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Abstract

Using the method of seeds and branch duplication, it is shown that
for every tree of diameter < 7, there is a Hermitian matrix with as
few as the diameter many distinct eigenvalues (a known lower bound).
For diameter 7, some trees require 8 distinct eigenvalues, but no more;
the seeds for which 7 and 8 are the worst case are classified. For trees
of diameter d, it is shown, in general, that the minimum number of
distinct eigenvalues is bounded by a function of d. Many trees of high
diameter permit as few of distinct eigenvalues as the diameter and a
conjecture is made that all linear trees are of this type. Several other
specific, related observations are made.
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1 Introduction

Let T be a tree on n vertices and let S(T ) be the set of all n-by-n Hermitian
matrices, the graph of whose off-diagonal entries is T . No restriction, other
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than reality is placed upon the diagonal entries of A ∈ S(T ). There has been
considerable study of the possible lists of multiplicities of the eigenvalues
occurring among matrices in S(T ), and there is much structure, based upon
the general theory found in [J L-D S 1]. This and [J L-D 1] are good general
references for background. The path cover number of a tree T , P (T ), is the
smallest number of vertex disjoint, induced paths of the tree that cover all
the vertices, and this number is the maximum multiplicity of an eigenvalue
occurring in any matrix in S(T ). As mentioned, the possible lists of multi-
plicities occurring among matrices in S(T ) has been the focus, but there are
two sorts of lists: unordered (simple partitions of n, the number of vertices);
and ordered (the same partitions in which the parts are ordered with respect
to the numerical order of the underlying eigenvalues). For trees, each ordered
list begins and ends with 1. A key fact is that if a list contains a multiplicity
bigger than 1 (and sometimes a 1) then the tree must have at least one vertex
whose removal gives a principal submatrix in which the multiplicity is one
higher. Such vertices are called Parter vertices and there may be several
of them. To denote a principal submatrix of A ∈ S(T ) corresponding to a
subgraph T ′ of T , we use the standard notation A[T ′].

In [J L-D 2], it was shown that the fewest distinct eigenvalues, c(T ),
that can occur among matrices in S(T ) is, at least, d(T ), the diameter of
T measured as the number of vertices in a diameter. This generalized the
classical fact that an n-by-n irreducible tridiagonal Hermitian matrix (the
case of a path) always exhibits n distinct eigenvalues. It raised the natural
question of whether c(T ) = d(T ) for any tree T , i.e., whether as few as d(T )
distinct eigenvalues could be realized for some matrix in S(T ), for any T .

For trees with d(T ) < 6, this was shown to be the case in [J S], using the
technique of “branch duplication” developed by the authors. But, in [B F]
an example of a tree with diameter 7 that required 8 distinct eigenvalues was
given. This left the question of diameter 6 unresolved.

We call a tree T di-minimal (for “diameter minimal”) when c(T ) = d(T ).
The preceding remarks raise the questions (1) how c(T ) may be determined
and (2) which are the di-minimal trees? We also define the function
C(d) = max c(T ), in which the maximum is taken over all T ’s of diameter d.
Here, we show that C(d) is well-defined and that all trees of diameter 6
are di-minimal. This means that C(d) = d for d < 7. We also show that
C(7) = 8, but that a large fraction of trees of diameter 7 are di-minimal.
The first example of a non-di-minimal tree [B F] turns out to be minimal
among diameter 7 trees and among all trees, and we note that trees with this
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one as an induced subgraph can be di-minimal. We also give some infinite
families of trees that are di-minimal and further conjectures.

2 Combinatorial Branch Duplication

To accomplish the above, we describe the process of branch duplication and
offer a combinatorial version of it. Let T be a tree and B a branch of T at
a vertex v. Combinatorial branch duplication (CBD) of B at v results in a
new tree T ′ = T (B, v) in which another copy of B is appended to T at v.

Example 1 Let T , B and v be as shown
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Then T ′ = T (B, v) is

i i
i
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i
i

i i

i
i

i i
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The result of a sequence of CBD’s, starting with T (at possibly different
or new v’s and duplicating possibly different branches) will be called an
unfolding of T . We will be interested in unfoldings that do not increase the
diameter, so that typically v and B will lie in the same “half” of the tree.

