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Abstract. Pak and Vallejo have defined fundamental symmetry map as any
Young tableau bijection for the commutativity of the Littlewood-Richardson co-
efficients cλ

µ,ν = cλ
ν,µ. They have considered four fundamental symmetry maps and

conjectured that they are all equivalent (2004). The three first ones are based on
standard operations in Young tableau theory and, in this case, the conjecture was
proved by Danilov and Koshevoy (2005). The fourth fundamental symmetry, given
by the author in (1999;2000) and reformulated by Pak and Vallejo, is defined by
nonstandard operations in Young tableau theory and will be shown to be equivalent
to the first one defined by the involution property of the Benkart-Sottile-Stroomer
tableau switching. The proof of this equivalence provides, in the case the first
tableau is Yamanouchi, a variation of the tableau switching algorithm which shows
switching as an operation that takes two tableaux sharing a common border and
moves them trough each other by decomposing the first tableau into a sequence
of tableaux whose sequence of partition shapes defines a Gelfand-Tsetlin pattern.
This property leads to a jeu de taquin-chain sliding on Littlewood-Richardson
tableaux.

Résumé: Pak et Vallejo ont défini la transformation de la symétrie fondamen-
tale comme une bijection de tableaux de Young pour la comutativité des coefficients
de Littlewood-Richardson cλ

µ,ν = cλ
ν,µ. Ils ont considéré quatre bijections fondamen-

taux et ont conjecturé qu’elles sont équivalentes (2004). Les trois premières sont
basées sur des opérations standard de la théorie des tableaux de Young et, dans ce
cas, la conjecture a été confirmée par Danilov et Koshevoy (2005). La quatrième
symétrie fondamentale, donnée par l’auteur (1999;2000) et reformulée par Pak et
Vallejo, est définie par des opérations nonstandard dans la théorie des tableaux
de Young. Cette bijection sera montrée équivalente à la première définie pour la
propriété involutoire du tableau switching de Benkart-Sottile-Stroomer. La preuve
de cette equivalence, dans le cas le premier tableau est de Yamanouchi, donne
une variation du algorithme de tableau switching qui montre switching comme une
opération qui prendre deux tableaux avec une même borde et meut un à travers de
l’autre en décomposant le premier dans une séquence de tableaux dont la séquence
des partitions des formats definit une diagramme de Gelfand-Tsetlin. Cette pro-
priété conduit à un algorithme du type jeu de taquin-glissements sur châınes pour
les tableaux de Littlewood-Richardson.
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1. Introduction

Recently, with different approaches, several bijections exhibiting symmetries of
Littlewood-Richardson coefficients have been constructed [PV2, KTW, HK, DK].
Also the relationship between different combinatorial objects has been studied [PV1].
In [KTW, HK] hives and octahedron recurrence are the main tools while in [PV2]
the bijections are within Young tableaux. The fundamental symmetry map is defined
in [PV2] as any bijection between sets of Littlewood-Richardson tableaux of shape
λ/µ with weight ν, and of shape λ/ν with weight µ. Namely in [PV2] four funda-
mental symmetry maps ρ1, ρ2, ρ−1

2 and ρ3 are provided and it is conjectured that
they are equivalent in the sense that in all of them the outcome is the same. The
first three are based on standard algorithms in Young tableau theory, jeu de taquin,
Schützenberger involution and tableau switching, while ρ3 uses nonstandard oper-
ations in Young tableau theory which exhibits a Gelfand-Tsetlin pattern. In [DK]
it is shown that the Henriques-Kamnitzer commuter coincides with the Pak-Vallejo
fundamental symmetries ρ1, ρ2, ρ−1

2 , and ρ2 = ρ−1
2 . However the fundamental sym-

metry ρ3 in [PV2] is left out. Fundamental symmetry map ρ3 mentioned in [PV1]
and slightly reformulated in [PV2], has appeared earlier in [AZ1, AZ2]. Here we
show that ρ3 is equivalent to ρ1 defined by the involution switching tableau property
[BSS]. The fundamental symmetry map ρ3 is a jeu de taquin-chain sliding algo-
rithm which rectifies a Littlewood-Richardson tableau of shape λ/µ such that the
slides along chains decompose the inner shape µ into a sequence of interlacing par-
titions defining a Gelfand-Tsetlin pattern of type [ν, µ, λ] with ν the weight of the
Littlewood-Richardson tableau.

The paper is divided into four sections. In the next section we give the basic
definitions and terminology for what follows. In the third section, Theorem 3.3
stresses the relationship between the tableau switching and the interlacing property.
In the fourth section, Theorem 4.1 and Algorithm 4 show that the bijection ρ3 is
equivalent to the tableau switching on Litlewood-Richardson tableaux by exhibiting
it as a jeu de taquin-chain sliding algorithm. Along the paper several examples are
given.

2. Preliminaries

We think of Z× Z as consisting of boxes or blackdots • and we number the rows
and columns according the matrix style. Consider x and x′ boxes in Z× Z. We say
that x is to the north of x′ if the row containing x is above or equal the row containing
x′; and x is to the west of x′ if the column containing x is to the left or equal to
the column containing x′. The other compass directions are defined analogously.
When x and x′ are distinct adjacent boxes they are said neighbours. For instance,
the neighbour to the north of x is the one directly above x. Often we label boxes or
dots with integers (or with letters in a totally ordered alphabet) and, in this case, we
identify these objects with the corresponding letters.

