Tableau combinatorics in types A and C with interactions in representation theory and beyond

Olga Azenhas

CMUC

XXIV International Workshop for Young Mathematicians "Representation Theory" 17-23 IX 2023 Jagiellonian University

\mathfrak{gl}_n - crystals

- The finite-dimensional irreducible polynomial representations of the \mathfrak{gl}_n Lie algebra are parameterized by the partitions in \mathcal{P}_n (partitions with at most *n* parts). For each $\lambda \in \mathcal{P}_n$, $V(\lambda)$ denotes the corresponding finite-dimensional representation (or \mathfrak{gl}_n -module).
- To each partition $\lambda \in \mathcal{P}_n$ corresponds a crystal graph $B(\lambda)$ which can be regarded as the combinatorial skeleton of the simple module $V(\lambda)$.

Set up: Cartan type A_{n-1}

- Weight lattice $\Lambda = \mathbb{Z}^n$.
- $\mathcal{P}_n = \{\lambda \in \mathbb{Z}_{\geq 0}^n : \lambda = (\lambda_1 \ge \cdots \ge \lambda_n \ge 0)\}$ the set of partitions with at most *n* parts.
- I := [n-1], simple roots $\{\alpha_i = \mathbf{e}_i \mathbf{e}_{i+1}, i \in I\}$, $\alpha_i^{\vee} = \alpha_i, i \in I$. $\{\mathbf{e}_1, \ldots, \mathbf{e}_n\}$ standard basis of \mathbb{R}^n
- Fundamental weights $\varpi_i = \mathbf{e}_1 + \cdots + \mathbf{e}_i$, $i \in I$.
- Dynkin diagram I Cartan type A_{n-1},

Weyl group:

$$W = \mathfrak{S}_n = \langle s_1, \dots, s_{n-1} : s_i^2 = 1, (s_i s_j)^2 = 1, |i-j| > 1, (s_i s_{i+1})^2 = 1 \rangle$$

• Dynkin diagram automorphism, $\theta: I \to I$, $\alpha_{\theta(i)} = -w_0 \alpha_i \Rightarrow \theta(i) = n - i$

3/41

\mathfrak{gl}_n - crystals

A \mathfrak{gl}_n -crystal is a non-empty set B along with maps

wt :
$$B \to \mathbb{Z}^n$$
, $e_i, f_i : B \to B \cup \{0\}, \varepsilon_i, \varphi_i : B \to \mathbb{Z}$,

such that for any $b, b' \in B$ and $i \in I = [n-1]$,

We associate to the crystal B a directed graph with vertices in B and edges labelled by $i \in I$.

$$f_i(x) = y, \ x, y \in B \ \Leftrightarrow x \xrightarrow{i} y$$

For any $i \in I$, the crystal B can be decomposed into its *i*-chains (or strings) which are obtained just by keeping the *i*-arrows,

Standard \mathfrak{gl}_n crystal

Let B_n := B(π₁) = {1,..., n} be the standard Gl_n-crystal consisting of the words of a sole letter on the alphabet [n] whose coloured crystal graph is

$$1 \xrightarrow{1} 2 \xrightarrow{2} \cdots \xrightarrow{n-2} n - 1 \xrightarrow{n-1} n$$

● The Kashiwara operators f_i and e_i are defined for i ∈ I = [n − 1] as follows:

 $f_i(i) = i + 1,$ $e_i(i + 1) = i,$

otherwise, the letters are unchanged.

- The weight $wt(i) = \mathbf{e}_i$, for i = 1, ..., n.
- The highest (lowest) weight element of $B(\varpi_1)$ is the word 1 (n), since

$$e_i(1) = 0$$
 ($f_i(n) = 0$), for all $i \in I$

and the highest (lowest) weight is \mathbf{e}_1 (\mathbf{e}_n).

The length functions are what is expected from the crystal graph.

Tensor product of crystals

- B and C crystals.
- The crystal B ⊗ C has set of vertices the cartesian product of the sets of vertices of B and C, the elements denoted u ⊗ v, u ∈ B, v ∈ C, and crystal structure given by wt(u ⊗ v) =wt(u) + wt(v) and the following rules where we follow the Kashiwara convention

$$e_{i}(u \otimes v) = \begin{cases} u \otimes e_{i}(v) \text{ if } \varepsilon_{i}(v) > \varphi_{i}(u) \\ e_{i}(u) \otimes v \text{ if } \varepsilon_{i}(v) \leq \varphi_{i}(u) \end{cases}$$
$$f_{i}(u \otimes v) = \begin{cases} f_{i}(u) \otimes v \text{ if } \varphi_{i}(u) > \varepsilon_{i}(v) \\ u \otimes f_{i}(v) \text{ if } \varphi_{i}(u) \leq \varepsilon_{i}(v) \end{cases}$$

• GL_3 standard tensor product: $B(\varpi_1)^{\otimes 2} = B(2\varpi_1) \sqcup B(\varpi_2) = B(2\varpi_1) \bigoplus B(\varpi_2)$

$$V(\varpi_1)^{\otimes 2} = V(2\varpi_1) \bigoplus V(\varpi_2)$$

Crystal of words

- The crystal $\mathcal{W}_n = \bigsqcup_{k>0} \mathbb{B}^{\otimes k} \sqcup \{\emptyset\}$ of all finite words on [n] where \emptyset is the empty word and the vertex $w_1 \otimes \cdots \otimes w_k \in \mathbb{B}^{\otimes k}$ is identified with the word $w = w_1 \cdots w_k$ of length k on [n].
- Signature rule:
 - 1- substitute each letter w_j by $\begin{cases} + \text{ if } w_j = i \\ \text{ if } w_j = i + 1 \\ \text{erase it in any other case.} \end{cases}$