By a seed of diameter d, we mean a tree of diameter d that is not an
unfolding of any smaller tree of diameter d. There are finitely many seeds of
diameter d, and any tree of diameter d (that is not a seed) is an unfolding of
a unique seed of diameter d.

Example 2 The seeds of diameter 6 are
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We call all the diameter d unfoldings of a diameter d seed the family
of that seed. Of course, the families of the diameter d seeds partition the
diameter d trees, but each family is, itself, infinite. We index families by the
largest value of c(T ) in the family. As we shall see, some families (of a given
diameter) are di-minimal, while others may not be.

Interestingly at diameter 7, there begins an explosion in the number of
seeds (12 for diameter 7, see Appendix 1). Of course the path of d vertices
is always a seed of diameter d and every seed of diameter d has this path as
its diameter.

The process of branch duplication endows seeds with some special eigen-
structure, so that when certain branches are duplicated (using an algebraic
observation), the number of distinct eigenvalues will not increase. The
technique will be illustrated in the next section, in which we treat trees
of diameter 6. Although this powerful technique was introduced in [J S],
curiously it has not been exploited by other authors.

3 Algebraic Branch Duplication and Trees of

Diameter 6

We recall here the method presented in [J S] that, from a tree T , a com-
binatorial branch duplication of a branch Tj at a vertex v results in a new
tree T ′ = T (Tj, v) and, additionally, given A ∈ S(T ) a matrix A′ ∈ S(T ′) is
constructed in a way that the eigenvalues of A′ are all those of A, together
with those corresponding to the duplicated branch, including multiplicities.

Let T be a tree and v be a vertex of degree k with branches T1, . . . , Tk,
and corresponding neighbors u1, . . . , uk, and let T ′ be a combinatorial branch
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duplication of Tj at v, i.e., T ′ = T (Tj, v). We denote by uk+1 (resp. T ′

k+1)
the new neighbor of v (resp. the new branch at v) in T ′.

Let A = (aij) be a matrix in S(T ). We say that a matrix A′ = (a′

ij) in
S(T ′) is obtained from A by algebraic branch duplication (ABD) of summand
(branch) A[Tj] at v if A′ satisfies the following requirements:

• A′[T ′

i] = A[Ti], i = 1, . . . , k, and A′[T ′

k+1] = A[Tj];

• a′

vv = avv;

• a′

vui
= avui

, i ∈ {1, . . . , k} \ {j};

• a′

vuj
, a′

vuk+1
∈ C \ {0} and

∣

∣a′

vuj

∣

∣

2
+

∣

∣a′

vuk+1

∣

∣

2
= |avuj

|2.

An important property [J S, Theorem 1] of matrix A′ is that the characteristic
polynomial of A′, pA′(t), is

pA′(t) = pA(t)pA[Tj ](t)

and, therefore, the eigenvalues of A′ are all those of A, together with those
corresponding to the duplicated summand (branch) A[Tj], including multi-
plicities.

Here we use combinatorial branch duplication and the associated alge-
braic branch duplication to show that for any tree with diameter 6 we have
c(T ) = d(T ), i.e., any tree with diameter 6 is di-minimal.

Theorem 3 Any tree T such that d(T ) < 7 is di-minimal.

Proof. In [J S] the result was proved for diameter less than 6, so that we
consider here the case in which T is a tree with diameter 6. For this purpose
we use the three seeds T1, T2 and T3 in Example 2. Given a tree T with
diameter 6 we perform an unfolding of one of the three seeds of diameter 6,
that does not increase the diameter, and whose result is T .

For each seed Ti for the combinatorial branch duplication we consider a
matrix seed Ai ∈ S(Ti) for the algebraic branch duplication with exactly 6
distinct eigenvalues and with an eigenstucture that prevents the number of
distinct eigenvalues from changing in any step of the process. Moreover, the
distinct eigenvalues in each step of the process remain unchanged. Often,
instead of presenting the matrix seed Ai ∈ S(Ti) we present Ti indicating the
relevant assignments of the eigenvalues in Ai, i.e., what are the eigenvalues
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of Ai and which are the eigenvalues of the relevant summands (branches) of
Ai that may be duplicated and then maintaining the same 6 original distinct
eigenvalues.

