
Convex Programming Tools for

Disjunctive Programs

João Soares,
Departamento de Matemática,

Universidade de Coimbra,
Portugal

Abstract

A Disjunctive Program (DP) is a mathematical program whose feasible region is the con-
vex hull of the union of convex sets. The objective function is also convex. Disjunctive Pro-
gramming models are very frequent as a modeling framework for setup costs or constraints,
and models with constraints that are better expressed as disjunctions. Some Process Sinthe-
sis Design models arising from Chemical Engineering are mixed integer convex programming
models which are particular instances of a Disjunctive Program. In this talk we will address
questions that are raised when conceptualizing a Branch-and-cut algorithm for mixed-integer
convex programming.

1 Introduction

The process synthesis network problem problem in Chemical Engineering is the problem of
simultaneously determining the optimal structure and operating parameters for a chemical
synthesis problem. This problem can be modeled as a mixed 0-1 convex program where the
continuous variables represent process parameters such as flowrates and the 0-1 variables
represent the potential existence of a process unit. The nonlinear elements come from the
intrinsic nonlinear input-output performance equations of some process units, see [3] where
this model is proposed and [8, 4] for related models.

Other models of Network Design in communication and transportation networks are
discrete by nature. The 0-1 variables represent the potential existence of multiplexers, con-
centrators, or interface message processors in computer communication networks, junctions
in pipeline networks, interchanges in highway networks, and so on. Discrete variables may
also represent the discrete quantity of physical arc units of certain characteristics between
two junctions of the network. In a simple model, described in [5], the nonlinear element
comes from modelling delay at some link (i, j) as proportional to the fraction of the rate of
messages crossing the link (i, j) to the available capacity of the same link.

We propose a cutting-plane algorithm for solving the following mathematical program
that we will refer to as a mixed zero-one convex program,

min f(x)
s.t. G(x) ≤ 0

xi ∈ {0, 1}, i = 1, . . . , p,
(1)

1

where f : IRn → IR is a closed convex function and G: IRn → IRm is a vector function of
closed convex functions. The variables xi, for i = 1, . . . , p, are zero-one constrained and the
variables xi, for i = p + 1, . . . , n, are simply nonnegative. We will further assume that both
f and G are continuous in an open set containing the continuous relaxation, i.e., when {0, 1}
is replaced by [0, 1].

Our work extends to the nonlinear setting the lift-and-project approach of Balas, Ceria
and Cornuéjols [1, 2], which is seen as one of the most important practical contributions
to the solution of mixed zero-one linear programs by general-purpose cutting-plane based
algorithms since the work of Gomory in the sixties. As proposed by Stubbs and Mehrotra
[7], we solve the cut generation problem in its dual form. Some of the distinctive features of
our algorithm are the following: our algorithm guarantees the existence of a cut whenever
an optimal solution was not yet found; we solve the cut generation problem using standard
nonlinear programming algorithms; and, we fully extend the lifting procedure to the nonlinear
setting.

The article is structured in the following way. In Section 2 we describe the basic cutting-
plane algorithm specialized to solve Program (1). In Section 3 we explain how the cut
generation problem can be solved in a smaller-dimension space, taking advantage of the fact
that some variables are already integral. In the talk, the algorithm will be illustrated on a
small example. A practical implementation of this method is part of an ongoing research
project.

2 The basic cutting plane algorithm

Our approach requires that we use the following equivalent formulation of program (1),

min xn+1

s.t. f(x) ≤ xn+1

G(x) ≤ 0
xi ∈ {0, 1}, i = 1, . . . , p.

(2)

Since f is convex then this formulation is still a mixed zero-one convex program. Moreover,
the feasible region K can be replaced by P = conv (K) without loss of generality, where we
note that P is closed. As a matter of notation, we will still use the same f(x) and G(x)
eventhough we are refering to these functions as functions of the first n components of the
vector x that now lies in IRn+1.