2- successively erase any pair +- until all the remaining letters form a word -a+b. Then $\varphi_i(w) = b$ and $\varepsilon_i(w) = a$. 3- $e_i(f_i)$ acts on the letter i + 1 (i) associated to the rightmost (leftmost) - (+) in

$$-^{a}+^{b}: \quad e_{i}(i+1) = \begin{cases} i \text{ if } a > 0 \\ 0 \text{ if } a = 0 \end{cases} \qquad f_{i}(i) = \begin{cases} i+1 \text{ if } b > 0 \\ 0 \text{ if } b = 0 \end{cases}$$

•
$$124211232113 \in \mathbb{B}_{4}^{\otimes 12} = B(\varpi_{1})^{\otimes 12}.$$

 $122112211 \rightarrow (12)\mathbf{2}(1(12)2)\mathbf{11} \rightarrow \mathbf{211}$
 $\mathbf{211} \xrightarrow[e_{1}]{} \mathbf{111} \Rightarrow e_{1}(124211232\mathbf{113}) = 124\mathbf{1112321} \mathbf{13}$
 $\mathbf{211} \xrightarrow[f_{1}]{} \mathbf{221} \Rightarrow f_{1}(124\mathbf{211232113}) = 124211232\mathbf{213}$

Crystal of Young tableaux

• $\lambda \in \mathcal{P}_n$

- B(λ, n) the set of all Young tableaux of shape λ on the alphabet [n]
- the column reading word of a tableau

$$T = \begin{bmatrix} 1 & 2 & 2 & 4 \\ 4 & 5 \end{bmatrix} \xrightarrow{\qquad \text{column reading}} w(T) = 422514 \in \mathcal{W}_5.$$

wt(w(T)) = (1, 2, 0, 2, 1)

- a tableau in $B(\lambda, n)$ is uniquely recovered from its word.
- the map T → w(T) gives an embedding of B(λ, n) in W_n and we may think of B(λ, n) as a subset of W_n.
- $B(\lambda, n)$ is closed for the action of e_i and f_i , $i \in I$: $e_i(T) := e_i(w(T))$ and $f_i(T) := f_i(w(T)) \in B(\lambda, n)$.
- B(λ, n) is a subcrystal of W_n

 \mathfrak{gl}_3 crystal $B((2,1,0),3) \subseteq \mathcal{W}_3$

۲

 $B((2,1,0),3) = \{f_{i_1}^{k_1} \cdots f_{i_l}^{k_\ell}(T_\lambda) \mid (k_1,\ldots,k_l) \in \mathbb{Z}_{\geq 0}^{\ell}, \ i_1,\ldots,i_l \in I = [2]\} \setminus \{0\}.$

 \mathfrak{gl}_3 crystal $B((2,1,0),3) \subseteq \mathcal{W}_3$

- Weyl group $W = \mathfrak{S}_n$ action on $B(\lambda, n)$: the simple reflection s_i sends each vertex $b \in B(\lambda, n)$ to the unique vertex b' in the *i*-chain of b such that b' is the reflection of b with respect to the center of the *i*-chain containing *b*. Note $wt(s_i,b) = s_iwt(b)$.
- The character of $B(\lambda, n)$, $V(\lambda)$ finite-dimensional irreducible polynomial representation of \mathfrak{gl}_n of highest weight λ , is the Schur polynomial

 $\mu \prec \lambda$

$$s_{\lambda}(x_1,\ldots,x_n) = \sum_{b\in B(\lambda,n)} x^{wt(b)} = \sum_{\mu\preceq\lambda} K(\lambda,\mu)x^{\mu}.$$

• Weight space decomposition of $V(\lambda)$

 $\mu \prec \lambda$

$$V(\lambda) = \bigoplus_{\mu \preceq \lambda} V(\lambda)_{\mu}, \quad \dim V(\lambda)_{\mu} = K(\lambda, \mu), \text{ Kostka number}$$
$$\dim V(\lambda) = \sum_{\mu \preceq \lambda} \dim V(\lambda)_{\mu} = \sum_{\mu \preceq \lambda} K(\lambda, \mu) = |B(\lambda, n)| = \mathfrak{s}_{\lambda}(1, \dots, 1).$$

 \mathfrak{gl}_3 crystal $B((2,1,0),3) \subseteq \mathcal{W}_3$

$$\begin{split} s_{(2,1,0)}(x_1, x_2, x_3) &= x^{210} + x^{120} + x^{201} + x^{021} + x^{012} + x^{102} + 2x^{(111)} \\ \dim V(210) &= s_{(2,1,0)}(1,1,1) = 8 = |B(210),3)| \\ \dim V(210)_{\mu} &= \begin{cases} 1, & \mu \neq (1,1,1) \preceq (2,1,0) \\ 2, & \mu = (1,1,1). \end{cases} \end{split}$$

Crystal equivalence and classical Young tableau combinatorics

• Knuth equivalence in W_n / Schützenberger jeu de taquin (sliding)

$$xyz \equiv \begin{cases} xzy, & y \le x < z \\ yxz, & y < z \le x \end{cases} \Leftrightarrow \begin{bmatrix} y \\ z \end{bmatrix} \equiv \begin{cases} \hline x \\ y \\ z \end{bmatrix}, & y \le x < z \\ \hline y \\ z \\ x \end{bmatrix}, & y < z \le x \end{cases}$$

- Two words w, w' ∈ W_n are said Knuth equivalent if they can be transformed into each other by a sequence of Knuth transformations. W_n/ ≡ is a monoid with [u][v] = [uv] called plactic monoid.
- Robinson-Schensted correspondence $w = 31224 \in W_4$

$$(\emptyset \leftarrow 31224) = (3 \leftarrow 1224) = (\boxed{13} \leftarrow 224) = \boxed{\frac{13}{2}} \leftarrow 24$$
$$= \boxed{\frac{123}{2}} \leftarrow 4 = P(w) = \boxed{\frac{123}{2}}$$
$$Q(w) = \boxed{\frac{3}{5}}$$

For
$$w, w' \in \mathcal{W}_n$$
, $w \equiv w'$ iff $P(w) = P(w')$.

