

Lição № 31	Turma:10ºC	Tempo: 90 MIN	Data: 3/11/2020
------------	------------	---------------	-----------------

CONTEÚDOS PROGRAMÁTICOS

Domínio: Álgebra (ALG10)

Subdomínio: Potências de expoente racional

Conteúdos: Definição e propriedades algébricas das potências de base positiva e expoente racional. Produto e quociente de potências com a mesma base, produto e quociente de potências com o mesmo expoente

e a potência da potência.

METAS CURRICULARES: Descritores

Descritor 2.2. +Identificar, dado um número real não negativo e um número racional não negativo $q=\frac{m}{n}$ (m e n números inteiros, $m\geq 0$ e $n\geq 2$), $q\neq 0$ se a=0, a «potência de base a e de expoente q», a^q , como $\sqrt[n]{a^m}$, reconhecendo que este número não depende da fração escolhida para representar q, e que esta definição é a única possível por foram a estender a propriedade $\left(a^b\right)^c=a^{bc}$ a expoentes racionais positivos.

Descritor 2.3. Identificar, dado um número real positivo a e um número racional positivo a, a «potência de base a e de expoente -q», a^{-q} , como $\frac{1}{a^q}$, reconhecendo que esta definição é a única possível por foram a estender a propriedade $a^b \times a^c = a^{b+c}$ a expoentes racionais.

Descritor 2.4. +Reconhecer que as propriedades algébricas previamente estudadas das potências de expoente inteiro (relativas ao produto e quociente de potências com a mesma base, produto e quociente de potências com o mesmo expoente e potência de potência) podem ser estendidas às potências de expoente racional.

RECURSOS DIDÁTICOS

- Manual "Máximo 10" da Porto Editora
- Material de Escrita
- Calculadora

Sumário: Potências de expoente racional. Propriedades das potências de expoente racional.

METODOLOGIA DA AULA	ТЕМРО
Iniciar a aula, verificando a presença dos alunos.	5 Min
Realizar um pequeno diálogo com os alunos sobre o tema proposto: "O	
que representa as expressões a^2 , a^3 e a^4 ?" "Será que é possível representar a expressão $a^{1,5}$?"	10 Min
Apresentação da primeira definição:	5 Min
Sejam a um número real positivo e $\frac{m}{n}$ um número racional não	
negativo (sendo m e n números inteiros, $m \ge 0$ e $n \ge 2$), define-se	
$a^{\frac{m}{n}} = \sqrt[n]{a^m}.$	
Casos particulares da definição:	
1. A definição estende-se ao caso a=0, caso m for um	
número inteiro positivo;	
2. Se $\frac{m}{n} = \frac{m'}{n'}$ Então $\sqrt[n]{a^m} = \sqrt[n']{a^{m'}}$.	
Fornecer vários exemplos ao aluno, que complementam a definição.	2 Min
Observar as estratégias de resolução dos exemplos.	
Exemplos:	
a) $16^{\frac{1}{2}} = \sqrt[2]{16^1} = 4$	
b) $64^{\frac{1}{3}} = \sqrt[3]{64^1} = 4$	
c) $81^{\frac{1}{4}} = \sqrt[4]{81} = 3$	
d) $27^{\frac{2}{3}} = \sqrt[3]{27^2} = \sqrt[3]{(3^3)^2} = \sqrt[3]{(3^2)^3} = 9$	
e) $16^{\frac{3}{4}} = \sqrt[4]{16^3} = \sqrt[3]{(4^2)^3} = 16$	
Esclarecimento de dúvidas aos alunos.	
Resolução do exercício 4 da página 100:	12 Min
4. Calcule.	
4.1. $27^{\frac{2}{3}}$ 4.4. $\left(\frac{1}{16}\right)^{\frac{2}{2}}$ 4.7. $64^{1,5}$ 4.8. $32^{0,4}$	
4.2. $64^{\frac{5}{6}}$ 4.5. $(8a^3)^{\frac{4}{3}}$, $a \ge 0$	
4.3. $8^{\frac{5}{3}}$ 4.6. $1000^{\frac{2}{3}}$	
Resolução:	

4.1.
$$27^{\frac{2}{3}} = \sqrt[3]{27^2} = \sqrt[3]{(3^3)^2} = \sqrt[3]{(3^2)^3} = 3^2 = 9$$

