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NLP Algorithms

The goal is to determine first-order or second-order stationary points.

Newton or quasi-Newton step calculations yield good local behavior
(quadratic/superlinear rates of convergence).

NLP algorithms must also converge globally.
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NLP Algorithms
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NLP Globalization Strategies

There are two globalization techniques:

line searches (search along the step direction).

trust regions (step is computed by minimizing a quadratic model
within a region of prescribed size).
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NLP Globalization Strategies – Constraints

In the presence of constraints, we must use one of the previous
together with:

merit function (combining objective function with a penalization of
constraints).

filter (explained next).

OPTEC, December 02, 2008 7/ 58



NLP Globalization Strategies – Constraints

In the presence of constraints, we must use one of the previous
together with:

merit function (combining objective function with a penalization of
constraints).

filter (explained next).

OPTEC, December 02, 2008 7/ 58



NLP Globalization Strategies – Constraints

In the presence of constraints, we must use one of the previous
together with:

merit function (combining objective function with a penalization of
constraints).

filter (explained next).

OPTEC, December 02, 2008 7/ 58



Filter Scheme

Globalize without merit functions and penalty parameters.

Borrow the concept of nondominance from multi-criteria
optimization.

min f (x) s.t. h(x) = 0

↓

min f (x) and θ(x) = ‖h(x)‖

(bi-criteria optimization problem)
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Filter Scheme – Definitions

A filter is a discrete set of efficient or nondominated points.

A point x or (f (x), θ(x)) is efficient or nondominated if it is not
dominated by any other point in the filter.

A point x dominates x ′ (x 6= x ′) if

θ(x) ≤ θ(x ′) and f (x) ≤ f (x ′).

The filter defines the efficient border of the nondominated points.
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Filter Scheme – an Example

6

-

f (x)

θ(x)0
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Filter Scheme – Definitions

Acceptability is defined in a more stringent way (envelope):

A point x is acceptable to the filter if

θ(xj) > θ(x) + γFθ(xj) or f (xj) > f (x) + γFθ(xj),

for all filter entries xj .

γF ∈ (0, 1
2 ).
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Forbidden Regions – Merit Function vs. Filter
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Filter Methods Components

Definition of filter entries.

Definition of filter envelope.

Filter management schemes (including removal of filter entries).

Restoration phase when feasibility is not sufficiently small.

Sufficient decrease when feasibility is sufficiently small.
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Filter – Literature
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Fletcher, Gould, Leyffer, Toint, Wächter (SIOPT 2002)
Fletcher, Leyffer, Toint (SIOPT 2002)
S. Ulbrich (Math. Prog. 2004)
SLP: Fletcher, Leyffer, Toint
Chin, Fletcher (Math. Prog. 2003)
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Benson, Shanno, Vanderbei (COAP 2002)
Others:
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nonsmooth optimization, unconstrained optimization...
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Lagrange Prize

Roger Fletcher, Sven Leyffer, and Philippe Toint were the recipients in 2006 of the
Lagrange Prize for Continuous Optimization, awarded jointly by the Mathematical
Programming Society (MPS) and the Society for Industrial and Applied Mathematics
(SIAM), for “outstanding works in the area of continuous optimization”.

“In the development of nonlinear programming over the last decade, an
outstanding new idea has been the introduction of the filter. This new
approach to balancing feasibility and optimality has been quickly picked up
by other researchers, spurring the analysis and development of a number of
optimization algorithms in such diverse contexts as constrained and
unconstrained nonlinear optimization, solving systems of nonlinear
equations, and derivative-free optimization. The generality of the filter idea
allows its use, for example, in trust region and line search methods, as well
as in active set and interior point frameworks. Currently, some of the most
effective nonlinear optimization codes are based on filter methods. The
importance of the work cited here will continue to grow as more algorithms
and codes are developed.”
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A Recent Survey

R. Fletcher, S. Leyffer, and Ph. L. Toint, A brief history of filter
methods, SIAM SIAG/OPT Views-and-News, 18 (1) (2006) 2–12.
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Description of the Problem

Nonlinear programming (NLP) problems:

min
x∈IRn

f (x) s.t. h(x) = 0 and x ≥ 0,

where f : IRn −→ IR and h : IRn −→ IRm are twice continuously differentiable
functions on an open set Ω ⊂ IRn.
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Karush-Kuhn-Tucker (KKT) Conditions

Lagrangian: `(x , y , z) = f (x) + h(x)>y − x>z.