A specialization of the basic cutting-plane algorithm is presented in Figure 1. The algo-
rithm requires performing three basic steps in each iteration. In the first step, the relaxation
step, we seek an optimal solution x̄ of the following convex program

min xn+1

s.t. x ∈ P̄ ,
(3)

whose feasible region P̄ is defined by

P̄ ≡
{

x ∈ IRn+1:
f(x) ≤ xn+1, aix ≤ bi, i = 1, . . . ,m1,
G(x) ≤ 0, xi ∈ [0, 1], i = 1, . . . , p,

}
, (4)

where m1 is the number of cuts generated so far. In the second step, the optimality check
step, we try to reduce as much as possible the number of fractional components of x̄ while
keeping the same value of the component x̄n+1. In the third step, the separation step, we

2

use the last index j tried in the second step to define the following disjunctive programming
relaxation P̄j of P ,

P̄j ≡ conv
((

P̄ ∩ {x:xj = 0}
)
∪
(
P̄ ∩ {x:xj = 1}

))
. (5)

The following proposition shows that a nonoptimal x̄ 6∈ P̄j , from where we are able to
guarantee the existence of a separating hyperplane.

Proposition 1 In each iteration of the algorithm BCP4MINLP, Step 2 is performed at most
p times. Moreover, if j is the last index tried in Step 2 then either x̄ is optimal or x̄ 6∈ P̄j.

Proof: We recall that in Step 2 of the algorithm BCP4MINLP, the integer-constrained
variables are sequentially fixed at one of their bounds, zero or one, until an index j is found
such that

min
i=0,1

 min xn+1

s.t. x ∈ P̄ ,
xF ′ = x̄F ′ , xj = i

 > x̄n+1, (6)

where F ′ identifies the variables that are fixed in the process. Since F ′ can have at most p
elements then Step 2 is performed at most p times until either (6) holds or all the integer
constrained variables are fixed in which case we would have found an optimal solution.

Now, we prove the second part of this proposition. Let j be the last index tried in
Step 2 so that (6) holds. Assume, by contradiction, that x̄ ∈ P̄j . Then, the point x̄ can be
represented by one of the following three possible ways:

a. x̄ = δz + (1− δ)y, where δ ∈ (0, 1), z ∈ P̄ ∩ {x:xj = 0} and y ∈ P̄ ∩ {x:xj = 1};
b. x̄ = z + dy, where z ∈ P̄ ∩ {x:xj = 0} and dy is a direction of the set P̄ ∩ {x:xj = 1}

if this set is nonempty or the zero vector otherwise.

c. x̄ = dz + y, where y ∈ P̄ ∩ {x:xj = 1} and dz is a direction of the set P̄ ∩ {x:xj = 0}
if this set is nonempty or the zero vector otherwise.

If x̄ can be decomposed as in a. then, since x̄k ∈ {0, 1}, for every k ∈ F ′, we must have
zk = yk = x̄k, for every k ∈ F ′. Thus,

x̄ ∈ conv
((

P̄ ∩ {x:xF ′ = x̄F ′ , xj = 0}
)
∪
(
P̄ ∩ {x:xF ′ = x̄F ′ , xj = 1}

))
which contradicts (6). If x̄ can be decomposed as in b. then, since dyi = 0, for every
i ∈ {1, . . . , p}, zk = x̄k, for every k ∈ F ′ ∪ {j}. Thus, x̄ ∈ P̄ ∩ {x:xF ′ = x̄F ′ , xj = 0} which
contradicts (6) once again. If x̄ can be decomposed as in c. an analogous argument as in b.
applies. 2

3 The cut generation problem

We explain how the cut generation solution procedure should be implemented to take advan-
tage of the fact that many variables have been fixed during the second step of the algorithm
BCP4MINLP. Our cut generation problem uses the following duality result

sup αx̄− β
s.t. (α, β) ∈ polar (P̄j),

‖αF ‖∗ ≤ 1
=

inf ‖x− x̄‖
s.t. x ∈ P̄j ,

xF ′ = x̄F ′ .
(7)

3

Data: Functions f and G. The scalars n and p.
Initialization: Set k = 0 and define P 0 as

P 0 ≡
{

x ∈ IRn+1:
f(x) ≤ xn+1,
G(x) ≤ 0, xi ∈ [0, 1], i = 1, . . . , p,

}
,

Iteration-k:

Step 1: (Relaxation) Let x̄ be the optimal solution of
min xn+1

s.t. x ∈ P k ,

Step 2: (Optimality check) Define F ≡ {j ∈ {1, . . . , p}: 0 < x̄j < 1} and
F ′ = {1, . . . , p} \ F . If F is empty then stop: x̄ is an optimal solution
and x̄n+1 is the optimal value. Otherwise, let j ∈ F .