12/41

Crystal equivalence

- For w, w' ∈ W_n, P(w) = P(w') if and only if w and w' occur at the same place in two isomorphic connected components of the crystal graph of W_n.
 An isomorphism of GL_n-crystals is an isomorphism of *I*-colored oriented graphs which preserves the weight and length functions for every i ∈ I.
- Each connected component in W_n is isomorphic to $B(\lambda, n)$ for some $\lambda \in \mathcal{P}_n$.

• For
$$w \in \mathcal{W}_n$$
, $e_i(w) = 0$, for all $i \in I = [n-1]$ (*w* is highest weight
element) $\Leftrightarrow P(w) =$
$$\begin{array}{c|c} \hline 1 & \cdots & 1 & 1 \\ \hline 2 & \cdots & 2 \\ \hline & \ddots & \\ \hline & n & n \end{array}$$

For w ∈ W_n, e_i(w) = 0, for all i ∈ I = [n − 1] if and only if the number of occurrences of i in w is no less than that of i + 1, for all i ∈ I = [n − 1]. These words are called Yamanouchi or lattice permutation or ballot words.

$$12113241333 \equiv \begin{array}{c} \hline 1 & 1 & 1 & 1 \\ \hline 2 & 2 & 3 \\ \hline 3 & 3 \\ \hline 4 \end{array}$$

Crystal equivalence

- $\mathbb{B}_3^{\otimes 3} \subseteq \mathcal{W}_3$, all words of length 3 on the alphabet [3].
- The highest weight words in $\mathbb{B}_3^{\otimes 3}$ are the ballot words in \mathcal{W}_3 of length 3:

$$111 = 1111$$
, $112 = 112$, and $121 \equiv 112$, $123 = 123$

•
$$\mathbb{B}_3^{\otimes 3} = B(\varpi_1)^{\otimes 3} = B(3\varpi_1) \bigoplus B(\varpi_3) \bigoplus B(\varpi_1 + \varpi_2) \bigoplus B(121)$$

ullet \simeq connected componentes/ Knuth equivalence of vertices in a same position

 $112 \equiv 121, \ 113 \equiv 131, \ 213 \equiv 231,$

 $212 \equiv 122, \; 312 \equiv 132, \;\; 313 \equiv 133, \; 323 \equiv 233$

\mathfrak{gl}_n standard tensor product decomposition of $\mathbb{B}^{\otimes k}$

- $\mathbb{B}_3^{\otimes 3} = B(\varpi_1)^{\otimes 3} = B(3\varpi_1) \bigoplus B(\varpi_3) \bigoplus B(\varpi_1 + \varpi_2)^{\oplus 2}$, where $3\varpi_1, \ \varpi_3, \ \varpi_1 + \varpi_2$ are all the partitions of 3.
- For $\lambda \in \mathcal{P}_n$, how do I compute in \mathcal{W}_n the number of isomorphic components to $B(\lambda, n)$?
 - ► The Robinson-Schensted correspondence is a bijection between the sets $\mathbb{B}^{\otimes k}$ and $\bigsqcup_{\lambda \in \mathcal{P}_{n}, |\lambda|=k} B(\lambda, n) \times SYT(\lambda, k),$

$$w \mapsto (P(w), Q(w)).$$

- For w, w' ∈ W_n, Q(w) = Q(w') if and only if w and w' occur in a same connected component of the graph of W_n.
- For $\lambda \in \mathcal{P}_n$ of size k, there exist $|SYT(\lambda, k)|$ crystal isomorphic components to $B(\lambda, n)$ in \mathcal{W}_n .

 \mathfrak{gl}_3 standard tensor product decomposition of $\mathbb{B}^{\otimes 3}$

۲

$$\begin{split} \emptyset &\leftarrow 112 = 1 \leftarrow 12 = 11 \leftarrow 2 = P(112) = \boxed{111} \quad Q(112) = \boxed{12} \\ \emptyset &\leftarrow f_1(112) = 212 = 2 \leftarrow 12 = 12 \leftarrow 2 = P(212) = \boxed{12} \\ Q(f_1(112)) = Q(112) = \boxed{12} \\ \hline{12} \\ \hline{3} \\ \end{split}$$

<ロト < 回 ト < 目 ト < 目 ト 目 の Q () 16/41

• |SYT((2,1),3)| = 2

۲

$$\emptyset \leftarrow \mathbf{121} = \mathbf{1} \leftarrow \mathbf{21} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \leftarrow \mathbf{1} = P(\mathbf{112}) = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \quad Q(\mathbf{121}) = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$
$$\emptyset \leftarrow f_1(\mathbf{121}) = \mathbf{122} = \mathbf{1} \leftarrow \mathbf{22} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \leftarrow \mathbf{2} = P(\mathbf{112}) = \begin{bmatrix} 1 \\ 2 \end{bmatrix},$$
$$Q(f_1(\mathbf{121})) = Q(\mathbf{121}) = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$

RS correspondence and \mathfrak{gl}_3 standard tensor product decomposition

The RS correspondence gives the following gl_n crystal isomorphism

$$\mathbb{B}^{\otimes k} \simeq \bigoplus_{\substack{\lambda \in \mathcal{P}_n, |\lambda| = k \\ Q \in SYT(\lambda, k)}} B(Q) \simeq \bigoplus_{\lambda \in \mathcal{P}_n, |\lambda| = k} B(\lambda, n)^{\oplus |SYT(\lambda, k)|}$$

where $B(Q) = B(\lambda, n) \times \{Q\}$.