First-order necessary conditions:

∇x`(x , y , z) = 0 ⇐⇒ ∇f (x) +∇h(x)y − z = 0
h(x) = 0

Xz = 0
x ≥ 0 e z ≥ 0,

where y ∈ IRm and z ∈ IRn are the Lagrange multipliers.
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Perturbed KKT System

Perturbing the KKT system, we obtain:

∇x`(x , y , z) = 0
h(x) = 0

Xz = µ̂e.

The step ∆w = (∆x ,∆y ,∆z) is the solution of the Newton system: ∇2
xx`(x , y , z) ∇h(x) −I
∇h(x)> 0 0

Z 0 X

  ∆x
∆y
∆z

 = −

 ∇x`(x , y , z)
h(x)

Xz − µ̂e

 .
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Central Path – LP

Linear Programming (LP): f (x) = c>x and h(x) = Ax − b.

The central path is formed by all (x , y , z) such that (x , z) > 0 and

∇x`(x , y , z) = 0
h(x) = 0

Xz = µ̂e,

for all µ̂ > 0.
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Central Path – LP
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Central Path – LP
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Central Path – NLP

The central path only exists locally in NLP!
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Central Path – NLP

OPTEC, December 02, 2008 26/ 58



Quasi-Central Path – NLP

The quasi-central path is formed by all (x , z) > 0 such that

h(x) = 0
Xz = µ̂e,

for all µ̂ > 0.

The quasi-central path has a global existence.

OPTEC, December 02, 2008 27/ 58



Quasi-Central Path – NLP

The quasi-central path is formed by all (x , z) > 0 such that

h(x) = 0
Xz = µ̂e,

for all µ̂ > 0.

The quasi-central path has a global existence.

OPTEC, December 02, 2008 27/ 58



Perturbed KKT System

Perturbing the KKT system, we obtain:

∇x`(x , y , z) = 0
h(x) = 0

Xz = µ̂e.

The step ∆w = (∆x ,∆y ,∆z) is the solution of the Newton system: ∇2
xx`(x , y , z) ∇h(x) −I
∇h(x)> 0 0

Z 0 X

  ∆x
∆y
∆z

 = −
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 .

We set µ̂ = σµ, with µ = x>z
n a measure of centrality and σ ∈ (0, 1) a

centering parameter.
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Motivation – in the NLP Context

Find optimality and feasibility measures.

Find a decomposition of the primal-dual step ∆w (normal and
tangential) yielding decrease in both measures, respectively.
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Filter Measures

Feasibility and centrality measure:

θ(w) = ‖h(x)‖+ ‖Xz − µe‖

Optimality measure:

θg(w) = µ + ‖∇x`(w)‖2

w = (x , y , z), with (x , z) ≥ 0, satisfies the KKT conditions if and only if

θ(w) = θg(w) = 0.
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Step Decomposition

Normal step: ∇2
xx`(w) ∇h(x) −I

∇h(x)> 0 0
Z 0 X

 sn = −

 0
h(x)

Xz − µe

,

“towards” the quasi-central path.

Tangential step: ∇2
xx`(w) ∇h(x) −I

∇h(x)> 0 0
Z 0 X

 st = −

 ∇x`(w)
0

(1− σ)µe

.

Adding both steps: ∆w = sn + st .
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Step Sizes

Using a trust-region type parameter:

‖αn(∆)sn‖ ≤ ∆, ‖αt(∆)st‖ ≤ ∆

⇓
‖s(∆)‖ = αn(∆)sn + αt(∆)st ≤ 2∆

αn(∆) = min
{

1,
∆

‖sn‖

}
, αt(∆) = min

{
αn(∆),

∆

‖st‖

}

w(∆) = w + s(∆) = (x(∆), y(∆), z(∆)).
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Centrality Neighborhood

The iterates will be kept in:

N (γ, M) = {w : (x , z) > 0; Xz ≥ γµe; ‖h(w)‖+ ‖∇x`(w)‖ ≤ Mµ} .

