Lecture I. GL_n crystals

Olga Azenhas

CMUC

XXIV International Workshop for Young Mathematicians "Representation Theory" 17-23 IX 2023 Jagiellonian University

Set up: Cartan type A_{n-1}

- weight lattice $\Lambda = \mathbb{Z}^n$.
- $\mathcal{P}_n = \{\lambda \in \mathbb{Z}_{\geq 0}^n : \lambda = (\lambda_1 \geq \cdots \lambda_n \geq 0)\}$ the set of partitions with at most n parts.
- I := [n-1], simple roots $\{\alpha_i = \mathbf{e}_i \mathbf{e}_{i+1}, i \in I\}$, $\alpha_i^{\vee} = \alpha_i, i \in I$. $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ standard basis of \mathbb{R}^n
- fundamental weights $\varpi_i = \mathbf{e}_1 + \cdots + \mathbf{e}_i$, $i \in I$.
- Dynkin diagram I Cartan type A_{n-1} ,

$$W = \mathfrak{S}_n = \langle s_1, \dots, s_{n-1} : s_i^2 = 1, (s_i s_j)^2 = 1, |i - j| > 1, (s_i s_{i+1})^2 = 1 \rangle$$

• Dynkin diagram automorphism, $\theta: I \to I$, $\alpha_{\theta(i)} = -w_0 \alpha_i \Rightarrow \theta(i) = n - i$

$$n = 6$$
 $I = [5]$ A_5 1 2 3 4 5

GL_n - crystals

- The finite-dimensional irreducible polynomial representations of the \mathfrak{gl}_n Lie algebra are parameterized by the partitions in \mathcal{P}_n . To any $\lambda \in \mathcal{P}_n$, we denote by $V(\lambda)$ the corresponding finite-dimensional representation (or \mathfrak{gl}_n -module).
- To each partition $\lambda \in \mathcal{P}_n$ corresponds a crystal graph $B(\lambda)$ which can be regarded as the combinatorial skeleton of the simple module $V(\lambda)$.

GL_n - crystals

A GL_n -crystal is a non-empty set B along with maps

wt :
$$B \to \mathbb{Z}^n$$
, $e_i, f_i : B \to B \cup \{0\}, \varepsilon_i, \varphi_i : B \to \mathbb{Z}$,

such that for any $b, b' \in B$ and $i \in I = [n-1]$,

- $b' = e_i(b)$ if and only if $b = f_i(b')$;
- if $f_i(b) \neq 0$ then $\operatorname{wt}(f_i(b)) = \operatorname{wt}(b) \alpha_i$; if $e_i(b) \neq 0$, then $\operatorname{wt}(e_i(b)) = \operatorname{wt}(b) + \alpha_i$;
- $\varepsilon_i(b) = \max\{a \in \mathbb{Z}_{\geq 0} : e_i^a(b) \neq 0\}$ and $\varphi_i(b) = \max\{a \in \mathbb{Z}_{\geq 0} : f_i^a(b) \neq 0\}$;
- $\varphi_i(b) = \varepsilon_i(b) + \langle \operatorname{wt}(b), \alpha_i \rangle$.

For any $i \in I$, the crystal B can be decomposed into its i-chains (or strings) which are obtained just by keeping the i-arrows,

$$e_i^{\varepsilon_i(b)}(b)$$
 $e_i(b)$ $e_i(b)$ $e_i(b)$ $e_i(b)$

Standard GL_n crystal

• Let $\mathbb{B}_n := B(\varpi_1) = \{1, \dots, n\}$ be the standard Gl_n -crystal consisting of the words of a sole letter on the alphabet [n] whose coloured crystal graph is

$$1 \xrightarrow{1} 2 \xrightarrow{2} \cdots \xrightarrow{n-2} n - 1 \xrightarrow{n-1} n.$$

▶ The Kashiwara operators f_i and e_i are defined for $i \in I = [n-1]$ as follows:

$$f_i(i) = i + 1,$$
 $e_i(i+1) = i$, otherwise, the letters are unchanged.