We start with seed T1 on vertices v1, . . . , v6. Consider the following as-
signment of eigenvalues λ2 < λ3 < λ4 < λ5:

nλ3

v3 n
v2

λ2 < λ4

λ5

nλ3

v1 nλ4

v4 n
v5

λ3 < λ5

λ2

nλ4

v6
T1

.

There is a matrix A1 ∈ S(T1) satisfying these conditions. This assignment
imposes λ2, λ3, λ4 and λ5 as eigenvalues of A1 and A1 has eigenvalues λ1 <

· · · < λ6 for some real numbers λ1 and λ6. For example, the matrix

A1 =

















3
√

3 0
√

6√
3 3 1

0 1 3√
6 4

√
3 0√

3 4 1
0 1 4

















∈ S(T1)

has eigenvalues λ1 = 0, λ2 = 2, λ3 = 3, λ4 = 4, λ5 = 5, λ6 = 7 and satisfies
the above assignment for T1.

For seed T2 on vertices v1, . . . , v7 we consider the following assignment of
eigenvalues λ2 < λ3 < λ4 < λ5:

nλ3

v4 n
v3

λ2 < λ4

λ5

n
v1

nλ2

�

�

�

�v2

λ3

nλ4

v5 n
v6

λ3 < λ5

λ2

nλ4

v7
T2

.

6



There is a matrix A2 ∈ S(T2) satisfying these conditions. This assignment
produces eigenvalue λ2 (with multiplicity 2) and eigenvalues λ3, λ4, λ5. Some
λ1 and λ6 will occur as eigenvalues of A2 such that λ1 < · · · < λ6. For
example, the matrix

A2 =





















2 1 2 0 4
1 2 0 0
2 0 3 1
0 0 1 3

4 4
√

3 0√
3 4 1

0 1 4


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




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





∈ S(T2)

has eigenvalues λ1 = −2, λ2 = 2, λ3 = 3, λ4 = 4, λ5 = 5, λ6 = 8 (λ2 has
multiplicity 2) and satisfies the above assignment for T2.

Finally, for seed T3 on vertices v1, . . . , v8 we consider the following assign-
ment of eigenvalues λ2 < λ3 < λ4 < λ5:

nλ3

v4 n
v3

λ2 < λ4

λ5

n
v1

nλ2

�

�

�

�v2

λ3

n
v5

λ4

nλ5

�

�

�

�v6

n
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λ3 < λ5

λ2

nλ4

v8
T3

.

Again, there is a matrix A3 ∈ S(T3) satisfying these conditions. This assign-
ment produces eigenvalues λ2 and λ5 (both with multiplicity 2) and eigen-
values λ3, λ4. Some λ1 and λ6 will occur as eigenvalues of A3 such that
λ1 < · · · < λ6. For example, the matrix

A3 =

























2 1 2 0
√

8
1 2 0 0
2 0 3 1
0 0 1 3√
8 5 1 2 0

1 5 0 0
2 0 4 1
0 0 1 4


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


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











∈ S(T3)
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has eigenvalues λ1 = −1, λ2 = 2, λ3 = 3, λ4 = 4, λ5 = 5, λ6 = 8 (λ2 and λ5

have both multiplicity 2) and satisfies the above assignment for T3.
2

4 Trees of Diameter 7 and C(7) = 8

For trees of diameter 7, there are 12 seeds and, thus, 12 families. These seeds
are displayed in Appendix 1 along with feasible eigenvalue assignments that
support branch duplication. Interestingly 9 of the families consist entirely of
di-minimal trees (“di-minimal families”) as the given eigenvalue assignments
show, via branch duplication, that any unfolding can have as few as 7 distinct
eigenvalues. This is not the case for the other 3 seeds (1, 2, and 5), and in
Appendix 2 are displayed an unfolding in each of these families for which c(T )
is demonstrably 8. The first of these is the example noted in[B F]. However,
for these 3 families, the eigenvalue assignments in Appendix 1 show that
every unfolding has as few as 8 distinct eigenvalues. This means that we
have

Theorem 4 If T is a tree of diameter 7, then 7 ≤ c(T ) ≤ 8, with equality
occurring in the right hand inequality for each example in Appendix 2. Thus,
C(7) = 8.