Lemma

If ‖F ′(w)−1‖ ≤ C, γ ∈ (0, 1), M > 0, then

w ∈ N (γ, M)

⇓
∃∆min > 0 : w(∆) ∈ N (γ, M)

for all ∆ ∈]0,∆min].

F ′(w) is the KKT matrix (the Jacobian of the KKT residual).
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Primal-Dual Interior-Point Filter Method

Decomposition of the primal-dual step (normal and tangential)
yielding decrease in a feasibility and an optimality measures
(associated with the filter components).

Different step lengths for the normal and the tangential steps.

The iterates are kept in a central neighborhood.

Possible use of a feasibility restoration procedure.

The new iterates are always acceptable to the filter.

Imposition of a sufficient decrease if the feasibility measure is
small enough.
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Primal-Dual Interior-Point Filter Method

0. Choose (x0, z0) > 0, y0, ∆0 > 0, k = 0. Choose also γ, M such
that (x0, y0, z0) ∈ N (γ, M).

1. Stop if θ(wk ) + θg(wk ) < εtol . Otherwise compute sn
k and st

k .

2/3. Compute ∆k such that wk (∆k ) ∈ N (γ, M).
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Primal-Dual Interior-Point Filter Method – Trial Tests

Sufficient reduction criterion: ρk ≥ η

η ∈ (0, 1) and ρk
def
= actual reduction

predicted reduction
def
=

θg(wk )−θg(wk (∆k ))
mk (wk )−mk (wk (∆k ))

where

m def
= linearization of x>z

n
+

squared norm of the linearization of ∇x`(w)

is a quadratic model of θg .
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Primal-Dual Interior-Point Filter Method

θ(wk ) ≤ ∆k min{γ1, γ2∆
β
k } ?

�
�

�
�

�	

true

HHHHj
false

wk (∆k ) is acceptable to filter?
(with wk considered in filter

if predk < κθ(wk )2)

add wk to filter
enter restoration

compute wk+1 such that:
wk+1 is acceptable to filter,

θ(wk+1) ≤ ∆k+1 min{γ1, γ2(∆k+1)
β},

and return to step 1 with ∆k+1 = ∆k

?
true

HHH
HHj

false

∆k+1 = ∆k /2
return to step 3

ρk ≥ η or predk < κθ(wk )2? �
�

��*
false

?
true

add wk to filter
if predk < κθ(wk )2 ∆k+1 ≥ ∆k

wk+1 = wk (∆k )
return to step 1

OPTEC, December 02, 2008 37/ 58



Global Convergence – Assumptions

(A1) {(xk , yk , zk } is bounded.

(A2) ∇h and ∇2
xw` are Lipschitz continuous in an open set D such

that wk ∈ D and [wk , wk + s(∆k )] ∈ D.

(A3) ∃C > 0 such that ‖F ′(w)−1‖ ≤ C for all k .
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Global Convergence – Main Result

Theorem

lim inf
k→+∞

θ(wk ) + θg(wk ) = 0

(there exists a limit point that is a KKT point).
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New Filter Measures

Previous filter optimality measure:

θg(w) = µ + ‖∇x`(w)‖2

Choice made in Ulbrich, Ulbrich, and Vicente [2004].
Does not distinguish minima from maxima!
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New Filter Measures

New possibilities (c > 0):

θg(w) = f (x) + cµ

or

θg(w) = f (x) + h(x)>y + cµ = `(x , y , z) + (c + n)µ

Reflect better the minimization goal.
f is the driven force (when h(x) and µ = x>z/n are small).
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New Filter Measures

Let w ∈ N (γ, M) and c ≥ constant(σ, γ, n).

We can derive an estimate of the type:

θg(w(∆))− θg(w) ≤ −(Kµ)∆ +O(θ(w)) +O(∆2).

When θ(w) is small, the primal-dual step is a descent direction for
θg(w).
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New Filter Measures

One can prove as before:

Thorem

lim inf
k→+∞

‖h(xk )‖+
x>k zk

n
+ ‖∇x`(wk )‖ = 0

(there exists a limit point that is a KKT point).

...under the assumption that ∇2
xx`(wk ) + (1/2)X− 1

2
k Zk is positive

semi-definite on the null space of ∇g(xk )> for all k ...