- ▶ The weight $wt(i) = \mathbf{e}_i$, for i = 1, ..., n.
- ▶ The highest (lowest) weight element of $B(\varpi_1)$ is the word 1 (n), since

$$e_i(1) = 0 \ (f_i(n) = 0), \text{ for all } i \in I$$

and the highest (lowest) weight is $e_1(e_n)$.



Tensor product of crystals

- B and C crystals.
- the crystal $B \otimes C$ has set of vertices the cartesian product of the sets of vertices of B and C, the elements denoted $u \otimes v$, $u \in B$ and $v \in C$, and crystal structure given by

$$e_{i}(u \otimes v) = \begin{cases} u \otimes e_{i}(v) & \text{if } \varepsilon_{i}(v) > \varphi_{i}(u) \\ e_{i}(u) \otimes v & \text{if } \varepsilon_{i}(v) \leq \varphi_{i}(u) \end{cases}$$

$$f_{i}(u \otimes v) = \begin{cases} f_{i}(u) \otimes v & \text{if } \varphi_{i}(u) > \varepsilon_{i}(v) \\ u \otimes f_{i}(v) & \text{if } \varphi_{i}(u) \leq \varepsilon_{i}(v) \end{cases}$$

• *GL*₃ standard tensor product:

$$B(\varpi_1)^{\otimes 2} = B(2\varpi_1) \sqcup B(\varpi_2) = B(2\varpi_1) \bigoplus B(\varpi_2)$$
$$V(\varpi_1)^{\otimes 2} = V(2\varpi_1) \bigoplus V(\varpi_2)$$

$$1 \otimes 2 \stackrel{2}{\rightarrow} 1 \otimes 3 \stackrel{1}{\rightarrow} 2 \otimes 3$$

Crystal of words

- The crystal $\mathcal{W}_n = \bigsqcup_{k>0} \mathbb{B}^{\otimes k} \sqcup \{\emptyset\}$ of all finite words on [n] where \emptyset is the empty word and the vertex $w_1 \otimes \cdots \otimes w_k \in \mathbb{B}^{\otimes k}$ is identified with the word $w = w_1 \cdots w_k$ of length k on [n].
- Signature rule:
 - 1- substitute each letter w_j by $\begin{cases} + \text{ if } w_j = i \\ \text{ if } w_j = i + 1 \\ \text{erase it in any other case.} \end{cases}$
 - 2- successively erase any pair +- until all the remaining letters form a word -a+b. Then $\varphi_i(w)=b$ and $\varepsilon_i(w)=a$.
 - 3- $e_i(f_i)$ acts on the letter i+1(i) associated to the rightmost (leftmost) (+) in -a+b: $e_i(i+1) = \begin{cases} i & \text{if } a > 0 \\ 0 & \text{if } a = 0 \end{cases}$ $f_i(i) = \begin{cases} i+1 & \text{if } b > 0 \\ 0 & \text{if } b = 0 \end{cases}$
- $124211232113 \in \mathbb{B}_{4}^{\otimes 12} = B(\varpi_1)^{\otimes 12}$.

Crystal of words

- The crystal $\mathcal{W}_n = \bigsqcup_{k>0} \mathbb{B}^{\otimes k} \sqcup \{\emptyset\}$ of all finite words on [n] where \emptyset is the empty word and the vertex $w_1 \otimes \cdots \otimes w_k \in \mathbb{B}^{\otimes k}$ is identified with the word $w = w_1 \cdots w_k$ of length k on [n].
- Signature rule:
 - 1- substitute each letter w_j by $\begin{cases} + \text{ if } w_j = i \\ \text{ if } w_j = i + 1 \\ \text{erase it in any other case.} \end{cases}$
 - 2- successively erase any pair +- until all the remaining letters form a word $-a^+$. Then $\varphi_i(w) = b$ and $\varepsilon_i(w) = a$.
 - 3- $e_i(f_i)$ acts on the letter i+1(i) associated to the rightmost (leftmost) (+) in -a+b: $e_i(i+1) = \begin{cases} i & \text{if } a > 0 \\ 0 & \text{if } a = 0 \end{cases}$ $f_i(i) = \begin{cases} i+1 & \text{if } b > 0 \\ 0 & \text{if } b = 0 \end{cases}$
- $124211232113 \in \mathbb{B}_{4}^{\otimes 12} = B(\varpi_{1})^{\otimes 12}$. $122112211 \to (12)\mathbf{2}(1(12)2)\mathbf{11} \to \mathbf{211}$ $\mathbf{211} \to \mathbf{111} \Rightarrow e_{1}(124211232\mathbf{113}) = 124\mathbf{1}11232\mathbf{113}$ $\mathbf{211} \to 22\mathbf{1} \Rightarrow f_{1}(124\mathbf{2}11232\mathbf{213}) = 124\mathbf{1}11232\mathbf{113} \mapsto \mathbb{R}$