We give verification that c(T ) = 8 for the T in Appendix 2 from fam-
ily 2 (tree 2). The others are similar. The path cover number [J L-D 1] is
5, so that the maximum multiplicity is 5. For 5 to occur, each of the 3 ver-
tices v2, v3, v4 must be Parter [J L-D S 1, J L-D S 3], with the multiplicity
5 eigenvalue occurring in each of the 8 components resulting from removal
of the 3 Parter vertices. In this event the next highest multiplicity that can
occur is 3, with the same 3 Parter vertices v2, v3, v4 and, then, at most 3
multiplicity 2 eigenvalues with the vertex v1 being Parter. This results in a
multiplicity list 5, 3, 2, 2, 2, 1, 1, 1 and 8 distinct eigenvalues. If, instead, the
highest multiplicity is 4, the second could be 4 and the list 4, 4, 2, 2, 2, 1, 1, 1,
with 8 distinct, would result. If 3 were the highest multiplicity, then at most
3 multiplicity 3 eigenvalues could occur, again insuring at least 8 distinct,
while a maximum multiplicity of 2 would give at least 10 distinct.

Let the disparity for a given diameter d be C(d)−d. So, the disparity for
d < 7 is 0 and for d = 7 is 1. The 16-vertex example from family 1 (tree 1 in
Appendix 2) is interesting in several respects. First, it is minimal in a variety
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of ways. Not only does it have the smallest diameter for which disparity is
positive: C(d) = d for d < 7, but it has the fewest vertices among diameter
7 examples that realize a positive disparity. By checking higher diameter
examples, we have also seen that this example has the fewest vertices of any
case in which a positive disparity is attained. However it is not the case that
if this example sits as a subgraph in a larger tree, there is necessarily a positive
disparity. Consider the 17-vertex tree in which a pendent vertex is appended
at the vertex v1 of the 16-vertex example (tree 1 in Appendix 2). Then, T is in
family 3, and c(T ) = 7 = d(T ). This is also because an additional multiplicity
4 eigenvalue and an additional multiplicity 3 eigenvalue can occur. (Applying
branch duplication to seed 3 in Appendix 1 in order to obtain the 17-vertex
tree in discussion, we get the list of ordered multiplicities (1, 2, 4, 3, 4, 2, 1).)
This shows not only that the minimum number of distinct eigenvalues can go
down with the addition of a vertex, but also that at least two multiplicities
can go up, relative to a list when a vertex is added, contrary to a natural
conjecture.

Finally, we note simply that the diameter 7 16-vertex tree with the first
realization of positive disparity exists because there is no feasible assignment
for the 7-path that allows unlimited branch duplication while only increas-
ing existing multiplicities. Even though only two of three possible branch
duplications are used, a forced increase in the number of distinct eigenvalues
occurs when the 16 vertices are reached. Further unfoldings of the same type
give trees for which d(T ) = 7 and c(T ) = 8.

5 Increasing Disparity

We note that disparity, as a function of the diameter d, is unbounded and
that it grows at least at the eventual rate of d

2
. We do not know the actual

rate of growth, but it is difficult to construct examples that show a higher
rate of growth.