• For $k \ge 1$, $\mathbb{B}^{\otimes k}$ decomposes into a disjoint union of crystals, each isomorphic to $B(\lambda, n)$, with multiplicity $|SYT(\lambda, k)|$, where λ is a partition of k of length $\le n$.

$$V(arpi_1)^{\otimes k} = igoplus_{\lambda \in \mathcal{P}_n, |\lambda| = k} V(\lambda)^{\oplus |SYT(\lambda,k)|}$$

● gl₃

$$n=3$$
 $k=2$, $V(\varpi_1)^{\otimes 2}=V(2\varpi_1)\bigoplus V(\varpi_2)$

$$n=3$$
 $k=3$, $V(\varpi_1)^{\otimes 3}=V(3\varpi_1)\bigoplus V(\varpi_3)\bigoplus V(\varpi_1+\varpi_2)^{\oplus 2}$

An identity

۲ $B(\varpi_1, n)^{\otimes k} = \bigoplus_{\lambda \in \mathcal{D} \setminus \{\lambda\} = k} B(\lambda, n)^{\oplus |SYT(\lambda, k)|}$ $\lambda \in \mathcal{P}_n, |\lambda| = k$ $(x_1 + \cdots + x_n)^k = \sum |SYT(\lambda, k)| s_{\lambda}(x_1, \ldots, x_n)$ $\lambda \in \mathcal{P}_n, |\lambda| = k$ $n^{k} = \sum_{\lambda \in \mathcal{P}_{n}, |\lambda| = k} |SYT(\lambda, k)||SSYT(\lambda, n)|$ • n = k = 3, $\mathbb{B}_{2}^{\otimes 3} = B(\varpi_1)^{\otimes 3} = B(3\varpi_1) \bigoplus B(\varpi_3) \bigoplus B(\varpi_1 + \varpi_2)^{\oplus 2}$ $(x_1 + x_2 + x_3)^3 = \sum_{\lambda \vdash 3} |SYT(\lambda, 3)| s_{\lambda}(x_1, x_2, x_3)$ $3^{3} = s_{(3)}(1,1,1) + 2s_{(2,1)}(1,1,1) + s_{(1,1,1)}(1,1,1) = 10 + 2 \times 8 + 1$

<ロ><回><一><一><一><一><一><一</td>19/41

The Littlewood-Richardson rule

• For $\mu, \nu \in \mathcal{P}_n$, we have the following \mathfrak{gl}_n crystal isomorphism.

• Let
$$T \in B(\mu, n), T' \in B(\nu, n), T \otimes T' = w(T) \otimes w(T') = w(T)w(T')$$
 and
 $P(T \otimes T') = T \leftarrow w(T') \Rightarrow T \otimes T' \equiv P(T \otimes T')$

• The recording tableau $Q(T \otimes T')$?

$$\bullet \quad T = \begin{bmatrix} 1 & 2 \\ 3 \end{bmatrix}, \quad T' = \begin{bmatrix} 2 & 2 \\ 3 & 4 \end{bmatrix}$$

$$T \leftarrow 2423 = \boxed{\begin{array}{c}1 \\ 2 \\ 3\end{array}} \leftarrow 423 = \boxed{\begin{array}{c}1 \\ 2 \\ 3\end{array}} \leftarrow 23 = \boxed{\begin{array}{c}1 \\ 2 \\ 3\end{array}} \leftarrow 23 = \boxed{\begin{array}{c}1 \\ 2 \\ 3\end{array}} \leftarrow 3 = P(T \otimes T') = \boxed{\begin{array}{c}1 \\ 2 \\ 3\end{array}} \\ \boxed{\begin{array}{c}2 \\ 3\end{array}} \\ 3 \\ \boxed{\begin{array}{c}4 \\ 3\end{array}} \end{array}$$

• $Q(T \otimes T') = \frac{1}{22}$ is a Littlewood-Richardson tableau of shape λ/μ , $\mu = (2, 1)$ and content $\nu = (2, 2)$ with word 1122 a Yamanouchi word.

- The set of Littlewood-Richardson tableaux of skew shape shape λ/μ and content ν is denoted by $L^{\lambda}_{\mu,\nu}$.
- ► The Littlewood-Richardson coefficient $c_{\mu,\nu}^{\lambda} := |L_{\mu,\nu}^{\lambda}| \ge 0.$

20 / 41

• The map $T \otimes T' \mapsto (P(T \otimes T'), Q(T \otimes T'))$ gives the following crystal isomorphism

$$B(\mu, n) \bigotimes B(\nu, n) \simeq \bigoplus_{\substack{\lambda \in \mathcal{P}_n \\ Q \in LR_{\mu,\nu}^{\lambda}}} B(Q) \simeq \bigoplus_{\substack{\lambda \in \mathcal{P}_n \\ |\lambda| = |\mu| + |\nu|}} B(\lambda, n)^{\oplus c_{\mu,\nu}^{\lambda}},$$

where $B(Q) = B(\lambda, n) \times \{Q\}$ and $c_{\mu,\nu}^{\lambda} = |LR_{\mu,\nu}^{\lambda}|$ • $c_{(2,1),(2,2)}^{(3,2,2)} = 1$ • $s_{\mu}s_{\nu} = \sum_{\lambda \in \in \mathcal{P}_{\alpha}} c_{\mu,\nu}^{\lambda}s_{\lambda}.$

Tensor product decomposition of two gl_n irreducible representations

$$V(\mu)\otimes V(
u)=igoplus_{\substack{\lambda\in {\mathcal P}_n\ |\lambda|=|\mu|+|
u|}} V(\lambda)^{\oplus c_{\mu,
u}^\lambda}$$

Lusztig-Schützenberger involution

- The Schützenberger-Lusztig involution ξ : B(λ) → B(λ) is the unique map of sets such that, for all b ∈ B(λ), and i ∈ I,
 - $e_i\xi(b) = \xi f_{\theta(i)}(b)$
 - $f_i\xi(b) = \xi e_{\theta(i)}(b)$
 - $wt(\xi(b)) = w_0wt(b)$

where w_0 is the long element of the Weyl group W and θ is the I Dynkin diagram automorphism.