Crystal of Young tableaux

- $\lambda \in \mathcal{P}_n$
- $B(\lambda, n)$ the set of all Young tableaux of shape λ on the alphabet [n]
- the column reading word of a tableau

$$T = \begin{bmatrix} 1 & 2 & 2 \\ 4 & 5 \end{bmatrix} \xrightarrow{\text{column reading}} w(T) = 22514 \in \mathcal{W}_5.$$

- a tableau in $B(\lambda, n)$ is uniquely recovered from its word.
- the map $T \mapsto w(T)$ gives an embedding of $B(\lambda, n)$ in W_n and we may think of $B(\lambda, n)$ as a subset of W_n .
- $B(\lambda, n)$ is closed for the action of e_i and f_i , $i \in I$: $e_i(T) := e_i(w(T))$ and $f_i(T) := f_i(w(T)) \in B(\lambda, n)$.
- $B(\lambda, n)$ is a subcrystal of W_n

$$GL_3$$
 crystal $B((2,1,0),3) \subseteq \mathcal{W}_3$

$$T_{\lambda} = \begin{array}{c|c} \boxed{11} & \rightarrow & \boxed{11} \\ \hline 2 & \rightarrow & \boxed{11} \\ \hline 2 & \rightarrow & \boxed{11} \\ \hline 12 & \rightarrow & \boxed{12} \\ \hline 2 & & & \boxed{22} \\ \hline 2 & & & \downarrow 2 \\ \hline 13 & \rightarrow & \boxed{13} \\ \hline 2 & & & \boxed{23} \\ \hline \end{array}$$

- Weyl group $W = \mathfrak{S}_n$ action on $B(\lambda, n)$: the simple reflection s_i sends each vertex $b \in B(\lambda, n)$ to the unique vertex b' in the *i*-chain of b such that b' is the reflection of bwith respect to the center of the *i*-chain containing *b*. Note $wt(s_i.b) = s_iwt(b)$.
- The character of $B(\lambda, n)$, $V(\lambda)$ finite-dimensional irreducible polynomial representation of Gl_n of highest weight λ , is the Schur polynomial

$$s_{\lambda}(x_1,\ldots,x_n) = \sum_{b \in R(\lambda,n)} x^{wt(b)} = \sum_{\mu \prec \lambda} K(\lambda,\mu) x^{\mu}.$$

Weight space decomposition of $V(\lambda)$

$$V(\lambda) = \bigoplus_{\mu \preceq \lambda} V(\lambda)_{\mu}, \quad \dim V(\lambda)_{\mu} = K(\lambda, \mu)$$

$$\dim V(\lambda) = \sum_{\mu \preceq \lambda} \dim V(\lambda)_{\mu} = \sum_{\mu \preceq \lambda} K(\lambda, \mu) = |B(\lambda, n)| = s_{\lambda}(1, \dots, 1).$$

GL_3 crystal $B((2,1,0),3)\subseteq \mathcal{W}_3$

$$T_{\lambda} = \begin{array}{cccc} \boxed{1} \boxed{1} & \rightarrow & \boxed{1} \boxed{1} \\ 2 & \rightarrow & \boxed{1} \boxed{1} \\ 1 \downarrow & & \downarrow 1 \\ \boxed{1} \boxed{2} & & \boxed{2} \boxed{3} \\ 2 \downarrow & & \downarrow 2 \\ \boxed{1} \boxed{3} & \rightarrow & \boxed{1} \boxed{3} \\ 2 & \rightarrow & 2 & \boxed{3} \\ \end{array}$$