Step 2.1: Find an optimal solution x̂ of

min


min xn+1

s.t. x ∈ P k

xF ′ = x̄F ′

xj = 0

,

min xn+1

s.t. x ∈ P k

xF ′ = x̄F ′

xj = 1


Step 2.2: If x̂n+1 = x̄n+1 then let x̄ = x̂ and restart Step 2;

Otherwise set xk = x̄ and continue to Step 3.

Step 3: (Separation) Let j be the last index tried in Step 2. Find a
separating hyperplane “ak+1x ≤ bk+1” between P k

j and xk.
Define P k+1 = P k ∩

{
x: ak+1x ≤ bk+1

}
and set k := k + 1.

Figure 1: The basic cutting-plane algorithm for mixed zero-one convex programming
(BCP4MINLP)

4

Let us assume without loss of generality that the relaxation P̄ is defined by

P̄ ≡ {x ∈ IRn: G(x) ≤ 0, x ≥ 0, xi ≤ 1, i = 1, . . . p} . (8)

and P̄j is defined by (5). Let F be an index set that may or may not be related to the Step 2 of
the cutting-plane algorithm, and F ′ = {1, . . . , n}\F be its complement. If x̂ = (x̂F , x̄F ′) ∈ P̄j

is a known optimal primal solution in (7) then the subgradient ξ̂ = (ξ̂F , ξ̂F ′) of the function

f(x) =
{
‖xF − x̄F ‖ if xF = x̄F ,
+∞ otherwise, (9)

at the point x̂ that satisfies ξ̂(x− x̂) ≥ 0, for every x ∈ P̄j , defines an optimal dual solution
(α̂, β̂) ∈ polar (P̄j).

However, the main purpose of (7) is to define the cut generation problem using a smaller
number of variables. This means that after solving the primal problem

min ‖xF − x̄F ‖
s.t. xF ∈

{
xF : (xF , x̄F ′) ∈ P̄j

} (10)

we have at hand an optimal primal solution x̂F and a subgradient ξ̂F of the function ‖·−x̄F ‖
at x̂F , such that ξ̂F (xF − x̂F) ≥ 0, for every xF ∈

{
xF : (xF , x̄F ′) ∈ P̄j

}
. Thus, a natural

question is whether we can extend ξ̂F so that ξ̂ = (ξ̂F , ξ̂F ′) is a subgradient of the function f

defined by (9) at x̂ = (x̂F , x̄F ′) that satisfies ξ̂(x− x̂) ≥ 0, for every x ∈ P̄j . Another natural
question is whether we can apply a similar mechanism even when x̂F is not optimal.

Our answers to these questions require that x̄F ′ = 0. This can be done without loss of
generality because when x̄k, for some k ∈ F ′, is nonzero then as long as it coincides with one
of its bounds on Program (2) a variable transformation allows for the requirement to hold.
In this setting, xF is feasible for Program (10) if and only if xF belongs to

conv
({

xF : (xF , 0) ∈ P̄ , xj = 0
}
∪
{
xF : (xF , 0) ∈ P̄ , xj = 1

})
. (11)

Note that the two individual sets that define this convex hull are the feasible regions in
(6) and consequently at the end of Step 2 we already know whether those sets are empty
or nonempty. This feature is important because it determines which is the best solution
procedure to use on Program (10). If both sets are nonempty then the program can be
handled using the solution procedures described on Sections 5.4 and 5.5 of [6]. If one of
them is empty then Program (10) is a standard convex program, and may therefore be
solved by a standard nonlinear programming algorithm. If the two sets are empty then there
is no feasible solution x to Program (2) such that xF ′ = x̄F ′ . In this case the following
inequality ∑

k∈F ′:x̄k=0

xk +
∑

k∈F ′:x̄k=1

(1− xk) ≥ 1,

separates x̄ from the convex hull of the feasible region of Program (2).
Now, we explain how the lifting procedure works under two distinct situations, depending

on the fact that one or none of the sets in (11) is empty. We start by assuming that none of
them is empty. Let x̂F be a feasible solution for Program (10) and ξ̂F be a subgradient of
the function ‖ · −x̄F ‖ at x̂F such that for a given scalar β satisfying ξ̂F x̄F < β the following
holds

min
i=0,1

 min ξ̂F zF

s.t. (zF , 0) ∈ P̄ ,
zj = i

 ≥ β. (12)