A partition (or normal shape) λ = (λ1, . . . , λn) is a finite sequence (or infinite
sequence of finite support) of nonnegative integers by weakly decreasing order. The
null partition is denoted by 0. We ignore the distinction between two partitions that
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differ only at a string of zeros at the end. The diagram of λ consists of λ1 boxes (or
blackdots •) in the first row, λ2 boxes in the second row, etc, justified on the left.
(The English notation is adopted.) We look at partitions and diagrams indistinctly.
If λ and µ are two partitions with λi ≥ µi for all i, we write µ ⊆ λ. The skew-diagram
of shape λ/µ is the difference set of λ and µ. Whenever µ ⊆ λ we say λ/µ extends
µ and the outer border of µ is the inner border of λ/µ. The tableau T of shape λ/µ,
written shT = λ/µ, is a filling (or labeling) of the skew-diagram λ/µ using letters
of a totally ordered alphabet such that the entries increase weakly along rows and
strictly down columns. The weight of a tableau is ν = (ν1, . . . , νn) where νi is the
multiplicity of the letter i in the filling of the tableau. A tableau of (normal) shape
λ is a tableau of shape λ/0. We say the tableau T extends the tableau S of normal
shape if the shape of T extends the shape of S.

A word is a finite sequence of letters over a totally ordered alphabet. Knuth
congruence ≡ [K] on words is the congruence generated by the so-called elementary
transformations, where x, y, z are letters and u, v are words uxzxv ≡ uzxxv, uzzxv ≡
uzxzv, x < z, uxzyv ≡ uzxyv, x < y < z, uyzxv ≡ uyxzv, x < y < z. We define
the word of a tableau by row reading the entries from left to right and bottom
to top. The Yamanouchi tableau of shape λ, denoted Y (λ), is the tableau whose
shape and weight is λ, that is, the tableau obtained by filling the first row of λ with
λ1 1’s, the second with λ2 2’s etc. A Yamanouchi word of weight λ is any word
Knuth equivalent with Y (λ). A Littlewood-Richardson (LR for short) tableau of
type [µ, ν, λ] is a tableau of shape λ/µ and weight ν whose word is Yamanouchi. We
denote by LR[µ, ν, λ] the set of all LR tableaux of type [µ, ν, λ]. The cardinal of this
set is the Littlewood-Richardson coefficient cλ

µ,ν [LR, F, LLT, Sa, S].

Definition 2.1. [PV2] The fundamental symmetry is a bijection

ρ : LR[µ, ν, λ] −→ LR[ν, µ, λ].

In [PV2] the version ρ1 of the fundamental symmetry is based on the involution
property of the tableau switching [BSS]. In the last section we shall present the
version of the fundamental symmetry ρ3 [AZ1, AZ2, PV2] in terms of a jeu de taquin-
chain sliding and this allows us to conclude that ρ1 and ρ3 produce the same outcome.

We recall now the elementary operations of the jeu de taquin slides. Let us consider

a black dot • with two possible south-east letter neighbours a and b,
• b
a

. A

contracting slide into the blackdot • is performed according to the following rules: if
the blackdot has (a) only one neighbour, swap with that neighbour; (b) two different
neighbours, swap with the smaller one; (c) equal neighbours, swap with the one to

the south. In the case of two possible north-west neighbours
d

c • , an expanding

slide into the black dot • is performed analogously. If the blackdot has (a) only one
neighbour, swap with that neighbour; (b) two different neighbours, swap with the
bigger one; (c) equal neighbours, swap with the one to the north.

Let λ/µ be a skew-diagram and x an empty box which shares at least the south
(north) or east (west) edge with λ/µ. The box x is an inner (outer) corner of T if
{x}∪λ/µ is still a skew-diagram. Let T be a tableau and x an inner (outer) corner. A
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contracting (expanding) jeu de taquin slide of T into the blackdot or empty box x is a
sequence of contracting (expanding)slides starting in x through T until the blackdot
becomes an outer (inner) corner. The words of the intermediate arrays, produced by
the contracting and expanding slides, are Knuth equivalent [F]. Two tableaux are said
Knuth equivalent if one of them can be transformed by contracting and expanding jeu
de taquin slides into the another one, equivalently if their words are Knuth equivalent.
Occasionally we shall denote by T n the rectification of T . Thus another perspective
for Litlewood-Richardson coefficients is that cλ

µ,ν counts the number of LR tableaux
of type [µ, ν, λ] that are Knuth equivalent to Y (ν) [F, LLT, Sa, S]. This point of view
will be explored here.

Gelfand-Tsetlin (GT for short) patterns are related with LR tableaux as follows
[GZ].

Definition 2.2. A Gelfand-Tsetlin pattern of size n is a map G : {(i, j) : 1 ≤ j ≤
i ≤ n} → Z≥0 such that G(i, j) ≥ G(i− 1, j) ≥ G(i, j + 1) for all i and j.

Thus a Gelfand-Tsetlin pattern of size n is a sequence of partitions ν(s) = (ν
(s)
1 , . . . , ν

(s)
s ),

s = 1, ..., n, satisfying the interlacing inequalities

ν
(i)
j ≥ ν

(i−1)
j ≥ ν

(i)
j+1, 1 ≤ j < i ≤ n. (2.1)

We represent a Gelfand-Tsetlin pattern of size n by a triangular array of nonneg-

ative integers (ν
(i)
j )1≤j≤i≤n,

ν
(1)
1

ν
(2)
1 ν

(2)
2

ν
(3)
1 ν

(3)
2 ν

(3)
3

· · · · · · · · ·
ν

(n−1)
1 ν

(n−1)
2 ν

(n−1)
3 · · · ν

(n−1)
n−1

ν
(n)
1 ν

(n)
2 ν

(n)
3 · · · ν

(n)
n−1 ν

(n)
n .