• Let $b \in B(\lambda)$ and $b = f_{j_r} \cdots f_{j_1}(u_{\lambda})$, for $j_r, \ldots, j_1 \in I$. Then

$$\xi(b) = e_{\theta(j_r)} \cdots e_{\theta(j_1)}(u_{\lambda}^{\mathsf{low}}), \quad \mathsf{wt}(\xi(b)) = w_0\mathsf{wt}(b).$$

In particular,

in type A_{n-1}, ξ(b) = e_{n-j_r} ··· e_{n-j₁}(u^{low}_λ), and wt(ξ(b)) = rev wt(b), where rev is the reverse permutation (long element) of 𝔅_n, ξ reverses all arrows and colors, and weight. In particular, it interchanges the highest and lowest weight elements.

Lusztig-Schützenberger involution in type A

Schützenberger, 70' reversal/evacuation : $\frac{1}{2} \stackrel{1}{\rightarrow} \stackrel{\text{rotate}}{\underset{3}{3}} \stackrel{2}{\underset{3}{\rightarrow}} \stackrel{\text{rectification}}{\underset{3}{\rightarrow}} \stackrel{2}{\underset{3}{\rightarrow}} \stackrel{3}{\underset{3}{\rightarrow}}$

1 = - 2 = -

 $B((2,1,0),3) \xrightarrow[rotate]{} B((2,2)/(1),3) \xrightarrow[rectification]{} \to B((2,1,0),3)$

 $\xi(\frac{1}{2}^2) = evac(\frac{1}{2}^2) = \frac{2}{3}^2$

イロト イヨト イヨト

Demazure crystals

- Let $G = GL_n(\mathbb{C})$ and B a Borel subgroup. Let the Lie algebras of G and B be $\mathfrak{g} = \mathfrak{gl}(n, \mathbb{C})$ and \mathfrak{b} a Borel subalgebra of \mathfrak{g} respectively. Let $V(\lambda)$ be the irreducible G-module with highest weight λ .
- For $w \in W$, the Demazure module $V_w(\lambda) \subseteq V(\lambda)$ is the *B*-submodule defined

$$V_w(\lambda) = \mathcal{U}(\mathfrak{b}).V(\lambda)_{w\lambda},$$

where $\mathcal{U}(\mathfrak{b})$ is the enveloping algebra of the Borel subalgebra \mathfrak{b} of \mathfrak{g} , and $V(\lambda)_{w\lambda}$ is the one dimensional weight space of $V(\lambda)$ with extremal weight $w\lambda$.

- The Kashiwara crystal $B(\lambda)$ is a combinatorial skeleton for the G-module $V(\lambda)$.
- Demazure characters are the characters of the *B*-submodules $V_w(\lambda)$.
- Kashiwara and Littelmann have shown that Demazure characters can be obtained by summing the monomial weights over certain subsets $B_v = B_w(\lambda)$, $v \in W\lambda$, in the crystal $B(\lambda, n)$, called Demazure crystals.
- $B_v = B_w(\lambda)$ is the combinatorial skeleton of the Demazure module $V_w(\lambda)$, for $v \in W\lambda$.
- How to detect a Demazure crystal $B_v = B_w(\lambda)$ in $B(\lambda, n)$?

Demazure keys: Dilatation of crystals

• Let *m* be a positive integer. There exists a unique embedding of crystals

 $\psi_m:B(\lambda)\hookrightarrow B(m\lambda)$

such that for $b \in B(\lambda)$ and any path $b = f_{i_1} \cdots f_{i_l}(b_\lambda)$ in $B(\lambda)$, we have

$$\psi_m(b)=f_{i_1}^m\cdots f_{i_l}^m(b_{m\lambda}).$$

- $b_{\lambda}^{\otimes m}$ is of highest weight $m\lambda$ in $B(\lambda)^{\otimes m} \Rightarrow B(b_{\lambda}^{\otimes m})$ is a realization of $B(m\lambda)$ in $B(\lambda)^{\otimes m}$ with highest weight vertex $b_{\lambda}^{\otimes m}$.
- This gives a canonical embedding

$$heta_m: \left\{ egin{array}{ll} B(b_\lambda) \hookrightarrow B(b_\lambda^{\otimes m}) \subset B(b_\lambda)^{\otimes m} \ b \longmapsto b_1 \otimes \cdots \otimes b_m \end{array}
ight.$$

with important properties.

- For $\sigma \in W^{\lambda}$ the set of minimal coset representatives of W/W_{λ} , $\theta_m(b_{\sigma\lambda}) = b_{\sigma\lambda}^{\otimes m}$.
- When *m* has sufficiently many factors, there exist elements $\sigma_1, \ldots, \sigma_m$ in W^{λ} such that $\theta_m(b) = b_{\sigma_1 \lambda} \otimes \cdots \otimes b_{\sigma_m \lambda}$ tensor product of keys.
 - the elements $b_{\sigma_1\lambda}$ and $b_{\sigma_m\lambda}$ in $\theta_m(b)$ do not depend on m,
 - up to repetition, the sequence $(\sigma_1 \lambda, \ldots, \sigma_m \lambda)$ in $\theta_m(b)$ does not depend on the realization of the crystal $B(\lambda)$ and we have $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_m$.

Demazure keys:right and left

For b∈ B(λ) and θ_m(b) = b_{σ1λ} ⊗ · · · ⊗ b_{σmλ}:
 The keys K⁺(b) and K[−](b) of b are defined as follows:

$$K^+(b) = b_{\sigma_1\lambda}$$
 and $K^-(b) = b_{\sigma_m\lambda}$.

In particular, $K^+(b_{\sigma\lambda}) = K^-(b_{\sigma\lambda}) = b_{\sigma\lambda}$ for any $\sigma \in W^{\lambda}$.