5

We remark that x̂F need not be optimal for Program (10), though if it were optimal then
the existence of a subgradient and a scalar satisfying (12) would be guaranteed. Under a
constraint qualification, the optimal solution ẑi

F of each one of the problems in (12) also
solves a linear program defined by a suitable matrix Ai ∈ ∂G(ẑi

F , 0) so that

min
i=0,1


min ξ̂F zF

s.t.

 G(ẑi
F , 0) + Ai(zF − ẑi

F , 0) ≤ 0,
zk ≥ 0, k ∈ F, zj = i,
zk ≤ 1, k ∈ F ∩ {1, . . . , p},

 ≥ β (13)

The feasible region of each one of these linear programs defines an outer-approximation of
each one of the sets in (11). Our lifting procedure applies to these linear programs, so that by
the outer-approximation argument it also applies to our original nonlinear sets. Proposition 2
below describes the lifting mechanism in generic terms.

Proposition 2 Let F be an index set and F ′ = {1, . . . , n} \F . For a given arbitrary vector
αF , let ẑF be an optimal solution of the following linear program:

min αF zF

s.t. AF zF ≤ b,
lF ≤ zF ≤ uF ,

(14)

where lF and uF are the, possibly infinite, lower and upper bounds, AF ∈ IRm×|F | and
b ∈ IRm. Then, for any extended matrix A = [AF , AF ′] ∈ IRm×n there is a closed-form
extended vector α = (αF , αF ′) such that the vector ẑ = (ẑF , 0) is an optimal solution of the
following linear program:

min αz
s.t. Az ≤ b,

lF ≤ zF ≤ uF ,
zF ′ ≥ 0.

(15)

Proof: Let v̂ ≤ 0 be the optimal dual multipliers associated with the matrix constraints in
Program (14) and define

αk ≡ max

(
0,

m∑
l=1

v̂lalk

)
,

for every k ∈ F ′. Now, consider Program (15) and use the same dual variables to price the
new primal variables zk, for every k ∈ F ′. Since the reduced costs are ρk = αk−

∑m
l=1 v̂lalk ≥

0, for every k ∈ F ′, we conclude that ẑ = (ẑF , 0) is optimal for Program (15). 2

This proposition shows by construction how to define extended vectors ξ̂i = (ξ̂F , ξ̂i
F ′)

such that ẑi = (ẑi
F , 0), for i = 0, 1 are still optimal in the following linear programs

min
i=0,1


min ξ̂iz

s.t.

 G(ẑi) + Ai(z − ẑi) ≤ 0,
z ≥ 0, zj = i,
zk ≤ 1, k ∈ F ∩ {1, . . . , p},

 ≥ β (16)

whose feasible regions are larger than the set P̄ ∩ {x:xj = i}, respectively. Since zF ′ ≥ 0,
for every z ∈ P̄j , then

ξ̂ = (ξ̂F , max
i=0,1

(ξ̂i
F ′))

6

is a subgradient of f at x̂ such that ξ̂x ≥ β, for every x ∈ P̄j . Moreover, since ξ̂x̄ < β then
we have found a separating hyperplane.

Now, we assume that one of the sets in (11) is empty. Thus, Program (10) is solved as
a standard convex program because its feasible region is defined by the nonempty set only.
However, the fact that one of the sets in (11) is empty does not imply that the same has
to occur in (5), when the variables xF ′ are no longer fixed. Proposition 3 below describes
in generic terms how to define the extended vector ξ̂i = (ξ̂F , ξ̂i

F ′) so that ξ̂iz ≥ β, for every
z ∈ P̄ ∪ {x:xj = i}, when the set P̄ ∩ {x:xF ′ = 0, xj = i} is empty.