The base of the Gelfand-Tsetlin pattern is the sequence of integers that appears in

the bottom row ν = (ν
(n)
1 , . . . , ν

(n)
n ), and the weight of the GT pattern is the sequence

(γ1, . . . , γn) defined by the first row followed by the differences of row sums from top

to bottom, that is, γ1 + · · ·+ γi = ν
(i)
1 + · · ·+ ν

(i)
i , 1 ≤ i ≤ n.

A GT pattern of size n, base ν and weight λ − µ is said of type [µ, ν, λ] if the

sequence of partitions ν(s) = (ν
(s)
1 , . . . , ν

(s)
s ), s = 1, ..., n, with ν(n) = ν, satisfy the

system of linear inequalities

µi−1 +
r−1∑
j=1

(ν
(i−1)
j − ν

(i−2)
j ) ≥ µi +

r∑
j=1

(ν
(i)
j − ν

(i−1)
j ), r = 1, . . . , i− 1, i = 2, . . . , n,

(2.2)

µi +
i∑

j=1

(ν
(i)
j − ν

(i−1)
j ) = λi, i = 1, . . . , n, (2.3)
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with the convention ν
(i−1)
i = 0. Sometimes µ is called a border of the GT pattern.

There is a standard bijection between Littlewood-Richardson tableaux of type [µ, ν, λ]
and the GT patterns of type [µ, ν, λ] [GZ]. This bijection sends an LR tableau T to
the GT pattern whose value at (i, j) is the number of j′s in the first i rows of T .

Here is an LR tableau of type [µ = (5, 4, 3, 1); ν = (6, 4, 1, 1); λ = (9, 7, 5, 4)] and
the corresponding GT pattern with weight ν, weight λ − µ = (4, 3, 2, 3) and border
µ,

• • • • • 1 1 1 1
• • • • 1 2 2
• • • 2 3
• 1 2 4

←→
4

5 2
5 3 1

6 4 1 1

.

We recall now the switching procedure and some related terminology [BSS]. A
perforated tableau T of shape λ/µ is a labeling of some of the boxes satisfying some
restrictions: whenever x and x′ are letters in T and x is north-west of x′, x ≤ x′;
within each column of T the letters are distinct. If S and T are perforated tableaux of
some given shape λ and together they completely label λ such that no box is labeled
twice, then S ∪ T (as union of sets of Z × Z) is called a perforated pair of shape λ.
In particular, given two tableaux S and T of shapes µ and λ/µ respectively, S ∪ T is
a perforated pair of shape λ by glueing S and T . For convenience, when considering
pairs of perforated tableaux S ∪ T , the letters in S and T belong to the alphabets
1̄ < · · · < n̄ and 1 < · · · < n respectively. Let S be a perforated tableau and suppose
s̄ is a neighbour to the north or to the west of an empty box. The swap of s̄ with
that empty box is called an expanding slide in S whenever a new perforated tableau
is produced. A contracting slide in T is defined analogously. Contrary to the slides
in tableaux starting in an inner or outer corner, the intermediate words are not in
general Knuth equivalent. (Assuming that we read words from bottom to top and
from left to right along rows.) Let S ∪ T be a perforated pair and assume that s̄

and t are two adjacent letters s̄ t or
s̄
t

from S and T respectively. Swapping s̄

and t is called a switch whenever we have simultaneously a contracting slide in T
and an expanding slide in S. The switching procedure starts with two tableaux S
and T such that T extends S and by switching letters from S with letters from T
transforms S ∪ T into a pair of tableaux P ∪Q such that Q extends P , S is Knuth
equivalent to Q and T is Knuth equivalent to P . We say that P ∪Q is the switching
of S and T . The switching transformation is an involution.

3. Tableau switching and shape interlacing property

A subtableau is a tableau obtained by suppressing some rows in a tableau. A
GT-pattern of size n and base ν encodes the normal shape sequence of the rectified
subtableaux of an LR tableau of weight ν defined by the first i rows, for 1 ≤ i ≤ n.
Now let S∪T be a pair of tableaux of shapes respectively µ and λ/µ which switching
procedure transforms into a pair P ∪Q where P is a tableau of normal shape ν. The
sequence of shapes of the rectified subtableaux defined by the first i rows of T , for
i ≥ 1, is a GT pattern of type [µ, ν, λ], and the sequence of shapes of the rectified
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subtableaux defined by the first i rows of Q, for i ≥ 1, is a GT pattern of type
[ν, µ, λ]. This may easily be seen from Haiman results on dual equivalence [H] (see
also [BSS]). We recall that two tableaux of the same shape are dual equivalent if,
whenever a particular choice of the order for performing jeu de taquin, the shapes of
the two tableaux are the same throughout the jeu de taquin process (see also [F]).

Theorem 3.1. [H] Let U and V be tableaux of the same shape. If W is any tableau
that extends U (or V ), then switching transforms U ∪W into P ∪Q and V ∪W into
P ∪R where Q and R are dual equivalent.