Let Tk denote the tree on 6k+4 vertices resulting from appending 2 paths
of k vertices at each of the 3 pendent vertices of a star on 4 vertices.
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The diameter of Tk is 2k + 3. The 10 vertex tree of Example 6 is T1 and
tree number 1 of Appendix 2 is T2. The maximum multiplicity in S(Tk) is 4
because P (Tk) = 4, and the 3 peripheral HDV’s of Tk must be Parter for any
eigenvalue of multiplicity 4 or 3. There can be at most one of multiplicity
4 and then at most k − 1 of multiplicity 3. The center, degree 3, vertex
must then be Parter for any multiplicity 2 eigenvalues if there are the k

eigenvalues of multiplicity 3 and 4. Thus, there would be at most k + 1
multiplicity 2 eigenvalues. Counting and algebra now yield that Tk realizes
disparity k − 1. This minimum value occurs for exactly one multiplicity list:
4, 3k−1, 2k+1, 1k+1. Thus, the disparity grows without bound, but at the rate
of about d

2
in this case.

For completeness, we note that when d > 6 is even, the disparity is at
least d

2
− 3, so that beginning at 7, the lower bounds for disparity that we

know are 1, 1, 2, 2, 3, 3, . . . . The even case results from analysis of the trees
T ′

k in which at the pendent vertices of the star on 4 vertices are hung 2 paths
of k vertices at one and 2 paths of k−1 vertices at each of the other two. This
results in the even diameter 2k+2, and the analysis is similar to (but slightly
different from) the analysis of Tk. Now, the shortest list is 4, 3k−2, 2k+1, 1k

which realizes the disparity of k − 2 for d = 2k + 2.

6 C(d), Di-Minimal Families and a Conjec-

ture

Here, we show that C(d) is well defined. This is a nice theoretical application
of both branch duplication and the notion of a seed.

Despite the fact that the disparity can grow without bound, it can only
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grow with d. Nonetheless, there are large di-minimal families of trees within
which the diameter is unbounded. These and our earlier analysis suggest a
conjecture that we make about a very large class of trees.

Theorem 5 For each positive integer d, max
T :d(T )=d

c(T ) exists, so that

C(d) = max
T :d(T )=d

c(T )

is a well-defined function of d.

Proof. Since there are finitely many seeds for d, it suffices to consider
only T ’s in a single family. A given seed has only finitely many branches
whose duplication does not increase the diameter. Once a particular branch
duplication has been performed, any subsequent duplications of that branch
will only increase the multiplicities of the eigenvalues of that branch in the
new tree (matrix) relative to the pre-duplication one, and all other eigenval-
ues stay the same. Thus, the number of distinct eigenvalues will not change
(note that this is independent of the cleverness of the eigen-assignment to
the seed).

We conclude that our maximum, restricted to a family, will be bounded,
at worst, by the number of vertices in an unfolding of the seed in which each
possible CBD has been performed once. This is finite and the claim of the
theorem follows. 2

We note that the estimates in this proof are rather generous. If an
eigen-assignment for the seed exists with every eigenvalue of a duplicatable
branch occurring as an eigenvalue of the matrix, then the max is no more
than the number of vertices in the seed and may well be less if multiple eigen-
values occur. If, in addition, enough multiple eigenvalues occur that the seed
is di-minimal, then the family will be di-minimal, as occurs for d < 7 and for
9 of 12 diameter 7 seeds. But, even attaining the number of vertices in the
seed does not always happen. For example, it never happens for a path of
length > 6. Recall that the 16-vertex minimal tree example of disparity 1 is
an unfolding of the 7-path. Any further information on the growth of C(d)
would be welcome.

There are many infinite collections of types of trees with unbounded diam-
eter that are di-minimal, for example generalized stars and double generalized
stars [J L-D S 2].

11



A vertex in a tree is called high degree, HDV for short, if its degree is at
least 3. Following [J L W], we call a tree linear if all of its HDV’s lie on a
single path of the tree.

Example 6 The smallest (fewest vertices) nonlinear tree is

i
i@@

i
��

i

��iPP
i

��i

HH i��
i

BB i

and each example in Appendix 2 is a nonlinear tree.

In [J L W] it was shown that many eigenvalue statements, not true for
general trees, are true for linear trees. Di-minimality was also informally dis-
cussed by these authors. Of course generalized stars and double generalized
stars (as well as any tree with at most 3 HDV’s) are linear, and the only
known non-di-minimal trees are nonlinear. We offer the following

Conjecture 7 All linear trees are di-minimal.

