problem, and keep the cardinality constraint (2) intact. This means that
Assumption 2. of Section 1 implies a loss of generality. Thus, it is important to investigate
the cardinality knapsack polytope when aj < 0 for some of the knapsack coefficients.

Besides cardinality, there exists a small number of other combinatorial constraints, such
as semi-continuous and SOS [12], that are pervasive in practical applications. We suggest
investigating their polyhedral structure in the space of the continuous variables, and com-
paring the performance of branch-and-cut without auxiliary 0-1 variables for these problems
against the usual MIP approach.

Recently, there has been much interest in bringing together the tools of integer program-
ming (IP) and constraint programming (CP) [29] in a unified approach. Traditionally in
IP, combinatorial constraints on continuous variables, such as cardinality, semi-continuous
or SOS are modeled as mixed-integer programs (MIPs) by introducing auxiliary 0-1 vari-
ables and additional constraints. Because the number of variables and constraints becomes
larger and the combinatorial structure is not used to advantage, these MIP models may not
be solved satisfactorily, except for small instances. Traditionally, CP approaches to such
problems keep and use the combinatorial structure, but do not use linear programming (LP)
bounds. In the approach used in this paper the combinatorial structure of the problem is
explored and no auxiliary 0-1 variables are introduced. Nevertheless, we used strong bounds
based on LP relaxations. As continued research, we suggest the use of this approach in a
combined IP/CP strategy to solve difficult instances of CCOP.
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