Given a tableau T and i ≥ 1, we denote by T (i) the subtableau defined by the
first i rows of T . In fact if we replace P with Y (ν) in P ∪Q and apply switching to
Y (ν)∪Q, then we get the pair S ∪L where L is an LR tableau of type [µ, ν, λ] dual
equivalent to T. Since the subtableaux defined by the first i rows of L and T are also
dual equivalent, it is now clear that (L(i))n and (T(i))n have the same shape.

Corollary 3.2. Let T be a tableau with n rows whose rectification has shape µ. Let
T̃ be the tableau defined by the first n− 1 rows of T whose rectification has shape µ̃.
Then µ̃ interlaces with µ, that is,

µi ≥ µ̃i ≥ µi+1, 1 ≤ i ≤ n− 1.

Remark 3.1. This corollary also follows directly from [F], Row Bumping Lemma, and
exercise 3 in Appendix A.2.

By passing we observe that interlacing inequalities occur in other contexts as ma-
trix theory or module theory: invariant factors of matrices over principal ideal do-
mains and eigenvalues of Hermitian matrices [FP, EMSa, TH]. It is not a surprise that
we have the same phenomenon in the combinatorics of Young tableaux as the unified
explanation for some analogies between those numbers is combinatorial. For instance
in [QSSA] an explanation for the analogy of the interlacing property of those numbers
is given, and in [AZ1, AZ2] and [AW] a relationship between Littlewood-Richardson
combinatorics and invariant factors of a product of matrices is also discussed.

We may thus state the following results

Theorem 3.3. Let Y and T be tableaux of shape µ and λ/µ respectively. Suppose
switching transforms Y ∪T into T n∪L. Let (T (1), · · · , T (n) = T ) and (L(1), · · · , L(n) =
L) be the sequences of tableaux defined respectively by the first i rows of T and L,
for all i. Then (sh (T (1))n, · · · , sh (T (n))n) and (sh (L(1))n, · · · , sh (L(n))n) define GT
patterns respectively of types [µ, sh T n, λ] and [sh T n, µ, λ].

Corollary 3.4. Let Y be the Yamanouchi tableau of shape µ and T a skew-tableau of
shape λ/µ. Suppose switching transforms Y ∪T into T n∪L. The following conditions
hold

(1) T n of shape ν is Knuth equivalent to T , and L is a Littlewood-Richardson
tableau of type[ν, µ, λ].

(2) Let Mi = (m
(i)
1 , . . . ,m

(i)
i ) with m

(i)
k the number of letters slid down from the

k-th row of Y (that is, the number of k’s) to the i-th row of L, 1 ≤ k ≤ i ≤ n.
Then



TABLEAU SWITCHING AND A PAK-VALLEJO’S CONJECTURE 7

(a) If µ(i) = µ(n) −∑n
j=i+1 Mj, 1 ≤ i ≤ n, (µ(1), . . . , µ(n)) is the GT-pattern

of type [ν, µ, λ] defining L.
(b) If (T n)(i)∪L(i) is the pair of tableaux defined by the first i rows of T n∪L,

L(i) is Knuth equivalent to Y (µ(i)), the Yamanouchi tableau of shape µ(i).

For each i < n, Y (µ(i)) is the Yamanouchi tableau obtained by sliding down

m
(i+1)
k k’s from the Yamanouchi tableau Y (µ(i+1)), for k = 1, · · · , i + 1. That is,

µ(i) = µ(i+1)−Mi+1, for all i < n. We claim that the interlacing property between the
normal shape of a rectified tableau and the normal shape of any rectified subtableau
gives rise to jeu de taquin-like operations and they are a shortcut in the tableau
switching procedure on Littlewood-Richardson tableaux. Before going to the next
section we explain the idea behind this claim.

For what follows we consider the following variation of the jeu de taquin on a two-
row tableau T and assume for simplicity that there is no • to the left of the second
row: (1) Switch horizontally the letters of the first row of T with the •’s such that
the letters get the leftmost possible positions; (2) Then the letters of the second row
with • as a neighbour to the north are switched with those •’s; (3) Finally slide
horizontally the letters of the second row completely to the left. At this point we get
the rectification of T . This can be seen as the Schensted insertion of the first row of
T into the second one.

Example 3.1.

• • • 1 3
1 2 3 4

←→ • 1 • 3 •
1 2 3 4

←→ 1 1 3 3 •
• 2 • 4

←→ 1 1 3 3 •
2 4 • • .

This procedure can be generalized to tableaux with more than two rows as follows:

Algorithm 3.5. Let T be a tableau with n rows.(1) Switch horizontally the letters of
the first n−1 rows of T with the •’s such that the letters in each row get the leftmost
possible positions; (2) Then the letters in the nth row with a • as a neighbour to the
north are switched with those •’s; and (3) the letters of the nth row are completely
slid to the left. Let Tn−1 be the outcome array.

Apply steps 1 and 2 to the first n − 1 rows of Tn−1. Then apply steps 1, 2 and 3
by this order to the last two rows. Next apply steps 1 and 2 to the first n− 2 rows of
the outcome array. Then steps 1 and 2 to the n − 1th and n − 2th rows, and again
steps 1, 2 and 3 to the last two rows.

When we reach the first row we apply steps 1 and 2 to the first two rows, then
steps 1, 2 to each pair of consecutive rows downwards and when we are in the last
two rows we apply finally steps 1 2 and 3. At this point we get the rectification of T .

In the previous algorithm if we replace the •’s in the ith row of the inner shape
of T with i’s, for all i, then we have a switching procedure for a tableau pair Y ∪ T
with Y a Yamanouchi tableau where a certain choice of the order of the switches was
made.