Proposition 3 Let F be an index set and F ′ = {1, . . . , n} \F . For a given arbitrary vector
αF , let ẑF be the optimal value of the following linear program:

min αF zF

s.t. AF zF ≤ b + t̂e,
lF ≤ zF ≤ uF ,

(17)

where lF and uF are the, possibly infinite, lower and upper bounds, AF ∈ IRm×|F |, b, e ∈ IRm

where e is a vector of “all-ones”, and t̂ ≡ min{t:AF zF ≤ b + te, lF ≤ zF ≤ uF } > 0. Then,
for any extended matrix A = [AF , AF ′] ∈ IRm×n and scalar β there is a closed-form extended
vector α = (αF , αF ′) such that αz ≥ β, for every z such that Az ≤ b, lF ≤ zF ≤ uF , zF ′ ≥ 0.

Proof: First, consider the linear program that defines t̂. Let (t̂, z̃) be an optimal solution
and ŵ be the optimal dual multipliers associated with the matrix constraints. Then,

t̂ = ŵb + γ̂F z̃F , (18)

where γ̂k = 0 −
∑m

l=1 ŵlalk is the reduced cost associated with the variable zk, for each
k ∈ F .

Now, consider Program (17) and let v̂ be the optimal dual multipliers associated with
the matrix constraints. Then,

αF ẑF = v̂
(
b + t̂e

)
+ ρ̂F ẑF

⇐⇒ αF ẑF − t̂v̂e = v̂b + ρ̂F ẑF , (19)

where ρ̂k = αk −
∑m

l=1 v̂lalk is the reduced cost associated with the variable zk, for each
k ∈ F .

If β ≤ αF ẑF − t̂v̂e then define αk = max(0,
∑m

l=1 v̂lalk), for every k ∈ F ′. For every z
such that Az ≤ b, lF ≤ zF ≤ uF , zF ′ ≥ 0 we have that

αz = αF zF + αF ′zF ′

≥
∑
k∈F

(
ρ̂k +

m∑
l=1

v̂lalk

)
zk +

∑
k∈F ′

(
m∑

l=1

v̂lalk

)
zk (20)

= ρ̂F zF + v̂Az

≥ ρ̂F zF + v̂b (21)
≥ ρ̂F ẑF + v̂b (22)
= αF ẑF − t̂v̂e (23)
≥ β, (24)

where the inequality (20) follows from the definition of ρ̂F , the definition of αF ′ and the fact
that zF ′ ≥ 0; the inequality (21) follows from the fact that v̂ ≤ 0 and Az ≤ b; the inequality

7

(22) follows the fact that ρ̂k(zk − ẑk) ≥ 0, for every k ∈ F , which is consequence of the
values of the reduced costs at optimality; the inequality (23) follows from (19); and finally
the inequality (24) holds by hypothesis.

If β > αF ẑF − t̂v̂e then a similar formula works but we need to increase v̂ by a suitable
positive multiplier of ŵ. Observe that ẑF is feasible for the linear program that defines t̂ and
so, from (18), we have that t̂ ≤ ŵb + γ̂F ẑF , or equivalently,

β −
(
αF ẑF − t̂v̂e

)
≤ δŵb + δγ̂F ẑF , (25)

where δ =
(
β −

(
αF ẑF − t̂v̂e

))
/t̂ > 0. Now, define αk = max (0,

∑m
l=1 (v̂ + δŵ)l alk), for

every k ∈ F ′. For every z such that Az ≤ b, lF ≤ zF ≤ uF , zF ′ ≥ 0 we have that

αz = αF zF + αF ′zF ′

≥
∑
k∈F

(
ρ̂k +

m∑
l=1

v̂lalk

)
zk +

∑
k∈F ′

(
m∑

l=1

(v̂ + δŵ)l alk

)
zk (26)

= ρ̂F zF + (v̂ + δŵ) Az + δγ̂F zF

≥ ρ̂F zF + v̂b + δŵb + δγ̂F zF (27)
≥ ρ̂F ẑF + v̂b + δŵb + δγ̂F ẑF (28)
≥ ρ̂F ẑF + v̂b +

(
β −

(
αF ẑF − t̂v̂e

))
(29)