...same algorithm (the only modification is in the model m for θg(w))...
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New Centrality Neighborhoods

Consider a more general scenario that allows the use of different
types of approximations H 6= ∇2

xx`(w):

N (γ, M, p) = {w : (x , z) > 0, Xz ≥ γµe, ‖h(x)‖+ ‖∇x`(w)‖p ≤ Mµ}

is the family of centrality neighborhoods parameterized by p ∈ [1, 2].

When p = 1: N (γ, M, 1) = N (γ, M) (old centrality neighborhood).

As before, we can prove that

w ∈ N (γ, M, p) =⇒ w(∆) ∈ N (γ, M, p), for ∆ > 0 sufficiently small.
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Use of Second-Order Derivatives

A sufficient decrease condition on ‖∇x`(w)‖p must be satisfied:

‖∇x`(w(∆))‖p ≤ (1− p αt(∆))‖∇x`(w)‖p + M` max{∆q ,∆2},

where q ∈ (1, 2].

TRUE for p = 1, q = 2, and H = ∇2
xx`(w) — UUV 2004

When p = 1, TRUE if

‖H −∇2
xx`(w)‖ ≤ N∆q−1.

When p = 2, TRUE if

‖[H −∇2
xx`(w)]∇x`(w)‖ ≤ N‖∇x`(w)‖∆q−1.
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Restoration Phase

Purpose:

Find wk+1 such that
wk+1 ∈ N (γ, M)

wk+1 is acceptable to the filter
θ(wk+1) ≤ ∆k min{γ1, γ2∆

β
k }.

The restoration algorithm must terminate in a finite number of
iterations.
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Restoration Phase

The current restoration algorithm uses our step framework:

s(∆) = αn(∆)sn + αt(∆)st , w(∆) = w + s(∆),

imposing descent on: θ2(w) = 1
2

(
‖h(x)‖2 + ‖Xz − µe‖2

)
.

Note: ∇θ2(w)>sn = −θ2(w) and ∇θ2(w)>st = 0.

This restoration algorithm is proved to terminate successfully in a
finite number of iterations.
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Restoration Phase

0. Choose parameters, w0
k = wk , ∆0

k = ∆k , j = 0

1. Test the stop criterion

2. Compute sn
k,j and st

k,j

3. Compute ∆j
k such that, for all ∆ ∈ [0,∆j

k ],

X j
k (∆)z j

k (∆) ≥ γµj
k (∆) and (x j

k (∆), z j
k (∆)) > 0

4.

AREDj
k

PREDj
k

≥ ξ and

‖h(w j
k (∆j

k ))‖+ ‖∇x `(w j
k (∆j

k ))‖ ≤ Mµ
j
k (∆j

k )?

False: ∆j
k+1 = ∆j

k /2
repeat step 4

True: w j+1
k = w j

k (∆j
k )

go to step 1
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Code – ipfilter 0.2

Written in FORTRAN 90/95.

Handles all kinds of NLP (including unconstrained problems and
problems with only simple bounds).

Includes standard, SIF and AMPL interfaces.

Symmetrizes the primal-dual systems (avoiding the inversion
of Xk ): [

X 1/2
k ∇2

xx`(wk )X 1/2
k + Zk X 1/2

k ∇h(wk )

(X 1/2
k ∇h(wk ))> 0

]
.

Sparse linear algebra handled by HSL routine MA27 (symmetric
systems).

The formulation handles ` ≤ x ≤ u explicitly.
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Code – ipfilter 0.2

Incorporates a restoration phase based on the same step
decomposition.

Performs a warm start by carrying 5 iterations of

min
x

f (x) + ρ h(x)>h(x)− µ0

n∑
i=1

log xi , ρ > 0,

starting from the initial given point x0.

Perturbs the systems using inertia control and regularization

Scales the system matrix, variables, objective function and
constraints.
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Perturbs the systems using inertia control and regularization

Scales the system matrix, variables, objective function and
constraints.

OPTEC, December 02, 2008 50/ 58



Code – ipfilter 0.2

Incorporates a restoration phase based on the same step
decomposition.

Performs a warm start by carrying 5 iterations of

min
x

f (x) + ρ h(x)>h(x)− µ0

n∑
i=1

log xi , ρ > 0,

starting from the initial given point x0.