Remark 3.2. This algorithm can be seen as a Schensted insertion in two consecutive
rows starting with the insertion of the two bottom rows and going upwards.
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Example 3.2.

T =
• • • • 1 2
• • • 1 3
1 2 3 4

↔
• • 1 2 • •
• 1 • 3 •
1 2 3 4

↔
• • 1 2 • •
1 1 3 3 •
• 2 • 4

↔
• • 1 2 • •
1 1 3 3 •
2 4 • •

↔
1 1 1 2 • •
• • 3 3 •
2 4 • •

↔
1 1 1 2 • •
• 3 3 • •
2 4 • •

↔
1 1 1 2 • •
2 3 3 • •
• 4 • •

↔
1 1 1 2 • •
2 3 3 • •
4 • • •

.

Example 3.3.

Y ∪T =
1̄ 1̄ 1̄ 1̄ 1 2
2̄ 2̄ 2̄ 1 3
1 2 3 4

↔
1̄ 1̄ 1 2 1̄ 1̄
2̄ 1 2̄ 3 2̄
1 2 3 4

↔
1̄ 1̄ 1 2 1̄ 1̄
1 1 3 3 2̄
2̄ 2 2̄ 4

↔
1̄ 1̄ 1 2 1̄ 1̄
1 1 3 3 2̄
2 4 2̄ 2̄

↔
1 1 1 2 1̄ 1̄
1̄ 1̄ 3 3 2̄
2 4 2̄ 2̄

↔
1 1 1 2 1̄ 1̄
1̄ 3 3 1̄ 2̄
2 4 2̄ 2̄

↔
1 1 1 2 1̄ 1̄
2 3 3 1̄ 2̄
1̄ 4 2̄ 2̄

↔
1 1 1 2 1̄ 1̄
2 3 3 1̄ 2̄
4 1̄ 2̄ 2̄

.

Example 3.4. Consider example 3.3. The pair Y ∪T =
1̄ 1̄ 1̄ 1̄ 1 2
2̄ 2̄ 2̄ 1 3
1 2 3 4

by tableau-

switching was transformed into T n∪L =
1 1 1 2 1̄ 1̄
2 3 3 1̄ 2̄
4 1̄ 2̄ 2̄

. The GT pattern defined

by the LR tableau L is (µ(1) = (2); µ(2) = (3, 1); µ(3) = (4, 3, 0)). We construct now a
sequence of arrays having in the up left corner the Yamanouchi tableau of shape µ(i)

as follows : for each 1 ≤ i < n, transform by switching (T n)(i)∪L(i) into Y (µ(i))∪X(i),
and define the n-row array Qi whose last n− i rows are equal to the corresponding
rows of T n ∪ L, and the first i rows are equal to Y (µ(i)) ∪ X(i). (Notice that these
arrays are recording devices that do not obey the usual rules about entries strictly
increasing down columns.)

Y ∪ T =
1̄ 1̄ 1̄ 1̄ 1 2
2̄ 2̄ 2̄ 1 3
1 2 3 4

→ Q1 =
1̄ 1̄ 1̄ 1 1 2
2̄ 1 2 3 3
4 1̄ 2̄ 2̄

→ Q2 =
1̄ 1̄ 1 1 1 2
2 3 3 1̄ 2̄
4 1̄ 2̄ 2̄

→ T n ∪ L =
1 1 1 2 1̄ 1̄
2 3 3 1̄ 2̄
4 1̄ 2̄ 2̄

.

In the next section we define operations which clarify the meaning of these record-
ing arrays.



TABLEAU SWITCHING AND A PAK-VALLEJO’S CONJECTURE 9

4. A jeu de taquin-chain sliding algorithm for Litllewood-Richardson
tableaux

We shall now develop operations that shall make use of the information given in
Corollary 3.4. The following technical statement defines the chain-sliding operations
as a jeu de taquin-like operation and relate them with the Benkart-Sotille-Stroomer
switching transformation. This explains the nonstandard operations on the basis of
the involution ρ3 described with different flavours in [AZ1, AZ2] and [PV2].

Theorem 4.1. (Chain-sliding operation.) Consider the following skew-tableau with
inner shape µ

T =

• • • • • • • • • • • z1

• • • • • • • • • δ1 z2

• • • • • • γ2 θ2 δ2 z3

¡¡µ

• α3 x3 γ3 y3 θ3 w3 δ3 z4
»»»»»:

³³³³1 ¡¡µ

λ4 α4 γ4 θ4 δ4
6 ¡¡µ ³³³³1

»»»»»»:

such that zi ≥ δi, for all i, and the following chain conditions are satisfied
(a) δ4 > δ3 > δ2 > δ1; θ4 > θ3 > θ2; γ4 > γ3 > γ2; α4 > α3;
(b) w3 ≥ θ4 > y3 ≥ γ4 > x3 ≥ α4.
Then it holds

(1) T is Knuth equivalent to

T ′ =

• • • • • • • • • • δ1 z1

• • • • • • • γ2 θ2 δ2 z2

• • • • • α3 γ3 θ3 δ3 z3

λ4 α4 x3 γ4 y3 θ4 w3 δ4 z4

, (4.1)

where T ′ is obtained from T by sliding one row up the chains δ4 > δ3 > δ2 > δ1;
θ4 > θ3 > θ2; γ4 > γ3 > γ2; α4 > α3 and λ4. The inner shape µ′ of T ′

interlaces with the inner shape µ of T ,

µi ≥ µ′i ≥ µi+1,

such that µi − µ′i is equal to the number of chains that have reached row i of
T . (The underlines indicate the slid chains while the non underlined letters
were kept fixed.) We call these chain-sliding operations jeu de taquin-chain
slides.