- $K^-(b) \leq K^+(b)$ for any $b \in B(\lambda)$, and
- $K^-(b) = K^+(b)$ if and only if b is in $O(\lambda) = \{b_{\sigma\lambda} : \sigma \in W^{\lambda}\}$ the set of keys in $B(\lambda)$.

2 - dilatation, $B((2,1),3) \hookrightarrow B(T_{\lambda}^{\otimes 2}) \subseteq B((2,1))^{\otimes 2}$

$${\cal K}_+ \; \frac{13}{2} \; = \; \frac{13}{3} \; , \quad {\cal K}^- \; \frac{13}{2} \; = \; \frac{12}{2} \; , \quad {\cal K}_+ \; \frac{12}{3} \; = \; \frac{22}{3} \; , \quad {\cal K}^- \; \frac{12}{3} \; = \; \frac{11}{3}$$

Lakshmibai-Seshadri (LS) paths

• The dilatated crystal $B(\lambda)^{\otimes m}$

The corresponding crystal of LS paths

$$\begin{array}{ccc} (id;0,1) & \xrightarrow{\rightarrow} (s_2;0,1) & \xrightarrow{\rightarrow} (s_1s_2,s_2;0,1/2,1) & \xrightarrow{\rightarrow} (s_1s_2;0,1) \\ 1 \downarrow & & \downarrow 2 \\ (s_1;0,1) & \xrightarrow{\rightarrow} (s_2s_1,s_1;0,1/2,1) & \xrightarrow{\rightarrow} (s_2s_1;0,1) & \xrightarrow{\rightarrow} (s_1s_2s_1;0,1) \end{array}$$

Lakshmibai-Seshadri (LS) path of shape λ is a pair (ν; a) of sequences ν : ν₀ > · · · > ν_s of elements in W/W_λ in strictly decreasing order and a : a₀ = 0 < a₁ < · · · < a_s < a_{s+1} = 1 of rational numbers in strictly increasing order, satisfying certain integrability conditions. We may regard π as a piecewise linear function such that

$$\pi(t)=\sum_{k=1}^{i-1}(a_k-a_{k-1})
u_k\lambda+(t-a_{i-1})
u_i\lambda,\quad a_{i-1}\leq t\leq a_i$$

For $\pi = (id; 0, 1)$, one has $\pi_{\lambda}(t) = \lambda t$, $t \in [0, 1]$ and $\theta_m(\mathcal{K}(\lambda))$ gives π_{λ} .

• $i(\pi) = \nu_0$ is the initial direction (right key) and $e(\pi) = \nu_r$, the final direction (left key) of the path.

The crystal of LS paths

- We denote by B^{LS}(λ) the set of all LS paths of shape λ.
- $\pi = (id; 0, 1)$ identified with $\pi_{\lambda}(t) = \lambda t$, $t \in [0, 1]$ is in $B^{LS}(\lambda)$.
- $B^{LS}(\lambda)$ has crystal structure isomorphic to $B(\lambda)$ with highest weight element π_{λ} given by $\theta_m(K(\lambda))$.
- There is a unique crystal isomorphism between $B(\lambda)$ and $B^{LS}(\lambda)$ that sends $K(\lambda)$ to π_{λ} .

Lascoux's keys: jeu de taquin

۲

• An effective way to compute the right and the left key of a SSYT.

$$\frac{12}{3} \rightarrow \frac{12}{3} \rightarrow \frac{12}{13} \rightarrow \frac{12}{13} \quad K^{+} \frac{12}{3} = \frac{22}{3} \quad K^{-} \frac{12}{3} = \frac{11}{3}$$

$$K(3,2,1) = \begin{array}{c} \frac{133}{35} \\ 5 \end{array} \rightarrow \begin{array}{c} \frac{113}{33} \\ 5 \end{array} \rightarrow \begin{array}{c} \frac{113}{33} \\ 5 \end{array} \rightarrow \begin{array}{c} \frac{113}{335} \\ 5 \end{array} \rightarrow \begin{array}{c} \frac{113}{335} \\ 5 \end{array} \rightarrow \begin{array}{c} \frac{113}{335} \\ 5 \end{array}$$

Lascoux's keys or keys à la Lascoux

Demazure crystal and its opposite

- Demazure crystal
 - If $v = \sigma \lambda$ where $\sigma = s_{i_{\ell}} \cdots s_{i_1} \in W$ is a reduced word, we define the Demazure crystal B_v (also denoted $B_{\sigma}(\lambda)$ to be

$$B_{\boldsymbol{v}} = \{f_{i_{\ell}}^{k_{\ell}} \cdots f_{i_{1}}^{k_{1}}(\boldsymbol{K}(\lambda)) \mid (k_{\ell}, \ldots, k_{1}) \in \mathbb{Z}_{\geq 0}^{\ell}\} \setminus \{0\}$$

 $B_e(\lambda) = B_\lambda = \{K(\lambda)\}, \text{ and if } \sigma = w_0, B_{w_0}(\lambda) = B(\lambda).$

► Decomposition into Demazure atoms. For $\rho \leq \sigma$ in W^{λ} , $B_{\rho}(\lambda) \subseteq B_{\sigma}(\lambda)$. The *Demazure crystal atom* \overline{B}_{v} is defined to be

$$\overline{B}_{v} = B_{v} \setminus \bigsqcup_{\substack{u \in W\lambda \\ u < v}} B_{u} = B_{v} \setminus \bigsqcup_{K(u) < K(v)} B_{u}$$

Decomposition into Demazure atoms

$$\overline{B}_{v} = \{b \in B(\lambda) : K^{+}(b) = K(v)\}$$
$$B_{v} = \bigsqcup_{\substack{v' \in W\lambda \\ v' \leq v}} \overline{B}_{v'} = \{b \in B(\lambda) : K^{+}(b) \leq K(v)\}.$$