• B((2,1,0),3):

$$\begin{split} s_{(2,1,0)}(x_1,x_2,x_3) &= x^{210} + x^{120} + x^{201} + x^{021} + x^{012} + x^{102} + 2x^{(111)} \\ \dim V(210) &= s_{(2,1,0)}(1,1,1) = 8 = |B(210),3)| \\ \dim V(210)_{\mu} &= \begin{cases} 1, & \mu \neq (1,1,1) \leq (2,1,0) \\ 2, & \mu = (1,1,1). \end{cases} \end{split}$$

GL_3 crystal $B((2,1,0),3) \subseteq \mathcal{W}_3$

$$T_{\lambda} = \begin{array}{cccc} \boxed{111} & \xrightarrow{2} & \boxed{111} & \xrightarrow{1} & \boxed{12} \\ \downarrow \downarrow \downarrow \downarrow & & \downarrow \downarrow \downarrow \\ \boxed{12} & & & \downarrow 2 \\ \boxed{13} & \xrightarrow{2} & \boxed{13} & \xrightarrow{1} & \boxed{23} \\ \boxed{2} & & & \downarrow 2 \\ \end{array}$$

$$B((2,1,0),3) = \{f_{i_1}^{k_1} \cdots f_{i_\ell}^{k_\ell}(T_{\lambda}) \mid (k_1,\ldots,k_l) \in \mathbb{Z}_{>0}^{\ell}, \ i_1,\ldots,i_l \in I = [2]\} \setminus \{0\}.$$

Crystal equivalence and classical Young tableau combinatorics

• Knuth equivalence in W_n / Schützenberger jeu de taquin (sliding)

$$xyz \equiv \begin{cases} xzy, & y \le x < z \\ yxz, & y < z \le x \end{cases} \Leftrightarrow \boxed{\boxed{y|x}} \equiv \begin{cases} \boxed{\boxed{x}} & y \le x < z \\ \boxed{\boxed{y|z}} & y < z \le x \end{cases}$$

- Two words $w, w' \in \mathcal{W}_n$ are said Knuth equivalent if they can be transformed into each other by a sequence of Knuth transformations. \mathcal{W}_n/\equiv is a monoid with [u][v] = [uv] called plactic monoid.
- Robinson-Schensted correspondence $w = 31224 \in \mathcal{W}_4$

$$(\emptyset \leftarrow 31224) = (3 \leftarrow 1224) = (\boxed{13} \leftarrow 224) = \boxed{\frac{1}{2}} \leftarrow 24$$
$$= \boxed{\frac{1}{2}} \leftarrow 4 = P(w) = \boxed{\frac{1}{2}} \qquad Q(w) = \boxed{\frac{1}{3}}$$

▶ For $w, w' \in \mathcal{W}_n$, $w \equiv w'$ iff P(w) = P(w').

Crystal equivalence

- For $w, w' \in \mathcal{W}_n$, P(w) = P(w') if and only if w and w' occur at the same place in two isomorphic connected components of the crystal graph of \mathcal{W}_n . An isomorphism of GL_n -crystals is an isomorphism of I-colored oriented graphs which preserves the weight and length functions for every $i \in I$.
- Each connected component in W_n is isomorphic to $B(\lambda, n)$ for some $\lambda \in \mathcal{P}_n$.

• For
$$w \in \mathcal{W}_n$$
, $e_i(w) = 0$, for all $i \in I = [n-1]$, $\Leftrightarrow P(w) = \begin{bmatrix} 1 & 1 & 1 \\ 2 & \ddots & 2 \\ \vdots & \ddots & \vdots \\ n & n \end{bmatrix}$

• For $w \in \mathcal{W}_n$, $e_i(w) = 0$, for all $i \in I = [n-1]$, if and only if the number of occurrences of i in w is no less than that of i+1. These words are called Yamanouchi or lattice permutation or ballot words.

$$121132413 \equiv \begin{array}{|c|c|c|c|}\hline 1 & 1 & 1 & 1 \\\hline 2 & 2 & 2 \\\hline 3 & 3 & \\\hline 4 & & \end{array}$$