(2) Suppose Y (µ)∪T is by switching transformed into T n ∪L. Then the last row
of T n ∪ L has (µi − µ′i) i’s, for all i, and (T n)(n−1) ∪ L(n−1), defined by the
first n − 1 rows of T n ∪ L, can be transformed by switching into Y (µ′) ∪ T ′,
with T ′ as in (4.1).

Proof. Apply Algorithm 3.5 to T with z1, z2, z3 and z4 fixed. Without lost of gener-
ality we shall assume that w3 > δ2 ≥ θ3; y3 > θ2 > δ1 ≥ γ3; x3 > γ2 ≥ α3 ≥ λ4.
Considering these inequalities and the ones above, by horizontal switches, as in our
algorithm, Y (µ) ∪ T can be transformed into
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1̄ 1̄ 1̄ 1̄ 1̄ 1̄ 1̄ 1̄ 1̄ 1̄ 1̄ z1

2̄ 2̄ 2̄ 2̄ δ1 2̄ 2̄ 2̄ 2̄ 2̄ z2

3̄ 3̄ γ2 3̄ θ2 3̄ δ2 3̄ 3̄ z3

4̄ α3 x3 γ3 y3 θ3 w3 δ3 z4

λ4 α4 γ4 θ4 δ4

.

Then again by the following sequence of switches

1̄ 1̄ 1̄ 1̄ 1̄ 1̄ 1̄ 1̄ 1̄ 1̄ 1̄ z1

2̄ 2̄ 2̄ 2̄ δ1 2̄ 2̄ 2̄ 2̄ 2̄ z2

λ4 α3 γ2 γ3 θ2 θ3 δ2 δ3 3̄ z3

3̄ 3̄ x3 3̄ y3 3̄ w3 3̄ z4

α4 γ4 θ4 δ4 4̄

→

1̄ 1̄ 1̄ 1̄ 1̄ 1̄ 1̄ 1̄ 1̄ 1̄ 1̄ z1

2̄ 2̄ 2̄ 2̄ δ1 2̄ 2̄ 2̄ 2̄ 2̄ z2

λ4 α3 γ2 γ3 θ2 θ3 δ2 δ3 3̄ z3

3̄ x3 y3 w3 3̄ 3̄ 3̄ 3̄ z4

α4 γ4 θ4 δ4 4̄

→

1̄ 1̄ 1̄ 1̄ 1̄ 1̄ 1̄ 1̄ 1̄ 1̄ 1̄ z1

2̄ 2̄ 2̄ 2̄ δ1 2̄ 2̄ 2̄ 2̄ 2̄ z2

λ4 α3 γ2 γ3 θ2 θ3 δ2 δ3 3̄ z3

α4 x3 y3 w3 3̄ 3̄ 3̄ 3̄ z4

3̄ γ4 θ4 δ4 4̄

→

1̄ 1̄ 1̄ 1̄ 1̄ 1̄ 1̄ 1̄ 1̄ 1̄ 1̄ z1

2̄ 2̄ 2̄ 2̄ δ1 2̄ 2̄ 2̄ 2̄ 2̄ z2

λ4 α3 γ2 γ3 θ2 θ3 δ2 δ3 3̄ z3

α4 x3 y3 w3 3̄ 3̄ 3̄ 3̄ z4

γ4 θ4 δ4 3̄ 4̄

→

1̄ 1̄ 1̄ 1̄ 1̄ 1̄ 1̄ 1̄ 1̄ 1̄ 1̄ z1

λ4 α3 γ2 γ3 δ1 θ3 δ2 2̄ 2̄ 2̄ z2

2̄ 2̄ 2̄ 2̄ θ2 2̄ 2̄ δ3 3̄ z3

α4 x3 y3 w3 3̄ 3̄ 3̄ 3̄ z4

γ4 θ4 δ4 3̄ 4̄

→

1̄ 1̄ 1̄ 1̄ 1̄ 1̄ 1̄ 1̄ 1̄ 1̄ 1̄ z1

λ4 α3 γ2 γ3 δ1 θ3 δ2 2̄ 2̄ 2̄ z2

α4 x3 θ2 w3 2̄ 2̄ 2̄ δ3 3̄ z3

2̄ 2̄ y3 2̄ 3̄ 3̄ 3̄ 3̄ z4

γ4 θ4 δ4 3̄ 4̄

Recall that w3 > y3 > θ2 > γ3 > γ2 ≥ x3; θ4 > y3 > x3 and y3 ≥ γ4.