4.2.
$$64^{\frac{5}{6}} = \sqrt[6]{64^5} = \sqrt[6]{(2^6)^5} = \sqrt[6]{(2^5)^6} = 2^5 = 32$$

4.3.
$$8^{\frac{5}{3}} = \sqrt[3]{8^5} = \sqrt[3]{(2^3)^5} = \sqrt[3]{(2^5)^3} = 2^5 = 32$$

4.4.
$$\left(\frac{1}{16}\right)^{\frac{3}{2}} = \sqrt{\left(\frac{1}{16}\right)^3} = \sqrt{\left(\frac{1}{2}\right)^4} = \sqrt{\left(\frac{1}{2}\right)^{12}} = \sqrt{\left(\frac{1}{2}\right)^6} = \frac{1}{64}$$

4.5.
$$(8a^3)^{\frac{4}{3}} = \sqrt[3]{(2^3a^3)^4} = \sqrt[3]{[(2a)^3]^4} = \sqrt[3]{[(2a)^4]^3} = (2a)^4 = 16a^4, a \ge 0$$

4.6.
$$1000^{\frac{2}{3}} = \sqrt[3]{\left(10^3\right)^2} = \sqrt[3]{\left(10^2\right)^3} = 10^2 = 100$$

4.7.
$$64^{1,5} = (2^6)^{\frac{3}{2}} = \sqrt{(10^2)^3} = \sqrt{(2^9)^2} = 2^9 = 512$$

4.8.
$$32^{0,4} = 32^{\frac{4}{10}} = 32^{\frac{2}{5}} = \sqrt[5]{\left(2^5\right)^2} = \sqrt[5]{\left(2^2\right)^5} = 4$$

Nota que: $(a^b)^c = (a^c)^b$

Esclarecimento de dúvidas aos alunos.

Apresentação da segunda definição:

Sendo a um número real positivo e \overline{q} um número racional positivo, define-se:

$$a^{-q} = \frac{1}{a^q}$$

Dar vários exemplos aos alunos. Esclarecer os diferentes passos de resolução e propriedades aos alunos.

1.
$$3^{-\frac{1}{2}} = \frac{1}{\frac{1}{2}}$$

2.
$$5^{-\frac{1}{3}} = \frac{1}{\frac{1}{53}}$$

3.
$$7^{-\frac{2}{3}} = \frac{1}{\frac{2}{73}}$$

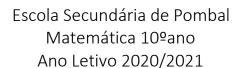
Resolução do seguinte exercício:

Determina o valor de:

2 Min

5 Min

5 Min



a)
$$25^{-\frac{1}{2}}$$

b)
$$8^{-\frac{1}{3}}$$

c)
$$81^{-\frac{1}{4}}$$

d)
$$64^{-\frac{2}{3}}$$

Resolução:

a)
$$25^{-\frac{1}{2}} = \frac{1}{25^{\frac{1}{2}}} = \frac{1}{5}$$

b) $8^{-\frac{1}{3}} = \frac{1}{\frac{1}{8^{\frac{1}{3}}}} = \frac{1}{2}$

b)
$$8^{-\frac{1}{3}} = \frac{1}{\frac{1}{8^{\frac{1}{3}}}} = \frac{1}{2}$$

c)
$$81^{-\frac{1}{4}} = \frac{1}{81^{\frac{1}{4}}} = \frac{1}{3}$$
d) $64^{-\frac{2}{3}} = \frac{1}{\frac{2}{64^{\frac{2}{3}}}} = \frac{1}{16}$

d)
$$64^{-\frac{2}{3}} = \frac{1}{64^{\frac{2}{3}}} = \frac{1}{16}$$

Propriedades algébricas das potências de expoente racional:

5 Min

Sejam $a\ e\ b$ dois números inteiros positivos e $p\ e\ q$ dois números

•
$$a^p \times a^q = a^{p+q}$$

•
$$a^p \div a^q = a^{p-q}$$

•
$$a^p \times b^p = (a \times b)^p$$

•
$$a^p \div b^p = (a \div b)^p$$

•
$$(a^p)^q = a^{p \times q}$$

Resolução do exercício 7 da página 102:

10 Min

Mostre, utilizando as propriedades das operações com radicais e a definição de potência de expoente racional, que:

7.1.
$$2^{\frac{2}{3}}$$
: $2^{\frac{1}{4}} = 2^{\frac{5}{12}}$

7.2.
$$a^{\frac{m}{n}}$$
: $a^{\frac{p}{q}} = a^{\frac{m}{n} - \frac{p}{q}}$; $a > 0$ e m , n , p e q números naturais

Resolução:

7.1.
$$2^{\frac{2}{3}} : 2^{\frac{1}{4}} = \sqrt[3]{2^2} : \sqrt[4]{2} = \sqrt[12]{2^8} : \sqrt[12]{2^3} =$$

$$= \sqrt[12]{2^8 : 2^3} = \sqrt[12]{2^{8-3}} = \sqrt[12]{2^5} = 2^{\frac{5}{12}}$$

7.2.
$$a^{\frac{m}{n}} : a^{\frac{p}{q}} = \sqrt[n]{a^m} : \sqrt[q]{a^p} = \sqrt[nq]{a^{mq}} : \sqrt[nq]{a^{np}} =$$

$$= \sqrt[nq]{a^{mq} - a^{np}} = \sqrt[nq]{a^{mq - np}} = a^{\frac{mq - np}{nq}} =$$

$$= a^{\frac{mq}{nq} - \frac{np}{nq}} = a^{\frac{m}{n} - \frac{p}{q}}, a > 0$$

Resolução do exercício 8 da página 103:

10 Min

 Mostre, utilizando as propriedades das operações com radicais e a definição de potência de expoente racional, que:

8.1.
$$8^{\frac{2}{3}} \times 4^{\frac{2}{3}} = 32^{\frac{2}{3}}$$

8.2.
$$a^{\frac{m}{n}} \times b^{\frac{m}{n}} = (a \times b)^{\frac{m}{n}}$$
; $a > 0$, $b > 0$ e m e n números naturais.

Resolução:

8.1.
$$8^{\frac{2}{3}} \times 4^{\frac{2}{3}} = \sqrt[3]{8^2} \times \sqrt[3]{4^2} = \sqrt[3]{8^2 \times 4^2} =$$

= $\sqrt[3]{(8 \times 4)^2} = (8 \times 4)^{\frac{2}{3}} = 32^{\frac{2}{3}}$

8.2.
$$a^{\frac{m}{n}} \times b^{\frac{m}{n}} = \sqrt[n]{a^m} \times \sqrt[n]{b^m} = \sqrt[n]{a^m} \times b^m =$$

= $\sqrt[n]{(a \times b)^m} = (a \times b)^{\frac{m}{n}}, a > 0 \text{ e } b > 0$

10 Min

Resolução do exercício 9 da página 103:

 Mostre, utilizando as propriedades das operações com radicais e a definição de potência de expoente racional, que:

9.1.
$$\left(a^{\frac{3}{2}}\right)^{\frac{2}{5}} = a^{\frac{3}{5}}$$

9.2.
$$(2^{0.5})^{\frac{3}{4}} = 2^{\frac{3}{6}}$$

9.1.
$$\left(a^{\frac{3}{2}}\right)^{\frac{2}{5}} = \left(\sqrt{a^3}\right)^{\frac{2}{5}} = \sqrt[5]{\left(\sqrt{a^3}\right)^2} = \sqrt[5]{\sqrt{\left(a^3\right)^2}} = \sqrt[5]{a^6} = a^{\frac{6}{10}} = a^{\frac{3}{5}}$$

$$= \sqrt[4]{a^6} = a^{\frac{6}{10}} = a^{\frac{3}{5}}$$
9.2.
$$(2^{0.5})^{\frac{3}{4}} = \left(2^{\frac{1}{2}}\right)^{\frac{3}{4}} = \left(\sqrt{2}\right)^{\frac{3}{4}} = \sqrt[4]{\left(\sqrt{2}\right)^3} = \sqrt[4]{\sqrt{2^3}} = \sqrt[8]{2^3} = 2^{\frac{3}{8}}$$

Esclarecimento de dúvidas aos alunos. Entrega de um trabalho de casa. 9 Min

Trabalho de Casa

- Manual, página 107, exercícios 18,19,20,21,22,23;
- Manual, página 108, exercícios 24,25

Avaliação

Observação formativa das produções efetuadas pelos alunos.