Crystal equivalence

- $\mathbb{B}_3^{\otimes 3} \subseteq \mathcal{W}_3$
- The highest weight words in $\mathbb{B}_3^{\otimes 3}$ are:

$$111 = \boxed{111}$$
, $112 = \boxed{\frac{1}{2}}$, and $121 \equiv \boxed{\frac{1}{2}}$, $123 = \boxed{\frac{1}{2}}$

- $\mathbb{B}_3^{\otimes 3} = B(\varpi_1)^{\otimes 3} = B(3\varpi_1) \bigoplus B(\varpi_3) \bigoplus B(\varpi_1 + \varpi_2) \bigoplus B(\mathbf{121})$
- $B(\varpi_1 + \varpi_2) \simeq B(121)$

• $112 \equiv 121$, $113 \equiv 131$, $213 \equiv 231$, $212 \equiv 122$, $312 \equiv 132$, $313 \equiv 133$, $323 \equiv 233$

GL_n standard tensor product decomposition of $\mathbb{B}^{\otimes k}$

- $\mathbb{B}_3^{\otimes 3} = B(\varpi_1)^{\otimes 3} = B(3\varpi_1) \bigoplus B(\varpi_3) \bigoplus B(\varpi_1 + \varpi_2)^{\oplus 2}$, where $3\varpi_1, \ \varpi_3, \ \varpi_1 + \varpi_2$ are all the partitions of 3.
- How do I compute the number of isomorphic components?
 - ► The Robinson-Schensted correspondence is a bijection between the sets $\mathbb{B}^{\otimes k}$ and $\bigsqcup_{\lambda \in \mathcal{P}_{n}, |\lambda| = k} B(\lambda, n) \times SYT(\lambda, k)$,

$$w \mapsto (P(w), Q(w)).$$

▶ For $w, w' \in \mathcal{W}_n$, Q(w) = Q(w') if and only if w and w' occur in the same connected component of the graph of \mathcal{W}_n .

• $B(\varpi_1 + \varpi_2) \simeq B(121)$

$$\emptyset \leftarrow 112 = 1 \leftarrow 12 = 11 \leftarrow 2 = P(112) = \frac{1}{2} \qquad Q(112) = \frac{1}{3}$$

$$\emptyset \leftarrow f_1(112) = 212 = 2 \leftarrow 12 = 12 \leftarrow 2 = P(212) = \frac{1}{2} \qquad ,$$

$$Q(f_1(112)) = Q(112) = \frac{1}{3}$$

•

$$\emptyset \leftarrow \mathbf{121} = 1 \leftarrow 21 = \frac{1}{2} \leftarrow 1 = P(112) = \frac{1}{2}, \quad Q(\mathbf{121}) = \frac{1}{2}$$

$$\emptyset \leftarrow f_1(\mathbf{121}) = 122 = 1 \leftarrow 22 = \frac{1}{2} \leftarrow 2 = P(112) = \frac{1}{2},$$

$$Q(f_1(\mathbf{121})) = Q(\mathbf{121}) = \frac{1}{2}$$

•
$$|SYT((2,1),3)| = 2$$

ullet The RS correspondence gives the following GL_n crystal isomorphism

$$\mathbb{B}^{\otimes k} \simeq \bigoplus_{\substack{\lambda \in \mathcal{P}_n, |\lambda| = k \\ Q \in SYT(\lambda, k)}} B(Q) \simeq \bigoplus_{\substack{\lambda \in \mathcal{P}_n, |\lambda| = k}} B(\lambda, n)^{\oplus |SYT(\lambda, k)|},$$

where $B(Q) = B(\lambda, n) \times \{Q\}$.

• $\mathbb{B}^{\otimes k}$ decomposes into a disjoint union of crystals, each isomorphic to $B(\lambda, n)$, with multiplicity $|SYT(\lambda, k)|$, where λ is a partition of k of length < n.