→

1̄ 1̄ 1̄ 1̄ 1̄ 1̄ 1̄ 1̄ 1̄ 1̄ 1̄ z1

λ4 α3 γ2 γ3 δ1 θ3 δ2 2̄ 2̄ 2̄ z2

α4 x3 θ2 w3 2̄ 2̄ 2̄ δ3 3̄ z3

γ4 y3 δ4 2̄ 3̄ 3̄ 3̄ 3̄ z4

2̄ θ4 2̄ 3̄ 4̄

→

λ4 α3 γ2 γ3 δ1 1̄ 1̄ 1̄ 1̄ 1̄ 1̄ z1

1̄ 1̄ 1̄ 1̄ 1̄ θ3 δ2 2̄ 2̄ 2̄ z2

α4 x3 θ2 w3 2̄ 2̄ 2̄ δ3 3̄ z3

γ4 y3 δ4 2̄ 3̄ 3̄ 3̄ 3̄ z4

θ4 2̄ 2̄ 3̄ 4̄
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→

λ4 α3 γ2 γ3 δ1 1̄ 1̄ 1̄ 1̄ 1̄ 1̄ z1

α4 x3 θ2 1̄ 1̄ θ3 δ2 2̄ 2̄ 2̄ z2

γ4 y3 1̄ w3 2̄ 2̄ 2̄ δ3 3̄ z3

θ4 1̄ δ4 2̄ 3̄ 3̄ 3̄ 3̄ z4

1̄ 2̄ 2̄ 3̄ 4̄

.

According to Corollary 3.4, in the last row of the previous perforated pair, the mul-
tiplicity of a letter k is precisely the number of letters slid from the kth row of Y (µ)
to the nth-row of Y (µ) ∪ T . Despite the zi’s were kept fixed in the application of
Algorithm 3.5, once the letters of Y get the last row they stay till the end of the
switching process. Thus the last perforated tableau pair with the last row suppressed
by switching is transformed into (T n)(n−1) ∪ L(n−1) the tableau pair defined by the
first n− 1 rows of T n ∪ L

λ4 α3 γ2 γ3 δ1 1̄ 1̄ 1̄ 1̄ 1̄ 1̄ z1

α4 x3 θ2 1̄ 1̄ θ3 δ2 2̄ 2̄ 2̄ z2

γ4 y3 1̄ w3 2̄ 2̄ 2̄ δ3 3̄ z3

θ4 1̄ δ4 2̄ 3̄ 3̄ 3̄ 3̄ z4

−→ (T n)(n−1) ∪ L(n−1). (4.2)

It remains to show that (4.2) can be transformed by switches into

Y (µ′) ∪ T ′ =

1̄ 1̄ 1̄ 1̄ 1̄ 1̄ 1̄ 1̄ 1̄ 1̄ δ1 z1

2̄ 2̄ 2̄ 2̄ 2̄ 2̄ 2̄ γ2 θ2 δ2 z2

3̄ 3̄ 3̄ 3̄ 3̄ α3 γ3 θ3 δ3 z3

λ4 α4 x3 γ4 y3 θ4 w3 δ4 z4

. (4.3)

Performing the following sequence of switches we get the wished result

λ4 α3 γ2 γ3 δ1 1̄ 1̄ 1̄ 1̄ 1̄ 1̄ z1

α4 x3 θ2 1̄ 1̄ θ3 2̄ 2̄ 2̄ δ2 z2

γ4 y3 1̄ 2̄ 2̄ 2̄ 3̄ 3̄ δ3 z3

θ4 1̄ 2̄ 3̄ 3̄ 3̄ w3 δ4 z4

→

λ4 α3 γ2 γ3 δ1 1̄ 1̄ 1̄ 1̄ 1̄ 1̄ z1

α4 x3 θ2 1̄ 1̄ 2̄ 2̄ 2̄ 2̄ δ2 z2

γ4 y3 1̄ 2̄ 2̄ 3̄ 3̄ θ3 δ3 z3

1̄ 2̄ 3̄ 3̄ 3̄ θ4 w3 δ4 z4

→

λ4 α3 γ2 γ3 δ1 1̄ 1̄ 1̄ 1̄ 1̄ 1̄ z1

α4 x3 θ2 1̄ 1̄ 2̄ 2̄ 2̄ 2̄ δ2 z2

1̄ 1̄ 2̄ 2̄ y3 3̄ 3̄ θ3 δ3 z3

γ4 2̄ 3̄ 3̄ 3̄ θ4 w3 δ4 z4

→

λ4 α3 γ2 γ3 δ1 1̄ 1̄ 1̄ 1̄ 1̄ 1̄ z1

α4 x3 θ2 1̄ 1̄ 2̄ 2̄ 2̄ 2̄ δ2 z2

1̄ 1̄ 2̄ 2̄ 3̄ 3̄ 3̄ θ3 δ3 z3

γ4 2̄ 3̄ 3̄ y3 θ4 w3 δ4 z4

→

λ4 α3 γ2 γ3 1̄ 1̄ 1̄ 1̄ 1̄ 1̄ δ1 z1

α4 x3 1̄ 1̄ 2̄ 2̄ 2̄ 2̄ θ2 δ2 z2

1̄ 1̄ 2̄ 2̄ 3̄ 3̄ 3̄ θ3 δ3 z3

2̄ 3̄ 3̄ γ4 y3 θ4 w3 δ4 z4

→

λ4 α3 γ2 1̄ 1̄ 1̄ 1̄ 1̄ 1̄ 1̄ δ1 z1

α4 x3 1̄ 2̄ 2̄ 2̄ 2̄ 2̄ θ2 δ2 z2

1̄ 1̄ 2̄ 3̄ 3̄ 3̄ γ3 θ3 δ3 z3

2̄ 3̄ 3̄ γ4 y3 θ4 w3 δ4 z4
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→

