$$s=\sqrt{\dfrac{1}{N-1}\sum_{i=0}^N (x_i-\bar x)^2   }$$


$$\lim_{n \to +\infty} \mathbf{P} \left( \left| \dfrac{f}{n} -p\right|> \varepsilon  \right)=0$$

$$\displaystyle \int_{a}^{b} f'(x) \text{d}x=f(b)-f(a)$$

$$\displaystyle \lim_{n \to +\infty} \dfrac{n!}{\sqrt{2\pi n}\left(\dfrac{n}{e} \right)^n}=1$$


Links

APM
SPM
DMUC
GAVE
Ministério da Educação
SPE
Olimpíadas Mat
Canguru
PISA
DREN
NiuAleph
GeoGebra
PMat
Alea
Ludus