DEPARTAMENTO DE MATEMÁTICA DA UNIVERSIDADE DE COIMBRA

Álgebra Linear e Geometria Analítica I

Licenciatura em Matemática

Ano lectivo 2005/2006 Folha 10

- 128. Calcule uma base de cada um dos subespaços indicados.
 - (a) $\mathcal{L}\{(1,1,1,0),(1,0,1,0),(0,1,0,0),(-1,1,2,3)\};$
 - (b) $\{(\alpha + \beta + 2\gamma, \beta, \gamma) \in \mathbb{R}^3 : \alpha, \beta, \gamma \in \mathbb{R}\};$
 - (c) $\{(x, x, x, y) \in \mathbb{R}^4 : x, y \in \mathbb{R}\};$
 - (d) $\{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1 + x_2 = 0 \text{ e } x_3 = x_4 + x_1\};$
 - (e) $\{(0, x_2, x_3, x_4) \in \mathbb{R}^4 : x_2 + x_3 x_4 = 0\};$
 - (f) $\{(x_1,\ldots,x_n)\in\mathbb{R}^n: x_1+\cdots+x_n=0\}.$
- 129. Seja S um subconjunto finito de \mathbb{R}^n . Prove que para qualquer vector $v \in \mathbb{R}^n$ se verifica a seguinte equivalência

$$v \notin \mathcal{L}(S) \Leftrightarrow \dim \mathcal{L}(S \cup \{v\}) = 1 + \dim \mathcal{L}(S).$$

- 130. Demonstre que, se $S = \{v_1, v_2, \dots, v_k\}$ for um conjunto linearmente independente de vectores de \mathbb{R}^n , é possível acrescentar vectores a S de modo a obter uma base de \mathbb{R}^n .
- 131. Verifique que os vectores dados são linearmente independentes e estenda-os a uma base do subespaço indicado.
 - (a) $(3,2,1), (2,-1,-1) \in \mathbb{R}^3$;
 - (b) $(1,0,1,-1), (0,2,3,2) \in \mathbb{R}^4$:
 - (c) $(1, 1, 0, 0, 0), (0, 1, 1, 0, 0), (0, 0, 1, 1, 0) \in \mathbb{R}^5$;
 - (d) $(0,2,0) \in \mathcal{L}\{(0,2,0),(0,3,0),(1,0,0),(1,-5,0)\};$
 - (e) $(1,-1,0) \in \{(x,y,z) \in \mathbb{R}^3 : x+y=0\}.$
- 132. Prove que qualquer conjunto linearmente independente de \mathbb{R}^n com n vectores é uma base e qualquer conjunto gerador de \mathbb{R}^n com n vectores é uma base. (Por outras palavras, se o número de vectores for igual à dimensão, cada uma das propriedades que entram na definição de base implica a outra.)
- 133. Considere os vectores $v_1 = (2, -3, 1)$, $v_2 = (0, 1, 2)$ e $v_3 = (1, 1, -2)$ de \mathbb{R}^3 . Mostre que os vectores v_1, v_2 e v_3 constituem uma base de \mathbb{R}^3 e determine as coordenadas do vector (3, 2, 1) relativamente à base $\{v_1, v_2, v_3\}$.
- 134. Mostre que os vectores (a, b) e (c, d) constituem uma base de \mathbb{R}^2 se e só se $ad bc \neq 0$.
- 135. Seja $B=\{v_1,\ldots,v_n\}$ uma base de \mathbb{R}^n e u um vector não nulo de \mathbb{R}^n . Prove que existe $k\in\{1,\ldots,n\}$ tal que $\{v_1,\ldots,v_{k-1},u,v_{k+1},\ldots,v_n\}$ é base de V.
 - [Sugestão: Escreva $u = \sum_{i=1}^{n} \alpha_i v_i$ (porque o pode fazer?) e escolha k tal que $\alpha_k \neq 0$ (porque é que existe pelo menos um tal k?)

- 136. Determine a dimensão e indique duas bases diferentes para o subespaço de \mathbb{R}^3 gerado pelos vectores (1,2,3),(4,5,6) e (7,8,9).
- 137. Seja F um subespaço de \mathbb{R}^n . Prove que:
 - (a) $\dim F \leq \dim \mathbb{R}^n$.
 - (b) $\dim F = \dim \mathbb{R}^n$ se e só se $F = \mathbb{R}^n$.
- 138. Sendo a_1, a_2, \ldots, a_n números reais não todos nulos, determine a dimensão e indique uma base do subespaço de \mathbb{R}^n definido pela equação $a_1x_1 + a_2x_2 + \cdots + a_nx_n = 0$.
- 139. Considere os seguintes subespaços de \mathbb{R}^4 .

$$F = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1 = x_3 \in x_4 = 2x_2\}, \quad G = \mathcal{L}\{(1, 0, 1, 0), (0, 2, 0, 1), (-1, 2, -1, 1)\}.$$

Determine a dimensão e indique uma base para F, G e $F \cap G$.

- 140. Prove que, se F e G forem subespaços de dimensão 3 de \mathbb{R}^5 , então têm de certeza pelo menos um vector não nulo em comum. (Sugestão: Se reunir uma base de F com uma de G, fica com seis vectores).
- 141. Determine a característica e o espaço nulo das matrizes $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix} e \begin{bmatrix} 0 & 0 & 1 & 2 \\ 0 & 0 & 1 & 2 \\ 1 & 1 & 1 & 0 \end{bmatrix}.$
- 142. Determine bases do espaço das linhas e do espaço das colunas de cada uma das seguintes matrizes:

(a)
$$\begin{bmatrix} 0 & 0 & 1 \\ 1 & 2 & 0 \\ 1 & 2 & 5 \end{bmatrix}$$
; (b) $\begin{bmatrix} 1 & 0 & 1 \\ 1 & 2 & 0 \\ 0 & -2 & 5 \end{bmatrix}$; (c) $\begin{bmatrix} 1 & -1 & 0 \\ 1 & 0 & 1 \\ -1 & 0 & -1 \end{bmatrix}$.

143. Considere a matriz

$$A = \left[\begin{array}{ccc} 1 & -\alpha & 2 \\ \alpha & -1 & 3\alpha - 1 \\ 1 & -1 & 3 \end{array} \right],$$

onde α é um parâmetro real. Determine para que valores de α a característica de A é, respectivamente, 1, 2 e 3. Em cada caso, determine bases para o espaço das colunas, das linhas e para o espaço nulo de A.

- 144. O mesmo que no exercício anterior para a matriz $A=\begin{bmatrix} 1 & 2\alpha & 1 \\ \alpha & 1 & \alpha \\ 0 & 1 & \alpha \end{bmatrix}$.
- 145. Considere a matriz

$$A = \begin{bmatrix} \alpha & -1 & 1 & \alpha \\ -\alpha & \alpha & -1 & 0 \\ \alpha^2 & -1 & 1 & \alpha^2 \end{bmatrix}, \text{ com } \alpha \in \mathbb{R}.$$

Diga para que valores de α o espaço das colunas de A coincide com \mathbb{R}^3 .

146. Considere os vectores $(1, \alpha, 1), (1, \alpha - 1, 1), (1, \alpha + 1, 1)$ e $(\alpha, 1, 1)$ de \mathbb{R}^3 . Determine os valores de $\alpha \in \mathbb{R}$ para os quais o subespaço gerado por estes quatro vectores tem dimensão 2.