1̄ 1̄ 1̄ 1̄ 1̄ 1̄ 1̄ 1̄ 1̄ 1̄ δ1 z1

λ4 α3 γ2 2̄ 2̄ 2̄ 2̄ 2̄ θ2 δ2 z2

α4 x3 2̄ 3̄ 3̄ 3̄ γ3 θ3 δ3 z3

2̄ 3̄ 3̄ γ4 y3 θ4 w3 δ4 z4

→

→

1̄ 1̄ 1̄ 1̄ 1̄ 1̄ 1̄ 1̄ 1̄ 1̄ δ1 z1

λ4 α3 γ2 2̄ 2̄ 2̄ 2̄ 2̄ θ2 δ2 z2

2̄ 2̄ 3̄ 3̄ 3̄ 3̄ γ3 θ3 δ3 z3

3̄ α4 x3 γ4 y3 θ4 w3 δ4 z4

→

1̄ 1̄ 1̄ 1̄ 1̄ 1̄ 1̄ 1̄ 1̄ 1̄ δ1 z1

2̄ 2̄ 2̄ 2̄ 2̄ 2̄ 2̄ γ2 θ2 δ2 z2

3̄ 3̄ 3̄ 3̄ 3̄ α3 γ3 θ3 δ3 z3

λ4 α4 x3 γ4 y3 θ4 w3 δ4 z4

.

¤

Example 4.1. (a) Example 3.4. (b) We may use the jeu de taquin-chain sliding to
conclude that the following tableaux are Knuth equivalent

• • • • 4
• • 2 4
3 5 6

→ • • 2 4 4
• 3 5 6

.

According to our previous study we now reformulate the algorithms presented in
[AZ1, AZ2] and [PV2].

Algorithm 4.2. Consider an LR tableau T . Replace rows one by one in T , beginning
with the bottom row, as follows. In each row i to be replaced, build a sequence of
chains: one letter x in row i and the other letters in rows above, starting with the
rightmost letter of i and going to the leftmost one. For each such element x, find the
largest y < x in the above row, not used by the previous chains starting from row
containing x, then the largest element z < y in the row above that of y not used by
the previous chains, etc. This chain will finish either in a •, in row k of the inner
shape of T whenever the length of the chain is i−k+1, or in the first row of T in a 1.
This last situation occurs whenever the length of the chain is i. Now replace y with
x, z with y, etc, until the top element of the chain removes a • in row k of the inner
shape of T unless the chain reaches the first row of T . In this case no replacement
is made along the chain but the starting letter i that remains in row i is moved as
far as possible to the left. The removed • is recorded as a letter k in the row i of
T to be replaced. Note that each entry of the inner shape of T , in the row i to be
replaced, forms a chain of length 0 which will be recorded in the same row as ī.

Example 4.2. Consider the LR tableau T of type [µ = (8, 7, 4, 1), ν = (6, 3, 2); λ =
(11, 9, 6, 5)] and apply the jeu de taquin-like
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T =

• • • • • • • • 1 1 1

• • • • • • • 1 2
6

• • • • 1 2©©©*
©©©*

• 1 2 3 3¡¡µ ¡¡µ ¡¡µ ¡¡µ

→

• • • • • • • 1 1 1 1

• • • • • • 1 2 2
6

• • 1 2 3 3»»»»»:
»»»»»:

1 2 3 3 4

→

• • • • • • 1 1 1 1 1

• • • • • 1 2 2 2
6

3 3 1 2 3 3

1 2 3 3 4

→

• • • • • 1 1 1 1 1 1

2 2 2 1 2 2 2 2 2

3 3 1 2 3 3

1 2 3 3 4

→
1 1 1 1 1 1 1̄ 1̄ 1̄ 1̄ 1̄
2 2 2 1̄ 2̄ 2̄ 2̄ 2̄ 2̄
3 3 1̄ 2̄ 3̄ 3̄
1̄ 2̄ 3̄ 3̄ 4̄.

= ρ3(T ) = ρ1(T ).

The outcome is a tableau-pair defined by the Yamanouchi tableau Y (ν), the rec-
tification of the LR tableau T of type [µ, ν, λ], and an LR tableau of type [ν, µ, λ].

In [AZ1, AZ2, PV2] instead of replacements of rows by new ones recording what
has been removed in the inner shape, rows are removed and what has been removed
in the inner shape is recorded in a matrix. This is the original idea since as we
have discussed what is removed in the inner shape of T defines a GT-pattern which
encodes the LR tableau type [ν, µ, λ]. But here one wishes to stress the relationship
between the involutions ρ1 and ρ3.
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Representations, Textos de Matemática, Série B 19 (1999), 81-82.

[AZ2] Olga Azenhas. On an involution on the set of Littlewood-Richardson tableaux and the hidden
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[EMSa] Eduardo Marques de Sá. Imbedding conditions for λ-matrices, Linear Algebra and its Ap-
plications, 24 (1979), 33-50.

[Sa] Bruce Sagan. The symmetric group Reperesentations, Combinatorial Algorithms, and Symmet-
ric functions, Springer Verlag New York, 2001.

[S] Richard Stanley. Enumerative Combinatorics, Vol 2, Cambridge University Press, Cambridge,
United Kingdom, 2001.

[TH] Robert C. Thompson. Interlacing inequalities for invariant factors, Linear Algebra and its
Applications, 24 (1979), 1-32.

[GZ] Israel Gelfand and Andrei Zelevinsky. Multiplicities and proper bases of gln, Group theoretical
methods in physics, Vol. II (Yurmala, 1985), 147–159, VNU Sci. Press, Utrecht, 1986.

CMUC, Department of Mathematics, University of Coimbra, 3001-454 Coimbra,
Portugal

E-mail address: oazenhas@mat.uc.pt