An identity

 $B(\varpi_1,n)^{\otimes k} = \bigoplus_{\lambda \in \mathcal{P}_n, \ |\lambda| = k} B(\lambda,n)^{\oplus |SYT(\lambda,k)|}$

$$(x_1 + \dots + x_n)^k = \sum_{\lambda \in \mathcal{P}_n, |\lambda| = k} |SYT(\lambda, k)| s_{\lambda}(x_1, \dots, x_n)|$$

$$n^{k} = \sum_{\lambda \in \mathcal{P}_{n}, \ |\lambda| = k} |SYT(\lambda, k)||SSYT(\lambda, n)|$$

• n = k = 3

$$(x_1 + x_2 + x_3)^3 = \sum_{\lambda \vdash = 3} |SYT(\lambda, 3)| s_{\lambda}(x_1, x_2, x_3)|$$

$$3^3 = s_{(3)}(1,1,1) + 2s_{(2,1)}(1,1,1) + s_{(1,1,1)} = 10 + 2 \times 8 + 1$$

The Littlewood-Richardson rule

- For $\mu, \nu \in \mathcal{P}_n$, we have the following GL_n crystal isomorphism.
- Let $T \in B(\mu, n), T' \in B(\nu, n), T \otimes T' = w(T) \otimes w(T') = w(T)w(T')$ and

$$P(T \otimes T') = T \leftarrow w(T') \Rightarrow T \otimes T' \equiv P(T \otimes T')$$

• The recording tableau $Q(T \otimes T')$?

$$T = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, T' = \begin{bmatrix} 2 & 2 \\ 3 & 4 \end{bmatrix}$$

• $Q(T \otimes T') = \frac{1}{2}$ is a Littlewood-Richardson tableau of shape λ/μ , $\mu = (2,1)$ and content $\nu = (2,2)$ with word 1122 a Yamanouchi word.

• The map $T \otimes T' \longmapsto (P(T \otimes T'), Q(T \otimes T'))$ gives the following crystal isomorphism

$$B(\mu, n) \bigotimes B(\nu, n) \simeq \bigoplus_{\substack{\lambda \in \mathcal{P}_n \\ Q \in LR_{\mu, \nu}^{\lambda}}} B(Q) \simeq \bigoplus_{\substack{\lambda \in \mathcal{P}_n \\ |\lambda| = |\mu| + |\nu|}} B(\lambda, n)^{\oplus c_{\mu, \nu}^{\lambda}},$$

where
$$B(\mathit{Q}) = B(\lambda, \mathit{n}) \times \{\mathit{Q}\}$$
 and $c_{\mu, \nu}^{\lambda} = |\mathit{LR}_{\mu, \nu}^{\lambda}|$

- $c_{(2,1),(2,2)}^{(3,2,2)} = 1$
- $s_{\mu}s_{\nu}=\sum_{\lambda\in\mathcal{P}_n}c_{\mu,\nu}^{\lambda}s_{\lambda}.$

$$V(\mu)\otimes V(
u) = igoplus_{\substack{\lambda\in \mathcal{P}_n\ |\lambda|=|\mu|+|
u|}} V(\lambda)^{\oplus c_{\mu,
u}^{\lambda}}$$

Lusztig-Schützenberger involution

- The Schützenberger–Lusztig involution $\xi: B(\lambda) \to B(\lambda)$ is the unique map of sets such that, for all $b \in B(\lambda)$, and $i \in I$,
 - $e_i \xi(b) = \xi f_{\theta(i)}(b)$
 - $f_i\xi(b) = \xi e_{\theta(i)}(b)$
 - $\mathsf{wt}(\xi(b)) = w_0 \mathsf{wt}(\mathsf{b})$

where w_0 is the long element of the Weyl group W.

• Let $b \in B(\lambda)$ and $b = f_{j_r} \cdots f_{j_1}(u_{\lambda})$, for $j_r, \ldots, j_1 \in I$. Then

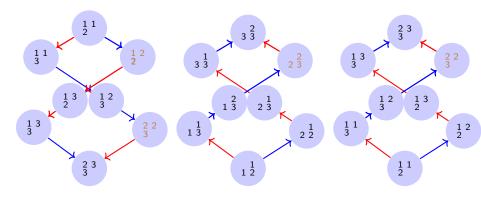
$$\xi(b) = e_{\theta(j_r)} \cdots e_{\theta(j_1)}(u_\lambda^{\mathsf{low}}), \quad \mathsf{wt}(\xi(b)) = w_0 \mathsf{wt}(b)$$

In particular,

• in type A_{n-1} , $\xi(b) = e_{n-j_r} \cdots e_{n-j_1}(u_\lambda^{low})$, and $\operatorname{wt}(\xi(b)) = \operatorname{rev} \operatorname{wt}(b)$, where rev is the reverse permutation (long element) of \mathfrak{S}_n , ξ reverses all arrows and colors, and weight. In particular, it interchanges the highest and lowest weight elements.