イロト 不得 トイヨト イヨト ヨー うらつ

Opposite Demazure cystal

- For $b \in B(\lambda)$, $\xi K_{+}(b) = K_{-}(\xi b)$, $\xi K(v) = K(w_{0}v)$.
- For $u, v \in W\lambda$, $u \leq v$ in the induced Bruhat order $\Leftrightarrow K(u) \leq K(v) \Leftrightarrow \xi K(u) \geq \xi K(v)$.
- The opposite Demazure crystal B^{w_0v} is defined to be

$$B^{w_0v} := \{ e_{\theta(i_\ell)}^{k_\ell} \cdots e_{\theta(i_1)}^{k_1} (K(w_0\lambda)) \mid (k_\ell, \dots, k_1) \in \mathbb{Z}_{\geq 0}^\ell \} \setminus \{ 0 \}$$

= $\xi(B_v) = \xi \{ b \in B(\lambda) : K^+(b) \le K(v) \}$
= $\{ b \in B(\lambda) : K^+(\xi b) \le K(v) \}$
= $\{ b \in B(\lambda) : \xi K^-(b) \le K(v) \}$
= $\{ b \in B(\lambda) : K^-(b) \ge \xi K(v) \}$
= $\{ b \in B(\lambda) : K^-(b) \ge K(w_0v) \}.$
 $B^v = \xi(B_{w_0v}) = \{ b \in B(\lambda) : K^-(b) \ge K(v) \}.$

Opposite Demazure atom

$$\overline{B}^{v} = \{b \in B(\lambda) : K^{-}(b) = K(v)\} = \xi(\overline{B}_{w_{0}v}).$$

Decomposition into opposite Demazure atoms

$$B^{w_0v} = \bigsqcup_{v' \in W\lambda, v' \le v} \xi(\overline{B}_{v'}) = \bigsqcup_{v' \in W\lambda, v' \le v} \overline{B}^{w_0v'} = \bigsqcup_{\substack{v' \in W\lambda \\ v' \ge w_0v}} \overline{B}^{v'}.$$
$$B^v = \bigsqcup_{\substack{v' \in W\lambda \\ v' \ge v}} \overline{B}^{v'}.$$

Relations between Demazure crystals

Let
$$u, v, x, y \in W\lambda$$
 and $b \in B(\lambda)$. Then
a $B_x \subseteq B_y \Leftrightarrow B^x \supseteq B^y \Leftrightarrow x \le y$.
a $\overline{B}^u \cap \overline{B}_v \neq \emptyset \Leftrightarrow u \le v$ which happens when
 $\overline{B}^u \cap \overline{B}_v = \{b \in B(\lambda) \mid K(u) = K^-(b) \le K^+(b) = K(v)\} \supseteq \{K(u), K(v)\}.$
a $B^u \cap B_v \neq \emptyset \Leftrightarrow u \le v$ which happens when
 $B^u \cap B_v = \{b \in B(\lambda) \mid K(u) \le K^-(b) \le K^+(b) \le K(v)\} \supseteq \{K(z) \mid z \in [u, v]\}$

where $[u, v] \subseteq W\lambda$ is an interval in the induced Bruhat order.

Demazure character

• Demazure crystal $B_{s_1s_2}((2,1,0)) = \{b \in B((2,1,0),3) : K^+(b) \le K(s_1s_2(2,1,0))\}$

$$T_{\lambda} = \begin{array}{cccc} \boxed{1}1\\2\\1 \\ 1 \\ 1 \\ 2\end{array} \begin{array}{cccc} \hline 1\\2\\2\\2\end{array} \begin{array}{cccc} \hline 1\\3\\2\\2\\2\\3\end{array} \begin{array}{ccccc} \hline 1\\3\\2\\2\\3\\3\end{array}$$

$$\mathcal{K}^+ \boxed{\begin{array}{c}1 \\ 3\end{array}} = \boxed{\begin{array}{c}2 \\ 3\end{array}}$$

Demazure character and opposite Demazure character

$$\kappa_{s_1 s_2 \lambda}(x_1, x_2, x_3) = \sum_{b \in B_{s_1 s_2}(\lambda)} x^{wt(b)} = \sum_{\substack{b \in B(\lambda) \\ K^+(b) \le K(s_1 s_2 \lambda)}} x^{wt(b)}$$

$$\kappa^{s_1 s_2 \lambda}(x_1, x_2, x_3) = \sum_{b \in B^{s_1 s_2}(\lambda)} x^{wt(b)} = \sum_{\substack{b \in B(\lambda) \\ K^-(b) \ge K(s_1 s_2 \lambda)}} x^{wt(b)}.$$

$$35/41$$

Schubert varieties and Demazure crystals

- Let G be a simply-connected semisimple algebraic group over C, g its Lie algebra, and T ⊆ G a maximal torus. We also fix T ⊆ B ⊆ G, B a Borel subgroup of G (a subgroup of G containing a maximal torus). Let B⁻ be the corresponding opposite Borel subgroup, that is, it is the unique Borel subgroup of G with the property B ∩ B⁻ = T.
- For simplicity, let G = GL_n(ℂ), B be the subgroup of upper triangular matrices and B[−] the subgroup of lower triangular matrices.
- Bruhat decomposition and (full) flag variety. The Bruhat decomposition which describes the $B \times B$, respectively $B^- \times B$ orbits in G which are parameterized by W

$$G = \bigsqcup_{w \in W} BwB = \bigsqcup_{w \in W} B^- wB.$$

• Let $G/B = \{gB : g \in G\}$ be the (full) flag variety in G.

$$G/B = \bigsqcup_{w \in W} BwB/B = \bigsqcup_{w \in W} B^- wB/B.$$

- The Schubert cell C_w is $C_w = BwB/B = B\dot{w}$, and
- The opposite Schubert cell C^w is $C^w = w_0 C_{w_0 w} = B^- w B / B = B^- \dot{w}$.
- The Schubert variety X_w , respectively the opposite Schubert variety X^w , in G/B are

$$X_w = \bigsqcup_{v \leq w} C_v, \ X^w = \bigsqcup_{u \geq w} C^u = w_0 X_{w_0 w} \subseteq G/B,$$

where \leq denotes the (strong) Bruhat order on W.