= β (30)

where the inequality (26) follows from the definition of ρ̂F , the definition of αF ′ and the fact
that zF ′ ≥ 0; the inequality (27) follows from the fact that v̂ + δŵ ≤ 0 and Az ≤ b; the
inequality (28) follows the fact that ρ̂k(zk − ẑk) ≥ 0 and γ̂k(zk − ẑk) ≥ 0, for every k ∈ F ,
which is consequence of the values of the reduced costs at optimality; the inequality (29)
follows from (25); and finally the equality (30) is a consequence of (19). 2

This result can be easily generalized to a situation in which a distinct t variable occurs
for each constraint. This is in fact the usual procedure with most phase-one implementations
of the Simplex algorithm for linear programs.

When solving a nonlinear program whose feasible region P̄ ∩{z: zF ′ = 0, zj = i} is empty,
most standard nonlinear programming algorithms are not ready to provide some point (t̂, z̃i

F)
that solves the following program

min t

s.t.

 G(zF , 0) ≤ te,
zk ≥ 0, k ∈ F zj = i,
zk ≤ 1, k ∈ F ∩ {1, . . . , p},

(31)

and in this way proving infeasibility. In fact, it may occur that what seems to be an infeasible
problem is just a numerical difficulty of meeting the constraints to a desired accuracy. The
solution of the program (31) provides a verification of infeasibility and, as saw in the proof
of Proposition 3, the dual variables that may be required for the lifting procedure. Since the
Slater condition holds, the optimal solution (t̂, ẑi

F) of Program (31) also solves the following
linear program defined by a suitable matrix Ai ∈ ∂G(ẑi

F , 0),

min t

s.t.

 G(ẑi
F , 0) + Ai(zF − ẑi

F , 0) ≤ te,
zk ≥ 0, k ∈ F, zj = i,
zk ≤ 1, k ∈ F ∩ {1, . . . , p},

(32)

8

Then, to complete the lifting procedure we just have to solve

min ξ̂F zF

s.t.

 G(ẑi
F , 0) + Ai(zF − ẑi

F , 0) ≤ t̂e,
zk ≥ 0, k ∈ F, zj = i,
zk ≤ 1, k ∈ F ∩ {1, . . . , p},

(33)

and, as explained in the proof of Proposition 3 we are now able to define ξ̂i = (ξ̂F , ξ̂i
F ′) ∈

∂f(x̂) such that ξ̂iz ≥ β, for every z ∈ P̄ ∩ {z: zj = i}. Since zF ′ ≥ 0, for every z ∈ P̄j , then
again

ξ̂ = (ξ̂F , max
i=0,1

(ξ̂i
F ′))

is a subgradient of the function f at x̂ such that ξ̂x ≥ β, for every x ∈ P̄j . Moreover, since
ξ̂x̄ < β then we have found a separating hyperplane.

References

[1] Egon Balas, Sebastián Ceria, and Gérard Cornuéjols. A lift-and-project cutting plane
algorithm for mixed 0-1 programs. Math. Programming, 58(3, Ser. A):295–324, 1993.

[2] E. Balas, S. Ceria, and G. Cornuejols. Mixed 0-1 programming by lift-and-project in a
branch-and-cut framework. Management Science, 42(9):1229–1246, Sep 1996.

[3] M. Duran and I. Grossmann. An outer-approximation algorithm for a class of mixed-
integer nonlinear programs. Mathematical Programming, 36:307–339, 1986.

[4] C. Floudas. Nonlinear and Mixed-integer Optimization. Oxford University Press, 1995.

[5] B. Gavish. Topological design of computer communication networks - the overall design
problem. European Journal of Operational Research, 58:149–172, 1992.

[6] J. Soares. Disjunctive Convex Optimization. PhD thesis, Graduate School of Business,
Columbia Univeristy, Jun 1998.

[7] Robert A. Stubbs and Sanjay Mehrotra. A branch-and-cut method for 0-1 mixed convex
programming. Math. Program., 86(3, Ser. A):515–532, 1999.

[8] M. Turkay and I. Grossmann. Disjunctive programming techniques for the optimization
of process systems with discontinuous investment costs - multiple size regions. Industrial
& Engineering Chemistry Research, 35:2611–2623, 1996.

9