Schützenberger-Lusztig involution in type A

1 = -2 = -



$$B((2,1,0),3) \xrightarrow{\text{rotate}} B((2,2)/(1),3) \xrightarrow{\text{rectification}} B((2,1,0),3)$$

$$\xi\left(\frac{1}{2}^{2}\right) = evac\left(\frac{1}{2}^{2}\right) = \frac{2}{3}^{2}$$

Demazure crystals

- Let $G = GL_n(\mathbb{C})$ and B a Borel subgroup. Let the Lie algebras of G and B be $\mathfrak{g} = \mathfrak{gl}(n,\mathbb{C})$ and $\mathfrak b$ a Borel subalgebra of $\mathfrak g$. Let $V(\lambda)$ be the irreducible G-module with highest weight λ .
- For $w \in W = \mathfrak{S}_n$, the Demazure module $V_w(\lambda) \subseteq V(\lambda)$ is the B-submodule defined

$$V_w(\lambda) = \mathcal{U}(\mathfrak{b}).V(\lambda)_{w\lambda},$$

where $\mathcal{U}(\mathfrak{b})$ is the enveloping algebra of the Borel subalgebra \mathfrak{b} of \mathfrak{g} , and $V(\lambda)_{w\lambda}$ is the one dimensional weight space of $V(\lambda)$ with extremal weight $w\lambda$.

- The Kashiwara crystal $B(\lambda)$ is a combinatorial skeleton for the G-module $V(\lambda)$.
- Demazure characters are the characters of the B-submodules $V_w(\lambda)$.
- Kashiwara and Littelmann have shown that they can be obtained by summing the monomial weights over certain subsets $B_v = B_w(\lambda)$, $v \in W\lambda$, in the crystal $B(\lambda, n)$, called Demazure crystals.
- $B_v = B_w(\lambda)$ is the combinatorial skeleton of the Demazure module $V_w(\lambda)$, for $v \in W\lambda$.
- How to detect a Demazure crystal $B_v = B_w(\lambda)$ in $B(\lambda, n)$?
- How to detect the Demazure atom to which a vertex b of $B(\lambda, n)$ belongs?

Demazure keys: Dilatation of crystals

• Let *m* be a positive integer. There exists a unique embedding of crystals

$$\psi_m: B(\lambda) \hookrightarrow B(m\lambda)$$

such that for $b \in B(\lambda)$ and any path $b = f_{i_1} \cdots f_{i_l}(b_{\lambda})$ in $B(\lambda)$, we have

$$\psi_m(b)=f_{i_1}^m\cdots f_{i_l}^m(b_{m\lambda}).$$

- $b_{\lambda}^{\otimes m}$ is of highest weight $m\lambda$ in $B(\lambda)^{\otimes m} \Rightarrow B(b_{\lambda}^{\otimes m})$ is a realization of $B(m\lambda)$ in $B(\lambda)^{\otimes m}$ with highest weight vertex $b_{\lambda}^{\otimes m}$.
- This gives a canonical embedding

$$\theta_m: \left\{ \begin{array}{c} B(b_\lambda) \hookrightarrow B(b_\lambda^{\otimes m}) \subset B(b_\lambda)^{\otimes m} \\ b \longmapsto b_1 \otimes \cdots \otimes b_m \end{array} \right.$$

with important properties.

- For $\sigma \in W^{\lambda}$ the set of minimal coset representatives of W/W_{λ} , $\theta_m(b_{\sigma\lambda}) = b_{\sigma\lambda}^{\otimes m}$.
- When m has sufficiently many factors, there exist elements $\sigma_1, \ldots, \sigma_m$ in W^{λ} such that $\theta_m(b) = b_{\sigma_1 \lambda} \otimes \cdots \otimes b_{\sigma_m \lambda}$.
 - the elements $b_{\sigma_1\lambda}$ and $b_{\sigma_m\lambda}$ in $\theta_m(b)$ do not then depend on m,
 - up to repetition, the sequence $(\sigma_1\lambda,\ldots,\sigma_m\lambda)$ in $\theta_m(b)$ does not depend on the realization of the crystal $B(\lambda)$ and we have $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_m$.