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 のへで 36 / 41

Relations among Schubert varieties

• For $w, w' \in W$,

$$X_w \subseteq X_{w'} \Leftrightarrow w \leq w' \Leftrightarrow X^w \supseteq X^{w'}.$$

• The Richardson variety X_{α}^{β} in G/B corresponding to the pair (α, β) , $\alpha, \beta \in W$, is the (set theoretic) intersection

$$X_{\alpha}^{\beta} := X_{\alpha} \cap X^{\beta} = \bigsqcup_{\beta \le v' \le u' \le \alpha} C_{u'} \cap C^{v'} \neq \emptyset \Leftrightarrow \beta \le \alpha.$$

Borel-Weil theorem, Demazure modules and Schubert varieties

- Let g be the Lie algebra of G. Let V(λ) be the irreducible highest weight G-module over C with highest weight λ, and let B(λ) its combinatorial skeleton.
- Let L_{λ} be a line bundle on the flag variety G/B.
- By the Borel-Weyl theorem the space H⁰(G/B, L_λ) of global sections is a G-module isomorphic to V(λ)* the dual of V(λ),

$$V(\lambda)^* \simeq H^0(G/B, L_\lambda).$$

• Kashiwara constructed a specific C-basis of H⁰(X_w, L_λ) via the quantized enveloping algebra associated to g, specialized at q = 1. This C-basis, {G^{µp}_λ(b) : b ∈ B(λ)} the upper global basis (specialized at q = 1) is compatible with Schubert varieties and opposite Schubert varieties:

$$H^0(X_w, L_\lambda) \simeq V_w(\lambda)^* \quad \mathbb{C} ext{-basis} \{G^{up}_\lambda(b) : b \in B_w(\lambda)\}$$

 $H^0(X^w, L_\lambda) \simeq V^w(\lambda)^* \quad \mathbb{C} ext{-basis} \ \{G^{up}_\lambda(b) : b \in B^w(\lambda)\}.$

Associated to the combinatorial path model given by the LS paths of shape λ, Littelmann constructed also a basis for H⁰(G/B, L_λ) compatible with Schubert varieties and opposite Schubert varieties and their intersections.

Cartan type C_n

Folding A_{2n-1} :

- In type C_n , $\alpha_n = 2e_n$ and $\alpha_n^{\vee} = e_n$ and the Weyl group $W = B_n$ the hyperocthaedral group, and for $v \in \mathbb{Z}^n$, $w_0v = -v$. The Dynkin automorphism $\theta = id$.
- $B_n \simeq B_n^A := \langle \tilde{s}_i := s_i^A s_{2n-i}^A, \tilde{s}_n := s_n^A, 1 \le i < n \rangle$ as a subgroup of \mathfrak{S}_{2n} .
- B_n is the free group generated by $r_1, \ldots, r_{n-1}, r_n$ subject to the relations

 $r_i^2 = 1, \ 1 \le i \le n,$ (1)

$$(r_i r_j)^2 = 1, \ 1 \le i < j \le n, \ |i - j| > 1,$$
 (2)

$$(r_i r_{i+1})^3 = 1, 1 \le i \le n-2,$$
 (3)

$$(r_{n-1}r_n)^4 = 1. (4)$$

Kashiwara crystal Let V be an Euclidean space with inner product ⟨·, ·⟩. Fix a root system Φ with simple roots {α_i | i ∈ I} where I is an indexing set and a weight lattice Λ ⊇ -span{α_i | i ∈ I}. A Kashiwara crystal of type Φ is a nonempty set 𝔅 together with maps :

$$e_i, f_i: \mathfrak{B} \to \mathfrak{B} \sqcup \{0\} \quad \varepsilon_i, \varphi_i: \mathfrak{B} \to \sqcup \{-\infty\} \quad \text{wt}: \mathfrak{B} \to \Lambda$$

where i ∈ l and 0 ∉ 𝔅 is an auxiliary element, satisfying the following conditions:
(a) if a, b ∈ 𝔅 then e_i(a) = b ⇔ f_i(b) = a. In this case, we also have wt(b) = wt(a) + α_i, ε_i(b) = ε_i(a) - 1 and φ_i(b) = φ_i(a) + 1;
(b) for all a ∈ 𝔅, we have

$$\varphi_i(\mathbf{a}) = \langle \operatorname{wt}(\mathbf{a}), \alpha_i^{\vee} \rangle + \varepsilon_i(\mathbf{a}) \text{ with } \alpha_i^{\vee} = \frac{2\alpha_i}{\langle \alpha_i, \alpha_i \rangle}.$$

$$\textbf{0} \hspace{0.1in} \varphi_i(\textbf{\textit{a}}) = \max\{k \in_{\geq 0} | \hspace{0.1in} f_i^k(\textbf{\textit{a}}) \neq 0\} \hspace{0.1in} \text{and} \hspace{0.1in} \varepsilon_i(\textbf{\textit{a}}) = \max\{k \in_{\geq 0} | \hspace{0.1in} e_i^k(\textbf{\textit{a}}) \neq 0\}.$$

<ロ><目><日><日><日><日><日><日><日><日><日><日><日><日><日</td>

Kashiwara-Nakashima tableaux

Let B^C(λ) be the irreducible C_n-crystal with highest weight a partition λ of at most n parts.

We realize $B^{C}(\lambda)$ as the crystal of symplectic Kashiwara–Nakashima tableaux of shape λ on the alphabet

$$\{1 < \cdots < n < \overline{n} < \cdots < \overline{1}\}.$$