7 Additional Remarks

In [B F], it was also noted that for a certain ordered multiplicity list occurring
for the 16-vertex tree in Appendix 2, not all spectra corresponding to this list
can occur. Thus, the inverse e igenvalue problem (IEP) is not equivalent to
the problem of ordered multiplicity lists. The reason is that because of the
tight multiplicity list, there are algebraic relations among the eigenvalues due
to trace conditions. However, unlike the di-minimality issue, this is not the
smallest such example. The first nonlinear tree, the 10-vertex tree displayed
in Example 6, exhibits the same behavior, and this is the smallest example
for which the IEP and ordered multiplicity problems differ. Indeed, [J L W]
gives strong evidence that the two problems are the same for all linear trees.

Even for the three diameter 7 seeds whose families contain trees for which
c(T ) = 8, the seed itself is di-minimal in each case, and many trees in the
family are di-minimal as well. However, it can happen that a seed not be
di-minimal.
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Example 8 Consider the tree T
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Then, T is a diameter 11 seed. Using reasoning based on Parter vertices, as
earlier for the example from diameter 7 family 2 in Appendix 2, the shortest
multiplicity list T could have is 4, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1 and c(T ) = 12.

It would be of interest to know more about the behavior of the function
C(d). It grows faster than d, but still, we suspect, somewhat slowly. Though
we do not have strong evidence, it seems worthwhile to focus attention on
this with the following conjecture.

Conjecture 9 C(d) ≤ d + max{0, d − 6}.
There are 36 seeds for diameter 8, and many of the families are di-minimal,

but it would be quite a task to determine C(8). Our guess is that it is 9.
Our best examples, for d = 6, 7, 8, 9, . . . , give disparities 0, 1, 1, 2, 2, 3, 3, . . . .
This would suggest the stronger

Conjecture 10 C(d) ≤ d + max
{

0,
⌈

d
2
− 3

⌉}

.

Appendix 1: Diameter 7 Seeds and Classifica-

tion of their Families using Assignments

In case of each of the 12 seeds, the graphic depicts how 7 distinct, strictly
ordered eigenvalues are assigned to the duplicatable branches or subtrees.
When an eigenvalue is assigned to a vertex, it is shown in the vertex. In
cases 1, 2 and 5, whose families are not di-minimal, one additional, distinct
eigenvalue, denoted λ′

5 is used. All assignments are realizable. In addition,
the ordered multiplicity list is displayed to the right of each seed. Thus, each
seed is di-minimal in this case, though three of the families are not.

λ1, λ2, λ3, λ4, λ5, λ6, λ7 ∈ R and λ1 < λ2 < λ3 < λ4 < λ5 < λ6 < λ7.
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λ2, λ4

(1, 2, 3, 2, 1, 1, 1)
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12.

(1, 2, 3, 3, 1, 1, 1)n n n

n

n

n

n

n

n
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n nλ4 λ4

λ3

λ4
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�

�

�

�

�

�

�λ3
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�
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•, λ4

λ2, λ3, λ4, λ6 λ2, λ3, λ4, λ6

•, λ3, λ4, λ5

λ3, λ5 λ3, λ5

λ2, λ4

Appendix 2

For each of the three diameter 7 families that are not di-minimal, a minimal
family-member that is provably not di-minimal is displayed. Note that no
example is a linear tree.

iv1

i@@

i@@

i

��

i��
i

��iPP
iPP

i

��i
��i

HH i��
i�� i

BB i
BB i

1.(*) A tree T of family 1 in Appendix 1 with c(T ) = 8.
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iv1

iv3
@@

i@@

i

��

i��
i

��iv2PP
iPP

i

��i
��i

HH iv4

HH i
��

i�� i

BB i
BB i

2. A tree T of family 2 in Appendix 1 with c(T ) = 8.

iv1

iv3

i
@@

i@@

i

��

i��
i

��iv2

��i
PP

iPP
i

��i
��i

HH iv4

HH i
��

i�� i

BB i
BB i

3. A tree T of family 5 in Appendix 1 with c(T ) = 8.
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