Demazure keys

• the keys $K^+(b)$ and $K^-(b)$ of b are defined as follows:

$$K^+(b) = b_{\sigma_1 \lambda}$$
 and $K^-(b) = b_{\sigma_m \lambda}$.

In particular, $K^+(b_{\sigma\lambda})=K^-(b_{\sigma\lambda})=b_{\sigma\lambda}$ for any $\sigma\in W_n^\lambda$.

- $K^-(b) \le K^+(b)$ for any $b \in B(\lambda)$, and
- $K^-(b) = K^+(b)$ if and only if b is in $O(\lambda) = \{b_{\sigma\lambda} : \sigma \in W_n^{\lambda}\}$.

$$T_{\lambda} = \begin{array}{ccc} \boxed{1} \boxed{1} & \xrightarrow{} & \boxed{1} \boxed{1} \\ 2 & \xrightarrow{} & \boxed{1} \boxed{1} \end{array} \xrightarrow{} & \boxed{1} \boxed{2} \\ 1 \downarrow & & \downarrow 1 \\ 2 \boxed{2} & & \boxed{2} \boxed{2} \\ 2 \downarrow & & \downarrow 2 \\ \boxed{1} \boxed{3} & \xrightarrow{} & \boxed{1} \boxed{3} \end{array} \xrightarrow{} & \boxed{2} \boxed{3} \\ 2 - \textit{dilatation, } B((2,1),3) \hookrightarrow B(T_{\lambda}^{\otimes 2} \subseteq B((2,1))^{\otimes 2}$$

$$K_{+} \stackrel{\text{\scriptsize{1}}3}{2} = \stackrel{\text{\scriptsize{1}}3}{3} \; , \quad K^{-} \stackrel{\text{\scriptsize{1}}3}{2} = \stackrel{\text{\scriptsize{1}}2}{2} \; , \quad K_{+} \stackrel{\text{\scriptsize{1}}}3 = \stackrel{\text{\scriptsize{2}}2}{3} \; , \quad K^{-} \stackrel{\text{\scriptsize{1}}}3 = \stackrel{\text{\scriptsize{1}}}3$$

Lakshmibai-Seshadri (LS) paths

- Let $(\pi = (\tau, a)$ be an L-S path of shape λ , where $\tau = (\tau_0, \dots, \tau_r)$. Then $i(\pi) = \tau_0$ is the initial direction (right key) and $e(\pi) = \tau_r$, the final direction (left key) of the path.
- Lakshmibai-Seshadri (LS) path of shape λ is a pair $(\nu;a)$ of sequences $\nu:\nu_0>\dots>\nu_s$ of elements in W/W_λ in strictly decreasing order and $a:a_0=0< a_1<\dots< a_s< a_{s+1}=1$ of rational numbers in strictly increasing order, satisfying certain integrability conditions. We may regard π as a piecewise linear function such that

$$\pi(t) = \sum_{k=1}^{i-1} (a_k - a_{k-1}) \nu_k \lambda + (t - a_{i-1}) \nu_i \lambda, \quad a_{i-1} \le t \le a_i$$

• For $\pi=(id;0,1)$, one has $\pi_{\lambda}(t)=\lambda t$, $t\in[0,1]$ and $\theta_m(K(\lambda))$ gives π_{λ} .

The crystal of LS paths

- We denote by $B^{LS}(\lambda)$ the set of all LS paths of shape λ .
- $\pi = (id; 0, 1)$ identified with $\pi_{\lambda}(t) = \lambda t$, $t \in [0, 1]$ is in $B^{LS}(\lambda)$.
- $B^{LS}(\lambda)$ has crystal structure isomorphic to $B(\lambda)$ with highest weight element π_{λ} given by $\theta_m(K(\lambda))$. There is a unique isomorphism between $B(\lambda)$ and $B^{LS}(\lambda)$ that sends $\theta_m(K(\lambda))$ to π_{λ} .

Lascoux's keys: jeu de taquin