Perturbs the systems using inertia control and regularization

Scales the system matrix, variables, objective function and
constraints.

OPTEC, December 02, 2008 50/ 58



Code – ipfilter 0.2

Incorporates a restoration phase based on the same step
decomposition.

Performs a warm start by carrying 5 iterations of

min
x

f (x) + ρ h(x)>h(x)− µ0

n∑
i=1

log xi , ρ > 0,

starting from the initial given point x0.

Perturbs the systems using inertia control and regularization

Scales the system matrix, variables, objective function and
constraints.

OPTEC, December 02, 2008 50/ 58



Testing – ipfilter 0.2

We tunned ipfilter with an old version of the CUTE collection
(469 problems) and we also tested 631 problems from the recent
CUTER collection (Sept. 2008).

All problems have at least one equality or inequality constraint
(different from bounds) and satisfy n ≥ m.

The tests were run on a Fujitsu-Siemens Celsius V810
workstation (4G RAM, 2 processors AMD 2.2GHz).

We made a comparison with ipopt (C++, version 3.5.1), a
Barrier-Filter code from IBM developed by Andreas Wächter.

We use the same stopping criterion as in ipfilter.
Stopping tolerance: 10−8; Maximum # of iterations: 1000.
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Constrained Tested Problems

number of problems
dimensions an old CUTE set CUTER (Sept. 2008)
n < 1000 388 (45) 390 (56)

1000 ≤ n < 10000 76 (1544) 182 (3194)
n ≥ 10000 5 (7979) 59 (6354)

total 469 631
problem class an old CUTE set CUTER (Sept. 2008)
equality constrained 245 327
inequality constrained 177 226
mixed (equalities and inequalities) 48 78
linearly constrained 171 205
nonlinearly constrained 298 426
quadratic programming 91 103
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Numerical Results – All Constrained Problems

an old CUTE set CUTER (Sept. 2008)
ipfilter ipopt ipfilter ipopt

# problems solved 449 448 532 549
% robustness 95.74% 95.52% 84.34% 87.00%
# average iterations 27.55 27.19 47.44 38.58
# problems solved (< 500 iter.) 449 447 525 545
% robustness (< 500 iter.) 95.74% 95.31% 83.20% 86.37%
# average iterations (< 500 iter.) 27.55 25.78 37.51 34.14
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Numerical Results – QP Problems

an old CUTE set CUTER (Sept. 2008)
ipfilter ipopt ipfilter ipopt

# problems solved 91 88 97 93
% robustness 100.00% 96.70% 94.17% 90.29%
# average iterations 26.74 36.45 42.35 47.09
# problems solved (< 500 iter.) 91 88 96 92
% robustness (< 500 iter.) 100.00% 96.70% 93.20% 89.32%
# average iterations (< 500 iter.) 26.74 36.45 33.90 40.96
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eNLP Solver – ESA Project

Prime Contractor: Astos Solutions (Germany).

Consortium partners: University of Birmingham, University of
Bremen, University of Coimbra, and Skysoft (Portugal).

Objective: Produce a general purpose European sparse NLP
Solver, especially for NLPs associated with trajectory
optimization problems.

Problems: Ascent/reentry of a spacecraft, trajectories planning of
satellite missions, launcher test case, low thrust orbit transfer, ...
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Numerical Results – COPS Problems

COPS colection: difficult nonlinearly constrained optimization
problems arising from optimal design, fluid dynamics, mesh
smoothing, optimal control,...

15 problems from COPS 0.2 are included in the CUTEr collection (Sept. 2008).

ipfilter 0.2 ipopt 3.5.4
# problems solved 13 13
% robustness 86.67% 86.67%
# average iterations 64.54 98.23
# problems solved (< 500 iter.) 13 12
% robustness (< 500 iter.) 86.67% 80.00%
# average iterations (< 500 iter.) 64.54 53.42
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Future Work

Increase the number of problems solved (robustness).

Improve the CPU time.

Use iterative solvers (linear systems) and Hessian secant
updates.
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ipfilter Software

The current ipfilter version (0.2) requires first and
second-order derivatives and is only available for problems
where n ≥ m.

ipfilter is freely available for academic and research
purposes.

ipfilter web page: http://www.mat.uc.pt/ipfilter.
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